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Abstract: The authors are looking at the impact of electric vehicles (EV) charging from low-voltage (LV) networks. Based on
the data obtained from two different pilot projects: (i) Mini-E trial where EV users were incentivised to charge during the night;
(ii) My Electric Avenue trial, where there were no similar incentives, authors want to quantify the impact of EV charging,
presuming that the number of home-charging EV users will increase significantly in the near future. By assuming that the
current load at individual household level is known or inferred, simulations are performed to estimate the future load.
The authors look at different percentages of EV uptake and model clustered scenarios, where the social networking effect
is imposed – users adopt an EV with a higher probability if their neighbour already has one. Simulations demonstrate
that incentivising night-time charging can create large new peaks during the night, which could have negative effects on
LV networks. On the other hand, simulations based on the data with no incentives shows that naturally occurring
diversity in charging behaviour does not automatically result in comparable network stress at the same penetrations.

1 Introduction

The current trends in per-household domestic demand on
low-voltage (LV) networks in developed countries (in the UK they
have remained relatively stable or decreased in the last 11 years)
reveal that the increase in domestic demand will be due mainly to
new builds and the uptake of electric vehicles (EV) and heat
pumps. Given the ratio of EV charging to other parts of the load,
static and uncontrolled time of use tariffs could result in new large
peaks developing. This situation will worsen on local networks if
these new loads are clustered. Several recent studies have explored
in detail the impact of EVs on the network [1–6]. Whilst these
investigations do suggest that there are benefits of demand side
response, uncontrolled applications of time of use tariffs or direct
action mechanisms could be extremely detrimental to LV
networks, which were designed with behavioural diversity taken
into account.

In this paper, we analyse an LV network with realistic demand
profiles and compare the impact of charging EV with real data
from two trials. In the first trial, EV users were incentivised to
charge their vehicles during the night and in the second, there
were no incentives. We simulate a clustered uptake of EV
through neighbourhoods. Consequently, social influences on
human behaviour are captured, which are sometimes interpreted
as imitating or keeping up with your neighbours. Using realistic
data for the base-load (daily household electricity load not
including EV demand), simulated electric vehicle charging is
added. Then, probabilistic techniques are applied to obtain
confidence bounds at a feeder level for different EV charging
scenarios.

In Section 2, the datasets used for our analysis are described,
followed by methodology and results in Section 3. Finally, in
Section 4, we propose the steps that can mitigate unwanted
impacts of synchronised EV charging, whilst avoiding
over-complicated technical solutions.

2 Datasets

Our LV network is based on a real network in Bracknell, UK and
comprises of 98 feeders and 26 substations with 4073 households
and 121 commercial properties in total. We model an LV network
on a winter, spring and summer day, and on a half-hourly basis
(only the results for summer are shown here). Therefore, there are
48 values in kW for each household, on each day.

2.1 Base-load

Each household is assigned an initial base-load, which varies for the
three modelled days. The base-load is obtained from smart metered
data of sample households in the real LV network. The sample points
are then coupled with non-metered households using a genetic
algorithm [7] that optimises the match between the aggregated
coupled loads and the measured substation feeder level loads.

2.2 Mini-E trial

The Mini-E trial was an EV charging trial that ran in 2009 and 2010.
The data consists of half-hourly charging profiles of 19 EVs
collected by Scottish and Southern Electricity Networks. The users
were incentivised to charge overnight, which is evident from the
data. Box plots of charging patterns over winter, spring and
summer can be found in [5].

2.3 My Electric Avenue

The My Electric Avenue data comprises various EV charging
profiles that were collected between the 23 January 2014 and the
11 February 2015. Although there were 228 EVs in total taking
part in this trial, after choosing ones that consistently participated
between the weeks 16 and 52 of the trial in order to collect winter,
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spring and summer sets, 79 daily profiles per season were obtained.
Profiles have readings every half hour and consist of ‘0’ when they
are not charging and ‘3.7 kW’ when charging. The My Electric
Avenue profiles vary over the seasons, weekdays and weekends.
Moreover, they can be grouped by charging behaviour into several
different clusters of comparable sizes; thus representing diverse
charging behaviour. Here, only the results associated with summer
are presented. Unlike other typical UK domestic loads, EV
charging does not reduce in the summer and therefore coincides
with lower network capacity as reduced cable and transformer
ratings apply. To examine more extreme scenarios, only the
non-zero EV profiles were used from the summerset. This gave 24
profiles that are depicted in Fig. 1, where the black squares
represent a half hour when EV is charging.

3 Methodology

Simulations were undertaken with a time step of one year to assign
EVs to households in a clustered manner. The EV datasets from the
two trials were applied and then the results compared.

To obtain clusters, in each year of the simulation, we assigned a
probability of acquiring an EV to be proportional to the score s,
where s = 100 nEV/n

( )
, nEV is the number of neighbours –

households on the same feeder that already have an EV, and n is
the total number of households on that feeder. Households were
randomly allocated an EV using s. The number of assigned EVs
increased linearly each year until the predetermined final number
of EVs was attained.

Initially, a small proportion of EVs were assigned randomly with a
probability that corresponded to the household’s council tax band.
This ensured that the early EV adopters in our model lived mostly
in larger properties, with off road parking assumed.

The final percentages of households that were assigned EVs by the
simulations were 10, 30 and 50% of the total population (4073
households). These models ran over 8 years, as this is a single
price-control review period set by the UK regulatory authority for
gas and electricity markets, office of gas and electricity markets in
2015. Distribution network operators in the UK have to develop
detailed investment plans using this time horizon, which informed
our choice. The uptake during this time horizon was linear as only
the final result was of interest – the geographical spread of EVs
after 8 years. As the assumed penetration percentages are given in
advance, this model then allowed us to explore confidence bounds
obtained from 500 runs using different clustered geographical
distributions of EVs. In contrast, prominent clusters of a
comparable size do not occur after 500 runs when social influence
is not enforced within the model (uniformly at random
assignments). For both EV datasets, the assigned EV profiles were
chosen from a sample of profiles that correspond to the same
season and the same weekday.

See [6] for further detail on the clustering method and the
calculation of confidence bounds.

3.1 Results using the Mini-E trial dataset

As the customers were incentivised to charge during the night
throughout this trial, night-time peaks were expected with a
clustered distribution. The results for 50% EV uptake are shown in
Figs. 2 and 3. The 10, 50 and 90% quantile load are depicted at
feeders 67 and 72, which have 35 and 99 households,
respectively. These were computed from 500 runs, with the EV
profiles randomly selected from the Mini-E dataset. The lower and
upper bound correspond to the 10% (green) and 90% (red)
quantile, respectively. The red curve in particular in Figs. 2 and 3
reveal the potential prominent peaks that result due to heavily
incentivised night-time charging.

3.2 Results using the My Electric Avenue trial dataset

The results at feeders 67 and 72 for 50% EV uptake that used the My
Electric Avenue dataset on the same networks are given in Figs. 4
and 5. The depicted quantiles were also computed from 500 runs,
with the same method applied. Since now the EV charging is
unrestricted, the significant night-time peaks that were previously
exhibited are no longer observed. Instead, the addition to the
base-load is somewhat more evenly distributed throughout the day.
Although, the unrestricted charging does increase the early
evening load, which is the most popular charging period in the My

Fig. 1 Non-zero EV profiles recorded on Thursday, 10/07/14. The first
column has the half hours and the black squares indicate a half hour of
EV charging

Fig. 2 Mini-E 50% summer penetration at feeder 67 with 35 households.
Red: 90% quantile, blue: 50% quantile, green: 10% quantile
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Electric Avenue dataset. This is typically the time of the highest
national electricity demand and consequently the time of highest
electricity prices. On a national level, shifting demand outside this
period is desirable. However, over- incentivising this shift through
stark time of use pricing or direct action could cause the much
larger and potentially damaging local LV network peaks shown in
Figs. 2 and 3.

3.3 Results for all feeders

In Fig. 6, a summary of the results for all 98 feeders is displayed. The
blue and red trends relate to the Mini-E trial and the My Electric
Avenue trial, respectively. These curves represent a feeder index
that is calculated by taking the maximum value of the 90% feeder
quantile (the base-load has been subtracted) and then dividing this
by the number of households along the feeder. The 98 feeders
have been sorted according to each feeder’s proportion of larger
homes, where the concentration of larger homes increases with the
feeder number. We have used the households’ council tax bands to
determine this ranking. Overall, the feeder load and the feeder
number appear to be correlated. This is the result of influencing
the selection of initial EV properties using council tax band
information, as previously discussed. More importantly from
Fig. 6, when comparing the loads at each feeder due to
non-incentivised and incentivised charging, we see a substantial
increase, further highlighting the negative impact of synchronised
EV charging. Note that feeder one possesses zero households
(only commercial properties, which are not assigned EVs in our
simulations) and therefore, receives zero load.

4 Discussion

We compared the effects that restricted and unrestricted EV charging
patterns will have on LV networks. More specifically, our focus was
the impact of heavily incentivised EV charging during the normally
low load, night-time period. Such incentives may be used in a
targeted time-of-use tariff scheme. By simulating this more
extreme charging behaviour, our results revealed significant
additions to the base-load. The large peaks that were exhibited
could potentially cause extensive problems for network operators.
In contrast, such sizeable peaks were avoided when EV charging
was unrestricted, allowing for a variety of charging activity.

The problems discussed here have some similarities to the
network issues associated with Economy 7 customers in the UK.
Economy 7 is a restrictive tariff that encourages household electric
storage heating to occur during the night and consequently, large
night time loads result. The predominance of electric storage
heating is known when the network is designed, and therefore this
undiversified load is accounted for at this stage. This results in
networks with a greater concentration of Economy 7 customers
having higher capacity than those without.

Fig. 3 Mini-E 50% summer penetration at feeder 72 with 99 households.
Red: 90% quantile, blue: 50% quantile, green: 10% quantile

Fig. 4 My Electric Avenue 50% summer penetration at feeder 67 with 35
households. Red: 90% quantile, blue: 50% quantile, green: 10% quantile

Fig. 6 Comparison of the feeder index (50% EV uptake). Blue: Mini-E trial,
red: My Electric Avenue trial. Note that an adjustment is made to the My
Electric Avenue dataset to reflect 7.4 kW chargers being used, which is
consistent with the Mini-E trial. This adjustment applies the same
start-of-charge times as the 3.7 kW chargers from the My Electric Avenue
trial and the ‘on- time’ is reduced by approximately half (rounded up to
the nearest half hour)

Fig. 5 My Electric Avenue 50% summer penetration at feeder 72 with 99
households. Red: 90% quantile, blue: 50% quantile, green: 10% quantile
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Since EV demand is instead being retrofitted to the network,
certain mechanisms that reintroduce diversity into the system will
be required to prevent extreme cases of simultaneous charging.
Techniques that could be employed include the use of storage and
cyclical demand control. However, it is important that the impact
of all strategies at both national and local levels is considered.
From a national perspective, it is necessary to encourage off-peak
charging to shift load away from periods of marginal capacity.
Whereas at a local level, as demonstrated here, over-incentivised
customers cause a loss of natural diversity which can result in
significant peaks and potential network damage where new, large
LV loads cluster. On networks susceptible to EV clustering,
moderating mechanisms will be required to be employed to
prevent local overloads due to undiversified charging, whilst still
allowing customers to benefit from future national demand
response initiatives.
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