1 Supportive interventions to improve physiological and psychological health

2 outcomes among patients undergoing cystectomy: A systematic review

- 3 Helen Quirk*: Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK;
- 4 <u>h.quirk@shu.ac.uk</u>
- 5 Derek J. Rosario: Department of Oncology, University of Sheffield, Sheffield, UK;
- 6 <u>d.j.rosario@sheffield.ac.uk</u>
- 7 Liam Bourke: Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK;

```
8 <u>l.bourke@shu.ac.uk</u>
```

- 9 *Corresponding author. Office A124, Collegiate Hall, Collegiate Crescent, Sheffield Hallam University,
- 10 Sheffield S10 2BP, UK.

11

12 Abstract

13 Background

- 14 Our understanding of effective perioperative supportive interventions for patients undergoing
- 15 cystectomy procedures and how these may affect short and long-term health outcomes is limited.

16 Methods

- 17 Randomised controlled trials involving any non-surgical, perioperative interventions designed to
- 18 support or improve the patient experience for patients undergoing cystectomy procedures were
- 19 reviewed. Comparison groups included those exposed to usual clinical care or standard procedure.
- 20 Studies were excluded if they involved surgical procedure only, involved bowel preparation only or

21 involved an alternative therapy such as aromatherapy. Any short and long-term outcomes reflecting

the patient experience or related urological health outcomes were considered.

23 Results

24 19 articles (representing 15 individual studies) were included for review. Heterogeneity in

25 interventions and outcomes across studies meant meta-analyses were not possible. Participants

26 were all patients with bladder cancer and interventions were delivered over different stages of the

27 perioperative period. The overall quality of evidence and reporting was low and outcomes were

28 predominantly measured in the short-term. However, the findings show potential for exercise

- 29 therapy, pharmaceuticals, ERAS protocols, psychological/educational programmes, chewing gum
- 30 and nutrition to benefit a broad range of physiological and psychological health outcomes.

31 Conclusions

- 32 Supportive interventions to date have taken many different forms with a range of potentially
- 33 meaningful physiological and psychological health outcomes for cystectomy patients. Questions
- 34 remain as to what magnitude of short-term health improvements would lead to clinically relevant
- 35 changes in the overall patient experience of surgery and long-term recovery.

36 Key words

37 Bladder cancer, Cystectomy, Supportive intervention, Systematic Review

38 Background

- 39 Perioperative complications from cystectomy and urinary diversion can be short- and long-term,
- 40 physiological and psychological [1]. Postoperative morbidity and complication rates can lead to long
- 41 hospital stays [2] and high readmission rates [3]. Surviving patients can experience emotional,
- 42 physical and social challenges and changes in quality of life (QOL) [1]. The range of perioperative
- 43 complications associated with cystectomy procedures requires a multidisciplinary approach to
- 44 preoperative supportive care and postoperative rehabilitation [4].

45 Perioperative interventions should support patients' psychological health as much as physical health 46 [5]. The optimal perioperative supportive interventions for cystectomy patients and associated 47 health outcomes are currently uncertain. Evidence-based interventions have traditionally been non-48 standardised but have evolved into clinical pathways of care known as enhanced recovery after 49 surgery (ERAS) protocols. ERAS protocols involve a series of perioperative care modifications and 50 supportive interventions with the aim to achieve early recovery by maintaining preoperative organ 51 function and reducing physiological stress response following surgery [6]. ERAS protocols after 52 cystectomy have had a low adoption [7], yet have been found to shorten hospital stay [3] without an 53 increase postoperative morbidity [8]. Our understanding of the active ingredients of such protocols 54 and how these may affect the overall patient experience in the long-term is limited and previous comprehensive reviews have involved non-randomised observational studies only [9]. Further 55 56 exploration of the available evidence using rigorous systematic review methodology is required to 57 develop our understanding of how to promote clinically relevant health outcomes for cystectomy 58 patients.

59 The aim of this review is to summarise the available evidence base for any supportive interventions 60 designed to improve short and/or long-term physiological and psychological health outcomes among 61 patients undergoing cystectomy. Reviewing the literature of the wide range of perioperative 62 supportive interventions and their related health outcomes will advance our understanding of what 63 works for patients undergoing cystectomy.

64 Methods

A systematic review of the literature was performed in January 2018. Records were identified from
MEDLINE, AMED, PsycInfo and EMBASE databases and the Cochrane collaboration. The search was
limited to studies involving adult humans and published in the English language and not limited by
date of publication. Literature search terms are available as supplementary material (see Additional

69 file 1). Further searches were made for unpublished and grey literature. The

70 http://www.clinicaltrials.gov website was searched for ongoing trials. The citation lists of included

71 studies and previous systematic reviews were also checked to identify relevant studies.

72 Randomised controlled trials (RCTs) involving any non-surgical, perioperative interventions designed 73 to support or improve the patient experience, including lifestyle, physical, medical and psychological 74 treatments were considered for review. The intention was not to assess the effects of different 75 forms of surgical diversion. Studies were eligible if they involved adults \geq 18 years who were due to 76 undergo or had undergone a cystectomy procedure and any method of urinary diversion. Supportive 77 interventions could be implemented during diagnosis and treatment planning, the perioperative 78 period, and during the length of hospital stay, follow-up and postoperative period. Interventions 79 could be hospital-based or home-based. Comparison groups included those exposed to usual clinical 80 care or standard procedure. Studies were excluded if they did not involve an intervention, or the 81 intervention involved a surgical procedure only, bowel preparation only or an alternative therapy 82 such as aromatherapy. Any outcomes reflecting the patient experience or related urological health 83 outcomes were considered and could be physiological, psychological, behavioural and social.

84 Data collection and analysis

85 Selection of studies

Following de-duplication, titles and abstracts of identified records were screened by one reviewer
(HQ) and 10 per cent were selected at random and checked independently by a second reviewer
(LB). The full texts of potentially eligible records were retrieved and screened independently by the
two reviewers (HQ, LB). Multiple records of the same study were linked together in the process. The
study selection process is described in the PRISMA flow diagram (Figure 1).

91 Figure 1. Flowchart describing the process of identifying relevant literature

92 Data extraction and management

- 93 The full text of each article was read by two reviewers independently (HQ, LB) and after piloting of
- 94 extraction tables, relevant data were extracted. Any discrepancies in data extraction between the
- 95 two reviewers were resolved by discussion. The authors of included studies were contacted via email
- 96 for clarification of unclear study methods or data wherever insufficient details were reported.

97 Assessment of risk of bias in included studies

- 98 The risk of bias of each included study was assessed by two reviewers (HQ, LB) working
- 99 independently using the recommended tool in the Cochrane Handbook for Systematic Reviews of
- 100 Intervention [10]. Any disagreements were resolved by discussion.

101 Dealing with missing data

- 102 Missing data and dropout rates for each of the included studies were assessed. When possible, all
- 103 data extracted were relevant to an intention-to-treat analysis, in which participants were analysed in
- 104 the groups to which they were assigned.

105 Assessment of heterogeneity and sensitivity analyses

- 106 Statistical methods for assessing heterogeneity and sensitivity analyses were planned, depending on
- 107 the availability of data.

108 **Data synthesis and statistical analysis**

- 109 Meta-analyses were planned for wherever there was more than one RCT reporting the same
- 110 outcome. Where meta-analyses were not feasible, a narrative synthesis approach was used [11].

111 Results

- 112 The search identified 63 articles meeting the inclusion criteria for full text screening (Figure 1). In all,
- 44 articles were excluded and the reasons recorded. The remaining 19 articles (representing 15

114	individual studies) were included in the review. Studies were published between 1989 [12] and 2017
115	[13-15] and were conducted in ten different countries; one was UK-based [14] (see Table 1).
116	[insert Table 1 here]
117	Participants
118	Table 1 provides a summary of participant characteristics. All studies involved patients with bladder
119	cancer undergoing radical cystectomy. Sample sizes ranged from 8 [15] to 280 [16], with a total of
120	1,145 participants across all studies. The average age of participants ranged from 45.3 years (mean)
121	[12] to 74.5 years (median) [15]. Most studies included both sexes, except two studies that included
122	males only [15, 17]. Other patient characteristics, though not reported consistently included BMI,
123	ethnicity, comorbidities, smoking history, and socio-economic data.
124	Interventions
125	See Table 2 for a summary of interventions included in this review.
126	[insert Table 2 here]
127	Туре
128	Intervention types included; exercise therapy [14, 18-21], pharmaceutical [16, 22, 23], ERAS protocol
129	[17, 24, 25], psychological/educational [1, 12, 13, 15], chewing gum [26], and nutritional [27-29].
130	Interventions were delivered by exercise science staff [14], physiotherapists [18-21], Urological
131	Enteral Stoma Therapy Nurses [13], trained nurse practitioners [15], hospital ward staff [27], and
132	staff nurses [23], healthcare professionals [17] and study investigator [26]. Seven did not report who
133	delivered the intervention [1, 12, 16, 22, 24, 25, 28]. Treatments to control group patients were
134	determined by the standard procedure at the local hospital which may have involved some ERAS
135	items [18-20, 25] and were not consistent across studies.

Recruitment and intervention setting

The majority of studies recruited participants via a single hospital urology department, two studies
recruited across multiple centres [16, 28] and three did not report recruitment setting [1, 22, 24].
Intervention settings were hospital based [12, 15-17, 22-29], hospital and home based [13, 18-21],
home-based [1] or supervised exercise setting [14].

141 *Time, duration and frequency*

142 Studies varied in time of intervention delivery; preoperative, postoperative or perioperative (see 143 Table 2). Duration of intervention varied from 30-60 minutes for a single educational intervention 144 [12, 15] to 12 weeks for the physical exercise intervention [21]. Six studies did not have standardised 145 intervention duration; Banerjee et al.'s (2017) exercise intervention took place preoperatively until 146 surgery, Choi et al.'s (2010) chewing gum intervention continued until first flatus, Deibert et al.'s 147 (2016) dietary intervention was postoperative until discharge [28], and those studies implementing 148 ERAS protocols took place over the perioperative period until discharge [17, 24, 25]. Frequency of 149 intervention administration differed depending on the intervention type (see Table 2).

150 Measurements

151 Methods of measuring outcomes varied across studies, making direct comparisons between studies 152 difficult. Hospital records were used to measure length of stay (LOS) and readmission rate. Hospital 153 measurements were used to assess functions such as bowel function and flatus, food tolerance and 154 mobilisation. Complications were assessed using the standardised Clavien-Dindo classification 155 system [14, 17, 20, 25-28] or via hospital reports. Symptoms (e.g., pain, fatigue, vomiting) tended to 156 be self-reported using patient questionnaires. Three studies [18, 24, 25] used the validated European Organisation for Research and Treatment of Cancer (EORTC) [30] to assess quality of life (QOL), and 157 158 in-patient satisfaction. Three studies used a visual analogue scale (VAS) to measure pain intensity 159 [22, 23, 28], one study used Sickness Impact Profile (SIP) to measure sickness-related dysfunction 160 and postoperative adjustment [1], two studies used the Short Form health survey (SF-36 and SF-12) 161 to evaluate health-related QOL [21, 29], one used the Functional Assessment of Cancer Therapy-

162	Bladder Cancer (FACT-BL) questionnaire to measure QOL [25] and one used the State-Trait Anxiety
163	Inventory (STAI) to measure state anxiety [12]. Self-care was measured using the Urostomy
164	Education Scale (UES) [13]. Self-efficacy was measured using the six-item Self-Efficacy to Manage
165	Chronic Disease (SES6G) scale [15].
166	Outcome measurement (length of follow-up) tended to be short term (up to 30 days
167	postoperatively) in the majority of articles reviewed (n=11), and ranged between 24 hours
168	postoperatively [23] to a median of 50 months after surgery (IQR 21-62 months) [29] (See Table 2).
169	Effect of interventions
170	The outcomes used to measure the effect of interventions are summarised in Table 3. Differences in
171	definitions and measurements of outcomes across studies meant that meta-analyses were not
172	possible.
173	[insert Table 3 here]
174	Length of stay and readmission
175	Length of stay (LOS) was reported in eleven articles [1, 14, 16, 17, 20, 21, 24-28]. The most common
176	definition of LOS was total hospital stay duration in days. Two studies defined it as postoperative
177	days (from surgery until discharge) [1, 16]. Median LOS ranged from 7 [14] to 21 days [1]. Frees et al.
178	(2017) and Lee et al. (2014) found a significant difference in LOS between intervention and control
179	groups. Frees et al. found LOS was significantly shorter in the patients receiving ERAS protocol
180	compared to standard procedure (mean 6.1 days vs. 7.39 days; p=0.020). Lee et al. found mean LOS
181	was significantly shorter in patients given alvimopan compared to placebo controls (alvimopan, 7.44
182	days; control 10.07 days; p<0.01).
183	Frequency of readmission to hospital after discharge was measured as an outcome in five studies
184	[16, 20, 21, 25, 28]. No study reported significant results for readmission rates after supportive
185	intervention compared to controls.

186 *Physiological adjustment after surgery*

187 Bowel function and flatus

- 188 Nine studies measured bowel function [18, 20, 27, 28], also defined as time to first defecation or
- bowel movement [17, 25, 26], constipation [24] and lower gastrointestinal function [16]. Statistically
- 190 significant reductions in average time until first bowel movement were found in four studies after
- the intervention; ERAS protocol [25], chewing gum [26], physical exercise [18] and alvimopan [16].
- 192 Time to first flatus was measured in five studies [17, 18, 25-27] and three found statistically
- significant reductions in time after ERAS protocol [25], chewing gum [26] and physical exercise [18].
- 194 Frees et al. (2017) found significant reduction in time to first flatulence in the ERAS group compared
- to the standard procedure controls (2.5 days compared to 3.62 days) (p=0.011).

196 Food tolerance

- 197 Six studies measured food tolerance, defined at nutritional intake [20], appetite loss [24],
- 198 gastrointestinal recovery/tolerance of solid food [16], early feeding [17] and resumption of full diet
- 199 [27]. Deibert et al. (2017) found time to full diet tolerance was the same in both early diet and
- 200 control arms, respectively (5.84 days vs 6.71 days, p=0.27). Lee et al. (2014) found mean time to
- 201 gastrointestinal recovery was 1.3 days shorter for the alvimopan group (5.5 days) compared with the
- 202 placebo control group (6.8 days; 95% Cl, 1.4 to 2.3; p<0.0001). Karl et al. (2014) found that the
- amount of food consumed in relation to the amount of food offered on postoperative day 3 was
- significantly higher in the ERAS group compared to standard procedure controls (p=0.02).
- 205 Nausea and vomiting
- Four studies measured vomiting [22], nausea [25] or both [18, 24] and none reported any significant
- 207 differences between intervention and control groups after the intervention.

208 Pain

209 Six studies measured pain [18, 21-25]. Three studies reported statistically significant pain outcomes. 210 Ghoneim & Hegazy (2013) found VAS score to be significantly lower postoperatively until 32 hours in 211 the intervention group receiving preoperative pregabalin compared to the control group (p<0.05), 212 but found no significant difference 32-48 hours postoperatively. Mohamed et al. (2016) found a 213 significant reduction in VAS score in intervention groups who received preoperative pregabalin in 214 comparison with the control group immediately after surgery, and 2 hours postoperatively (p<0.05). 215 Frees et al. (2017) found ERAS patients reported a reduction in VAS score every day after surgery 216 until day 7 compared to patients undergoing standard procedure. This difference reached statistical 217 significance on the day of surgery (p=0.017) and from postoperative days 2 (p=0.014) to 4 (p=0.039), 218 where pain intensity was nearly doubled for patients who received standard procedure.

219 Fatigue

Two studies measured fatigue using the EORTC symptom scale [18, 24]. Jensen et al. (2014) found the control group (no physical exercise intervention) demonstrated a clinically relevant reduction in fatigue symptoms at 4 months follow-up that was not statistically significant. Karl et al. (2014) reported significant differences in fatigue scores between the ERAS and control group at day 7 (p=0.014) and discharge (p=0.003), but did not report the group data.

225 *Mobilisation, strength/power and balance*

Three studies measured mobilisation [20, 21, 24], defined as the distance walked during the first 226 227 seven postoperative days [20], mobilisation and walking distance [24] and distance walked in the six 228 minute walk test [21]. Jensen et al. (2015) reported significantly longer average walking distance in 229 the intervention group after the physical exercise intervention (4806 metres walked; 95% CI, 4075 to 230 5536m), compared to the control group (2906 metres walked; 95% CI, 2408 to 3404 m; p<0.001). 231 Karl et al. (2014) reported that patients in the ERAS group covered significantly greater walking 232 distances by postoperative day 3 compared to controls (p=0.039). Porserud et al. (2014) found that 233 after the 12 week exercise training period, both the intervention and the control group patients had

234 increased the distance walked (p=0.043 and p=0.012, respectively), but the increase was higher 235 among the intervention group (p=0.013) who had exercised postoperatively. One year later, the 236 exercise group continued to have increased walking distance compared to controls (p=0.010). 237 The three studies using exercise therapy measured strength or power. Jensen et al. (2016) measured 238 strength as muscle leg power (W/kg) using a leg extensor power test and found that the 239 prehabilitation physical exercise programme led to a significant improvement in muscle power in the 240 intervention group of 0.35 W/kg (95% CI, 0.12 to 0.54) at time for surgery compared to baseline 241 (p<0.002) with a significant difference between intervention and control group [19]. Banerjee et al. 242 (2017) implemented a short-term preoperative vigorous intensity aerobic interval exercise 243 programme on a cycle ergometer and showed that after 3-6 weeks of training, statistically significant 244 differences in peak power output (W) were found between the exercise group (148±41; 95% CI, 132 245 to 165) compared to non-exercising controls (129±44; 95% CI, 111 to 147; p<0.001) [14]. Porserud et 246 al. (2014) measured lower body strength using a 30-second chair stand test and found no significant 247 differences between the intervention and control group. Porserud et al. also measured balance by 248 asking patients to walk two laps in a figure of eight drawn on the floor, with a walking aid if 249 necessary and found no significant differences between intervention and control group post-250 intervention or one year later [21].

251 *Physical function*

Three studies measured physical function, two using the EORTC-QLQ-30 [18, 24] and one using the SF-36 [21]. No statistical differences were found, except for Karl et al.'s (2014) study, which found statistically higher physical functioning scores on postoperative day 3 for patients in the ERAS group.

255 Dyspnoea

Dyspnoea was measured in two studies using the EORTC-QLQ-30 [18, 24]. Jensen et al. (2014) found
 a 10% significant decrease in symptoms of dyspnoea in the intervention group (physical exercise

- rehabilitation) compared with the control group at four month follow-up. Karl et al. (2014) reported
- 259 no significant differences between intervention and control group after the ERAS protocol.
- 260 Insomnia
- 261 Insomnia was measured in two studies using the EORTC-QLQ-30 [18, 24] and no significant
- 262 differences between intervention and control groups were found after the intervention.
- 263 Sexual function
- Two studies measured sexual function [18, 29]. Jensen et al. (2014) found an improvement of 7% in
- 265 sexual interest and activity in the control group four months after the intervention, which they
- described as clinically relevant though it was not statistically significant. Vidal et al. (2016) measured
- sexual function as a long-term follow-up to the TPN nutritional intervention described by Roth et al.
- 268 (2013) and found no statistically significant differences between intervention and control group at 0,
- 269 3, 12 and 24 month follow-ups.
- 270 Psychological adjustment after surgery

271 Social and emotional functioning

- Four studies measured social and emotional functioning using EORTC-QLQ-30 [18, 24], the SF-36 [21]
- and the SIP questionnaire [1]. No study found statistically significant differences between
- intervention and control groups after the intervention except Karl et al. (2014) who found a stable
- emotional functioning score during hospitalisation in the control group and continuous
- 276 improvement in emotional functioning until discharge in patients exposed to the ERAS protocol (no
- data reported) [24].
- 278 Health related quality of life
- 279 Five studies measured QOL, one using the FACT-BL [25], two using global health-related QOL from
- the EORTC-QLQ-30 and functional subscales [18, 24] and two using the SF-12 or 36 [21, 29]. Porserud
- et al. (2014) found no statistically significant differences between intervention and control group in

the QOL domains [21]. Jensen et al. (2014) found the physical rehabilitation intervention group

283 demonstrated a clinically relevant decrease compared to the control group on role function and

cognitive function at the 4 month follow-up, although differences were not statistically significant.

285 Frees et al. (2017) and Vidal et al. (2016) found no statistically significant differences between

286 intervention and control groups in QOL scores.

287 Self-care and self-efficacy

288 Three studies measured self-care [13, 15, 20] and two measured self-efficacy [13, 15] as outcomes of 289 the intervention. Jensen et al. (2015) found the ability to independently perform personal activities 290 of daily living was significantly reduced by one day in the intervention group after pre-and 291 postoperative physical exercise intervention compared to controls (3 days vs 4 days; $p \le 0.05$) [20]. 292 Jensen et al. (2017) found no statistical significant difference (p=0.35) in mean self-efficacy score 293 between treatment groups on admission to surgery. However, a significant increase in the total 294 stoma self-care score of 2.7 points (95% CI, 0.9 to 4.5) was found in the intervention group 295 compared to the standard procedure group at postoperative day 35, and differences continued at 296 day 120 (4.3 95% CI, 2.1 to 6.5) and 365 (5.1 95% CI, 2.3 to 7.8) [13]. Merandy et al. (2017) found 297 that the single preoperative educational intervention was not associated with self-care 298 independence scores (p=0.4286) and brought about no significant change in self-care or self-efficacy 299 scores.

300 Other outcomes

Other outcome measures explored in isolation included vitality [21], mental health [21] and anxiety [12]. Porserud et al. (2014) found no significant differences between intervention and control group in vitality and mental health scores as measured by the SF-36. Ali and Khalil (1989) found patients who received psychoeducational preparation prior to surgery showed less state anxiety on the third day postoperatively than the control group (p<0.00 [sic]) and before discharge (p<0.00 [sic]) compared to controls. Through a qualitative analysis, Ali and Khalil (1989) also found that patients

307	fears and worries before surgery concerned i) cancer, ii) mutilation and body image distortion, and
308	iii) impact on social/marital relationships.

309 **Complications**

- 310 Eleven studies reported complications associated with the surgical procedures, seven using the
- standardised Clavien-Dindo classification system [14, 17, 20, 25-28] (See Additional file 2). Generally,
- 312 interventions were not found to substantially increase the normal complication rate, with the
- 313 exception of one study that was terminated prematurely due to high gastrointestinal complications

in patients exposed to total parenteral nutrition (TPN) for 5 days postoperatively [27].

- 315 Adherence and fidelity
- 316 Adherence to the intervention was reported in eight articles. Table 4 gives a summary of the
- 317 adherence reported in each of the articles under review. Eleven articles did not report adherence to
- 318 the intervention. Fidelity of the intervention delivery was not reported in any article.
- 319

[insert Table 4 here]

320 Risk of bias

321 Figure 2 shows the risk of bias summary table for the studies included. The standard of reporting 322 was generally low, with many articles omitting Consolidated Standards of Reporting Trials 323 (CONSORT) details [31]. Low reporting quality meant the majority of studies were judged to have 324 unclear risk of bias on at least one domain. All studies were described as having randomised designs, 325 but only ten articles reported the randomisation procedure (e.g., web-based block randomisation 326 [18]). In eight articles, it was unclear how participants were randomised. One study was described as 327 randomised but did not describe a true randomisation procedure, therefore considered high risk of 328 bias [15]. Seven studies were rated low risk for 'selection bias', because they referred to allocation 329 concealment in their reporting of the randomisation procedure [13, 18-21, 23]. Studies tended to be 330 rated as unclear or high risk for 'performance bias' and 'detection bias' because it was unclear

331 whether patients, study personnel or outcome assessors were blind to the treatment group. Double-332 blind RCTs are difficult, if not impossible for many non-pharmaceutical intervention studies, 333 exposing most of the studies to performance bias. Two studies included in the review were 334 described as double-blind [16, 23]. All studies were judged to be at high risk of some 'other bias'. 335 This included, use of a single centre [12], different surgical and treatment procedures across 336 different sites [16], LOS being influenced by hospital discharge rules (rather than health outcomes) 337 [26], small sample sizes [1, 12, 17, 21, 22, 26], change over time in surgical procedure [18-20], 338 intervention and control group patients being treated on the same hospital ward [18-20], use of 339 male patients only [17], not recruiting the target sample size [21, 28] and premature termination of 340 the study [27, 29].

341 Figure 2 Risk of bias summary table

342 Heterogeneity and sensitivity analyses

343 Differences in the included studies, particularly in types of interventions, definitions of outcomes

344 and tools used to measure outcomes meant sensitivity analyses could not be conducted and

345 heterogeneity could not be assessed statistically.

346 Discussion

347 Supportive interventions for cystectomy patients have included exercise therapy, pharmaceuticals,

348 ERAS protocols, psychological/educational programmes, chewing gum and nutrition delivered at

349 various stages over the perioperative period. It is difficult to make clear recommendations for

350 clinical practice, especially for potential long-term benefits to patient health, but this review can

351 offer suggestions for potential short-term benefits of interventions.

352 Review findings suggest that integrating exercise therapy into the pre- or postoperative care of

353 cystectomy patients could have clinically important benefits for bowel function, physical function,

354 strength/power, mobilisation and QOL but is not always feasible for patients. The findings align with

other reviews demonstrating the positive effects of exercise for bladder cancer patients [32].

356 Exercise can be challenging for cancer patients and requires careful consideration with respect to

357 patient age and comorbidities [18, 33]. Research exploring the optimal type of exercise therapy

358 would be informative, as intensive exercise may not always be appropriate [21] or accessible [14] for

359 patients undergoing cystectomy.

Cystectomy patients may benefit from pharmaceutical intervention for pain relief and physical
function in the immediate postoperative period, which is likely to have a positive impact on length of
hospital stay, QOL, the patient experience and healthcare costs. However, the effect on pain
management might be short-lived and side-effects such as the sedative effect of pregabalin should
be considered [22, 23].

365 Only three of the included studies used ERAS protocols [17, 24, 25], supporting the observation that 366 the adoption of ERAS protocols in urological procedures to date has been low [6]. The findings 367 suggest that ERAS protocols have the potential to offer widest range of benefits for cystectomy 368 patients. However, it is hard to identify what actually works within each context and the quality and quantity of the evidence needs improvement. Tyson and Chang (2016) systematically reviewed 13 369 370 studies comparing ERAS after cystectomy versus standard care with a meta-analysis of effectiveness. 371 ERAS protocols were investigated within observational studies only and were found to reduce the 372 LOS, time-to-bowel function, and rate of complications after cystectomy, but the pooled estimates 373 were biased in favour of ERAS and each perioperative pathway was different within each study [9]. If 374 ERAS protocols are to be adopted, then high-quality multicentre studies are needed to accumulate 375 evidence supporting the short and long-term impact of their use.

The findings demonstrate that psychologically-supportive and educational interventions are less common than physical or medical interventions, but could reduce postoperative anxiety and promote postoperative adjustment, self-care and coping in cystectomy patients. Such outcomes are likely to benefit QOL and positive adjustments with clinical relevance [13], but are likely to require a

380 longer and more individualised approach than those implemented in the studies included in this 381 review. The findings are consistent with a previous systematic review of exercise and psychosocial 382 rehabilitation interventions to improve health-related outcomes in patients with bladder cancer undergoing radical cystectomy, which found limited evidence for beneficial effects of psychosocial 383 384 interventions [32]. Given that poor preoperative mental health has been associated with 385 complications after cystectomy [34] and postoperative problems can have a significant impact on 386 QOL [5], assessing perioperative psychological health status could help identify those patients who 387 may be in need of extra support. Further research is required to explore the best approach to 388 provision of psychological support for patients to ensure that patients are not only surviving, but 389 surviving well.

Asking cystectomy patients to chew gum postoperatively may have benefits for bowel function and is unlikely to have any adverse effects. The early introduction of diet was feasible and safe, but TPN was associated with an increased rate of infectious complications, impaired bowel function, as well as higher costs [27].

394 Some level of bias was present in all studies included in this review, with most of the uncertainty in 395 judging bias coming from lack of clarity of randomisation and blinding procedures. Methodological 396 details were underreported and future publications should adequately report high quality research. 397 No study reported fidelity of intervention delivery meaning it was unclear whether the treatment 398 was delivered as intended. Additionally, the surgical procedure, including form of urinary diversion 399 to control group patients varied across studies (see Table 1), introducing potentially confounding 400 factors. This makes it difficult to show whether any health benefits were related to the supportive 401 intervention or to determine the optimal 'dosage' or exposure to the intervention required to bring 402 about health benefits. Many of the studies lacked statistical power due to small sample sizes 403 meaning statistical significance should be interpreted with caution.

404 **Recommendations for future research**

405 Implications for clinical practice have been difficult to make, suggesting that future research should 406 explore the clinical relevance of the outcomes found in research studies. Maintenance data through 407 longer follow-ups are essential to explore i) long-term complications and readmissions and ii) 408 whether short-term health outcomes are sustained over time. Adequately powered clinical trials are 409 required to explore the long-term effects of physical prehabilitation and rehabilitation for 410 cystectomy survivors. More research exploring psychologically-supportive interventions would be 411 informative because the current findings highlight that psychological and behavioural outcomes 412 (e.g., self-care behaviour and behaviour change) are scarcely studied and poorly understood. 413 Standards of reporting must be improved, including details of fidelity and adherence.

414 **Conclusions**

415 This review provides a broad overview of the non-surgical supportive interventions available to help 416 optimise the health outcomes of patients undergoing cystectomy procedures. It has shown that 417 supportive interventions have taken many different forms with a range of potentially meaningful 418 physiological and psychological health outcomes for patients in the short and long term after 419 surgery. Questions remain as to what magnitude of improvements in the physiological and 420 psychological health outcomes reported would lead to actual changes in the patient experience of 421 surgery and recovery. Whilst this review can offer suggestions for potential benefits of interventions, 422 clarification is required to understand what forms of support are most effective in improving the 423 long-term quality of life of cystectomy patients.

424 List of abbreviations

425 CONSORT: Consolidated Standards of Reporting Trials

426 EORTC-QLQ-30: European Organisation for Research and Treatment of Cancer - Quality of life of427 cancer patients

428 ERAS: Enhanced recovery after survey

- 429 FACT-BL: Functional Assessment of Cancer Therapy- Bladder Cancer
- 430 LOS: Length of stay
- 431 QOL: quality of life
- 432 RCT: randomised controlled trial
- 433 SES6G: Self-Efficacy to Manage Chronic Disease scale
- 434 SF-36 and SF-12: Short Form health survey
- 435 SIP: Sickness Impact Profile
- 436 STAI: State-Trait Anxiety Inventory
- 437 UES: Urostomy Education Scale
- 438 VAS: visual analogue scale

439 **Declarations**

440 Ethics approval and consent to participant

441 Not applicable

442 **Consent for publication**

443 Not applicable

444 Availability of data and material

- 445 Datasets used and/or analysed during the current study are available from the corresponding author
- 446 on reasonable request

447 **Competing interests**

448 The authors declare that they have no competing interests

449 Funding

- 450 The review was funded by the Urostomy Association. The Urostomy Association commissioned
- 451 researchers to conduct the review and had no role in the design, collection, analysis, or
- 452 interpretation of data or writing of this manuscript.

453 Authors' contributions

- 454 LB obtained funding and made substantial contributions to the conception of the review. HQ and LB
- 455 contributed to the literature search, screening, data extraction and analysis of the data. DR and LB
- 456 made substantial contributions to the interpretation of data and critical revision of the manuscript
- 457 for important intellectual content. HQ drafted the manuscript and all authors have read, contributed
- to and approved the final version.

459 Acknowledgements

460 Not applicable

461 Additional files

- 462 Additional file 1
- 463 Search terms Literature search terms for the electronic database search used in this review
- 464 Additional file 2
- 465 Summary of complications Summary of reported complications for each study included in this
- 466 review

Table 1 Summary of study details and participant characteristics

Reference and		Sample size	ze	Participant characteristics										
country		-		A	lge			Surgery	Urinary diversion type	6				
	Total INT		CONT	INT	CONT	Sex	Condition	procedure (as		type				
Alietal 1989	30	15	15	Mean /15 33	Mean 45 86	Male - 23	Bladder	Urinary diversion	Not reported	Not				
Fgynt [12]	50	15	15	SD 5 9	SD 4 4	Female = 7	cancer	offinary diversion	Not reported	reported				
Baneriee et al., 2017	60	30	30	Mean 71.60	Mean 72.5	Male = 53	Bladder	Radical	Not reported	Any				
UK [14]				SD 6.80	SD 8.49	Female = 7	cancer	cystectomy and		surgical				
								urinary diversion		technique				
Choi et al., 2010	62	30	31	Mean 63.5	Mean 64.5	Not reported	Bladder	Radical	Ileal conduit	Open and				
Korea [26]				SD 4.5	SD 8.8		cancer	cystectomy and	Orthotopic neobladder	robot-				
								urinary diversion		assisted				
Deibert et al., 2016	102	50	52	Not reported	Not reported	Male = 37	Bladder	Radical	Ileal conduit	Open and				
USA [28]						Female = 13	cancer	cystectomy and	Neobladder	robot-				
		10	10					urinary diversion	Pouch	assisted				
Frees et al., 2017	23	10	13	Mean 65.75	Mean 70.40	Male = 18	Bladder	Radical	lleal conduit	Open and				
Canada [25]				Range 49-86	Range 51-84	Female = 5	cancer	cystectomy and	Studer neobladder	ropot-				
Chonoim & Hogazy	60	20	20	Moon EO E	Moon 40.4	Malo - 45	Pladdor	Radical	Not reported	Not				
2013	00	50	50		SD 10 2	Female -15	cancer	cystectomy and	Not reported	reported				
Egypt [22]				50 11.2	50 10.2	Temale - 15	cancer	urinary diversion		reported				
Jensen, Jensen et al.,	107	65	64	Mean 68.5	Mean 70.6	Male = 79	Bladder	Radical	Ileal conduit	Open and				
2014, 2015, 2016,				SD 9.8	SD 9.2	Female = 28	cancer	cystectomy	Orthotopic neobladder	robot-				
2017									Continent cutaneous	assisted				
Denmark [13, 18-20]									reservoir					
Karl et al., 2014	101	62	39	Not reported	Not reported	Not reported	Bladder	Radical	Ileal conduit	Not				
Germany [24]							cancer	cystectomy	Orthotopic neobladder	reported				
Lee et al., 2014	280	143	137	Mean 66	Mean 64	Male = 223	Bladder	Radical	Orthotopic neobladder	Open and				
USA [16]				SD 10.9	SD 9.8	Female = 57	cancer	cystectomy and	Continent cutaneous	robot-				
								urinary diversion	reservoir	assisted				
									Noncontinent					
Managan at al. 1007	F7	24	20	Not you get ad	Networked	Not you get ad	Dladdar	Dedical	Cutaneous reservoir	Net				
Mansson et al., 1997	57	24	26	Not reported	Not reported	Not reported	Bladder	Radical	Orthotopic neobladder	NOT				
Merandy et al 2017	8	1	1	Median 74 5	Median 72	Male - 8	Bladder	Radical	Orthotonic peobladdor	Not				
	0	1	+	IOR 73 - 81	IOR 62 - 81 5	Female = 0	cancer	cystectomy and	Incontinent conduit	reported				
							caneer	urinary diversion		reported				

Mohamed et al., 2016 Egypt [23]	60	45 (15 per INT group)	15	Group 2 Mean 54.53 SD 8.56	Mean 47.80 SD 7.23	Male = 48 Female = 12	Bladder cancer	Radical cystectomy	Not reported	Not reported
				Group 3 Mean 54.20 SD 10.65						
				Group 4 Mean 53.33 SD 10.0						
Olaru et al., 2015 Romania [17]	20	10	10	Median 62.5	Median 62.0	Male = 20 Female = 0	Bladder cancer	Radical cystectomy and ileal urinary diversion	Orthotopic neobladder Bricker diversion	Not reported
Porserud et al., 2014 Sweden [21]	18	9	9	Mean 72 SD 5	Mean 72 SD 4	Male = 14 Female = 4	Bladder cancer	Radical cystectomy and urinary diversion	lleal conduit	Open
Roth et al., 2013 [27] Vidal et al., 2016 [29] Switzerland	157	74	83	Median 67 Range 34 - 80	Median 66 Range 30 – 86	Male = 106 Female = 51	Bladder cancer	Radical cystectomy, extended pelvic lymph node dissection, and ileal diversion	Ileal conduit Ileal orthotopic bladder substitute Catheterisable pouch	Not reported

CONT= Control; INT= Intervention; SD= standard deviation

Table 2 Summary of intervention details and length of follow-up

Intervention	Author and	Recruitment and	Perioperative	Intervention content	Intervention time,	Length of
type	date	setting	stage and		duration, frequency	follow-up
			delivery			
Exercise therapy	Banerjee et al.,	Patients recruited	Preoperative	Short-term preoperative vigorous intensity	5-10 warm up.6 x 5min	Until discharge
	2017	from a single	intervention	aerobic interval exercise on a cycle ergometer	intervals with 2.5 min	
		hospital. Supervised	delivered by	using the Borg Ratings of Perceived Exertion	interpolated active rest	
		intervention setting.	exercise science	(RPE) Scale to control intensity. 5-10 warm up	intervals. Twice weekly	
			staff	against light resistance (50W), patients aimed to	over preoperative period	
				perform 6 x 5min intervals to a target perceived	until surgery (3-6	
				exertion of 13-15 (somewhat hard to hard	weeks). Minimum of six	
				equating to 70-85% predicted max heart rate	sessions performed.	
				based on 220-age, with 2.5 min interpolated		
				active rest intervals against light resistance		
				(50W). Instructed to maintain a steady pedalling		
				cadence of 50-60 rev min-1 during intervals, and		
				the exercise programme was progressed		
				gradually adding more load to the flywheel to		
				maintain the target perceived exertion. Followed		
				by cool down against low resistance (50W).		
	Jensen, Jensen	Patients recruited	Pre- and	Preoperative standardised exercise training	Preoperative 15 minutes	Day 35 and 4
	et al., 2014	from a single	postoperative	programme at home; step training on a step	step training and daily	months
	Jensen,	hospital. Combined	intervention	trainer and muscle strength and endurance	exercise programme	postoperatively
	Petersen et al.,	hospital and home-	delivered by	exercises. Postoperative mobilisation and	consisting of six different	
	2015	based intervention	physiotherapists	rehabilitation; instructions for getting out of bed,	exercises with	
	Jensen,	setting		mobilisation and walking.	individualised	
	Laustsen et al.,			exercise-based renabilitation in the nospital;		
	2016			mobilization walking supervised standardised	mobilization and	
				progressive muscle strength and endurance	evercise-based	
				training Datients discharged with a home	rebabilitation for 20	
				training evercise programme	minutes twice-daily for	
					the first seven	
					nostonerative days	
	Porserud et al	Patients recruited	Postonerative	Postoperative group exercise training	45 minutes twice a week	14 weeks and 1
	2014	from a single	intervention	programme in the hospital: lower hody strength	for 12 weeks	vear
		hospital Combined	delivered by	and endurance training: walking and	Walks at a self-selected	nostoperatively
						postoperatively

		based intervention setting		mobility training and stretching exercises. Music was used as inspiration. Participants were also instructed to take walks at a self-selected pace.	for at least 15 minutes.	
Pharmaceutical	Ghoneim & Hegazy, 2013	Recruitment setting not reported. Hospital based intervention	Preoperative intervention. Deliverer not reported	75mg pregabalin orally.	2x day for 10 days prior to operation.	48 hours postoperatively
	Lee et al., 2014	Patients recruited from multiple centres. Hospital based intervention	Pre- and postoperative intervention. Deliverer not reported	12 mg alvimopan before surgery and twice-daily doses postoperatively.	Single dose (12 mg) between 30 minutes and 5 hours before surgery and twice-daily doses postoperatively until hospital discharge or a maximum of 7 days (15 in-hospital doses).	Until discharge and 30 days after discharge
	Mohamed et al., 2016	Patients recruited from single hospital. Hospital based intervention	Preoperative delivered by staff nurse	Group 2 300mg pregabalin orally 2 hour preoperative Group 3 300mg pregabalin orally 2 hour preoperative and 12 hour thereafter Group 4 600mg pregabalin orally 2 hour preoperative		24 hours postoperatively
Fast-track/ERAS protocol	Frees et al., 2017	Patients recruited from single hospital. Hospital based intervention	Perioperative intervention. Deliverer not reported.	ERAS protocol (see original study for details).	Perioperative until discharge.	30 days postoperatively
	Karl et al., 2014	Recruitment setting not reported. Hospital based intervention	Perioperative intervention. Deliverer not reported	ERAS protocol (see original study for details).	Perioperative until discharge.	Day 3, day 7 postoperatively and until discharge
	Olaru et al., 2015	Patients recruited from a single hospital. Hospital based intervention	Perioperative intervention delivered by healthcare professionals	ERAS protocol (see original study for details).	Perioperative until discharge.	Until discharge
Psychological / educational	Ali et al., 1989	Patients recruited from a single hospital. Hospital based intervention	Preoperative intervention. Deliverer not reported	Single, preoperative psychoeducational session provided to the patient and a significant other. Included explanation of the surgical procedure, site and appearance of stoma, device to be used	1 x 30-60 minute session.	Until discharge (approx. 12 days postoperatively)

				postoperatively, reasons for wearing a collection		
				device, and a visit from another "ostomate" who		
				is functioning well. Patients encouraged to		
				express fears and anxieties regarding social		
				aspects of living with a stoma, including clothing,		
				changes in body image, sexuality, exercise,		
				activity, and odour.		
ľ	Jensen. Kiesbve	Patients recruited	Pre- and	The education programme included basic skills to	1 x education	Dav 35 and 4
	et al 2017	from a single	postoperative	optimise the ability to perform independent	programme under	months and 12
	,	hospital. Combined	intervention	stoma care. Patients encouraged to perform	supervision. 2 x practice	months
		hospital and home-	delivered by	stoma care and change of appliance, both one-	at home. 1 x self-	postoperatively
		based intervention	Urological	piece and two-piece system, at least twice at	demonstration under	p p ,
		setting	Enteral Stoma	home providing them with training kits and	observation prior to	
			Therapy Nurses	appliances. The patient was educated about the	surgery.	
				urostomy and life with a urostomy related to the	00.80.7	
				individual patient's life and life style. Every		
				patient had a follow up prior to surgery where		
				the Urological Enteral Stoma Therapy Nurse		
				observed self-care skills regarding stoma care		
				and change of appliance.		
-	Mansson et al	Recruitment setting	Postoperative	Psychosocial programme including weekly	Weekly counselling for	3 months and 6
	1997	not reported. Home	intervention.	counselling, in the patient's home for four weeks.	four weeks then via	months
	2007	based intervention	Deliverer not	and thereafter by telephone. The discussion	telephone for two	postoperatively
			reported	concerned consequences of the operation.	weeks.	p p ,
			. oportou	practical and emotional problems, influences on		
				mood and relations to partner and friends. The		
				partner could be present at the interview		
-	Merandy et al	Patients recruited	Postonerative	Multimethod educational intervention was	1 x 1 hour in duration	Immediately
	2017	from a single	day 4 5 or 6	developed for each of the three different urinary	with an optional 30	after
	2017	hospital Hospital	delivered by	diversions and included (a) a simplified medical	minutes for participant	intervention
		hased intervention	trained nurse	illustration of participant-specific urinary	questions	intervention
		bused intervention	nractitioners	diversion (b) a step-by-step urinary diversion	questions	
			proceeding	self-care instructional video, and (c) a nictorial		
				Microsoft PowerPoint [®] The content was driven		
				hy Bandura's (1977) four sources of self-efficacy		
				and were based on first-hand observed		
				difficulties experienced by natients with a urinary		
				diversion The video PowerPoint illustrations		
				and surveys were administered at the bedside by		
			1	and surveys were duministered at the bedside by		

				one of the investigators using a tablet computer.		
				The intervention was enhanced by professional		
				demonstration, followed by a chance for return		
				demonstration.		
Chewing gum	Choi et al., 2010	Patients recruited from a single hospital. Hospital based intervention	Postoperative intervention delivered by study investigators	Sugar-free chewing gum.	30 minutes chewing three times daily at 10am, 3pm and 8pm until first flatus.	Discharge. Short term complications within 30 days
Nutritional	Deibert et al.,	Patients recruited	Postoperative	Clear liquid diet on postoperative day 1 and	Postoperative until	90 days
	2016	from 2 hospital	intervention.	access to a full regular diet from postoperative	discharge	postoperatively
		centres. Hospital	Deliverer not	day 2 and beyond.		
		based intervention.	reported			
	Roth et al., 2013	Patients recruited	Postoperative	Total parenteral nutrition (TPN). Nutriflex special;	Administered	1, 3, 7, 12 days
		from a single	intervention	a solution with a total energy of 1240	continuously for five	postoperatively
		hospital. Hospital	delivered by	kcal/1000ml and containing polyamino acids,	days starting on	and
		based intervention	hospital ward	glucose, and electrolytes. An additional 30 IU	postoperative day 1.	complications
			staff	Actrapid HM and 1875 IU heparin per 24 hours		up to 30 days
		-		were added to the TPN solution.		postoperatively
	Vidal et al.,					3, 6, 12, 18, 24,
	2016					30 and 36
						months
						postoperatively

Table 3 Summary of outcomes measured and statistically significant findings

			LO	S &																					
		1	readn	nission	_	1	1	1	Ph	ysiolo	gical o	outcor	nes	1	1	1	1			Psyc	cholog	gical o	utcon	nes	
	Intervention	Date	SOJ	Readmission	Bowel function/Defecation	Appetite / food tolerance	Pain	Flatus	Nausea and vomiting	Physical function	Mobilisation	Strength/power	Dyspnea	Insomnia	Fatigue	Sexual function	Balance	HRQOL	Social functioning	Emotional functioning	Self-care	Self-efficacy	Vitality	Mental Health	Anxiety
Exercise therapy	Banerjee et al.	2017	•									**													
	Jensen et al.	2014			**		٠	**	•	•			**	**	•	•		•	•	•					
	Jensen et al.	2015	•	•	•	•					**										**				
	Jensen et al.	2016										**													
	Porserud et al.	2014	•	•			•			•	**	•					•	•	٠	•			•	•	
Pharmaceutical	Ghoneim & Hegazy	2013					**		•																
	Lee et al.	2014	**	•	**	**																			
	Mohamed et al.	2016					**																		
Fast-track/ERAS	Frees et al.	2017	**	•	**		**	**	•									•							
protocol	Karl et al.	2014	•		٠	**	•		•	**	**		•	•	**			•	٠	**					
	Olaru et al.	2015	٠		٠	•		•																	
Psychological /	Ali et al.	1989																							**
educational	Jensen et al.	2017																			**	•			
	Mansson et al.	1997	•																•	•					
	Merandy et al.	2017																			•	•			
Chewing gum	Choi et al.	2010	•		**			**																	
Nutritional	Deibert et al.	2016	•	•	٠	**																			
	Roth et al.	2013	•		٠	•		•																	
	Vidal et al.	2016														•		•							
Total studies measuring that outcome			11	5	9	6	6	5	4	3	3	3	2	2	2	2	1	5	4	4	3	2	1	1	1
Not measured				•	Me	asure	d anc	d not s	statis	tically	signi	ficant	:	**	Mea	sured	and	statistically significant					27		

Table 4 Adherence to the intervention

Paper	Adherence
Ali et al., 1989	Not reported
Banerjee et al., 2017	The median number of supervised exercise sessions attended by patients in the exercise arm was 8 (range 1–10) over a preoperative period of 3–6 weeks. The average number of aerobic intervals achieved in the first week of exercise was 5.5 (range 3.5–6.0), whereas all patients were achieving six intervals per session in the fourth week.
Choi et al., 2010	Not reported
Deibert et al., 2016	Not reported
Frees et al., 2017	Not reported
Ghoneim & Hegazy, 2013	100% adherence to pregabalin
Jensen et al., 2014	A total of 66 % (95 % confidence interval (CI) 51; 78) adhered more than 75% of the recommended progressive standardised exercise program.
Jensen et al., 2015	A total of 66 % (95 % confidence interval (CI) 51; 78) adhered more than 75% of the recommended progressive standardised exercise program.
Jensen et al., 2016	A total of 66 % (95 % confidence interval (CI) 51; 78) adhered more than 75% of the recommended progressive standardised exercise program.
Jensen et al., 2017	Not reported
Karl et al., 2014	Not reported
Lee et al., 2014	119 out of 143 (83%) patients completed the alvimopan
Mansson et al., 1997	Not reported
Merandy et al., 2017	Not reported
Mohamed et al., 2016	Not reported
Olaru et al., 2015	Counselling and education was implemented in 90% of patients
Porserud et al., 2014	Participants attended a median of 76% (range 67–95%) of the group exercise training sessions and patients self-reported daily walks on 87% (56–100%) of the days during the 12-week period, averaging 3.5 hours (2–11.5%) per week
Roth et al., 2013	Not reported
Vidal et al., 2016	Not reported

References

- 1. Månsson Å, Colleen S, Hermeren G, Johnson G: Which patients will benefit from psychosocial intervention after cystectomy for bladder cancer? British journal of urology. 1997; 80(1):50-57.
- Baumgartner RG, Wells N, Chang SS, Cookson MS, Smith Jr JA: Causes of increased length of stay following radical cystectomy. Urologic nursing. 2002; 22(5):319.
- 3. Altobelli E, Buscarini M, Gill HS, Skinner EC: Readmission Rate and Causes at 90-Day after Radical Cystectomy in Patients on Early Recovery after Surgery Protocol. Bladder Cancer. 2017; 3(1):51-56.
- 4. Kehlet H: Multimodal approach to control postoperative pathophysiology and rehabilitation. BJA: British Journal of Anaesthesia. 1997; 78(5):606-617.
- 5. Palapattu GS, Haisfield-Wolfe ME, Walker JM, Brintzenhofeszoc K, Trock B, Zabora J, Schoenberg M: Assessment of perioperative psychological distress in patients undergoing radical cystectomy for bladder cancer. The Journal of urology. 2004; 172(5):1814-1817.
- 6. Azhar RA, Bochner B, Catto J, Goh AC, Kelly J, Patel HD, Pruthi RS, Thalmann GN, Desai M: Enhanced recovery after urological surgery: a contemporary systematic review of outcomes, key elements, and research needs. European urology. 2016; 70(1):176-187.
- 7. Cerantola Y, Valerio M, Persson B, Jichlinski P, Ljungqvist O, Hubner M, Kassouf W, Muller S, Baldini G, Carli F: Guidelines for perioperative care after radical cystectomy for bladder cancer: Enhanced Recovery After Surgery (ERAS®) society recommendations. Clinical Nutrition. 2013; 32(6):879-887.
- 8. Daneshmand S, Ahmadi H, Schuckman AK, Mitra AP, Cai J, Miranda G, Djaladat H: Enhanced recovery protocol after radical cystectomy for bladder cancer. The Journal of urology. 2014; 192(1):50-56.
- 9. Tyson MD, Chang SS: Enhanced Recovery Pathways Versus Standard Care After Cystectomy: A Meta-analysis of the Effect on Perioperative Outcomes. European Urology. 2016; 70(6):995-1003.
- 10. Higgins J, Green S: Cochrane handbook for systematic reviews of interventions In., vol. Version 5.1.0 [updated March 2011]: The Cochrane Collaboration; 2011: Available from http://handbook.cochrane.org.
- 11. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, Britten N: Guidance on the conduct of narrative synthesis in systematic reviews: A product from the ESRC Methods Programme. . In., vol. Version 1. Lancaster University, Lancaster; 2006: b92.
- 12. Ali NS, Khalil HZ: Effect of psychoeducational intervention on anxiety among Egyptian bladder cancer patients. Cancer Nurs. 1989; 12(4):236-242.
- Jensen B, Kiesbye B, Soendergaard I, Jensen J, Kristensen S: Efficacy of preoperative uro-stoma-education on self-efficacy after radical cystectomy; Secondary outcome from a prospective randomized controlled trial. In: European Journal of Oncology Nursing. vol. 28; 2017: 41-46.
- 14. Banerjee S, Manley K, Shaw B, Lewis L, Cucato G, Mills R, Rochester M, Clark A, Saxton JM: Vigorous intensity aerobic interval exercise in bladder cancer patients prior to radical cystectomy: a feasibility randomised controlled trial. Supportive Care in Cancer. 2017; 26(5):1515-1523.

- 15. Merandy K, Morgan MA, Lee R, Scherr DS: Improving self-efficacy and selfcare in adult patients with a urinary diversion: A pilot study. Oncology Nursing Forum. 2017; 44(3):e90-e100.
- 16. Lee CT, Chang SS, Kamat AM, Amiel G, Beard TL, Fergany A, Karnes RJ, Kurz A, Menon V, Sexton WJ *et al*: Alvimopan accelerates gastrointestinal recovery after radical cystectomy: a multicenter randomized placebocontrolled trial. European Urology. 2014; 66(2):265-272.
- Olaru V, Gingu C, Baston C, Manea I, Domnisor L, Preda A, Voinea S, Stefan B, Dudu C, Sinescu I: Applying fast-track protocols in bladder cancer patients undergoing radical cystectomy with ileal urinary diversions-early results of a prospective randomized controlled single center study. Romanian Journal of Urology. 2015; 14(4):58.
- 18. Jensen BT, Jensen JB, Laustsen S, Petersen AK, Søndergaard I, Borre M: Multidisciplinary rehabilitation can impact on health-related quality of life outcome in radical cystectomy: secondary reported outcome of a randomized controlled trial. Journal of multidisciplinary healthcare. 2014; 7:301.
- 19. Jensen B, Laustsen S, Jensen J, Borre M, Petersen A: Exercise-based prehabilitation is feasible and effective in radical cystectomy pathways-secondary results from a randomized controlled trial. In: Journal of urology. vol. 195; 2016: e652.
- 20. Jensen B, Petersen A, Jensen J, Laustsen S, Borre M: Efficacy of a multiprofessional rehabilitation programme in radical cystectomy pathways: a prospective randomized controlled trial. In: Scandinavian journal of urology. vol. 49; 2015: 133-141.
- 21. Porserud A, Sherif A, Tollbäck A: The effects of a physical exercise programme after radical cystectomy for urinary bladder cancer. A pilot randomized controlled trial. Clinical Rehabilitation. 2014; 28(5):451-459.
- 22. Ghoneim AA, Hegazy MM: The analgesic effect of preoperative pregabalin in radical cystectomy for cancer bladder patients. Chinese-German Journal of Clinical Oncology. 2013; 12(3):113-117.
- 23. Mohamed MA, Othman AH, Abd El-Rahman AM: Analgesic efficacy and safety of peri-operative pregabalin following radical cystectomy: A dose grading study. Egyptian Journal of Anaesthesia. 2016; 32(4):513-517.
- 24. Karl A, Buchner A, Becker A, Staehler M, Seitz M, Khoder W, Schneevoigt B, Weninger E, Rittler P, Grimm T: A new concept for early recovery after surgery for patients undergoing radical cystectomy for bladder cancer: results of a prospective randomized study. The Journal of urology. 2014; 191(2):335-340.
- 25. Frees S, Aning J, Black P, Struss W, Bell R, Gleave M, So A: A prospective randomized single-centre trial evaluating an ERAS protocol versus a standard protocol for patients treated with radical cystectomy and urinary diversion for bladder cancer. European Urology, Supplements. 2017; 16 (3):e1024.
- 26. Choi H, Kang SH, Yoon DK, Kang SG, Ko HY, Moon DG, Park JY, Joo KJ, Cheon J: Chewing gum has a stimulatory effect on bowel motility in patients after open or robotic radical cystectomy for bladder cancer: a prospective randomized comparative study. Urology. 2011; 77(4):884-890.
- 27. Roth B, Birkhäuser FD, Zehnder P, Thalmann GN, Huwyler M, Burkhard FC, Studer UE: Parenteral nutrition does not improve postoperative recovery from radical cystectomy: results of a prospective randomised trial. European urology. 2013; 63(3):475-482.

- 28. Deibert CM, Silva MV, RoyChoudhury A, McKiernan JM, Scherr DS, Seres D, Benson MC: A Prospective Randomized Trial of the Effects of Early Enteral Feeding After Radical Cystectomy. Urology. 2016; 96:69-73.
- 29. Vidal Faune A, Arnold N, Vartolomei M, Kiss B, Burkhard FC, Thalmann GN, Roth B: Does postoperative parenteral nutrition after radical cystectomy impact oncological and functional outcomes in bladder cancer patients? European Urology, Supplements. 2016; 15 (3):e515.
- 30. Sprangers M, Cull A, Groenvold M, Bjordal K, Blazeby J, Aaronson NK: The European Organization for Research and Treatment of Cancer approach to developing questionnaire modules: an update and overview. Quality of Life Research. 1998; 7(4):291-300.
- 31. Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, Pitkin R, Rennie D, Schulz KF, Simel D: Improving the quality of reporting of randomized controlled trials: the CONSORT statement. Jama. 1996; 276(8):637-639.
- 32. Rammant E, Decaestecker K, Bultijnck R, Sundahl N, Ost P, Pauwels NS, Deforche B, Pieters R, Fonteyne V: A systematic review of exercise and psychosocial rehabilitation interventions to improve health-related outcomes in patients with bladder cancer undergoing radical cystectomy. Clinical rehabilitation. 2017; 32(5):594-606.
- Bourke L, Smith D, Steed L, Hooper R, Carter A, Catto J, Albertsen PC, Tombal B, Payne HA, Rosario DJ: Exercise for men with prostate cancer: a systematic review and meta-analysis. European urology. 2016; 69(4):693-703.
- 34. Sharma P, Henriksen CH, Zargar-Shoshtari K, Xin R, Poch MA, Pow-Sang JM, Sexton WJ, Spiess PE, Gilbert SM: Preoperative patient reported mental health is associated with high grade complications after radical cystectomy. The Journal of urology. 2016; 195(1):47-52.