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Abstract8

Ad-hoc radio networks and multiple access channels are classical and well-studied models of9

distributed systems, with a large body of literature on deterministic algorithms for fundamental10

communications primitives such as broadcasting and wake-up. However, almost all of these11

algorithms assume knowledge of the number of participating nodes and the range of possible IDs,12

and often make the further assumption that the latter is linear in the former. These are very13

strong assumptions for models which were designed to capture networks of weak devices organized14

in an ad-hoc manner. It was believed that without this knowledge, deterministic algorithms must15

necessarily be much less efficient.16

In this paper we address this fundamental question and show that this is not the case. We17

present deterministic algorithms for blind networks (in which nodes know only their own IDs),18

which match or nearly match the running times of the fastest algorithms which assume network19

knowledge (and even surpass the previous fastest algorithms which assume parameter knowledge20

but not small labels).21

Specifically, in multiple access channels with k participating nodes and IDs up to L,22

we give a wake-up algorithm requiring O( k log L log k
log log k ) time, improving dramatically over the23

O(L3 log3 L) time algorithm of De Marco et al. (2007), and a broadcasting algorithm requir-24

ing O(k logL log log k) time, improving over the O(L) time algorithm of Gąsieniec et al. (2001)25

in most circumstances. Furthermore, we show how these same algorithms apply directly to26

multi-hop radio networks, achieving even larger running time improvements.27
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1 Introduction34

In this paper we address the fundamental question in distributed computing of whether basic35

communication primitives can be efficiently performed in networks in which the participating36

nodes have no knowledge about the network structure. Our focus is on deterministic37

algorithms.38

1.1 Models and problems39

We consider the two classical, and related, models of distributed communication: multiple40

access channels (cf. [19, 28]) and ad-hoc multi-hop radio networks (cf. [2, 8, 14, 27]).41
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15:2 Deterministic Blind Radio Networks

1.1.1 Multiple access channels42

A set of k nodes, with unique identifiers (IDs) from {1, . . . , L}, share a communication43

channel. Time is divided into discrete steps, and in every step each node chooses to either44

transmit a message to the channel or listen for messages. A transmission is only successful if45

exactly one node chooses to transmit in a given time-step; otherwise all nodes hear silence.46

1.1.2 Ad-hoc multi-hop radio networks47

The network is modeled by a directed graph N = (V,E), with |V | = n, where nodes48

correspond to transmitter-receiver stations. The nodes have unique identifiers from {1, . . . , L}.49

A directed edge (v, u) ∈ E means that node v can send a message directly to node u. To50

make propagation of information feasible, we assume that every node in V is reachable in N51

from any other. Time is divided into discrete steps, and in every step each node chooses to52

either transmit a message to all neighbors or listen for messages. A listening node only hears53

a transmission if exactly one neighbor transmitted; otherwise it hears silence.54

It can be seen that multiple access channels are equivalent to single-hop radio networks55

(that is, radio networks in which the underlying graph is a clique).56

1.1.3 Node knowledge57

We study blind versions of these models, by which we mean that the minimum possible58

assumptions about node knowledge are made (and this is where our work differs most59

significantly from previous work): we assume nodes do not know the parameters k, L, or n, or60

any upper bounds thereof. In accordance with the standard model of ad-hoc radio networks61

(for more elaborate discussion about the model, see, e.g., [1, 2, 6, 9, 10, 16, 21, 23, 27]), we62

also make the assumption that a node does not have any prior knowledge about the topology63

of the network, its in-degree and out-degree, or the set of its neighbors. In our setting, the64

only prior knowledge nodes have is their own unique ID.65

1.1.4 Tasks66

In both models we consider the fundamental communication tasks of broadcasting (see, e.g.,67

the survey [27] and the references therein) and wake-up (cf. [3, 8, 15]).68

In the task of wake-up, nodes begin in a dormant state, and some non-empty subset of69

nodes spontaneously ‘wake up’ at arbitrary (adversarially chosen) time-steps. Nodes are also70

woken up if they receive messages. Nodes cannot participate (by transmitting) until they are71

woken up, and our goal is to ensure that eventually all nodes are awake. We assume nodes72

have access only to a local clock: they can count the number of time-steps since they woke73

up, but there is no global awareness of an absolute time-step number.74

The task of broadcasting is usually described as follows: one node begins with a message,75

and it must inform all other nodes of this message via transmissions. However, to enable our76

results to transfer from multiple access channels (single-hop radio networks) to multi-hop77

radio networks, we will instead use broadcasting to refer to a more generalized task. Our78

broadcasting task will be defined similarly to wake-up, with the only difference being that79

nodes have access to a global clock, informing them of the absolute time-step number. (In80

multiple access channels, this task is usually also referred to as wake-up, specifying global81

clock access, but here we will call it broadcasting to better differentiate.)82

Notice that the standard broadcasting task in radio networks is a special case of this83

task, in which only one node spontaneously wakes up. A global clock can be simulated by84
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appending the current global time-step to each transmitted message (and since all message85

chains originate from the same source node, these time-steps will agree).86

For both tasks, we wish to minimize the number of time-steps that elapse between the87

first node waking up, and all nodes being woken. We are not concerned with the computation88

performed by nodes within time-steps.89

1.2 Related work90

As fundamental communications primitives, the tasks of designing efficient deterministic91

algorithms for broadcasting and wake-up have been extensively studied for various network92

models for many decades.93

1.2.1 Wake-up94

The wake-up problem (with only local clocks) has been studied in both multiple access95

channels and multi-hop radio networks (often separately, though the results usually transfer96

directly from one to the other). It has been commonly assumed in the literature that network97

parameters are known, and that IDs are small (L = nO(1)).98

The first sub-quadratic deterministic wake-up protocol for radio networks was given99

in by Chrobak et al. [8], who introduced the concept of radio synchronizers to abstract100

the essence of the problem. They give an O(n5/3 logn)-time protocol for the wake-up101

problem. Since then, there have been several improvements in running time, making use of102

the radio synchronizer machinery: firstly to O(n3/2 logn) [4], and then to O(n log2 n) [3].103

The current fastest protocol is O( n log2 n
log log n ) [13]. However, without the assumption of small104

labels, all of these running times are increased. The algorithm of [13] as analyzed would give105

O( n log L log(n log L)
log log(n log L) ) time, and similar time with k replacing n in multiple access channels.106

All of these algorithms, like those we present here, are non-explicit.107

There has been some work on wake-up in multiple access channels without knowledge108

of network parameters: firstly an O(L4 log5 L) algorithm [15], and then an improvement109

to O(L3 log3 L) [26]. It was believed that this algorithms in this setting were necessarily110

much slower than those for when parameters were known; for example, [26] states “a crucial111

assumption is whether the processors using the shared channel are aware of the total number112

n of processors sharing the channel, or some polynomially related upper bound to such113

number. When such number n is known, much faster algorithms are possible.”114

There are no direct results for wake-up in radio networks with unknown parameters, but115

the algorithm of [26] can be applied to give O(nL3 log3 L) time.116

We note that randomized algorithms for wake-up have also been studied, both with and117

without parameter knowledge; see [15, 19].118

1.2.2 Broadcasting119

Broadcasting is possibly the most studied problem in radio networks, and has a wealth of120

literature in various settings. For the model studied in this paper, directed radio networks121

with unknown structure and without collision detection, the first sub-quadratic deterministic122

broadcasting algorithm was proposed by Chlebus et al. [6], who gave an O(n11/6)-time123

broadcasting algorithm. After several small improvements (cf. [7, 25]), Chrobak et al. [9]124

designed an almost optimal algorithm that ns the task in O(n log2 n) time, the first to125

be only a poly-logarithmic factor away from linear dependency. Kowalski and Pelc [21]126

improved this bound to obtain an algorithm of complexity O(n logn logD) and Czumaj127
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15:4 Deterministic Blind Radio Networks

and Rytter [14] gave a broadcasting algorithm running in time O(n log2 D). Here D is the128

eccentricity of the network, i.e., the distance between the furthest pair of nodes. De Marco129

[24] designed an algorithm that completes broadcasting in O(n logn log logn) time steps,130

beating [14] for general graphs. Finally, the O(n logD log logD) algorithm of [13] came131

within a log-logarithmic factor of the Ω(n logD) lower bound [10]. Again, however, these132

results generally assume small node labels (L = O(n), though some of the earlier results only133

require L = O(nc) for some constant c), and their running time results do not hold otherwise.134

The situation where node labels can be large is less well-studied, though it is easy to see that135

the algorithm of [9] still works, requiring O(n log2 L) time. In multiple access channels, a136

O(k log L
k ) time algorithm exists [10]. Again, all of these algorithms are, like those presented137

here, non-explicit.138

All of these results also intrinsically require parameter knowledge. Without knowledge of n,139

L, k, or D, the fastest algorithm known is the O(L) time algorithm of [15] for multiple access140

channels. This algorithm is explicit, but has the strong added restriction that the first node141

wakes up at global time-step 0. It also does not transfer to multi-hop radio networks, so the142

best running time therein is the O(DL3 log3 L) given by the algorithm of [26]. Concurrently143

with this work, randomized algorithms for broadcasting without parameter knowledge are144

presented in [12], achieving a nearly optimal running time of O(D log n
D log2 log n

D + log2 n)145

in the model we study here (that is, the model without collision detection).146

Broadcasting, as a fundamental communication primitive, has been also studied in147

various related models, including undirected networks, randomized broadcasting protocols,148

models with collision detection, and models in which the entire network structure is known.149

For example, if the underlying network is undirected, then an O(n logD)-time algorithm150

due to Kowalski [20] exists. If spontaneous transmissions are allowed and a global clock151

available, then deterministic broadcast can be performed in O(L) time in undirected networks152

[6]. Randomized broadcasting has been also extensively studied, and in a seminal paper,153

Bar-Yehuda et al. [2] designed an almost optimal broadcasting algorithm achieving the154

running time of O((D + logn) · logn). This bound has been later improved by Czumaj155

and Rytter [14], and independently Kowalski and Pelc [22], who gave optimal randomized156

broadcasting algorithms that complete the task in O(D log n
D + log2 n) time with high157

probability, matching a known lower bound from [23]. Haeupler and Wajc [17] improved158

this bound for undirected networks in the model that allows spontaneous transmissions and159

designed an algorithm that completes broadcasting in time O
(

D log n log log n
log D + logO(1) n

)
160

with high probability, improved to O
(

D log n
log D + logO(1) n

)
in [11]. In the model with collision161

detection for undirected networks, an O(D + log6 n)-time randomized algorithm due to162

Ghaffari et al. [16] is the first to exploit collisions and surpass the algorithms (and lower163

bound) for broadcasting without collision detection.164

For more details about broadcasting algorithms in various models, see e.g., [11, 14, 16,165

20, 27] and the references therein.166

1.3 New results167

We present algorithms for the fundamental tasks of broadcasting and wake-up in multiple168

access channels (single-hop radio networks) and multi-hop radio networks which require no169

knowledge of network parameters: nodes need know only their own unique ID.170

Our wake-up algorithm takes O( k log L log k
log log k ) time in multiple access channels and171

O( n log L log n
log log n ) time in multi-hop radio networks, improving dramatically over the previous172

best O(L3 log3 L) and O(DL3 log3 L) respective running times of [26] (recall that k ≤ n ≤ L).173
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This is particularly significant in the case of large labels, since dependency on L has been im-174

proved from cubic to logarithmic. Furthermore, our running time matches the O( n log L log n
log log n )175

time of [13], the fastest algorithm with parameter knowledge and small node labels.176

Our broadcasting algorithm takes O(k logL log log k) time in multiple access channels and177

O(n logL log logn) time in multi-hop radio networks. This improves over the previous best178

O(L) multiple access channel bound [15] in most cases. In radio networks the improvement179

is even more pronounced, beating not only the O(DL3 log3 L) result of [26] but also the180

O(n log2 L)-time algorithm of [9], which was the fastest result for large labels even when181

network parameters are known. When labels are small (i.e., L = nO(1)), our result matches182

the best running time for known parameters (O(n logD log logD) from [13]) for networks of183

polynomial eccentricity.184

We believe the primary value of our work is in challenging the long-standing assumption185

that parameter knowledge is necessary for efficient deterministic algorithms in radio networks186

and multiple access channels. We show that in fact, deterministic algorithms which do not187

assume this knowledge can reach the fastest running times for those that do.188

1.4 Previous approaches189

Almost all deterministic broadcasting protocols with sub-quadratic complexity (that is, since190

[6]) have relied on the concept of selective families (or some similar variant thereof, such191

as selectors). These are families of sets for which one can guarantee that any subset of192

[k] := {1, 2, . . . , k} below a certain size has an intersection of size exactly 1 with some member193

of the family [6]. They are useful in the context of radio networks because if the members194

of the family are interpreted to be the set of nodes which are allowed to transmit in a195

particular time-step, then after going through each member, any node with a participating196

in-neighbor and an in-neighborhood smaller than the size threshold will be informed. Most197

of the recent improvements in broadcasting time have been due to a combination of proving198

smaller selective families exist, and finding more efficient ways to apply them (i.e., choosing199

which size of family to apply at which time) [6, 7, 9, 14].200

Applying such constructs requires coordination between nodes, which relies on a global201

clock, making them unsuitable for wake-up. To tackle this issue, Chrobak et al. [8] introduced202

the concept of radio synchronizers. These are a development of selective families which203

allow nodes to begin their behavior at different times. A further extension to universal204

synchronizers in [4] allowed effectiveness across all in-neighborhood sizes.205

Another similar extension of selective families came in 2010 with a paper by De Marco206

[24], which used a transmission matrix to schedule node transmissions for broadcasting.207

Like radio synchronizers, the application of this matrix allowed nodes to begin their own208

transmission sequence at any time, and still provided a ‘selective’ property that guaranteed209

broadcasting progress. The synchronization afforded by the assumption of a global clock210

allowed this method to beat the time bounds given by radio synchronizers (and previous211

broadcasting algorithms using selective families).212

The proofs of existence for selective families, synchronizers, and transmission matrices213

follow similar lines: a probabilistic candidate object is generated by deciding on each element214

independently at random with certain carefully chosen probabilities, and then it is proven215

that the candidate satisfies the desired properties with positive probability, and so such an216

object must exist. These types of proofs are all non-constructive (and therefore all resulting217

algorithms non-explicit; cf. [5, 18] for an explicit construction of selective families with218

significantly weaker size bounds).219

In contrast, results on multiple access channels without parameter knowledge (notably220
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15:6 Deterministic Blind Radio Networks

[15, 26]) have not used these types of combinatorial objects, and instead rely on some221

results from number theory. The algorithm of [26], for instance, is to have nodes transmit222

periodically, a node with ID v waiting pv steps between transmissions, where pv is the vth
223

smallest prime number. A number-theoretic result is then employed to show that eventually224

one node will transmit alone. As a result, these algorithms have the advantage of being225

explicit, but the disadvantage of slower running times.226

1.5 Novel approach227

We aim to apply the approach of using combinatorial objects proven by the probabilistic228

method to the setting where network parameters are not known. One way to do this would229

be to apply selectors (for example) of continually increasing size, until one succeeds. However,230

since there are two parameters which must meet the correct values for a successful application231

(k and L in the case of medium access channels), running times for this approach are poor.232

Instead, we define, and prove the existence of, a single, infinite combinatorial object, which233

can accommodate all possible values of parameters at the same time.234

Another difference is that for all previous works using selective families or variants thereof,235

the candidate object has been generated with the same sequence of probabilities for each node.236

Here, however, in order to achieve good running times we need to have these probabilities237

depending on the node ID. In essence, this means that nodes effectively use their own ID as238

an estimate of the maximum ID in the network.239

1.6 A note on non-explicitness240

As mentioned, almost all deterministic broadcasting protocols with sub-quadratic complexity241

have relied on selective families or variants thereof, and have been non-explicit results. Our242

work here is also non-explicit, but while this is standard for deterministic radio network243

algorithms, it may present more of an issue here, since our combinatorial structures are244

infinite. It is not clear how the protocols we present could be performed by devices with245

bounded memory, and as such this work is more of a proof-of-concept than a practical246

algorithm. However, it is possible that our method could be adapted so that nodes’ behavior247

could be generated by a finite-size (i.e., a function of ID) program; this would be a natural248

and interesting extension to our work, and would overcome the problem.249

Another issue which would remain is that nodes must perform the protocol indefinitely,250

and never become aware that broadcasting has been successfully completed. However, this is251

unavoidable in the model: Chlebus et al. [6] prove that acknowledged broadcasting without252

parameter knowledge is impossible.253

2 Combinatorial objects254

In this section we present the two combinatorial objects that we wish to use in our algorithms:255

unbounded universal synchronizers and unbounded transmission schedules. After defining256

them in Sections 2.1 and 2.2, we present their main properties in Theorems 3 and 12, and257

then show how to apply them to obtain new deterministic algorithms for wake-up and258

broadcasting in multiple access channels and in radio networks (Theorems 19, 20, 22, 23).259

2.1 Unbounded universal synchronizers260

For the task of wake-up, i.e., in the absence of a global clock, we will define an object called261

an unbounded universal synchronizer for use in our algorithm.262



A. Czumaj and P. Davies 15:7

We begin by defining the sets of circumstances our algorithm must account for:263

I Definition 1. An (r, k)-instance X is a set K of k nodes with264 ∑
v∈K

log v = r265

and wake-up function ω : K → N.266

(By using v as an integer here, we are abusing notation to mean the ID of node v.)267

Here r is the main parameter we will use to quantify how ‘large’ our input instance is.268

By using the sum of logarithms of IDs (which approximates the total number of bits needed269

to write all IDs in use), we capture both the number of participating nodes and the length of270

IDs in a single parameter. We require r to be an integer, so we round down accordingly, but271

we omit floor functions for clarity since they do not affect the asymptotic result.272

The wake-up function ω maps each node to the time-step it wakes up (either spontaneously273

or by receiving a transmission) when our algorithm is run on this instance. This means274

that the wake-up function depends on the algorithm, but there is no circular dependency:275

whether nodes wake-up in time-step j only depends on the algorithm’s behavior in previous276

time-steps, and the algorithm’s behavior at time-step j only depends on the wake-up function277

up to j. We will also extend ω to sets of nodes in the instance by ω(K) := minv∈K ω(v).278

We now define the combinatorial object that will be the basis of our algorithm:279

I Definition 2. For a function g : N × N → N, an unbounded universal synchronizer280

of delay g is a function S : N → {0, 1}N such that for any (r, k)-instance, there is some281

time-step j ≤ ω(K) + g(r, k) with
∑

v∈K S(v)j−ω(v) = 1.282

The unbounded universal synchronizer S is a function mapping node IDs to a sequence of283

0s and 1s, which tell nodes when to listen and transmit respectively. The function g, which284

we will call the delay function, tells us how many time-steps we must wait before a successful285

transmission is guaranteed, so this is what we want to asymptotically minimize.286

We will apply this object to perform wake-up as follows: each node v transmits a message287

in time-step j (with its time-step count starting upon waking up) iff S(v)j = 1. Then, the288

property guarantees that at some time-step j within g(r, k) time-steps of the first node289

waking up, any (r, k)-instance will have a successful transmission. We call this S ‘hitting’ the290

(r, k)-instance at time-step j. So, our aim is to show the existence of such an object, with g291

growing as slowly as possible.292

Our main technical result in this section is the following:293

I Theorem 3. There exists an unbounded universal synchronizer of delay g, where294

g(r, k) = O
(

r log k
log log k

)
.295

Our approach to proving Theorem 3 will be to randomly generate a candidate synchronizer,296

and then prove that with positive probability it does indeed satisfy the required property.297

Then, for this to be the case, at least one such object must exist.298

Our candidate S : N→ {0, 1}N will be generated by independently choosing each S(v)j299

to be 1 with probability c log v
j+2c log v and 0 otherwise, where c is some sufficiently large constant300

to be chosen later.301

While S is drawn from an uncountable set, we will only be concerned with events that302

depend upon a finite portion of it, and countable unions and intersections thereof. Therefore,303

we can use as our underlying σ-algebra that generated by the set of all events Ev,j = {S :304

S(v)j = 1}, where v, j ∈ N, with the corresponding probabilities P [Ev,j ] = c log v
j+2c log v .305
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We set delay function g(r, k) = c2r log k
log log k .306

To simplify our task, we begin with some useful observations:307

First we note that since we only care about the asymptotic behavior of g, we can assume308

that r is larger than a sufficiently large constant.309

We also note that we need not consider all (r, k)-instances. For a given (r, k)-instance310

and time-step j, let Kj be the set of nodes woken up by time j (with kj := |Kj |), and rj311

be defined as r but restricted to the nodes in Kj . Let t be the earliest time-step such that312

t > g(rt, kt), and curtail the (r, k)-instance to the corresponding (rt, kt)-instance of nodes in313

Kt. It is easy to see that if we hit all curtailed (rt, kt)-instances within g(rt, kt) time, we314

must hit all (r, k)-instances within g(r, k) time, so henceforth we will only consider curtailed315

instances (i.e., we can assume that j ≤ g(rj , kj) for all j < g(r, k)).316

Finally, we observe that, since nodes’ behavior is not dependent on the global clock, we317

can shift all (r, k)-instances to begin at time-step 0.318

To analyze the probability of hitting (r, k)-instances, define the load of a time-step f(j)319

to be the expected number of transmissions in that time-step:320

I Definition 4. For a fixed (r, k)-instance, the load f(j) of a time-step j is defined as321 ∑
v∈Kj

P [v transmits] =
∑

v∈Kj

c log v
j − ω(v) + 2c log v .322

We now seek to bound the load from above and below, since when the load is close to323

constant we have a good chance of hitting.324

I Lemma 5. All time-steps j ≤ g(r, k) have f(j) ≥ log log k
2c log k .325

Proof. Fix a time-step j ≤ g(r, k), let Kj be the set of nodes awake by time-step j, and let326

kj = |Kj | and rj =
∑

v∈Kj
log v, analogous to r and k. If kj = k, then327

f(j) ≥
∑
v∈K

c log v
j + 2c log v ≥

cr

j + 2cr ≥
cr

2c2r log k
log log k

≥ log log k
2c log k .328

If kj < k, then due to our curtailing of instances, we have j ≤ g(rj , kj). So,329

f(j) ≥
∑

v∈Kj

c log v
j + 2c log v ≥

crj

j + 2crj
≥ crj

2c2rj log kj

log log kj

≥ log log kj

2c log kj
≥ log log k

2c log k . J330

331

Having bounded load from below, we also seek to bound it from above. Unfortunately,332

the load in any particular time-step can be very high, but we can get a good bound on at333

least a constant fraction of the columns.334

I Lemma 6. Let F denote the set of time-steps j ≤ g(r, k) such that log log k
2c log k ≤ f(j) ≤ log log k

3 .335

Then |F | ≥ cr log k
2 log log k .336

Proof. The total load over all time-steps can be bounded as follows:337

∑
j≤g(r,k)

f(j) =
∑

j≤g(r,k)

∑
v∈Kj

c log v
j − ω(v) + 2c log v ≤

∑
v∈K

∑
ω(v)<j≤g(r,k)

c log v
j − ω(v) + 2c log v338

≤
∑
v∈K

c log v
∑

j≤g(r,k)

1
j + 2c log v ≤

∑
v∈K

c log v ln 2g(r, k)
4c log v .339

340
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Let Ki = {v ∈ K : r
k·2i ≤ log v < r

k·2i−1 }, for i ≥ 1, and K ′ = {v ∈ K : log v ≥ r
k}341

If
∑

v∈Ki
log v > r

2i then r < 2i
∑

v∈Ki
log v ≤ 2i

∑
v∈Ki

r
k·2i ≤ r . This gives a contra-342

diction, so we must have
∑

v∈Ki
log v ≤ r

2i . Then,343

∑
j≤g(r,k)

f(j) ≤
∑
v∈K

c log v ln 2g(r, k)
4c log v ≤

∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c log v +

∑
v∈K′

c log v ln g(r, k)
2c log v344

≤
∑
i≥1

∑
v∈Ki

c log v ln g(r, k)
2c r

k·2i

+
∑

v∈K′

c log v ln g(r, k)
2c r

k

345

=
∑
i≥1

∑
v∈Ki

c log v ln ck2i−1 log k
log log k +

∑
v∈K′

c log v ln ck log k
2 log log k346

≤
∑
i≥1

cr2−i(2 ln k + (i− 1) ln 2) + 2cr ln k ≤ 5cr ln k ≤ 8cr log k .347

348

Therefore, at most 24cr log k
log log k time-steps have load higher than log log k

3 . Since by Lemma 5349

all time-steps have load at least log log k
2c log k ,we have |F | ≥ g(r, k)− 24cr log k

log log k ≥
c2r log k

2 log log k (provided350

we pick c ≥ 7). J351

Now that we have bounded load, we show how it relates to hitting probability. The352

following lemma, or variants thereof, has been used in several previous works such as [24],353

but we prove it here for completeness.354

I Lemma 7. Let xi, i ∈ [n], be independent {0, 1}-valued random variables with P [xi = 1] ≤355

1
2 , and let f =

∑
i∈[n] P [xi = 1]. Then P

[∑
i∈[n] xi = 1

]
≥ f4−f .356

Proof.

P

∑
i∈[n]

xi = 1

 =
∑

j∈[n]

P [xj = 1 ∧ ∀i6=j xi = 0] ≥
∑

j∈[n]

P [xj = 1] · P [∀i xi = 0]357

≥ f · P [∀i xi = 0] = f ·
∏

i∈[n]

(1− P [xi = 1]) ≥ f ·
∏

i∈[n]

4−P[xi=1]
358

= f · 4−
∑

i∈[n]
P[xi=1] = f4−f . J359

360

We can use Lemma 7 to show that the probability that we hit on our ‘good’ time-steps361

(those in F ) is high:362

I Lemma 8. For any time-step j ∈ F , the probability that j hits is at least log log k
3c log k .363

Proof. log log k
2c log k ≤ f(j) ≤ log log k

3 , and so f(j)4−f(j) is minimized at f(j) = log log k
2c log k and is364

therefore at least log log k
2c log k 4−

log log k
2c log k ≥ log log k

3c log k . J365

We now bound the number of possible instances we must hit:366

I Lemma 9. For any (sufficiently large) r, the number of unique (r, k)-instances is at most367

25r.368

Proof. The total number of bits used in all node IDs in the instance is at most r. There369

are at most 2r+1 possible bit-strings of length at most r, and at most 2r ways of dividing370

each of these into substrings (for individual IDs), giving at most 22r+1 sets of node IDs. The371
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number of possible wake-up functions ω : K → N is at most g(r, k)k, since all nodes must be372

awake by g(r, k) time or the instance would have been curtailed.373

g(r, k)k = 2k log g(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k ) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .374

375

So, the total number of possible (r, k)-instances is at most 22r+1+2.9r ≤ 25r. J376

I Lemma 10. For any (sufficiently large) r, the probability that S does not hit all (r, k)-377

instances is at most 2−3r
378

Proof. Fix some (r, k)-instance. The probability that it is not hit within g(k, r) time-steps379

is at most380 ∏
j∈F

(1− log log k
3c log k ) ≤ e−|F |

log log k
3c log k ≤ e− 2

3 cr = 2− 2cr
3 ln 2 ,381

by Lemma 8. Hence, if we set c = 9, by a union bound the probability that any (r, k)-instance382

is not hit is at most 25r · 2− 18r
3 ln 2 ≤ 2−3r . J383

We can now prove our main theorem on unbounded universal synchronizers (Theorem 3):384

Proof. By Lemma 10 and a union bound over r, the probability that S does not hit all385

instances is at most
∑

r∈N 2−3r < 1. Therefore S is an unbounded universal synchronizer of386

delay g with non-zero probability, so such an object must exist. J387

2.2 Unbounded transmission schedules388

For the task of broadcasting, i.e., when a global clock is available, we can make use of the389

global clock to improve our running time. We again define an infinite combinatorial object,390

which we will call an unbounded transmission schedule. We use the same definition of391

(r, k)-instances as in the previous section.392

I Definition 11. For a function h : N× N→ N, an unbounded transmission schedule393

of delay h is a function T : N×N→ {0, 1}N such that T (v, ω(v))j = 0 for any j < ω(v), and394

for any (r, k)-instance there is some time-step j ≤ ω(K) +h(r, k) with
∑

v∈K T (v, ω(v))j = 1.395

The difference here from an unbounded universal synchronizer is that nodes now know the396

global time-step in which they wake up, and so their transmission patterns can depend upon397

it. This is the second argument of the function T . The other difference in the meaning of398

the definition is that the output of T now corresponds to absolute time-step numbers, rather399

than being relative to each node’s wake-up time as for unbounded universal synchronizers.400

That is, the jth entry of a node’s output sequence tells it how it should behave in global401

time-step j, rather than j time-steps after it wakes up.402

Our existence result for unbounded transmission schedules is the following:403

I Theorem 12. There exists an unbounded transmission schedule of delay h, where404

h(r, k) = O (r log log k).405

Our method will again be to randomly generate a candidate unbounded transmission406

schedule T , and then prove that it satisfies the required property with positive probability,407

so some such object must exist.408

Let d be a constant to be chosen later. Our candidate object T will be generated as follows:409

for each node v, we generate a transmission sequence sv,j , j ∈ N, with sv,j independently410

chosen to be 1 with probability d log v log log j
j+2d log v log log j and 0 otherwise.411
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However, these will not be our final probabilities for generating T . To make use of412

our global clock, we will also divide time into short phases during which transmission413

probability will decay exponentially. The lengths of these phases will be based on a function414

z(j) := 2d1+log log log je, i.e., log log j rounded up to the next-plus-one power of 2. An415

important property to note is that for all i, z(i)|z(i+ 1). We also generate a sequence pv,j ,416

j ∈ N of phase values, each chosen independently and uniformly at random from the real417

interval [0, 1]. These, combined with the global time-step number and current phase length,418

will give us our final generation probabilities.419

We set T (v, ω(v))j to equal 1 iff sv,j−ω(v) = 1 and pv,j−ω(v) ≤ 2−j mod z(j−ω(v)).420

It can then be seen that421

P [T (v, ω(v))j = 1] = d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .422

The reason we split the process of random generation into two steps (using our phase423

values) is that now, if we shift all wake-up times in an (r, k)-instance by the same multiple424

of z(x), then node behavior in the first x time-steps after ω(K) does not change. We will425

require this property when analyzing T .426

Our probabilistic analysis is with respect to the σ-algebra generated by all events427

Ev,ω(v),j = {T : T (v, ω(v))j = 1}, with v, ω(v), j ∈ N, and with the corresponding probabilit-428

ies given above.429

Let load f(j) of a time-step j be again defined as the expected number of transmissions430

in that time-step:431

f(j) :=
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2j mod z(j−ω(v)) .432

We will set our delay function h(r, k) = d2r log log k.433

Again we make some observations that allow us to narrow the circumstances we must434

consider: firstly that we can again assume that r is larger than a sufficiently large constant,435

and secondly that we need only look at curtailed instances (i.e., we can assume that436

j − ω(K) ≤ h(rj , kj) for all j < h(r, k)). This time, however, we cannot shift instances to437

begin at time-step 0, because node behavior is dependent upon global time-step number.438

We follow a similar line of proof as before, except with some extra complications in439

dealing with phases. We first consider only time-steps at the beginning of each phase, i.e.,440

time-steps ω(K) < j ≤ ω(K) + h(r, k) with j mod z(h(r, k)) ≡ 0, and we will call these basic441

time-steps. Notice that for basic time-steps,442

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v)2d log v log log(j − ω(v)) .443

We bound the load of basic time-steps from below:444

I Lemma 13. All basic time-steps j have f(j) ≥ 1
2d .445

Proof. Fix a basic time-step j, let Kj be the set of nodes awake by time-step j, and let446

kj = |Kj | and rj =
∑

v∈Kj
log v, analogous to r and k. If kj = k, then447

f(j) ≥
∑
v∈K

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(r, k)
h(r, k) + 2d log v log log h(r, k)448

≥
∑
v∈K

d log v log log k
2d2r log log k ≥

dr

2d2r
= 1

2d .449

450
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If kj < k, then due to our curtailing of instances, we have j − ω(K) ≤ h(rj , kj). So,451

f(j) ≥
∑

v∈Kj

d log v log log(j − ω(v))
j − ω(v) + 2d log v log log(j − ω(v)) ≥

∑
v∈K

d log v log log h(rj , kj)
h(rj , kj) + 2d log v log log h(r, k)452

≥
∑
v∈K

d log v log log kj

2d2rj log log kj
≥ drj

2d2rj
= 1

2d . J453

454

We next examine time-steps at the end of phases, i.e., with ω(K) < j ≤ ω(K) + h(r, k)455

and j mod z(h(r, k)) ≡ −1, and call these ending time-steps. Note that for ending time-steps,456

f(j) =
∑

v∈Kj

d log v log log(j − ω(v))
(j − ω(v) + 2d log v log log(j − ω(v)))2z(j−ω(v))−1 .457

We bound the load of (a constant fraction of) ending time-steps from above:458

I Lemma 14. Let F denote the set of ending time-steps j such that f(j) ≤ 1. Then459

|F| ≥ d2r
2 .460

Proof. Let t be the first ending time-step. The total load over all ending time-steps can be461

bounded as follows:462

∑
ending timestep j

f(j) ≤
h(r,k)/z(h(r,k))∑

i=0
f(t+ iz(h(r, k))) ≤

d2r∑
i=0

f(t+ iz(h(r, k))) .463

Applying the definition of f , f(t+ iz(h(r, k))) is equal to:464 ∑
v∈Kt+iz(h(r))

d log v log log(t+ iz(h(r, k))− ω(v))2−z(t+iz(h(r,k))−ω(v))−1

(t+ iz(h(r, k))− ω(v) + 2d log v log log(t+ iz(h(r, k))− ω(v))) ,465

which is bounded from above when t− ω(v) = 0:466

f(t+ iz(h(r, k))) ≤
∑

v∈Kt+iz(h(r))

d log v log log(iz(h(r)))
(iz(h(r, k)) + 2d log v log log(iz(h(r, k))))2z(iz(h(r,k)))467

≤
∑

v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k))) .468

469

So,470

∑
ending timestep j

f(j) ≤
d2r∑
i=0

∑
v∈Kt+iz(h(r,k))

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))471

≤
∑
v∈K

d2r∑
i=0

d log v log log(iz(h(r, k)))
iz(h(r, k))2z(iz(h(r,k)))472

≤
∑
v∈K

d2r∑
i=0

2d log v log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

473

≤
∑
v∈K

2d log v
∞∑

i=0

log log(iz(h(r, k)))
iz(h(r, k)) log2(iz(h(r, k)))

≤ 10dr .474

475
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Here the last inequality follows since the second sum converges to a constant less than476

5, which can be seen by inspection of the first three terms and using the integral bound477 ∫∞
2

log log x
x log2 x

< 2478

Therefore, at most 10dr ending time-steps have load higher than 1, and so at least479

d2r − 10dr ≥ d2r
2 (provided we set d ≥ 5) ending time-steps have f(j) ≤ 1. J480

We can use Lemma 14 to show that we have sufficiently many time-steps with load within481

the interval [ 1
2d , 1]:482

I Lemma 15. Let F be the set of time-steps ω(K) < j ≤ ω(K) +h(r, k) with 1
2d ≤ f(j) ≤ 1.483

Then |F| ≥ d2r
2 .484

Proof. It can be seen that load decreases by at most a multiplicative factor of 3 between485

consecutive time-steps (since the contribution of each node decreases by at most a factor486

of 3). So, since every base time-step has load at least 1
2d , for every ending timestep j with487

f(j) ≤ 1, there is some j′ in the preceding phase with 1
2d ≤ f(j′) ≤ 1. J488

Since these time-steps have constant load, they have constant probability of hitting:489

I Lemma 16. For any time-step j ∈ F , the probability that j hits is at least 1
3d .490

Proof. By Lemma 7, the probability that j hits is at least f(j)4−f(j). This is minimized491

over the range [ 1
2d , 1] at f(j) = 1

2d and is therefore at least 4−
1

2d

2d ≥ 1
3d . J492

We now need to know how many unique (r, k)-instances we must hit. Since we are only493

concerned with the first h(r, k) time-steps after the first node wakes up, we need only consider494

(r, k)-instances which are unique within this time range.495

I Lemma 17. For any (sufficiently large) r, the number of unique (up to the first h(r, k)496

steps after activation) (r, k)-instances is at most 25r.497

Proof. As before (in Lemma 9) there are at most 22r+1 sets of node IDs. The number of498

possible wake-up functions ω : K → N for a fixed ω(K) is again at most h(r, k)k, and though499

we are using a different delay function to the previous section, the calculations used to prove500

Lemma 9 still hold.501

h(r, k)k = 2k log h(r,k) ≤ 21.1k log r = 21.1(k log k+k log r
k ) ≤ 21.3(k log(k0.9)+r) ≤ 22.9r .502

503

However, now our object does depend on ω(K), though as we noted we can shift all504

activation times by a multiple of z(h(r, k)) and behavior during the time-steps we analyze is505

unchanged. So our total number of instances to consider is multiplied by z(h(r, k)), and is506

upper bounded by 22r+1+2.9rz(h(r, k)) ≤ 25r . J507

I Lemma 18. For any (sufficiently large) r, the probability that T does not hit all (r, k)-508

instances is at most 2−3r.509

Proof. Fix some (r, k)-instance. The probability that it is not hit within h(r, k) time-steps510

is at most511 ∏
j∈F

(1− 1
3d ) ≤ e−

|F|
3d ≤ e− dr

6 = 2− dr
6 ln 2 .512

Hence, if we set d = 34, by a union bound the probability that any (r, k)-instance is not513

hit is at most 25r · 2− 34r
6 ln 2 ≤ 2−3r . J514
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We can now prove our main theorem on unbounded transmission schedules (Theorem 12):515

Proof. By Lemma 18 and a union bound over r, the probability that T does not hit all516

instances is at most
∑

r∈N 2−3r < 1. Therefore T is an unbounded transmission schedule of517

delay h with non-zero probability, so such an object must exist. J518

3 Algorithms for multiple access channels519

Armed with our combinatorial objects, our algorithms are now extremely simple, and are520

the same for multiple access channels as for multi-hop radio networks.521

Let S be an unbounded universal synchronizer of delay g, where g(r, k) = O
(

r log k
log log k

)
,522

and T be an unbounded transmission schedule of delay h, where h(r, k) = O(r log log k).523

Our algorithms are simply applications of these objects.524

Algorithm 1 Wake-up at a node v
for j from 1 to ∞, in time-step ω(v) + j, do

v transmits iff S(v)j = 1
end for

I Theorem 19. Algorithm 1 performs wake-up in multiple access channels in time525

O
(

k log L log k
log log k

)
, without knowledge of k or L.526

Proof. By the definition of an unbounded universal synchronizer, there is some time-step527

within528

g(r, k) = O

(
r log k

log log k

)
= O

(
k logL log k

log log k

)
529

time-steps of the first activation in which only one node transmits, and this completes530

wake-up. J531

Algorithm 2 Broadcasting at a node v
for j from 1 to ∞, in time-step j, do

v transmits iff T (v, ω(v))j = 1
end for

I Theorem 20. Algorithm 2 performs broadcasting in multiple access channels in time532

O(k logL log log k), without knowledge of k or L.533

Proof. By the definition of an unbounded transmission schedule, there is some time-step534

within h(r, k) = O(r log log k) = O(k logL log log k) time-steps of the first activation in which535

only one node transmits, and this completes broadcasting. J536

4 Algorithms for radio networks537

To see how our results on multiple access channels (Theorems 19 and 20) transfer directly to538

multi-hop radio networks, we apply the analysis method of [13] for radio network protocols.539

The idea is that we fix a shortest path p = (p0, p1, . . . pd) from some source node to some540

target node, and then classify all nodes into layers depending on the furthest node along the541
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path to which they are an in-neighbor, i.e., layer Li = {v : max j such that (v, pj) ∈ E = i}.542

We wish to quantify how long a layer can remain leading, that is, the furthest layer to contain543

awake nodes. The key point is that we can regard these layers as multiple access channels:544

though they are not necessarily cliques, all we need is for a single node in the layer to transmit545

and then the layer ceases to be leading. Once the final layer ceases to be leading, the target546

node must be informed, and since this node was chosen arbitrarily we obtain a time-bound547

for informing the entire network. Thereby the problem is reduced to a sequence of at most D548

single-hop instances, whose sizes sum to at most n. For full details of this analysis method549

see [13].550

Therefore we can use the following lemma from [13] (paraphrased to fit our notation) to551

analyze how our algorithms perform in radio networks.552

I Lemma 21. (Lemma 10 of [13]) Let X : [n] → N be a non-decreasing function, and553

define Y (n) to be the supremum of the function
∑n

i=1 X(`i), where non-negative integers `i554

satisfy the constraint
∑n

i=1 `i ≤ n. If a broadcast or wake-up protocol ensures that any layer555

of size ` remains leading for no more than X(`) time-steps, then all nodes wake up within556

Y (n) time-steps.557

I Theorem 22. Algorithm 1 performs wake-up in radio networks in time O( n log L log n
log log n ),558

without knowledge of n or L.559

Proof. By Theorem 19, any layer of size ` remains leading for no more than X(`) time-steps,560

where X(`) = O( ` log L log `
log log ` ). Y (n, h) is then maximized by setting `1 = n and `i = 0 for every561

i > 1. So, by Lemma 21, wake-up is performed for the entire radio network in O( n log L log n
log log n )562

time. J563

I Theorem 23. Algorithm 2 performs broadcasting in radio networks in O(n logL log logn)564

time, without knowledge of n or L.565

Proof. By Theorem 20, any layer of size ` remains leading for no more than X(`) time-steps,566

where X(`) = O(` logL log log `). Y (n, h) is then maximized by setting `1 = n and `i = 0567

for i > 1. So, by Lemma 21, broadcasting is performed for the entire radio network in568

O(n logL log logn) time. J569

5 Conclusions570

We have shown that deterministic algorithms for communications primitives in multiple571

access channels and multi-hop radio networks need not assume parameter knowledge, or572

small IDs, to be efficient. One possible next step would be to show a means by which nodes573

could generate efficient transmission schedules based on some finite (i.e., with size bounded574

by some function of ID) advice string; this would go some way towards making the algorithm575

practical.576
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