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ABSTRACT 
Rectangular planform silos are often used where there is need for simple construction or space 
restrictions. The flexibility of the flat plate walls leads to a horizontal variation in wall pressure 
across each wall, with much reduced pressures at the mid-side. There is a clear and systematic 
relationship between the wall flexural stiffness relative to the stiffness of the stored solid and 
the pressure pattern on the wall which is now well proven. Since the centre of each wall is 
subject to significantly reduced pressures, it may be expected that the bending moments in the 
wall will much lower, permitting the use of a thinner wall. In turn, the thinner wall is then more 
flexible and leads to a further redistribution of the pressures. This paper is the first to examine 
the structural consequences of these pressure changes. 
The horizontal variation of the wall pressure is well captured by a hyperbolic form, with much 
reduced mid-side pressures and raised corner pressures, characterised by a single parameter 
“alpha” that determines the strength of this redistribution. This parameter  is naturally 
dependent on the relative wall and solid stiffness. In this study, the value of  is varied between 
the uniform pressure condition  = 0 and a high value (=3). The highest values occur when a 
stiff solid is stored in a silo with very flexible walls. Wall plates of different aspect ratio are 
investigated representing conditions in a square or rectangular silo. 
The finite element predictions show that great savings can be made in the design of these 
structures by exploiting the reduced deflections and reduced stresses that arise when realistic 
patterns of pressure are adopted. The results presented here are suitable for transformation into 
design rules for the Eurocode standards EN 1993-1-7 [1] and EN 1993-4-1 [2]. 
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1 INTRODUCTION 
 
1.1 Conditions in silos with a rectangular planform 
Smaller silos are often constructed with a rectangular or square planform either to make for 
simple erection or to optimise the use of limited available space. Very few studies have 
explored appropriate design methods to address the different requirements when a silo has 
planar walls in place of the more common cylindrical form. This paper presents a first study of 
the response of the planar sided silo walls to the patterns of pressure that are applied to them. 
Previous studies have shown that the pattern of pressure on a planar silo wall is very sensitive 
to the relative translational stiffness of the stored solid and the flexural stiffness of the silo wall. 
Where a relatively flexible wall is used, the pattern of pressures from the stored solid is 
radically altered from that for a stiff wall, and the stress resultants induced in the wall are 
consequently reduced. Once it is recognised that increased deflection and reduced stresses are 
beneficial to the structure, the  potential  is  obvious  to  further  reduce  the  wall  stiffness,  
making  the  design  even  lighter. 
However, no existing study appears to have explored the reduced stresses developing in a 
flexible silo wall. 
 
1.2 The effect of wall flexibility and stiff stored solids 
Where a silo wall is relatively flexible in comparison with the stored solid, significant 
redistribution of the pressures occurs, with high pressures in the corner joints between different 
plate segments, and much reduced pressures at the mid-span of each plate. The key relationship 
between the stiffness of the solid relative to the wall and the pattern of pressure on the wall is 
now well established from both experimental and computational studies [3-5]. 
Since the centre of each wall is subject to reduced pressures, it is expected that the bending 
moments are much lower, permitting the use of a thinner wall, which in turn is more flexible 
and would lead to further redistribution of the pressures. This paper examines the structural 
effects of these pressure changes. 
 
2 WALL PRESSURE PATTERNS IN RECTANGULAR SILOS 
 
2.1 The vertical variation of wall pressures in rectangular silos 
The mean pressure at any depth below the surface in a silo of any planform follows reasonably 
closely that defined by Janssen [6] (1895), or where the silo is relatively squat, that defined by 
the modified Reimbert expression [7] (Rotter, 2001). These are both used in the Eurocode that 
defines the loads on silo walls EN 1991-4 [8]. 
The Janssen [6] variation is relevant to slender silos, as it takes no account of pressures against 
the wall near the surface (Fig. 1).  It may be written as 
 

1 ⁄   (1) 
 
in which phfm is the mean horizontal pressure at the depth z below the equivalent surface (Fig. 
1a) after filling the silo and pho is the asymptotic normal pressure at great depth below the 
surface, given by 
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and the Janssen reference depth is given by 
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in which A and U are the cross-sectional area and perimeter of the plan section, b is the side 
length of a square planform silo, K is the lateral pressure ratio of the stored solid and  is the 
wall friction coefficient. 
The modified Reimbert [7] variation is needed for squat silos, because the normal wall pressure 
must be zero at the highest solid-wall contact (Fig. 1b). It leads to a variation in the effective 
lateral pressure ratio with depth, because the mean vertical stress at the level of the highest 
solid-wall contact cannot be zero. It may be written [7] as 
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in which ho is the vertical distance between the equivalent surface and the highest solid-wall 
contact (Fig. 1b). 
It may be noted that both of these expressions produce a linear variation of mean pressure near 
the surface, and both lead to the same asymptotic uniform pressure po at great depth. The 
limiting cases of this distribution are the linear and uniform patterns. Different values of zo lead 
to patterns that lie between these two cases. This aspect is the basis of the current study of 
deflections and stresses in an individual plate of a square silo structure. 
 
2.2 The horizontal variation of wall pressures in rectangular silos 
At any level the normal pressure against the wall can vary around the circumference. In 
cylindrical silos the variation is relatively close to uniform [9], but in rectangular silos the 
variation is substantial, but very well characterised by the hyperbolic expression [4]. 

sinh
2

 
(5) 

 
in which x is the horizontal distance along the silo wall from the centreline, b is the side-length 
of the flat wall, phfx is the normal pressure on the wall at coordinate x, phfm is the mean normal 
pressure at the relevant level (Eqs 1 & 4), and  is the horizontal non-uniformity coefficient.   
The value  = 0 corresponds to a constant pressure on the wall, which arises when the wall is 
very stiff. The highest values of , corresponding to very flexible walls containing stiff solids, 
are of the order of  = 2.5 or 3. 
This pressure pattern is best understood in terms of the mid-side and corner values of pressure: 
the ratio of corner to mid-side pressure is given by cosh  and the ratio of corner to mean 
pressure is given by coth. A high value of  causes a major redistribution of the mean 
pressure phfm away from the mid-side towards the corners of the silo (Fig. 2), leading to much 
reduced deflections and stresses in the wall plate of the silo. The value  = 2 leads to corner 
pressures that are 3.75 times larger than the mid-side value. 



This study is the first to explore the effect of these changes on the wall deflections and wall 
stresses when  departs from the value  = 0. 
 
3 CHARACTERISATION OF A RECTANGULAR METAL SILO 
 
3.1 Representation and modelling of the silo and its loading 
This study focuses on the behaviour of a single uniform thickness wall of a square or 
rectangular silo (Fig. 3). In a square silo with rigidly jointed corners, the individual plates of 
the wall may each be well treated as an isolated plate with built in vertical boundaries. These 
boundaries are here treated as free to move vertically (due to symmetry) but restrained against 
rotation about the vertical axis (fixed edge plate). The lower boundary is also restrained against 
rotation about the horizontal axis and horizontal translation (fixed edge plate). This set of 
boundary conditions is termed FF in this study. 
Each plate element was subjected to a linear elastic finite element analysis using small 
displacement theory. This is certainly a simplification of the real problem, which may involve 
large displacements in the plate elements, but since this is a first exploration, it seems 
appropriate to limit it to this case. 
The load case was only that of normal pressure, albeit in the relatively complex patterns of 
hyperbolic horizontal variation and Janssen vertical variation. The wall friction effect was 
omitted, but since these analyses are linear, the outcomes can be added by superposition. 
The resulting peak deflection was termed wm, and the peak stress as m. 
 
3.2 Interpretation of the results 
To ensure that the findings of this study can be applied to a wide range of real geometries, all 
the results were made dimensionless, using as the reference case a rectangular plate of uniform 
thickness t, height a and width b and elastic modulus E subjected to uniform pressure po, with 
fixed edge boundary conditions. The aspect ratio of the plate was characterised as b/a with the 
assumption that these results would be applied to silos whose height was generally greater than 
their side length b. 
For such a rectangular plate with fixed edges, most sources give only tables of values of 
deflection and stress for discrete values of b/a. As a result, a set of calculations were performed 
on this loading condition and the specific results checked against those obtainable in existing 
publications [10,11] values. Carefully fitted functions were then devised that provide very 
precise fits to the variation of peak deflection (Fig. 3a) and maximum stress (occurring at the 
restrained edges of the each plate) (Fig. 3b) for uniform pressure po and fully fixed edges. 
The maximum deflection for this reference condition can be expressed (Fig. 3a) as: 
 

 In which 	 .
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The maximum stress at the centre of the long edge can be expressed (Fig. 3b) as: 
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and the lower maximum stress at the centre of the plate can be expressed (Fig. 3b) as: 
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It should be noted that the above expressions, derived from the literature, relate to stresses in 
only one direction. In the results computed here, the von Mises stress was determined.  Because 
the plate edge is restrained against bending deformations parallel to the side, a compressive 
stress due to bending normal to the edge (as published) also induces a compressive stress 
parallel to the side. These lead to reduced von Mises stresses relative to the published moments. 
For the Poisson’s ratio used here  = 0.33, the reduction factor is consequently 1.133. These 
values were used to make all the finding dimensionless and relevant to any geometry within 
the scope of the study. 
 
4 PREDICTED DEFLECTIONS AND STRESSES 
 
4.1 Uniform pressure vertically with hyperbolic horizontal variation 
The simplest case to explore is that of the terminal condition at great depth in a silo, with the 
normal pressure against the wall effectively unvarying with depth at the value po. The effect of 
a flexible wall still leads to a hyperbolic variation in the horizontal pressures [5]. 
The dimensionless maximum deflection in the plate occurs at the centre and is shown in Fig. 
4. The dimensionless deflection depends significantly on the value of , but is little affected 
by the plate aspect ratio.  The deflections reduce to only 60% of the reference value if  reaches 
2.5. 
The dimensionless maximum von Mises stress at the long edge boundary is shown in Fig. 5. 
These stresses are less affected by the hyperbolic horizontal pattern than the deflections, but 
the reductions are still dramatic. There is also a slight dependence on aspect ratio. The peak 
stress is reduced to only 74% of the reference value if the aspect ratio is 2 or more and  reaches 
2.5. Such aspect ratios are common in silos. 
 
4.2 Linear vertical pressure variation with hyperbolic horizontal variation 
The other simple case is that of a linear variation in the mean normal pressure the upper part 
of a silo. This occurs in every silo and is potentially more important in this study.  The peak 
mean value, before the hyperbolic pattern is superimposed, is taken to be po at the base. Once 
again, the flexible wall causes a hyperbolic horizontal pressure pattern [5]. 
The dimensionless maximum deflection in the plate and is shown in Fig. 6. It is displaced 
towards the high pressure end and is much affected when the plate is square (b/a = 1) falling to 
precisely 50% of the reference value for a soft solid on a stiff wall ( = 0), but down to 31% 
when  = 2.5.  In taller plates (b/a = 0.5) the deflections at the heart of the plate are more 
affected by the local value, so there is a steady increase relative to the square plate value, but 
even these more slender plates  have  greatly  reduced  deflections  relative  to  the  reference  
uniform  pressure  case.    The dependence of the dimensionless deflection on the value of  is 
rather similar for all values of alpha, so a simple model for the square plate can be extrapolated 
to deal with other aspect ratios. 
The dimensionless maximum von Mises stress at the long edge boundary is shown in Fig. 7. 
For the stiff wall, these values all lie in the range 0.67-0.70, indicating the lower stresses 
developing under a linear pressure pattern. For the square plate, an increase in  from 0 to 2.5 



leads to a reduction in dimensionless stress from 0.65 to 0.44, a 33% reduction. The overall 
pattern is rather interesting in that an increasing aspect ratio from square leads to lower stresses, 
but these rise again at higher aspect ratios. The much reduced peak stresses caused by both 
linear vertical variation and hyperbolic horizontal variation clearly indicate that great efficiency 
in structural design is possible by exploiting the real patterns of pressures in these structures. 
 
4.3 Janssen pressure variation vertically with hyperbolic horizontal variation 
The above limiting cases indicate the range of behaviour to be expected in a silo with a realistic 
load pattern. This section tries to show that the Janssen distributions lie neatly between the two 
above cases, and that it should be possible to produce a simple transition between the two cases 
to accommodate all vertical pressure variation conditions. Equation 1 yields a linear pressure 
variation when the value of zo is very large. It yields a constant pressure when the value of zo 
is close to zero. An appropriate mapping to permit this variation to be easily shown on a scale 
of 0 to 1 is 
 

⁄
⁄ 0.25
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The variation of the maximum deflection with the dimensionless Janssen parameter zo/a is 
shown for three values of  in Figs 8, 9 and 10. 
All three values of  show the same pattern, with the main transition from constant to  linear 
pressure by the Janssen distribution chiefly occurring in the range 0.1 < zo/a < 0.75 (0.3 to 0.75 
in the mapped variable). The variations are all very similar for the range 0.5 < b/a < 1 (1 < a/b 
< 2), which is the chief area in which plate action dominates. These similar curves therefore 
promise that accurate but simple design rules can be devised to cover all cases of Janssen 
distributions very effectively. 
The variation of the maximum stress at the edge of the plate with the dimensionless Janssen 
parameter zo/a is shown for same three values of  in Figs 12, 13 and 14. These too naturally 
show that the chief transition between the two reference conditions lies in the range 0.1 < zo/a 
< 0.75. Again the pattern for all values of b/a is very similar. In general, the curves for different 
b/a align for the uniform pressure case (Fig. 5) and the differences between them grow quite 
smoothly towards the linear pressure case (Fig. 7). These similar curves again promise that 
accurate but simple design rules can be devised to cover all cases of Janssen distributions very 
effectively. 
 
5 SUMMARY AND ACKNOWLEDGMENT 
 
A thorough study has been presented of the effects of different patterns of pressure on the wall 
of a square silo, focussed on the hyperbolic horizontal distribution that depends on relative 
stiffness of the stored solid and the silo wall, but also covering different forms of the Janssen 
variation of vertical mean stress. 
The results of this study open the way to much more efficient design of rectangular storage 
vessels by showing the major reductions in deflections and stresses associated with different 
pressure patterns and flexible silo walls. There is sufficient material within this study to 
formulate appropriate rules for the enhancement of the Eurocode standards EN 1993-1-7 [1] 
and EN 1993-4-1 [2]. 
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(a) Janssen pressure pattern 

 

 

(b) Modified Reimbert pressure pattern 
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Figure 3 

  

(a) Deflections and fitted function 

  

(b) Stresses and fitted functions 
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