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Abstract—This paper examines the behaviour of a single f@®)=Rsin(at +0)
loop relay feedback system (RFS) which is driven by an
external signal. It is well known that such a RFS exhibits a *
c(t),é y

variety of oscillation patterns including forced and subharmonic + x(t) J‘ u(r) G(s) o,
oscillations (SO). This paper focuses on the conditions for SO. It

will be shown that for an external signal with a fixed amplitude, -

it is possible for SO with different orders to occur simply by

changing the frequency of the external signal. Similarly, for Fig. 1. Single loop with external forcing signal.

an external signal with a fixed frequency, it is possible for

SO with different orders to occur when the amplitude of the While all these studies were going on, little attention was

external signal is varied. The conditions under which these qivan to externally forced RFS even though the phenomenon
different scenarios will occur are explored. An analysis of these

conditions identifies the frequency ranges where certain orders of forced oscillations (FO) have been kno_vvn since the ‘?'ays
of SO are possible for a given amplitude of the external signal. Of the Huygens’ clock. More recently, with the extension
The effects of the initial conditions on the SO are illustrated of the auto-tuning techniques to multivariable systems, a
and discussed. Simulation studies are presented to illustrate the petter understanding of FO was given in [7]. This paper
results. is an extension of the results in [7], with the focus being
an another common behaviour, namely that of subharmonic
oscillations (SO). When the external signdlii), of fre-
guencyw; induces oscillations of frequency; in the RFS,
then FO is said to have taken place. When £&f) of

Relay feedback as a control technique has received grdigaueéncyrw; induces oscillations of frequenayy, then
attention sincel887 when Hawkins discovered that a tem-SO Of orderv is said to have taken place. As the ideal relay
perature control system has a tendency to oscillate undérSymmetrical about the origin, only odd subharmonics are
discontinuous control. Continued attention on relay feedbad¥ossible. Compared to FO, SO behaviours are even more
was due to its widespread use in mechanical and elect@rely explored in much of the current RFS literature.
mechanical applications. Since then, the study of the relay There are many methods used to predict the existence of
feedback system (RFS) has been spurred on by the mod@stillations in relay feedback systems. The most common
developments in supervisory switched systems and variatd@proach, the describing function approach is an approximate
structure controllers. The latest application of the relaynethod used to predict the existence of oscillations. Other
feedback in the area of modern control is the use of its limimethods by Tsypkin [2] and Atherton [8] attempted to
cycling properties in controller tuning and identification [1]-identify the amplitude of the external forcing signal required
[3]. for FO and SO. The studies in [2], [8] and [7] on the

The application of the RFS in a wide range of settingghinimum amplitude off(¢) required for FO and SO did
has prompted extensive studies on its behaviour. Due f®t reveal the full extent of the problem on the existence of
the switching nature of the relay, the RFS is essentiallpO- The prediction of SO is more difficult than FO because
nonlinear as the output of the relay is discontinuous dhey cannot be observed for gl(t) of arbitrary frequencies.
its switching instants. The complex dynamics exhibited b{furthermore, under different conditions, the order of SO also
the relay resulted in various interesting phenomena suéhanges. This problem is illustrated in Fig. 2 where the order
as the existence of fast switches, sliding motion and lim@f SO changes fronv = 7 to v = 9 when ¢ changes from
cycling. The existence of fast switches and sliding motios-7726 rad to0 rad with all other conditions unchanged. The
has been extensively studied in [4], [1] and [5] while thedroblem of predicting which order of SO is possible is further
global stability of limit cycles in the RFS was proven in [6]. complicated when the initial value of the state vectgr,the
In that paper, the quadratic stability of associated Poincagnplitude,R, and frequencyw; of f(¢) are considered.
maps was checked by solving linear matrix inequalities using This paper examines the conditions for SO in the RFS
computational tools. of Fig. 1. Specifically, the conditions under which different
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orders of SO can occur are explored. The analysis naturalbecause SO does not necessarily occur for arbitydry.
leads to an interesting variety of possibilities, including th&hus the prediction of the frequency rangesfdf) where
range of frequencies of (t) where certain orders of SO are SO is possible becomes useful and important.
possible. Our analysis starts with the necessary and sufficient condi-
The paper is organised as follows. The problem formuions required for periodic oscillations to occur. Specifically,
lation is presented in Section Il and the necessary amnde determine the minimum amplitud®&, of f(¢) where SO
sufficient conditions for periodic switching and their analysif a certain order can occur in the RFS with differés).
are shown in Section lll. Section IV analyses the existenc@econdly, we derive a procedure that predicts the frequency
of the SO ordersy, and presents the simulation resultsranges off (¢) for which SO of certain orders can take place.
Conclusions are given in Section V. It will also be shown how the order of the SO is affected
by initial conditions in the system, including the initial state
vector of G(s) and the phase offsef, of f(t). A variety

Consider the RFS with an external forcing signAlf),  of interesting behaviours will be shown as a result of the
as shown in Fig. 1. The linear systefi(s), is assumed to analysis.

have a state space description given by

Il. PROBLEM FORMULATION

IIl. NECESSARY ANDSUFFICIENT CONDITIONS FOR

£(t) = Az(t)+ Bu(t-L) 1) PERIODIC SWITCHING
ct) = Cz(t) When symmetric unimodal limit cycles of any frequency
w occur, the relay switches at exactly two instants per period.
ult) = { h y(t) <0 @) For steady state analysis, it is common practice to re-define
—h y(t)=0 the time scale. Unless otherwise statedienotes the time

where h > 0, u,c € R are the input and output, taken with respect to any positive switching edge of the relay
respectively,z € R™*1 is the state vector > 0 is the output during periodic switching. Necessary conditions [8]
time delay between, andc¢, A € R™*™ is Hurwitz and can therefore be derived as follows. At the switching instants,

assumed to be non-singulds, € R™*! andC € R*™. In ¢t =0andt = 7/w™, the outputy(t), of the RFS and the

the frequency domain, input, z(¢) of the relay satisfies
G(s) = e C(sI - A)7'B 2(0) = —y(0)=0,o(= )=—y(= )=0 (@
and satisfiedim;_,., G(s) = 0. ) . O
In the externally forced RFS, #(0) = 9(0) >0, l(w )= y(w )<0 (5

_ wheret = 0 corresponds to the positive switching edge of the
) = e+ 1) 3 relay at steady state. Conditions (4) and (5) examine the input
where f(t) = Rsin(wst 4 0) is the external forcing signal. signal to the relay at only the switch points corresponding
The problem we address is that of subharmonic oscillae every half period of the oscillation frequency, thereby
tions. From our previous work in [7], it was shown that FOensuring the correct switching for steady state periodic
can always occur (particularly for delayed system) when thescillations to take place. Since these conditions do not
amplitude of f(¢) is sufficiently large. However, this is not examine the relay input signals in between every switching
true in the case of SO. The occurrence of SO of specifigstant, they are not sufficient to guarantee switchings at only
order is very much dependent on the initial conditionsthese points. It is possible that additional switchings may
the amplitude,R, the frequencyw;, and phasef of the take place in between any half period, thereby destroying
external signal. This phenomenon is further complicated bjhe periodicity of the relay outputs. In order to prevent these
the existence of SO of different orders, simply by varying angdditional switchings, two extra conditions are required as
one of the factors above. The search for SO is also elusiyellows :

z(t) >0 te (0,7/w).
z(t) <0 te(r/w,2n/w™). (6)

If conditions (4)-(6) are satisfied at = w; wherewy is
the frequency off (¢), then FO occurs. lfv = w; /v, v odd
integer, then SO of order is said to have taken place.

In the RFS of Fig. 1, if SO of order occurs, then the relay
switches once every half period, correspondingvity /2.
Hence, within any half period, the state responsé& ¢f), of
the form in (1), should be written separately - one segment,
z1(t), corresponding to a response to a negative value of the
relay output and the other segment(t), corresponding to
the positive relay output. This is because; 0 corresponds
to a positive relay switch and therefore, f6f(s) with a
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Fig. 2. (a) SO ofv = 7 obtained withd = 3.7726. (b) SO ofv = 9
obtained withg = 0.



delay L, the response between= 0 andt = L is due to a Note that att = m% for m € NT andm < v, both sides
negative relay output while the response betweenL and of (16) are identically zero. Thus, (16) is only valid for all
t = vTy/2 is due to the positive relay output. Thus, whent € (0, L), excludingt = m% for m € Nt andm < v.
periodic switching of frequency /v takes place, the state From (16), it follows that the condition oR satisfies
response of the plant is given by pm S C(e™2(0) + (I — M)A~ Bh

— cos(wyt)z(0)) /] sin(wyt)sign(Cz(0))| a7)
z1(t) = e 2(0) + (I — e*)A™'Bh, t € [0, L] . .
wheret € (0,L), excludingt = m= for m € N* and
m < V.
Similarly, substituting (14) into (12), we obtain

2(t) = eA12(0) + (240D — A _ VA1 Bh, t € [L, y%]

where z(0) is the value of the state vector at the positive

switching edge of the relay output(0) as derived in [9] is
given by : o Pre- (C2(0))2 > C(e**2(0) + (2e*79 — e — 1)
AT'Bh — cos(wst)z(0))/] sin(wyt)sign(Cz(0))| (18)
2(0) = —Z(Lgf) wheret € (L, V%), excludingt = m%

JIr L5 i _
=—(I+e"2) 2T e AT Bh. (7) Given v and wy, the set ofR that satisfies (15), (17)
Since in the RFS of Fig. Iy(t) = c(t) + f(t), we have and (18) can now be determined. Denote this seRax
Ry min(wy) WhereR,, ,,,;n(.) is the minimumR that satisfies
(15), (17) and (18) for defined int € (0, “2%), excluding

At At —1
y(t) = Ce™2(0) + C(I —e™)A™ Bh t = mTy/2. We now examine conditions (11) and (12) at

+ Rsin(wst +06), ¢ €0, L] ®) ¢ = mTy/2 wherem € N* andm < v.
ya(t) = Ce™2(0) + C (21 — e —NA'Bh Using (13), form € NT,
. T
+ Rsin(wpt +0), te[LvL] (©) Rsin(mm + 6) = (—1)™*1C2(0), (19)

The necessary and sufficient conditions for SO are pre- Substitutingt = m7/2 and (19) into (11), we have
sented in Proposition 1.

Proposition 1: The RFS in Fig. 1 has a symmetric uni- PRty AmTe
modal periodic solution with a half period ofl’; /2 where Ce™ 2 2(0)+C(I —e” 2 )A"" Bh
v > 3 and odd if and only if the following conditions are +(=1)™Cz(0) < 0. (20)
satisfied
T Substitutingt = m7y/2 and (19) into (12),
n(0) = 0. pEy)=0 (10)
yi(t) < 0, te(0,L] 11) CeAmTTfZ(O) + 0(26A<mTTf*L> _ AT I
w(t) < 0, te [L,V%) (12) A7'Bh + (=1)™C2(0) < 0. 1)
where0 < L < vT'f/2 and z(0) is as defined in (7). Observe that (20) and (21) are independent fofout
_ dependent onTy. On the other handR is constrained by
Analysis of (10)-(12) (15), (17) and (18) which is also dependent of;. Let
o o w1 < wy < wp be the range of frequencies which satisfies
From (10), by substituting = = in (9), we get (20) and (21) while the minimum value @t which satisfies
(15), (17) and (18) is denoted &), .,;n (ws). Then the above
Rsing — Cz(ﬁ) — _C2(0) (13) analysis implies th_at for a giverfi(t) with an amplitudeR
2 C2(0) and frequencyvyo, if
= i in— 1 1&2W)1
0 = m+ szgn(C’z(O)) s R (14) Rl,m,in(wfo) >R Z Ru,min(wf())

and we require the minimunk to satisfy wherew; < wypy < ws, then SO of orders should be
observable in the RFSR; ,,;, denotes the minimumR
for SO of orderr = 1 to occur. This is equivalent to
Substituting (14) into (11), forced oscillation taking place at the frequency fdf).The
following example illustrates the analysis for a first order
delayed (FOPDT) plant.
Example 1:Consider a FOPDT plant with = B =
+ Rsin(wyst + 7 4 sign(Cz(0))sin~* WZiPEU)\) <0 C = L =1 and zero initial conditions. Values a®, ,,i»
) . O At are plotted againsfy/2 in Fig. 3 wherew; = 2x/T
= sin(wst)sign(C2(0)) B2 = (C2(0)) > Ce™2(0) corresponds to the ffréquency éft). In this };xample/, tj;]e
+C(I = e™)A™ Bh — cos(wst)C'z(0). (16)  values of R, i, are found to be equal taC'z(0)| as in

R > |C2(0)]. (15)

Ce*z(0) +C( — e*)A™'Bh
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Fig. 3. Dependence of SO aR and Ty /2. Fig. 5. Differentvs obtained with a fixed? and varyingT'; /2.

(15) and they also satisfy (17) and (18). TRe i, values FO. For FOPDT plants, it can be sh.own that _SO of order
for forced oscillation are derived from [7]. If;/2 of the ¥ = 2n+ 3 cannot occur for frequencies satisfying

external forcing signal falls within the bounds indicated in nTp/2 < L < (n+1)T}/2 (23)
Fig. 3 for eachwv and Ry jnin > R > R, min, the conditions

for the existence of SO of order are satisfied and SO will erren_é N. 0T bstitutinay > 2 4 3 i 9

be observed. For example, SO with= 3 will occur for tt=(n+1)Ty, substituting > 2n + 3 into (9),

the range0.418 < Tf/2 < 0.643 if Ry min > R > R3 min- y2((n+ 1)Ty)

Fig. 4 shows SO of = 3 whenT/2 = 0.6 and Ry in = = Clz((n + 1)Ty) + (=1)*""2(0)]

0.545 > R = 0.2289 > R3 ynin = 0.2288.

Observe also that for a particula in Fig. 3, SO of M
different vs should theoretically be obtained by varying the _ A IJA"'Bh >0 (24)
frequency off(¢). Fig. 5 shows a plot of the relay switching _
time intervals against; for a fixed R = 0.145 wheret; which clearly violates (21). Hence SO of order> 2n +
denotes the relay switching time. The frequencyf () was 3 cannot exist. An important result to note is that for low
varied in the simulation to obtain the different orders of so€Xternal frequencies satisfying = 0 in (23), only FO is
As can be seen, SO of orders—= 3,5, 7,9 were observed possible and no SO of any order can occur for this class of
at different frequencies whil&® was fixed at).145. plants. _ _

In the next section, the existence of SO with different EX@mple 2:Consider a FOPDT plant, wheré = —1/3,

orders for different plants is analysed and simulation result§ = 1, ¢ = 1/3 andL = 2. Using (20) and (21), the bounds
are presented. of Ty /2 for eachr can be calculated. These are plotted in

Fig. 6 along with the possibles obtained from simulations.
IV. ANALYSIS AND SIMULATION RESULTS Note that for a giverL, Ty/2 can also be parameterized in

The inequalities in (20) and (21) will now be analysed td&'m$s ofn according to (23). The figure shows that SO of

extract valuable information on the range of frequencigs, ©rderv = 2n+3 cannot occur. For example, for= 2, only
of f(t), where various orders of SO can occur. The analysié =  iS possible whilev > 7 is not. From Fig. 6, it can

Tf Tf
=20 + eA”T)—l[eA(VT—L) 1 ATy~ L)

T
is presented for different classes of plants. also be observed that< L < v and at eacli;/2, only
a single order of SO exists. This is equivalent to the result
A. SO analysis for first order non-delayed plants where for each and every order of SO, their frequencies do

For this class of plants, self oscillations do not occur ot overlap.
the RFS of Fig. 1. However, FO can still take place for ahis can be shown as follows. Fer> 1, at¢ = T/2 and
sufficiently largeR. Using the analysis in Section Il it can t = nT, SO exists if
be shown that SO cannot occur (despite the existence of FO) . . .
due to a violation of (21) at = kT; wherek € N*. This yl(ﬂ) — O(I + M3 ) AN F —1) A~ -D)
is shown as follows : 2

T
+e™ 3 4 1A Bh < 0. (25)

Y2 (kTy) = C(z2(kTy) + (—1)**T2(0)) >0 forall v.  (22) yo(nTy) = O + eAv%)—l[eAmTf—L) 4 A D)
Since (22) violates (21) for all, no SO can take place for _ eAVTTf —IJA7'Br < 0. (26)
this class of plants. (25) and (26) leads to

i i i T T

B. SO analysis for first order plants with delay Ty 1 (e + AT AL eAVTf)' @7

For FOPDT plants, self oscillation is possible due to the ~ 2~ (v +1)4 . .
effect of the delay. For a sufficiently larde they also exhibit % < ﬁ In(e*” + ALY eAVTf)_ (28)

1= T —— ‘ *inj 12Fn=6 |n=5]n=4| n=3 n=2 N

O'Z — . b

2 0.4 0.6 0.8 1 1.2 14 16
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Fig. 4. Example where the desired SO with= 3 is obtained. Fig. 6. Plot of the bounds for example 2, '0’: Calculated]':Simulated.



12

n=3 n=1

o= =1

G—

@

N & o ©
T

L L L
0.8 1 1.2 14
T2

L L L
0.2 0.4 0.6

Fig. 7.

Let Ty /2 = hy satisfy (27). If2n > v + 1, thenT/2 =
hy will never satisfy (28). For FOPDT plants, < 2n + 3

Plot of the bounds for example 3, 'o’: Calculated]:Simulated.

. . . .
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L L L
0.2 0.3 0.4 0.9 1

Fig. 9. Plot of bounds for example 5, '0’: Calculated):Simulated.

v = 3 into (24). Thereforey > 2n + 3 can exist unlike SO
conditions for FOPDT plants.

thus2n > v — 3. So (27) and (28) can be satisfied for a Example 3:Consider a third order delayed plaft(s) =

s

common range_of frequencies where (25) and (26) provi_ :J;l s. The range ofT}/2 for which eachv exists is
the corresponding lower and upper bounds of frequencigtotted in Fig. 7. It can be observed that for soffig/2

where SO of a certailr can exist. In example 1, at = 1
andv = 3, Tf/2 > 0.418 satisfies (25) and’;/2 < 0.643
satisfies (26). Hencey = 3 occurs for0.418 < Ty/2 <
0.643.

Next we will show that the range of frequencies; for
adjacent ordersy = 25 — 1 andv = 2j + 1 will not overlap
wherej; € NT andj > 1. Recall that for FOPDT plants,
only SO withrv < 2n + 3 will exist. Thus, ifn = j, only
v=2j—1and2j+ 1 can exist.

Rearranging the terms in (27) and (28),

T
(27) : % > i[ln(e’“ ~ DAY (1 — eAE)). (29)
(28) - % < i[ln(e’“ _ T (I — L) (30)

Substitutingy = 25 — 1 into (29) will give the lower bound
on the range ofu; where SO of order = 25 — 1 exist.

T, 1
2 T (2j-1A
Substitutingr = 2541 andn = j in (30) will give the upper
bound on the range ab; where SO of order = 25 + 1
exist.

(29) : (e — 471y —In(I — e*")]. (31)

T 1
=<

5 mun(e“ — "y —In(I —e*1)]. (32)

(30) :

If Ty/2 = hy satisfies (31), it will never satisfy (32).

So the lower bound on the; for v = 25 — 1 will not
overlap with the upper bound for = 25 + 1. So the range
of frequencies for = 25 —1 andv = 2j+1 wherej € NT,
will not overlap and for eaclf’;/2, only a single order of
SO can exist. This is confirmed in Fig. 6.

C. SO analysis for higher order plants

corresponding ta > 0, SO of orderr > 2n + 3 cannot be
excluded. For example, for = 1, SO of ordersy = 3,5,7
do exist.

Recall from Section IV-A, that for first order non-delayed
plants, no SOs of any order can occur. This is in contrast
to higher non-delayed plants as shown in the following
example.

Example 4:Consider a fourth order non-delayed plant,
G(s) = S4+253+1:3i:204.r20.34s+0.03' Fig. 8 shows the ranges
of frequencies forr = 3,5,7,9 where a single order of
was observed for a givefi; /2. Fig. 6, 7 and 8 also show
that the predicted bounds are a good indication of the actual
bounds on the range &;/2 where SO of a certair can
occur. The bounds do not overlap and thus only a single
order of SO exist for a givefi’ /2.

The following example shows that for some plants, several
vs can occur for a giveff’; /2. The conditions under which
they happen depend on ttfe value of f(¢) as well as the
initial states ofG(s) andé.

Example 5:Consider a second order non-delayed plant,
G(s) = 775522 with zero initial state vector. Fig. 9 shows
the plot of the calculated bounds against the simulated
bounds forv = 3,5, 7. These bounds overlap for=3,5,7
indicating that multiple orders of SO are possible at these
frequencies and the actual order that occurs depend on the
magnitude ofR.

Fig. 10 is a plot of the relay switching time intervals when
the RFS was driven by A(¢) with varying amplitudeR and
fixed frequency corresponding t@ﬁ = 0.12. The amplitude
R of f(t) was varied in the simulation to obtain the different
orders of SO was varied as shown in Table | whilg was
fixed at 0.12. Initially, R = 0.12 and FO withvy = 1 was
observed. After a period of time? was set toR = 0.0871

52

FO behaviours of the higher order plants generally follov@ndv = 9 was observed even though the frequencyf o)
that of the first order plants. However, the self oscillatiodémained unchanged. By changifgfurther, SO withy =
behaviours vary and the SO behaviours differ greatly froml,13,15,17 was observed to be possible. Next, the effect
the first order plants. For the higher order plants with dela@f the initial conditions on the order of SO observed will be

(21) can be satisfied for some; by substitutingn = 0,
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Fig. 8. Plot of the bounds for example 4, 'o’: Calculated]':Simulated.
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TABLE OF R AND Ry,min FOR EXAMPLES. analysis that SO will not exist in first order non-delayed
V T 5 i 3 i 7 plants. Single (_)rder of SO for a fixed; will occur for fir_st
R.,... | 011 0087 | 0.057 | 0.033 | 0,015 | 0.00i5 order plants with delay and SO of order,> 2n + 3 will
R 012 | 0.0871| 0.0571 | 0.0331| 0.0151 | 0.0016 not exist. Single or multiple orders of SO for a fixeg
are possible for higher order plants. It was found that the
existence of SO in RFS is dependent on several parameters,

Example 6:ConsiderG(s) = 34+0_03S3f5f§f92+1.318+2, the amplituder of the external forcing signal, the initial state

The bounds off’y/2 for eachr are shown in Fig. 11. It is Vvectorzy, the initial phase offset of the external signal and
clear that the bounds overlap but it appears that the predictde external forcing frequenay,. A variation in any of these
bounds are not accurate when compared to the simulatpdrameters can lead to a different SO behaviour. Due to the
bounds. Fig. 11 was obtained under zero initial conditionsomplex behaviours involved, the prediction on the ranges of
of the state vector. The overlapping bounds indicate th#tequencies where SO can exist is highly desirable. It would
differentvs are possible under the right conditions. be extremely tedious and inconvenient if the possibility of
At Ty/2 = 0.699, when the initial state vector was SO existence has to be checked by searching through all
changed ta:(0) = [—0.3955; —0.4220; 0.09896; 0.1838] and initial conditions. The predicted ranges of frequencies for
f(t) was set withR = 0.1358 > Rj..., = 0.1357 and the existence of SO of a certain ordehave been verified
0 = 4.6783 rad, SO of orderr = 3 occurred at the first to be good for first order delayed plants and higher order
switch. Whené was reset t&d = 0, v = 5 occurred after delayed and non-delayed plants.
some initial transients. The oscillations are shown in Fig.
12. This result confirms the consequences of the overlapping

n in Fia. 12 which implv that = n — r [1] Mario Di Bernado, Karl Johansson, “Self-Oscillations and Sliding in
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Fig. 12. (a) SO ofv = 3 obtained withf = 4.6783. (b) SO ofv =5 ] o -
obtained withd = 0. Fig. 14. Effect of the initial condition for example 6.



