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Abstract 

 

This continuation of Part I (Soldatos, 2018) aims to make a connection between the polar linear 

elasticity for fibre-reinforce materials due to (Spencer and Soldatos, 2007; Soldatos, 2014, 2015) 

with the anisotropic version and the principal postulates of its counterpart due to (Mindlin and 

Tiersten, 1963). The outlined analysis, comparison and discussions are purely theoretical, and 

aim to collect and classify valuable information regarding the nature of continuous as well as 

weak discontinuity solutions of relevant well-posed boundary value problems. Emphasis is given 

on the fact that the compared pair of theoretical models has a common theoretical background 

(Cosserat, 1909) but different kinds of origin. Some new concepts and features, introduced in 

Part I, in association with linear elastic behaviour of materials having embedded fibres resistant 

in bending, are thus shown relevant to more general linearly elastic, anisotropic, Cosserat-type 

material behaviour. The different routes followed for the origination of the compared pair of 

models is known to produce identical results in the case of conventional (non-polar) linear 

elasticity. The same is here found generally non true in the polar elasticity case, although 

considerable similarities are also observed. No definite answers are provided regarding the 

manner in which existing differences might be bridged or, if at all possible, eliminated. These are 

matters that require further study and thorough investigation.  
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1. Introduction 

 

About twenty years after Adkins and Rivlin pioneered the non-linear theory of fibre-reinforced 

materials (Adkins 1951; Adkins and Rivlin, 1955), Spencer’s (1972) monograph summarised the 

progress which had been made at the time in the subject. Figure 1 is extracted from that 

monograph (Spencer, 1972), and in its initial part (Figures 1(a, b)) illustrates a cantilevered block 

of fibre-reinforced material bent in a fully continuous manner. The fibres are noted as a-curves 

and are considered very stiff and strong. Each of the Figures 1(c) – 1(i) illustrates next one of 

many possible analogous deformation patterns that involve different kind of discontinuous fibre 

slope and/or fibre curvature, although the overall displacement field is still continuous. The 

example deformation patterns depicted in Figure 1 underpinned the applicability of the theory of 

ideal fibre-reinforced materials (Spencer, 1972). Today, these are felt as predictions that, within 

the elastic deformation regime, justify the term and the class of “weak discontinuity” 

deformations. The latter are deformation patterns which, due to micro-scale (fibre-thickness) 

material failure, are described by continuous displacements that possess discontinuous 

derivatives; see (Merodio and Ogden, 2002, 2003).  

 Existence of weak discontinuity deformations in non-polar and unconstrained non-linear 

elasticity did not become formally known before 1975 in the case of material isotropy (Knowles 

and Sternberg, 1975), and were not studied in connection with fibre-reinforced materials before 

1983 (Triantafyllidis and Abeyarante, 1983). Such deformations occur in the form of material 

instability modes as soon as the influence that large deformation exerts on the elastic constitution 

of the material forces the equations of elasticity to lose ellipticity. These micro-mechanics failure 

modes are thus not observable in conventional (non-polar) linear elasticity, where the governing 

equations are always elliptic.  

The same is not necessarily true in the case of polar linear elasticity (e.g., Mindlin and 

Tiersten, 1963; Spencer and Soldatos, 2007; Soldatos, 2014, 2015) where, still, the magnitude of 
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the deformation does not affect material constitution but, due to the presence of couple-stress, the 

corresponding governing equations are generally non-elliptic. Weak discontinuity solutions of 

well-posed boundary value problems in polar linear elasticity may thus co-exist with their fully 

continuous counterpart(s). The latter are potential solutions described by continuous 

displacements possessing continuous derivatives of all orders, and, for simplicity, will be termed 

as “continuous solutions” in what follows. 

 Like the aforementioned monograph (Spencer, 1972), the polar linear elasticity presented 

by Mindlin and Tiersten (1963) was published before the pioneering work of Knowles and 

Sternberg (1975) on weak discontinuity elasticity solutions. Mindlin and Tiersten (1963) had thus 

every reason at the time to claim that a continuous solution to a well-posed mixed boundary 

value problem formulated in terms of their theory is unique. However, this claim is now 

disputable, at least because the non-elliptic nature of the relevant governing equations is already 

exposed and discussed (Gouriotis and Bigoni, 2016).  

There exists no evidence suggesting that the anisotropic version of that theory (Mindlin 

and Tiersten, 1963) was motivated by potential applications on linearly elastic composites with 

embedded fibres resistant bending. Moreover, most of the polar linear elasticity analysis detailed 

in (Mindlin and Tiersten, 1963) deals with the isotropic version of that theory. Hence, a possible 

rational connection of that theory with applications referring to composites containing fibres 

resistant in bending would naturally be interesting as well as important (e.g., Asmanoglo and 

Menzel, 2017).  

The present investigation aims to compare the anisotropic version of, and principal 

postulations stemming from the linear polar elasticity due to Mindlin and Tiersten (1963) with 

their counterparts presented in (Spencer and Soldatos, 2007; Soldatos, 2014, 2015). The 

comparison and relevant discussions are currently of purely theoretical nature and significance, 

and are associated with the search for continuous solutions of well-posed boundary value 

problems in polar linear elasticity. It is noted in this context that the compared polar elasticity 

models have a common theoretical background, namely that of the Cosserat (1909) couple-stress 

theory which is summarised in Section 2. However, they have different kind of origin and 

foundation.   
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Mindlin and Tiersten’s (1963) polar linear elasticity is founded on constitutional 

considerations stemming from the observation that the internal energy function of the material is 

quadratic in the strains and the spin-gradients of the deformation. The same constitutive 

assumptions are thus employed and underpin the generally anisotropic polar linear elasticity 

formulated in Section 3.1. Nevertheless, several new concepts are introduced in the remaining of 

Section 3, where further relevant features are also developed and discussed. Some of those 

concepts and features were introduced in Part I (Soldatos, 2018), where were initially associated 

only with linearly elastic behaviour of fibre-reinforced materials (Soldatos, 2015). Their 

generalisation and connection with the (Mindlin and Tiersten, 1963) model, and, potentially, with 

other possible versions of Cosserat-type linearly elastic material behaviour is here considered 

interesting and important. 

On the other hand, as is also described in Section 4, polar linear elasticity of 

unidirectional, transversely isotropic fibre-reinforced materials is founded on the proper 

linearisation of a corresponding non-linear theory of polar elasticity (Spencer and Soldatos, 

2007). In the case of non-polar elasticity, this alternative formulation route produces identical 

results with those obtained through the route employed previously in Section 3 or, equivalently, 

used in (Mindlin and Tiersten, 1963). However, Sections 5 - 7 show that this is generally not true 

in the case of polar elasticity.  

Section 5 makes thus initially understood that, by imposing some conditions on the 

Mindlin and Tiersten (1963) formulation, the latter may reduce to the restricted version of the 

theory presented in (Spencer and Soldatos, 2007; Soldatos, 2014) and used later in Part I 

(Soldatos, 2018) for transversely isotropic fibrous composites. This result clarifies thus the 

reason for which some of the new concepts introduced in Sections 3.2 and 3.3 are found already 

applicable in Part I.  

However, Section 6 shows next that the appearance of some new kinematic variables, 

which are neither expressible in terms of the strains nor the spin-gradients of the deformation, 

prevents the Mindlin and Tiersten (1963) model from producing the unrestricted version of its 

counterpart presented in (Spencer and Soldatos, 2007). Moreover, Section 7 considers the case of 

a fibrous composite reinforced by two families of unidirectional fibres resistant in bending and 

shows that, for the same reason, the Mindlin and Tiersten (1963) framework is unable to produce 
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in that case even the restricted version of its alternative, fibre-reinforced material counterpart 

(Soldatos, 2015).      

It is re-emphasised that the attempted comparison is confined within bounds determined 

by the existence and applicability of continuous solutions of the governing equations of polar 

linear elasticity. No definite answers are provided regarding the manner in which the differences 

observed between the compared models might be exploited or, if at all possible, 

bridged/eliminated. These matters are further discussed in the closing Section 8, which also 

summarises the principal conclusions and provides directions for future relevant study. 

 

  

2. Basic theoretical concepts of linearly elastic polar material behaviour  

 

In a right-handed Cartesian co-ordinate system Oxi, where subscripts take the values 1, 2 and 3, 

denote with u the displacement vector encountered during small elastic deformation of a solid 

material. In the usual manner, the linear elasticity strain and rotation tensors,  

   
ijjiijijjiij uuuue ,,,,

2

1
   ,

2

1
  ,                                                                                     (2.1) 

are defined as the symmetric and the antisymmetric part of the displacement-gradient tensor, 

respectively, where a comma between indices denotes partial differentiation with the 

corresponding co-ordinate parameter. Moreover, the spin vector, Ω , is related with the rotation 

tensor through the standard relationships 

iijkkjkjijk ΩΩ      ,
2

1
 i ,                                                                                                      (2.2) 

where ε is the three-dimensional alternating tensor and the summation notation applies over 

repeated indices. 

Polar material behaviour is synonymous with the presence of a non-zero couple-stress 

tensor, m. In turn, this makes the stress tensor, σ, non-symmetric, in the following sense: 

       ,
2

1
   , kkjiijijijij m  ,                                                                                             (2.3) 

where  ij  and  ij  represent the components of the symmetric and the antisymmetric part of σ, 

respectively. The second of (2.3) is essentially the moment (or couple-stress) equilibrium 
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equation, and is necessarily valid under the assumption that, like ui, the components of m are 

differentiable functions of the spatial co-ordinates.  

Equation (2.3b) is accompanied by the moment of momentum (or stress) equilibrium 

equation  

0, iij ,                                                                                                                                     (2.4) 

where body forces and body couples are neglected for simplicity, and the components of σ are 

assumed differentiable functions. The components of the traction and the couple-traction vectors 

acting on any internal or bounding surface of the material are respectively given as follows: 

jji

n

ijji

n

i nmLnT  )()(     , ,                                                                                                        (2.5) 

where n denotes the outward unit normal of that surface.  

 Under the assumption that not only the components of m, but also their derivatives 

appearing in (2.3b) are differentiable functions, the equilibrium equation (2.4) reduces to 

  0
2

1
,,  ikkjiiij m  ,                                                                                                                 (2.6) 

where  

krrkk mmm  
3

1
                                                                                                                   (2.7) 

is the deviatoric part of the couple-stress tensor, and the appearing Kronecker’s delta represents 

the components of the unit matrix, I. It is recalled that the spherical part, mrr, of the couple-stress 

tensor makes no contribution in the equilibrium or in the energy balance equation, while it 

remains unspecified/undetermined during the deformation of a polar material. 

 In the absence of body forces and body couples, the energy balance equation takes the 

form 

 dSΩLuT
dt

dE

S

i

n

ii

n

i   )()( ,                                                                                                        (2.8) 

where E represents the total work done by the tractions and couple-tractions acting on the surface 

S that surrounds the unstrained volume V of the continuum. Moreover, dS and dV represent the 

corresponding surface and volume element, respectively, and a dot denotes differentiation with 

respect to time, t.  

 Use of (2.5), followed by application of the divergence theorem and the product rule of 

differentiation, leads thus to   
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 dVΩmΩmu
dt

dE

V

jijiijjijiji  ,,,
 ,                                                                                                                  

where (2.4) has also been accounted for. Use of (2.3a), (2.2a) and (2.7), along with the symmetry 

of the rate of strain tensor and the skew-symmetry and rate of rotation tensor leads next to 

    ,
2

1
 ,, 










V

jijikkijjijijijiji dVΩmme
dt

dE     

and, by virtue of (2.3b), to 

      
VV

Ωe

V

jijijiji dVWdVWWdVΩme
dt

dE 
, ,                                                            (2.9) 

where W , eW and ΩW  represent the rate of the internal, the strain and the spin-gradient energy 

per unit volume, respectively.  

 Connection of (2.8) with (2.9) provides finally the following mathematical expression for 

the principle of virtual work in polar continua:   

    dSΩLuTdVΩme
S

i

n

ii

n

i

V

jijijiji    )()(

, .                                                                           (2.10) 

 The outlined derivations hold true regardless of the form of specific constitutive equations 

that determine precisely the linearly elastic behavior of the material of interest. In the absence of 

body forces and body couples, the set of equations (2.3), (2.4), (2.6) and (2.9) is in principle 

equivalent to its counterpart that, as is pointed out in (Mindlin and Tiersten, 1963), comprises the 

couple-stress theory as is essentially left by the Cosserats (1909). Mindlin and Tiersten (1963) 

have also identified precisely where each of these four equations can be found in the classical 

article of Truesdell and Toupin (1960), where non-mechanical terms are further introduced. Apart 

from the implied absence of body forces and body couples, the only principal difference 

encountered in this section comprises the fact that the deviatoric part (2.7) of the couple-stress 

tensor enters the implied theoretical formulation in advance of (2.6) and (2.9). 

 

 

3. Generally anisotropic, polar linearly elasticity 

 

3.1 Conventional features of the constitutive equations in polar linear elasticity    
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In linear elasticity, the internal energy function, W, is necessarily quadratic in the principal 

kinematic variables involved in the analysis. The outlined preliminary developments suggest that 

the set of these variables include the strains, ije , and the spin-gradients, jiΩ , . Mindlin and 

Tiersten (1963) have indeed employed the same kinematic variables during the linearisation 

process of a suitable three-term truncation of the energy polynomial expansion proposed by 

Toupin (1963), and concluded that the most general quadratic form possible for W is  

 , , , ,

1 1
,

2 2
ij l k ijkl ij kl ijkl ij l k ijkl j i l kW e Ω c e e b e Ω a Ω Ω   ,                                                                    (3.1a) 

where the components of the fourth-order tensors a, b and c are regarded as appropriate material 

parameters. Nevertheless, the fact that eij and Ωi,j are gradients of a proper vector and a pseudo-

vector, respectively, implies further that W is invariant in the full orthogonal group only if  

 0b .                                                                                                                                     (3.1b) 

 It is pointed out that the components of the spin-gradient tensor, jiΩ , , have dimensions of 

curvature, namely (length)-1. They are accordingly associated in (Mindlin and Tiersten, 1963) 

with a tensor quantity termed the “curvature-twist dyadic”. This terminology is not incorrect, but 

is here avoided because the term “curvature” will later be associated with actual curvature of 

fibres embedded in polar fibrous composites.     

 Expressions (3.1a, b) for W are in agreement with (2.9), which anticipates that 

Ωe WWW  .                                                                                                                           (3.2)  

Due to the linearity of the constitutive equations sought, it is also anticipated that the appearing 

strain and the spin-gradient energy functions of the material are respectively defined as follows:  

  ,

1 1
,    .

2 2

e Ω

ij ji i jij
W e W m Ω                                                                                                    (3.3) 

 It follows that  

   

 , , , ,

,

1
,           ,

2

1
,    .

2

e
e

ij ijkl kl ij ijkl klij

ij

Ω
Ω

i j ijkl j i l k ji jilk k l

i j

W
W e c e e c e

e

W
W Ω a Ω Ω m a Ω

Ω




  



  



                                                                       (3.4) 

The linear constitutive equation (3.4b) is identical with the generalised Hooke’s law met in non-

polar linear anisotropic elasticity, while (3.4d) is a corresponding linear relationship between the 

couple-stresses and the spin-gradients. 
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 It is now recalled that W represents stored internal energy and is, therefore, customarily 

considered positive definite in the appearing kinematic variables. In this context, consider 

initially any displacement field of the form 

                 ,   ,   , 332211333221123322111 xfxfxfuxfxfxfuxfxfxfu                                (3.5) 

where  ii xf  are all continuous functions of their single argument, and a prime denotes ordinary 

differentiation with respect to that argument. It can be readily verified that this displacement field 

returns 0iΩ , thus implying that ΩW = 0 is possible while 0eW . In a similar manner, 

0eW  is also possible while 0ΩW .  

 Indeed, by integrating the equations ije  = 0, one obtains the displacement field   

  ,  ,  , 213313223211 xxcuxxcuxxcu                                                                                        (3.6) 

where the appearing constants are assumed to be such that 321 ccc  . This displacement field 

produces the non-zero spin-gradient field  

123,3312,2231,1   ,  , ccΩccΩccΩ  .                                                                               (3.7)  

Hence, 0eW  is indeed possible while 0ΩW .  

 It follows that displacement fields that produce either strains or spin-gradients alone, as 

the only non-zero kinematic variables, do exist. Hence, positive definiteness of W requires from 

both eW and ΩW  to be positive definite, namely  

0,    0e ΩW W  .                                                                                                                     (3.8) 

 The latter arguments are not detailed in (Mindlin and Tiersten, 1963) where most of the 

outlined linear elasticity analysis is based on a combination of the isotropic elasticity counterpart 

of (3.4b) with the isotropic equivalent of (3.4d). However, Mindlin and Tiersten (1963) have 

clearly and correctly required from the isotropic versions of both eW and ΩW  to be positive 

definite and, hence, to satisfy (3.8). They thus concluded that the polar material equivalent of the 

Lamé elastic moduli, λ and μ, should still satisfy the well-known conditions that guarantee 

positive definiteness of eW in non-polar isotropic linear elasticity.  

 In a similar manner, positive definiteness of the generally anisotropic form (3.4a) of eW  

leads here to the conclusion that the elastic moduli ijklc  should still satisfy those conditions that 

guarantee positive definiteness of eW in non-polar anisotropic linear elasticity (e.g., Ting, 1996; 
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Jones, 1998). The remaining of Section 3 is thus enabled to further present several new concepts, 

theorems and results which are relevant and, hence, complement their counterparts met in to the 

polar linear elasticity model introduced in (Mindlin and Tiersten, 1963). Some of these new 

developments  are already introduced in Part I (Soldatos, 2018) where, however, are found valid 

and applicable only in connection with the restricted version of the linearly elastic model 

presented and discussed in (Spencer and Soldatos, 2007; Soldatos, 2015) for transversely 

isotropic fibrous composites with embedded fibres resistant in bending.  

 

3.2 The displacement-gradient and the rotation energy functions     

 

In a close connection with the definition of the strain and the spin-gradient energy functions 

(3.3), Soldatos (2018) introduced the concept of the displacement-gradient energy function 

                
ijij

e

ijjiijijijijjijijijiijij WeWeeueU  
2

1

2

1

2

1
, ,

.              (3.9) 

It is observed that the displacement-gradient and the strain energy functions coincide in non-polar 

linear elasticity, where there is no rotation energy stored in the material ( W = 0). Use of the 

displacement field (3.6) shows that, like ΩW , 0W   is also possible while 0eW . Hence, in 

general, W  should necessarily also be regarded as a positive definite function ( 0W  ).    

Under the aforementioned assumption that requires from all components of m to be 

differentiable functions, use of (2.2b) and (2.3b) yields the rotation energy into the following 

equivalent forms:   

       ,,,
3

1

4

1

4

1

4

1

2

1
ijkrrkkijijkkijijkkijijjiij mmmmW 









 ,                      (3.10) 

or  

     , ,

1

2

Ω

ij i j ij j i
W W Ω m Ω    ,                                                                                            (3.11) 

where use is also made of (2.2a) and (3.3b). 

Integrating (3.11) over the body of the polar solid of interest and making use of the 

divergence theorem, one obtains    

    ( )

,

1

2

Ω n

ij i j i i

V V S

W dV W Ω dV L Ω dS      ,                                                                          (3.12) 
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which shows that the total rotation energy stored in the material equals the total spin-gradient 

energy minus one half of the work done by the external couple-tractions acting through their 

ultimate spin vector field,Ω . Alternatively, the work done by the field of external moments 

equals twice the difference of the total spin and rotation energies.  

 It is now recalled that, with use of (3.4d), (2.2a) and (2.1b), the equilibrium equations 

(2.6) produce an equivalent set of displacement partial differential equation (PDEs) which is 

generally non-elliptic (e.g., Soldatos, 2014, 2015). As is already mentioned in the Introduction, 

lack or loss of ellipticity of that Navier-type set of PDEs is associated with existence of potential 

weak discontinuity solutions of well-posed boundary value problems. Namely, solutions for 

which the components of m and/or their spatial derivatives are discontinuous and, therefore, non-

differentiable, while the components of u, e and ω may still be differentiable functions. The 

outlined connection of weak discontinuity solutions with potential non-differentiability of the 

couple-stress tensor, m, makes impossible some of the differentiations implied in (3.10) and, 

hence, invalidates (3.11) in that case. It is thus re-emphasised that validity of (3.11) in well-posed 

boundary value problems of polar linear elasticity is associated only with potential continuous, 

though not necessarily unique relevant solutions. 

 

3.3 Fundamental Theorems in generally anisotropic polar linear elasticity      

 

The polar elasticity extension of Clapeyron’s theorem, noted as Theorem 1 in (Soldatos 2017), 

made use of an early definition of ΩW  that accounts twice the amount of the spin-gradient energy 

noted in the right hand side of (3.3b). By replacing that definition of ΩW  with (3.3b), the theorem 

is refined as follows:  

 

Theorem 1 (polar material extension of Clapeyron’s theorem) 

If a polar linearly elastic body of volume V is in equilibrium under the action of tractions T and 

couple-tractions L applied externally on its bounding surface S, then the sum of the total strain 

and spin-gradient energies of deformation equals one half of the work done by the external forces 

and moments acting through their ultimate displacement and spin vector fields, u andΩ , 

respectively. Namely, 
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     ( ) ( )

,

1
 

2

e Ω n n

ij i j i i i i

V S

W e W Ω dV T u L Ω dS   
   .                                                               (3.13) 

    

The proof of this revised version of the theorem is essentially identical to its counterpart 

presented in (Soldatos, 2018). For self-sufficiency of this study, Appendix A outlines an 

alternative, briefer form of that proof.  

It is emphasised that the outlined polar material extension of Clapeyron’s theorem applies 

not only on polar fibre-reinforced materials of the type considered in (Soldatos, 2018), but, more 

generally, on any kind of isotropic or anisotropic linearly elastic solid consistent with the 

constitutive equations (3.4). Moreover, use of (3.12) converts (3.13) into  

    ( )1
 

2

e n

ij ij i i

V S

W e W dV T u dS   
   ,                                                                                (3.14) 

thus leading to the following   

 

Alternative form of Theorem 1: 

If a polar linearly elastic body of volume V is in equilibrium under the action of tractions T and 

couple-tractions L applied externally on its bounding surface S, then the sum of the total strain 

and rotation energies of deformation equals one half of the work done by the external forces 

acting through their ultimate displacement field, u. 

 

 In view of these results, it is worth noting that (3.12) underpins the following     

 

Theorem 2: 

If a polar linearly elastic body is in equilibrium under the action of homogeneous couple-traction 

boundary conditions (L = 0), then the total rotation energy stored in its material equals its spin-

gradient counterpart.  

 

Appropriate combination of the polar material extension of Clapeyron’s theorem (3.13) 

or, equivalently (3.14) with the linear constitutive equations (3.4) leads next to the following 

 

Theorem 3: 
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A well-posed boundary value problem in generally anisotropic polar linear elasticity can have 

only a single continuous solution.  

 

The proof of this theorem is briefly detailed in Appendix B, mostly for self-sufficiency of this 

study. In a slightly different form, this proof is also outlined in (Gourgiotis and Bigoni, 2016) 

where, however, no mention is made of the observation that potential continuous and weak 

discontinuity solutions of a well-posed boundary value problem may co-exist in polar linear 

elasticity.  

The fact that, when underpinned by (3.4), a well-posed boundary value problem in polar 

linear elasticity admits a single continuous solution suggests that the latter may be sought by 

minimising some relevant potential energy functional. Indeed, the following energy minimisation 

theorem holds: 

 

Theorem 4 (Theorem of minimum potential energy in generally anisotropic polar linear 

elasticity):  

Of all continuous and differentiable displacement fields u* which (i) satisfy the displacement 

boundary conditions on Su, and (ii) possess up to third-order continuous and differentiable 

derivatives, the field u that represents the single continuous solution of a well-posed boundary 

value problem in the polar linear elasticity underpinned by the constitutive equations (3.14) 

yields a minimum value of the potential energy functional  

       , 2
T

e Ω B B

i ij i j i i i i

V S

P u W e W Ω dV T u L Ω dS    
   ,                                                    (3.15a) 

which, by virtue of (3.12), is equivalent to 

      2
T

e B

i ij ij i i

V S

P u W e W dV T u dS    
   .                                                                   (3.15b) 

Here ST represents the part of the bounding surface of the solid that boundary tractions, B

iT , and 

couple-tractions, B

iL , are prescribed on. The remaining of the bounding surface, which boundary 

displacements, B

iu , and boundary spins, B

i , are prescribed on, is denoted by Su (see also 

relevant notation in Appendix B).  

Proof:   
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Multiplying both sides of (2.4) by the vector u – u* and, then, integrating over the volume V, one 

obtains 

  0*

, 
V

iijji dVuu .                                                                                                           (3.16) 

Through a process similar to that described in Appendix A, (3.16) leads to 

          
V

ijijjiijijji

S

iijij dVeedSuun ***  ,                                                                                                       

where all quantities marked with a star relate to u* in the same manner that their unmarked 

counterparts relate to u. By virtue of (2.3b), (2.5a) and (3.4b), one obtains next   

       
V V

ijijkkjiijijkijk

S

ii

n

i dVmdVeeecdSuuT *

,

**)(

2

1
  , 

which, after appropriate use of the product rule of differentiation, the divergence theorem and 

(2.7), leads to 

       ( ) * * * *

,

1

2

n

i i i ijk k ij ij kji k ij ij k ij ij

S V S V

T u u dS c e e e dV m n dS m dV    
 

       
 

    .           

                                                                                                                                                 (3.17) 

Through direct use of (2.2a), (3.17) is seen equivalent to 

         

     

( ) * * ( ) * *

, ,

* *

2

                                2 ,

T T

n n Ω Ω

i i i ijk k ij ij k k k i j i j

V VS S

ijk k ij ij ij ij

V V

T u u dS c e e e dV L Ω Ω dS W Ω W Ω dV

c e e e dV W W dV  

           
 

    
 

   

 

   

                                                                                                                                                (3.18) 

where use is also made of (3.12), and of the fact u – u* = Ω – Ω* = 0 on Su. The following 

identity is now noted: 

           *******

2

1
ij

e

ijij

e

ij

e

ijklijijklkijkijkijijkijk eWeeWeWeeeeeeeeceeec   , (3.19)   

and applied in the first integral on the right hand side of (3.18). Appropriate rearrangement of the 

resulting equation with simultaneous use of (3.15) leads then to 

      0**  ijij

e

ii eeWuPuP ,                                                                                             (3.20)   

where, due to the positive definiteness of eW , equality holds only when u and u* produce 

identical continuous deformation fields (e = e*). Hence, the theorem.                                       □ 
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 Consider now the particular class of linear elasticity boundary value problems for which 

  0ijW  ,                                                                                                                            (3.21) 

and, hence, the displacement and the strain energy functions coincide by virtue of (3.9). For this 

class of problems, (3.12) yields 

  ( )

,

1

2

Ω n

i j i i

V S

W Ω dV L Ω dS  ,                                                                                                   (3.22) 

and, hence, the total spin-gradient energy stored in the material equals one half of the work done 

by the external moments acting through their ultimate spin-vector field. In that case, (3.13) or, 

equivalently, (3.14) reduces to its conventional form met in non-polar linear elasticity. Hence, all 

known non-polar linear elasticity theorems and relevant results still apply when 0W . In 

particular: 

 

Theorem 5: 

In linear elasticity, a well-posed mixed boundary value problem that stores no rotation energy is 

free from weak discontinuity solutions and, therefore, possesses a unique continuous solution. 

    

It is worth noting that, in view of this Theorem, the plane strain solutions and applications 

presented in Part I are essentially underpinned by the following 

 

Corollary: 

By virtue of (3.10), a well-posed linear elasticity boundary value problem that creates a constant 

couple-stress field throughout a continuum stores no rotation energy and, therefore, possesses a 

unique continuous solution. 

 

Part I (Soldatos, 2018) has already shown that the fundamental theorem that underpins solution 

uniqueness of well-posed boundary value problems in non-polar linear elasticity is a particular 

case of this Corollary which, in turn, becomes now a particular case of Theorem 5 above.  

 In the light of these observations, it is concluded that boundary value problems in linear 

elasticity can be divided into two principal classes, namely (i) the class of problems that do store, 
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and (ii) the class of problems that do not store rotation energy, W  , in the continuum of interest. 

Problems involved in class (i) may possess one or more weak discontinuity solutions and a single 

continuous solution. By virtue of (3.9), class (ii) involves boundary value problems that make no 

distinction between the displacement and the strain energy function, and possess a unique 

continuous solution (Theorem 5). Class (ii) can further be divided into two subclasses. Namely, a 

subclass (ii1) of problems involving couple-stresses that vary with the spatial co-ordinates, and a 

subclass (ii2) of problems that generate some constant couple-stress field throughout the 

continuum of interest.  

 Non-polar linear elasticity emerges as a particular case of subclass (ii2), when the implied 

constant value of the couple-stress field is zero. The widely used identification of non-polar 

linear elasticity with the evidently much wider term “linear elasticity” is thus now seen as far too 

general, if not as misleading. 

 The polar linear elasticity presented in (Mindlin and Tiersten, 1963) made no distinction 

between the displacement-gradient and the strain energy functions. At the time, this referred to a 

continuous solution as the unique solution of a relevant well-posed boundary value problem, 

leaving today the impression that it is essentially referring to the problem class (ii) only. 

However, the presented new developments (a) clarify the existing difference between the 

displacement-gradient and the strain energy functions, and (b) lend the theory ability to capture 

that single continuous solution by minimising of the new potential energy functional (3.15). The 

present augmented development of Mindlin and Tiersten’s (1963) model enables thus the theory 

to embrace all polar elasticity boundary value problems underpinned by the constitutive 

equations (3.14).    

 

 

4. Polar linear elasticity of fibre-reinforced materials when fibres resist bending  

 

Both the definition and the form (3.9) of the displacement-gradient energy function refer to 

deformable solids that respond in a general, polar linearly elastic manner. It makes thus no 

distinction between materials exhibiting the generally anisotropic polar material behavior 

described in the preceding section and the linearly elastic fibrous composites considered in 
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(Spencer and Soldatos, 2007; Soldatos, 2014, 2015, 2018), where the embedded fibres possess 

bending resistance. However, the same is not true with the definition and the form of the 

corresponding internal energy function. 

 Rather than (3.2), the linearisation process of the equations of polar non-linear elasticity 

detailed in (Spencer and Soldatos, 2007) requires use of an internal energy function of the form  

e KW W W  ,                                                                                                                            (4.1) 

where We still coincides with the strain energy function (3.4a) and, hence, depends on the degree 

of anisotropy involved in the material. As a result, the symmetric strain constitutive equation 

(3.4b) still holds in this case, along with the requirement (3.8a) for the positive definiteness of 

We. These observations are evidently in line with the fact that, in the non-polar material case, a 

proper linearisation of the equations of a non-linear elasticity produces identical results with the 

direct linear elasticity formulation route employed in Section 3. 

 However, the polar part, WK, of the internal energy of a composite having embedded N 

unidirectional fibre families makes no direct use of the spin-gradient tensor ,i jΩ . Instead, WK is 

required to be quadratic in a set of agents formed by (i) the direction vectors, a(n), of those 

families, and (ii) kinematic variables stemming from the tensor quantity 

  ( ) ( )

, ,
,    ( 1,2..., )n n

ij i k k j
u a n N   .                                                                                         (4.2) 

This represents the gradient of the directional derivative of the displacement vector along a(n) 

and, like its spin-gradient counterpart, has dimensions of (length)-1. For convenience, its 

components are loosely referred to as “curvature-strains” of the n-th fibre family.  

 Non-polar linearly elastic response of many structural fibrous composites, such as 

transverse isotropic, orthotropic and monoclinic plate-like structures, is adequately described 

with the involvement and use of one or, at most, two straight directions of material preference (N 

= 2). For simplicity, these are also the only cases of principal interest employed in what follows. 

Both vectors a(n) (n = 1, 2 ) involved in the analysis are thus assumed constant and, as a result, 

(4.2) simplifies into the following:     

( ) ( )

, .n n

ij i jk ku a                                                                                                                          (4.3) 
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Each fibre family gives rise to its own couple-stress field. Hence, while the symmetric 

stress constitutive equation of the fibrous composite is still represented by (3.4b), its couple-

stress counterpart is as follows (Soldatos, 2014):  

( ) ( ) ( )

( ) ( )
1 1

2

3

K KN N
n n n

r r rsi sn n
n n i is

W W
m m a a

  

  
   

  
  .                                                                       (4.4) 

The particular case of a single family of fibres (N = 1), where this couple-stress constitutive 

equation becomes easier to manage mathematically, has studied into considerable depth in 

(Soldatos, 2014). In this context, (Soldatos, 2014) gives also details of the manner that potential 

weak discontinuity surfaces that exist in the fibrous composite are sought and found. However, 

the mathematical complexity involved in (4.4) may reach such an overwhelming level when N > 

1, that the introduction of some physically meaningful simplification would be helpful; and 

welcome in those cases.  

Instead of employing the full set (4.3) of curvature strains, Soldatos’ (2015) analysis for N 

= 2 employed the restricted version of the theory, which requires from the curvature-strain energy 

function, WK, to be quadratic only in the components of the vectors 

( ) ( ) ( )

,

n n n

i i kj k jK u a a .                                                                                                                     (4.5) 

Being the second directional derivative of the displacement along a(n), ( )n

iK  represents the 

curvature vector of the n-th fibre family and, and as such, posseses naturally components with 

dimensions of (length)-1.  

The couple-stress constitutive equation then simplifies and, rather than (4.4), obtains the 

following form (Soldatos, 2015): 

2
( ) ( )

( )
1

4

3

K
n n

r rsi sn
n i

W
m a a

K








 .                                                                                                        (4.6) 

It is recalled that, along with the (N = 2)-case, the particular case of a single family of fibres (N = 

1) was also considered and studied separately in Soldatos (2015) with use of this restricted 

version of the theory. 

In each of these cases, WK obtains some different form that depends not only on the 

degree of the observed material anisotropy, but also on the manner that anisotropy is affected by 

fibre bending resistance. These observations and other relevant issues will be clarified better in 

the next three sections, where the polar linear elasticity concepts detailed in the preceding 
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sections are connected with transversely isotropic and orthotropic polar material behaviour due to 

fibre resistance in bending.      

 

 

5. Transverse isotropy - Restricted theory 

The restricted version of the theory was also employed in Part I (Soldatos, 2018) and handles 

transverse isotropy by dropping in (4.5) and (4.6) the influence of the second family of fibres (n = 

N = 1). By further choosing the x1-direction parallel to the remaining single family of embedded 

fibres, one has a ≡ a(1) = (1,0,0)T and, hence, (4.5) simplifies as follows: 

(1)

,11i i iK K u  .                                                                                                                        (5.1) 

The most general form of KW , which is also quadratic in the kinematic variables (5.1), is 

as follows (Soldatos, 2015): 

 
2

2

1

K

j j j j j jW K K a K K K K       ,                                                                              (5.2) 

where the appearing coefficients represent appropriate material moduli having dimensions of 

force. By retaining only the first term in the summation noted in (4.6), the corresponding couple-

stress constitutive equation provides only two non-zero couple-stress components, namely     

 12 3,11 13 2,11,    ,    8 / 3f f fm d u m d u d     ,                                                                        (5.3) 

and involves df as the only active fibre bending stiffness parameter. The second material 

parameter appearing in (5.2),  ,  exerts no influence on these constitutive equations.   

Connection of the particular displacement field (3.6) with the fibre curvature vector (5.1) 

yields K = 0. Hence, along which 0eW  and 0ΩW , (3.6) returns 0KW  . It follows that 

there exist no displacement field that makes the value of KW non-zero in the complete absence of 

strains. Positive definiteness of the internal energy (4.1) requires thus from KW to be positive 

semi-definite, namely  

  0K

iW K  .                                                                                                                            (5.4)  

An attempt to connect these results with the generally anisotropic polar material analysis 

detailed earlier in Section 3 begins, necessarily, with a comparison of (4.1) and (3.2). This 
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comparison reveals that ΩW  and the present form (5.2) of KW are dissimilar, at least because the 

former is positive definite while the latter is positive semi-definite; see also (3.8b).  

However, by excluding in this comparison the displacement field (3.6), one can 

temporarily lend ΩW  properties of a positive semi-definite function. A special form of ΩW  can 

then be sought that relates in such a manner to the form (5.2) of KW  that the corresponding 

couple-stress fields, obtained with use of (3.4d) and (5.3), respectively, resemble each other as 

closely as possible.  

To this end, use of (4.6) with N = 1 and a ≡ a(1) = (1,0,0)T leads to 

,

1 1

,

4 4

3 3

K K
m n

r r i r i

i m n i

W W
m a a

K K
 

 
 

  
,                                                                           (5.5) 

which, by virtue of (2.2a), (2.1b) and (4.5), and after the use of the intermediate result 

 
 

, ,,

1 1 1 1 1

,11

1 1 1

4 4 2

n mj m nji j

imn imn n m m n j i j

u uΩ

K u
        

 
   

 
,                                       (5.6)   

leads to  

1 1 1

,1 ,1

4 2 4

3 3 3

K K K

r r i r i m i

i m r

W W W
m a a a

K
  

  
  

  
.                                                              (5.7) 

Because a = (1,0,0)T, (5.7) returns the following non-zero couple-stress components  

12 13

2,1 3,1

4 4
,    

3 3

K KW W
m m

 
 

 
,                                                                                               (5.8)    

which are the same with their (5.3) counterparts. In view of (3.4d), (5.8) then suggests that the 

special form sought for ΩW  is 

4

3

KW W  ,                                                                                                                          (5.9) 

provided that the inactive material coefficient appearing in (5.2) is set equal to zero ( 0  ). 

Hence, a comparison of (5.8) and (3.4d), with simultaneous use of (5.3) and (5.9), suggests that 

the special form sought for (3.4c) involves only two nonzero parameters ijkla , namely 

1212 1313

fa a d  .                                                                                                                   (5.10) 

In that case, use of (3.4c, d) produces, as closest possible resemblance of (5.3), the 

following constitutive equations:  
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   12 1212 2,1 1,31 3,11 13 1313 3,1 2,11 1,21

2,1 3,1

,    f fW W
m a d u u m a d u u

  
         
 

.                    (5.11) 

These still differ to their (5.3) counterparts, to which become however identical if  

1,31 1,210,    0u u .                                                                                                                 (5.12)    

The latter additional requirements happen to be consistent with a fundamental postulate of the 

present restricted theoretical framework. That postulate implies that the derivatives of the 

longitudinal normal strain, 11e , have negligible influence on the couple-stress constitutive 

equations and becomes evident through a careful comparison of the equations (9.21) and (9.23) 

presented in (Spencer and Soldatos, 2007). 

 By proposing (5.10) as the only non-zero material parameters retained in (3.4c, d), the 

present analysis shows thus that appropriate “filtering” of the generally anisotropic constitutive 

equations of the polar linear elasticity proposed by Mindlin and Tiersten (1963) enables that 

theory to account for the bending resistance of a single family of unidirectional straight fibres. 

This filtering process requires from ΩW  to (i) be regarded as positive semi-definite, rather than as 

positive definite function, and (ii) possess only the pair (5.10) of non-zero material moduli. 

Moreover, it requires from the model of (Mindlin and Tiersten, 1963) to (iii) adopt a postulate of 

the restricted version of the present model (Spencer and Soldatos, 2007; Soldatos, 2014) which 

supports the approximation (5.12).  

 It can thus readily be verified that, as soon as 0KW   (with 0   in (5.2)) is connected 

with W   through (5.9) and, further, (2.2) is modified in the manner proposed by (5.12), the main 

theoretical developments outlined in Section 3 become directly applicable to the present 

restricted theoretical framework which is also employed in Part I (Soldatos 2018). These new 

theoretical developments include (i) validity of the polar material extension of Clapeyron’s 

theorem, (ii) applicability of the subsequent Theorem 3 regarding “uniqueness” of the continuous 

solution of a well-posed boundary value problem, and (iii) the fact that minimisation of the 

potential energy functional (3.15) captures that single (rather than unique) continuous solution. 

Additional weak discontinuity solutions of the type detailed in (Soldatos, 2014) may still be 

present in this case although, (iv) by virtue of Theorem 5, these are certainly not 

observed/activated in boundary value problems that do not store rotation energy in the material 

( 0W  ); e.g., (Soldatos, 2018).   
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 The outlined analysis and observations may lead to a feeling that analogous situations 

occur when material anisotropy due to fibre resistant in bending exceeds the implied bounds of 

transverse isotropy. However, it is seen next that this is not true even in a relatively simple case 

of special orthotropy (Section 7). As is shown next, in Section 6, this is not true even in the case 

that transverse isotropy is handled with use of the unrestricted version of the present theory. 

 

 

6. Transverse isotropy - Unrestricted theory 

 

When transverse isotropy of the type discussed in the preceding Section is modelled by means of 

the unrestricted version of the theory (Spencer and Soldatos, 2007; Soldatos, 2014), the relevant 

curvature-strain tensor, namely (4.2), obtains the following simplified form: 

, 1ij i ju  .                                                                                                                                    (6.1)  

We in (4.1) is still in the form of its non-polar transverse isotropic material counterpart.  

However, the procedure detailed in (Soldatos 2014) revealed that the curvature-strain part 

of (4.1) can be described as follows: 

K EW W W  ,                                                                                                                         (6.2) 

where the parts 

 2 2 2

55 1,1 77 2,1 3,1W D D      ,                                                                                              (6.3) 

and 

   
11,111 12 12

2 2 2

11,1 22,1 33,1 12 22 23 22,1 44 23,1 66 31,1 12,1

12 23 22 33,1

  

,  ,    ,

  

E

eD D D

W e e e D D D e D e D e e

D D D e

  
  

     
     

                                (6.4) 

of the internal energy depend on the directional derivatives of the spin and the strain components, 

respectively, along the fibre direction. The appearing D-coefficients have dimensions of force 

and are regarded as material parameters.  

Soldatos (2014) considering WΩ and WE as parts of the internal energy stored in the 

material and presented a set of non-strict inequalities which, when satisfied by the D-coefficients, 

guarantee positive semi-definiteness of (6.2). However, the aforementioned role of the 
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displacement field (3.6) suggests now that, due to the involvement of W  , (6.2) should rather be 

positive definite. Hence, the implied non-strict inequalities (Soldatos, 2014) should slightly be 

modified and replaced by their strict inequality counterparts. 

The couple-stress constitutive equation stemming from (6.2) is obtained by retaining only 

the first term in the summation noted in (4.4), and provides the following non-zero couple-stress 

components:     

11,15511

1,1 23 12 22 23

22 55 44 22,1

23,1 32 12 23 22

33 55 44 33,1

12 77 2,1 66 31,1 13 77 3,1

 2      0
     2 4

 ,    ,
    3 3

     

2
2 ,    2

3

eDm
m D D D

m D D e
e m D D D

m D D e

m D D e m D

   
         

                            

      66 12,1

2
.

3
D e

                                  (6.5) 

It is worth noting that, in accordance with (2.7), the trace of this tensor is zero. Moreover, 

through appropriate rearrangement of the appearing terms and coefficients, (6.5) can be brought 

into their alternative form detailed in Section 9 of (Spencer and Soldatos, 2007).  

It is observed that either of the parts WΩ and WE of WK exerts its own different influence 

on the constitutive equations (6.5). In accordance with its Section 3 counterpart, WΩ depends on 

spin-gradients only. Its first term contributes to deformations that resemble the so-called twist 

mode in the mechanics of liquid crystals (Stewart, 2004), while its second term to deformation 

resembling the corresponding bending mode. However, WE is expressed in terms of additional 

kinematic variables, ,1ije , which are not met in Section 3. Accordingly, WE consists of three terms 

that contribute to deformation modes that resemble splay, twist and bending modes, respectively, 

met in the mechanics of liquid crystals; see also (Spencer and Soldatos, 2007).  

The appearing additional kinematic variables, ,1ije , are neither involved in (Mindlin and 

Tiersten, 1963) nor in the relevant conventional theoretical analysis detailed in Section 3. Hence, 

unlike their spin-gradient counterparts, their involvement in the constitutive equations (6.5) is 

not, and cannot be captured through the direct influence that externally applied tractions, T, and 

couple-tractions, L, exert on the internal energy stored in the material. Instead, the appearance of 

,1ije  is evidently inflicted by second-gradient deformation effects that represent changes of the 

strain field along the fibre direction. The scale of those changes is apparently comparable to the 
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scale of the fibre thickness and, in this regard, WE seems connected with micro-scale deformation 

modes, including fibre-damage modes of the type implied in Figure 1. 

It is thus concluded that positive semi-definiteness of WE suffices to guarantee the 

required positive definiteness of WK. However, in that case, the theoretical framework of the 

Mindlin and Tiersten (1963) model or its generalised counterpart detailed in Section 3 becomes 

incompatible with the unrestricted version of the present theory. 

Alternatively, one could find that some, if not all of the analysis detailed in Section 3 is 

still applicable in the present case, provided that the WΩ-part of WK retains positive definiteness 

while, at the same time, no limitations are imposed on the sign of WE. In such a case, a 

comparison of (3.2) with (4.1) and (6.2) would suggest that (3.4d) can produce the part of (6.5) 

that depends on the spin-gradients if the only non-zero parameters appearing in the spin-gradient 

function (3.4c) were 

1111 2211 3311 55 1212 1313 772 2 4 /3,   2a a a D a a D        .                                                         (6.6) 

These particularly interesting observations require considerable and careful further consideration, 

which, however, fall beyond the purposes of the present study. 

 

 

7. Advanced anisotropy due to a pair of fibre families resistant in bending – Restricted 

theory  

 

Orthotropy is the immediate higher step of advanced anisotropy, and is characterised by two 

mutually orthogonal families of fibres (N = 2). The so-called case of “special orthotropy” refers 

to the relatively simplest possible situation, where both families are made of straight fibres, and 

their directions define the directions of two co-ordinate axes. If the x1- and x2-axes are chosen 

parallel to those fibre directions, so that a(1) = (1,0,0)T and a(2) = (0,1,0)T, then (4.5) requires from 

the restricted theory to employ the fibre curvature vectors  

(1) (2)

,11 ,22,    i i i iK u K u  .                                                                                                          (7.1) 

In accordance with the analysis presented in (Soldatos, 2015), (5.2) is next replaced by 

the following expression:  
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     

   

2 2
(1) (2) (1) (1) (1) (2) (2) (2) (1) (2)

1 12 2 1 1 2 2

2 2
(1) (2) (1) (2) (1) (2)

3 1 1 3 2 2 4 2 4 1

, 2

                                          2 2 ,

K

i i j j j j j jW K K K K K K K K K K

K K K K K K

    

   

    

   

                           (7.2) 

while (4.6) yields the following non-zero couple-stress components   

12 11 3,11 12 3,22 21 12 3,11 22 3,22

13 31 2,11 32 22,2 23 13 11,1 23 1,22

,    ,   

,     ,

m d u d u m d u d u

m d u d e m d e d u

    

    
                                                                (7.3)    

where the appearing material moduli are given in terms of the coefficients of (7.2) as follows: 

     

     

11 12 22 1 12 2 31 1 4

32 12 3 13 12 3 23 2 4

8 8
, , , , ,    ,    

3 3

8 8 8
,    ,    .

3 3 3

d d d d

d d d

    

     

  

     

                                                         (7.4) 

In attempting to connect (7.3) with the constitutive equations (3.4d), one can follow 

similar steps to those detailed in Section 5. Accordingly, ΩW  needs again to be temporary 

associated with the class of positive semi-definite functions and, hence, the displacement field 

(3.6) is again temporarily excluded from the analysis. A form of ΩW  is next sought that enables 

the couple-stress fields (3.4d) and (7.3) to resemble each other as closely as possible.  

After use is mad of of (4.6), (5.5) and (5.6) are thus replaced by the following:   

, ,(1) (2)

1 2(1) (2)

,

, ,

1 1 2 2(1) (2)

4
,

3

1 1
,    ,

2 2

K
m n m n

r r i r i

m n i i

m n m n

m i n m i n

i i

W
m a a

K K

Ω Ω

K K

 

   

  
      

 
 

 

                                                                         (7.5) 

which lead to the constitutive equation 

(1) (2)

,1 ,2

4

3

K K

r

r r

W W
m a a

  
     

.                                                                                                (7.6) 

With the use of (5.9), this constitutive equation returns the following non-zero couple-stress 

components: 

12 21 13 23

2,1 1,2 3,1 3,2

,    ,    ,     
W W W W

m m m m
      

   
   

,                                                           (7.7) 

which are the same with their counterparts shown in (7.3). 

The closest resemblance of (7.3) sought, through the use of (3.4c, d), is thus observed by 

(i) retaining in (3.4c) only the following non-zero ijkla -parameters: 
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1212 11 1221 2121 12 2112 22 1313 31 2323 23,    ,    ,    ,    ,a d a a d a d a d a d                                        (7.8) 

and (ii) by requiring from (5.12) still to hold, along (iii) with their x2-direction counterparts  

2,32 2,120,    0u u .                                                                                                                 (7.9)  

In this manner, (7.7) yields   

12 1212 2,1 1221 1,2 11 3,11 12 3,22

2,1

21 2112 2,1 2121 1,2 12 3,11 22 3,22

1,2

13 1313 3,1 31 2,11

3,1

23 2323 3,2 23 1,22

3,2

,    

,

,

.

W
m a a d u d u

W
m a a d u d u

W
m a d u

W
m a d u










       



      



   



    


                                                              (7.10) 

However, this set of constitutive equations is still dissimilar to (7.3), which makes also 

use of the additional kinematic variables 11,1e  and 22,2e . The latter represent changes of normal 

strain (extension or contraction) along the direction of the first and second fibre family, 

respectively. They make thus the present, restricted version of the theory to look more similar to 

its unrestricted theory counterpart discussed in the preceding Section rather than to the Mindlin 

and Tiersten version (1963) detailed in Section 3. Indeed, unlike their spin-gradient counterparts, 

,i j , the additional variables 11,1e  and 22,2e  are neither involved in the Mindlin and Tiersten, 

(1963) model nor in the relevant analysis detailed in Section 3. The appearance of 11,1e  and 22,2e  

is again inflicted by second-gradient deformation effects, but these strain changes have now a 

seemingly simpler origin.  

Accordingly, deformation effects due to bending of one fibre family influences the 

normal strain measured in its perpendicular (curvature) direction, which, in turn, is the initial 

direction of the other fibre family. Such interactions between bending and extension modes of the 

involved pair of fibre families are obviously not present in the corresponding case of transverse 

isotropy (Section 5), and in the present situation do not solicit unconditional neglect of changes 

that fibre extension/contraction experience throughout the fibrous composite of interest. 

Approximations of the type (5.12) and (7.9) are, however, still acceptable in the presence of two 

families of embedded fibres.  
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Under these considerations, the polar part (7.2) of the internal energy function is again 

found susceptible to a decomposition of the form (6.2), where    

       

   

2 2 2 2
(1) (1) (1) (2) (2) (2) (1) (2) (1) (2)

1 12 3 3 2 1 1 2 2 4 2 4 1

(1) (2) (1) (2)

12 3 1 1 12 3 2 2

2 ,

2 2 .

j j j j

E

W K K K K K K K K K K

W K K K K

      

   

       

   

        (7.11) 

If the outlined analysis is considered consistent and comparable with the conventional analysis 

detailed in Section 3, then WΩ is required to be positive definite. As is claimed towards the end of 

the preceding Section, limitations on the sign of the WE might be found unnecessary in that case, 

though this matter requires considerable and careful further investigation. If, on the other hand, 

WE is conveniently declared positive semi-definite, then the theoretical framework detailed in 

Section 3 becomes in this case incompatible even with the restricted version of the present 

theory. The situation remains essentially unchanged in cases that anisotropy advances beyond the 

bounds of special orthotropy.  

 

 

8. Conclusions 

  

All new concepts, theorems and features presented in Section 3 in association with generally 

anisotropic, polar, linearly elastic materials are found consistent not only with the formalism due 

to Mindlin and Tiersten (1963), but also with the analysis presented in Part I (Soldatos, 2018). 

This is because, by imposing certain conditions on the spin-gradient energy function employed in 

(Mindlin and Tiersten, 1963), that function becomes reducible to the curvature-strain energy 

function of the restricted version of the model detailed in (Spencer and Soldatos, 2007, Soldatos, 

2015) and used in Part I for transversely isotropic composites with embedded fibres resistant in 

bending.  

 The implied new concepts include those of the displacement-gradient and the rotation 

energy functions. A refined version is also provided in Section 3 of the polar material extension 

of Clapeyron’s theorem, introduced initially in Part I, along with a proof of a theorem (Theorem 

3), according which a well-posed boundary value problem in polar, generally anisotropic linear 

elasticity can have only a single continuous solution. That solution can be captured either by 

solving the relevant non-elliptic governing differential equations, or by minimising an 
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appropriately refined version of the potential energy met in non-polar linear elasticity (Theorem 

4). 

 It is further concluded that well-posed boundary value problems in generally anisotropic 

linear elasticity can be divided into two principal classes: (i) these problems that do store, and (ii) 

those that do not store rotation energy, W  , in the solid of interest. Problems in class (i) may 

possess one or more weak discontinuity solutions, in addition to the aforementioned continuous 

solution. Class (ii) involves boundary value problems that make no distinction between the 

displacement and the strain energy functions and are unable to possess/activate weak 

discontinuity solutions (Theorem 5).  

 Class (ii) can further be divided into two subclasses, namely a subclass (ii1) of problems 

involving couple-stresses that vary with the spatial co-ordinates, and a subclass (ii2) of problems 

that generate some constant couple-stress field throughout the solid of interest. Non-polar linear 

elasticity emerges as a particular case of subclass (ii2), in which the implied constant value of the 

couple-stress field is zero. The widely used identification of non-polar linear elasticity with the 

evidently much wider term “linear elasticity” is thus seen too general, if not misleading. 

The compared pair of theoretical formalisms, namely those stemming from (Mindlin and 

Tiersten, 1963) and (Spencer and Soldatos, 2007), fail to agree and, hence, lose mutual 

consistency as soon as either (i) transverse isotropy is modelled by the unrestricted version of the 

theory due to (Spencer and Soldatos, 2007; Soldatos, 2014) or (ii) the restricted version of the 

latter theory is associated with modelling fibrous composites with embedded two or more 

unidirectional families of fibres resistant in bending. This disagreement is due to the appearance 

of additional kinematic variables (Spencer and Soldatos, 2007; Soldatos, 2014) which are 

seemingly inflicted by second-gradient deformation effects that represent changes of the strain 

field along the fibre direction(s). Those variables depend neither on the strains nor on the spin-

gradient variables employed in the (Mindlin and Tiersten, 1963) model. As their scale is 

apparently comparable with the scale of the fibre thickness. these can thus be connected with 

micro-scale deformation modes, including fibre-damage modes of the type implied in Figure 1.  
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Appendix A: Proof of the polar material extension of Clapeyron’s Theorem (Theorem 1) 

 

Multiplying both sides of (2.4) by the ultimate displacement vector of the deformation, u, and 

then integrating the result over the volume V, one obtains 

0, 
V

ijji dVu ,                                                                                                                      (A.1) 

or, equivalently, 

   0,,


V

jijijiji dVuu  .                                                                                                     (A.2) 

Applying the divergence theorem on the first term of the integrant, one obtains 

       
V

e

V

ijjiijji

S

ijij dVWWdVedSun  22 ,                                                                                                       
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 or, equivalently, 

  
V

e

S

i

n

i dVWWdSuT 2)( .                                                                                                  (A.3) 

This is the alternative form (3.14) of the theorem which, by virtue of (3.12), is equivalent to 

(3.13).                                                                                                                                  □ 

 

 

Appendix B: Proof of Theorem 3 

 

Consider a mixed boundary value problem in linear elasticity, governed by the general polar 

material constitutive law (3.4), and denote: (i) with Su the part of the bounding surface, S, on 

which the boundary displacement, B

iu , and boundary spin, B

i , are prescribed; and (ii) with  ST 

that part of S on which boundary tractions, B

iT , and couple-tractions, B

iL , are prescribed 

( SSS Tu  ).  

Suppose that there exist two differentiable displacement fields, u and u*, which (i) satisfy 

the boundary conditions 

* *,      B B
u u u Ω Ω Ω on Su ;                                                                                             (B.1) 

and (ii) have corresponding differentiable stress fields and doubly differentiable couple-stress 

fields that respectively satisfy the boundary conditions     

* *,       B B
T T T L L L   on ST ,                                                                                          (B.2) 

as well as the equilibrium equations 

*

, , 0ij i ij i     in V.                                                                                                                 (B.3) 

Consider next that, due to linearity of all equations involved, the difference fields 

* * * *ˆˆ ˆ ˆ      ,  , , ,        u u u e e e Ω Ω Ω σ σ σ etc.                                                                (B.4) 

satisfy the equilibrium equations    

0ˆ
, iij   in V,                                                                                                                          (B.5) 

and the homogeneous set of boundary conditions 

0Ωu ˆˆ   on  Su ,                                                                                                                  (B.6a) 

ˆ ˆ  0T L   on  ST .                                                                                                                  (B.6b) 
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Then, application of the polar material extension (3.13) of Clapeyron’s theorem, in connection 

with (3.4), yields 

       ,

1ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ 0
2 u T

e Ω

ij i j i i i i i i i i

V S S

W e W Ω dV T u L Ω dS T u L Ω dS
             

   .                         (B.7) 

 When combined with the positive definiteness of both eW  and ΩW , (B.7) necessarily 

requires 

,
ˆˆ 0ij i je Ω  .                                                                                                                            (B.8) 

Hence, in line with the corresponding non-polar linear elasticity result, the displacement field 

*uuu ˆ  represents, at most, a rigid body motion. The corresponding strain, spin, stress and 

couple-stress fields produced by u and u* are identical and, hence, there exists only a single 

continuous solution to the well-posed mixed boundary value problem of interest.  
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Figure 1: Scanned image of Fig. 3.2 of (Spencer, 1972) showing: (a) an un-deformed 

cantilevered rectangular block reinforced by a unidirectional family of straight fibres (the so-

called a-curves); and (b -i) a number of different deformation patterns, which are kinematically 

admissible under the theory of ideal fibre-reinforced materials.   


