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Abstract— This paper examines the behaviour of a single
loop relay feedback system (RFS) which is driven by an
external signal. It is well known that such a RFS exhibits a
variety of oscillation patterns including forced and subharmonic
oscillations (SO). This paper focuses on the conditions for SO. It
will be shown that for an external signal with a fixed amplitude,
it is possible for SO with different orders to occur simply by
changing the frequency of the external signal. Similarly, for
an external signal with a fixed frequency, it is possible for
SO with different orders to occur when the amplitude of the
external signal is varied. The conditions under which these
different scenarios will occur are explored. An analysis of these
conditions identifies the frequency ranges where certain orders
of SO are possible for a given amplitude of the external signal.
The effects of the initial conditions on the SO are illustrated
and discussed. Simulation studies are presented to illustrate the
results.
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I. I NTRODUCTION

Relay feedback as a control technique has received great
attention since1887 when Hawkins discovered that a tem-
perature control system has a tendency to oscillate under
discontinuous control. Continued attention on relay feedback
was due to its widespread use in mechanical and electro-
mechanical applications. Since then, the study of the relay
feedback system (RFS) has been spurred on by the modern
developments in supervisory switched systems and variable
structure controllers. The latest application of the relay
feedback in the area of modern control is the use of its limit
cycling properties in controller tuning and identification [1]-
[3].

The application of the RFS in a wide range of settings
has prompted extensive studies on its behaviour. Due to
the switching nature of the relay, the RFS is essentially
nonlinear as the output of the relay is discontinuous at
its switching instants. The complex dynamics exhibited by
the relay resulted in various interesting phenomena such
as the existence of fast switches, sliding motion and limit
cycling. The existence of fast switches and sliding motion
has been extensively studied in [4], [1] and [5] while the
global stability of limit cycles in the RFS was proven in [6].
In that paper, the quadratic stability of associated Poincare
maps was checked by solving linear matrix inequalities using
computational tools.
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Fig. 1. Single loop with external forcing signal.

While all these studies were going on, little attention was
given to externally forced RFS even though the phenomenon
of forced oscillations (FO) have been known since the days
of the Huygens’ clock. More recently, with the extension
of the auto-tuning techniques to multivariable systems, a
better understanding of FO was given in [7]. This paper
is an extension of the results in [7], with the focus being
on another common behaviour, namely that of subharmonic
oscillations (SO). When the external signal,f(t), of fre-
quencyωf induces oscillations of frequencyωf in the RFS,
then FO is said to have taken place. When anf(t) of
frequencyνωf induces oscillations of frequencyωf , then
SO of orderν is said to have taken place. As the ideal relay
is symmetrical about the origin, only odd subharmonics are
possible. Compared to FO, SO behaviours are even more
rarely explored in much of the current RFS literature.

There are many methods used to predict the existence of
oscillations in relay feedback systems. The most common
approach, the describing function approach is an approximate
method used to predict the existence of oscillations. Other
methods by Tsypkin [2] and Atherton [8] attempted to
identify the amplitude of the external forcing signal required
for FO and SO. The studies in [2], [8] and [7] on the
minimum amplitude off(t) required for FO and SO did
not reveal the full extent of the problem on the existence of
SO. The prediction of SO is more difficult than FO because
they cannot be observed for allf(t) of arbitrary frequencies.
Furthermore, under different conditions, the order of SO also
changes. This problem is illustrated in Fig. 2 where the order
of SO changes fromν = 7 to ν = 9 when θ changes from
3.7726 rad to0 rad with all other conditions unchanged. The
problem of predicting which order of SO is possible is further
complicated when the initial value of the state vector,z0, the
amplitude,R, and frequency,ωf of f(t) are considered.

This paper examines the conditions for SO in the RFS
of Fig. 1. Specifically, the conditions under which different



orders of SO can occur are explored. The analysis naturally
leads to an interesting variety of possibilities, including the
range of frequencies off(t) where certain orders of SO are
possible.

The paper is organised as follows. The problem formu-
lation is presented in Section II and the necessary and
sufficient conditions for periodic switching and their analysis
are shown in Section III. Section IV analyses the existence
of the SO orders,ν, and presents the simulation results.
Conclusions are given in Section V.

II. PROBLEM FORMULATION

Consider the RFS with an external forcing signal,f(t),
as shown in Fig. 1. The linear system,G(s), is assumed to
have a state space description given by

ż(t) = Az(t) + Bu(t− L) (1)

c(t) = Cz(t)

u(t) =
{

h y(t) < 0
−h y(t) ≥ 0 (2)

where h > 0, u, c ∈ R are the input and output,
respectively,z ∈ Rm×1 is the state vector,L > 0 is the
time delay betweenu and c, A ∈ Rm×m is Hurwitz and
assumed to be non-singular,B ∈ Rm×1 andC ∈ R1×m. In
the frequency domain,

G(s) = e−sLC(sI −A)−1B

and satisfieslims→∞G(s) = 0.
In the externally forced RFS,

y(t) = c(t) + f(t) (3)

wheref(t) = R sin(ωf t + θ) is the external forcing signal.
The problem we address is that of subharmonic oscilla-

tions. From our previous work in [7], it was shown that FO
can always occur (particularly for delayed system) when the
amplitude off(t) is sufficiently large. However, this is not
true in the case of SO. The occurrence of SO of specific
order is very much dependent on the initial conditions,
the amplitude,R, the frequency,ωf , and phase,θ of the
external signal. This phenomenon is further complicated by
the existence of SO of different orders, simply by varying any
one of the factors above. The search for SO is also elusive
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Fig. 2. (a) SO ofν = 7 obtained withθ = 3.7726. (b) SO of ν = 9
obtained withθ = 0.

because SO does not necessarily occur for arbitraryf(t).
Thus the prediction of the frequency ranges off(t) where
SO is possible becomes useful and important.

Our analysis starts with the necessary and sufficient condi-
tions required for periodic oscillations to occur. Specifically,
we determine the minimum amplitude,R, of f(t) where SO
of a certain order can occur in the RFS with differentG(s).
Secondly, we derive a procedure that predicts the frequency
ranges off(t) for which SO of certain orders can take place.
It will also be shown how the order of the SO is affected
by initial conditions in the system, including the initial state
vector of G(s) and the phase offset,θ of f(t). A variety
of interesting behaviours will be shown as a result of the
analysis.

III. N ECESSARY ANDSUFFICIENT CONDITIONS FOR

PERIODIC SWITCHING

When symmetric unimodal limit cycles of any frequency
ω occur, the relay switches at exactly two instants per period.
For steady state analysis, it is common practice to re-define
the time scale. Unless otherwise stated,t denotes the time
taken with respect to any positive switching edge of the relay
output during periodic switching. Necessary conditions [8]
can therefore be derived as follows. At the switching instants,
t = 0 and t = π/ω−, the output,y(t), of the RFS and the
input, x(t) of the relay satisfies

x(0) = −y(0) = 0, x(
π

ω

−
) = −y(

π

ω

−
) = 0 (4)

ẋ(0) = −ẏ(0) > 0, ẋ(
π

ω

−
) = −ẏ(

π

ω

−
) < 0 (5)

wheret = 0 corresponds to the positive switching edge of the
relay at steady state. Conditions (4) and (5) examine the input
signal to the relay at only the switch points corresponding
to every half period of the oscillation frequency, thereby
ensuring the correct switching for steady state periodic
oscillations to take place. Since these conditions do not
examine the relay input signals in between every switching
instant, they are not sufficient to guarantee switchings at only
these points. It is possible that additional switchings may
take place in between any half period, thereby destroying
the periodicity of the relay outputs. In order to prevent these
additional switchings, two extra conditions are required as
follows :

x(t) > 0 t ∈ (0, π/ω−).
x(t) < 0 t ∈ (π/ω, 2π/ω−). (6)

If conditions (4)-(6) are satisfied atω = ωf where ωf is
the frequency off(t), then FO occurs. Ifω = ωf/ν, ν odd
integer, then SO of orderν is said to have taken place.

In the RFS of Fig. 1, if SO of orderν occurs, then the relay
switches once every half period, corresponding toνTf/2.
Hence, within any half period, the state response ofG(s), of
the form in (1), should be written separately - one segment,
z1(t), corresponding to a response to a negative value of the
relay output and the other segment,z2(t), corresponding to
the positive relay output. This is because,t = 0 corresponds
to a positive relay switch and therefore, forG(s) with a



delayL, the response betweent = 0 and t = L is due to a
negative relay output while the response betweent = L and
t = νTf/2 is due to the positive relay output. Thus, when
periodic switching of frequencyωf/ν takes place, the state
response of the plant is given by

z1(t) = eAtz(0) + (I − eAt)A−1Bh, t ∈ [0, L]

z2(t) = eAtz(0) + (2eA(t−L) − eAt − I)A−1Bh, t ∈ [L, ν
Tf

2
]

where z(0) is the value of the state vector at the positive
switching edge of the relay output.z(0) as derived in [9] is
given by :

z(0) = −z(
νTf

2
)

= −(I + eAν
Tf
2 )−1(2eA(ν

Tf
2 −L) − eAν

Tf
2 − I)A−1Bh. (7)

Since in the RFS of Fig. 1,y(t) = c(t) + f(t), we have

y1(t) = CeAtz(0) + C(I − eAt)A−1Bh

+ R sin(ωf t + θ), t ∈ [0, L]. (8)

y2(t) = CeAtz(0) + C(2eA(t−L) − eAt − I)A−1Bh

+ R sin(ωf t + θ), t ∈ [L, ν
Tf

2
]. (9)

The necessary and sufficient conditions for SO are pre-
sented in Proposition 1.

Proposition 1: The RFS in Fig. 1 has a symmetric uni-
modal periodic solution with a half period ofνTf/2 where
ν ≥ 3 and odd if and only if the following conditions are
satisfied

y1(0) = 0, y2(ν
Tf

2
) = 0 (10)

y1(t) < 0, t ∈ (0, L] (11)

y2(t) < 0, t ∈ [L, ν
Tf

2
) (12)

where0 < L < νTf/2 andz(0) is as defined in (7).

Analysis of (10)-(12)

From (10), by substitutingt = νTf

2 in (9), we get

R sin θ = Cz(
νTf

2
) = −Cz(0) (13)

θ = π + sign(Cz(0)) sin−1 |Cz(0)|
R

(14)

and we require the minimumR to satisfy

R ≥ |Cz(0)|. (15)

Substituting (14) into (11),

CeAtz(0) + C(I − eAt)A−1Bh

+ R sin(ωf t + π + sign(Cz(0)) sin−1 |Cz(0)|
R

) < 0

⇒ sin(ωf t)sign(Cz(0))
p

R2 − (Cz(0))2 > CeAtz(0)

+ C(I − eAt)A−1Bh− cos(ωf t)Cz(0). (16)

Note that att = m
Tf

2 for m ∈ N+ and m < ν, both sides
of (16) are identically zero. Thus, (16) is only valid for all
t ∈ (0, L), excludingt = m

Tf

2 for m ∈ N+ andm < ν.
From (16), it follows that the condition onR satisfies
p

R2 − (Cz(0))2 > C(eAtz(0) + (I − eAt)A−1Bh

− cos(ωf t)z(0))/| sin(ωf t)sign(Cz(0))| (17)

where t ∈ (0, L), excluding t = m
Tf

2 for m ∈ N+ and
m < ν.

Similarly, substituting (14) into (12), we obtain

p
R2 − (Cz(0))2 > C(eAtz(0) + (2eA(t−L) − eAt − I)

A−1Bh− cos(ωf t)z(0))/| sin(ωf t)sign(Cz(0))| (18)

wheret ∈ (L,
νTf

2 ), excludingt = m
Tf

2 .

Given ν and ωf , the set ofR that satisfies (15), (17)
and (18) can now be determined. Denote this set asR ≥
Rν,min(ωf ) whereRν,min(.) is the minimumR that satisfies
(15), (17) and (18) fort defined int ∈ (0,

νTf

2 ), excluding
t = mTf/2. We now examine conditions (11) and (12) at
t = mTf/2 wherem ∈ N+ andm < ν.

Using (13), form ∈ N+,

R sin(mπ + θ) = (−1)m+1Cz(0). (19)

Substitutingt = mTf/2 and (19) into (11), we have

CeA
mTf

2 z(0) + C(I − eA
mTf

2 )A−1Bh

+(−1)m+1Cz(0) < 0. (20)

Substitutingt = mTf/2 and (19) into (12),

CeA
mTf

2 z(0) + C(2eA(
mTf

2 −L) − eA
mTf

2 − I)

A−1Bh + (−1)m+1Cz(0) < 0. (21)

Observe that (20) and (21) are independent ofR but
dependent onνTf . On the other hand,R is constrained by
(15), (17) and (18) which is also dependent onνTf . Let
ω1 < ωf < ω2 be the range of frequencies which satisfies
(20) and (21) while the minimum value ofR which satisfies
(15), (17) and (18) is denoted byRν,min(ωf ). Then the above
analysis implies that for a givenf(t) with an amplitudeR
and frequencyωf0, if

R1,min(ωf0) > R ≥ Rν,min(ωf0)

where ω1 ≤ ωf0 ≤ ω2, then SO of orderν should be
observable in the RFS.R1,min denotes the minimumR
for SO of order ν = 1 to occur. This is equivalent to
forced oscillation taking place at the frequency off(t).The
following example illustrates the analysis for a first order
delayed (FOPDT) plant.

Example 1:Consider a FOPDT plant withA = B =
C = L = 1 and zero initial conditions. Values ofRν,min

are plotted againstTf/2 in Fig. 3 whereωf = 2π/Tf

corresponds to the frequency off(t). In this example, the
values ofRν,min are found to be equal to|Cz(0)| as in
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Fig. 3. Dependence of SO onR andTf /2.

(15) and they also satisfy (17) and (18). TheR1,min values
for forced oscillation are derived from [7]. IfTf/2 of the
external forcing signal falls within the bounds indicated in
Fig. 3 for eachν andR1,min > R ≥ Rν,min, the conditions
for the existence of SO of orderν are satisfied and SO will
be observed. For example, SO withν = 3 will occur for
the range0.418 < Tf/2 < 0.643 if R1,min > R ≥ R3,min.
Fig. 4 shows SO ofν = 3 whenTf/2 = 0.6 andR1,min =
0.545 > R = 0.2289 > R3,min = 0.2288.

Observe also that for a particularR in Fig. 3, SO of
different νs should theoretically be obtained by varying the
frequency off(t). Fig. 5 shows a plot of the relay switching
time intervals againstti for a fixed R = 0.145 where ti
denotes the relay switching time. The frequency off(t) was
varied in the simulation to obtain the different orders of SO.
As can be seen, SO of orders,ν = 3, 5, 7, 9 were observed
at different frequencies whileR was fixed at0.145.

In the next section, the existence of SO with different
orders for different plants is analysed and simulation results
are presented.

IV. A NALYSIS AND SIMULATION RESULTS

The inequalities in (20) and (21) will now be analysed to
extract valuable information on the range of frequencies,ωf

of f(t), where various orders of SO can occur. The analysis
is presented for different classes of plants.

A. SO analysis for first order non-delayed plants

For this class of plants, self oscillations do not occur in
the RFS of Fig. 1. However, FO can still take place for a
sufficiently largeR. Using the analysis in Section III, it can
be shown that SO cannot occur (despite the existence of FO)
due to a violation of (21) att = kTf wherek ∈ N+. This
is shown as follows :

y2(kTf ) = C(z2(kTf ) + (−1)2k+1z(0)) > 0 for all ν. (22)

Since (22) violates (21) for allν, no SO can take place for
this class of plants.

B. SO analysis for first order plants with delay

For FOPDT plants, self oscillation is possible due to the
effect of the delay. For a sufficiently largeR, they also exhibit
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FO. For FOPDT plants, it can be shown that SO of order
ν ≥ 2n + 3 cannot occur for frequencies satisfying

nTf/2 < L < (n + 1)Tf/2 (23)

wheren ∈ N.
At t = (n + 1)Tf , substitutingν ≥ 2n + 3 into (9),

y2((n + 1)Tf )

= C[z((n + 1)Tf ) + (−1)2n+3z(0)]

= 2C(I + eAν
Tf
2 )−1[eA(ν

Tf
2 −L) + eA((n+1)Tf−L)

− eAν
Tf
2 − I]A−1Bh > 0 (24)

which clearly violates (21). Hence SO of order,ν ≥ 2n +
3 cannot exist. An important result to note is that for low
external frequencies satisfyingn = 0 in (23), only FO is
possible and no SO of any order can occur for this class of
plants.

Example 2:Consider a FOPDT plant, whereA = −1/3,
B = 1, C = 1/3 andL = 2. Using (20) and (21), the bounds
of Tf/2 for eachν can be calculated. These are plotted in
Fig. 6 along with the possibleνs obtained from simulations.
Note that for a givenL, Tf/2 can also be parameterized in
terms ofn according to (23). The figure shows that SO of
orderν ≥ 2n+3 cannot occur. For example, forn = 2, only
ν = 5 is possible whileν ≥ 7 is not. From Fig. 6, it can
also be observed that0 < L < ν

Tf

2 and at eachTf/2, only
a single order of SO exists. This is equivalent to the result
where for each and every order of SO, their frequencies do
not overlap.
This can be shown as follows. Forn ≥ 1, at t = Tf/2 and
t = nTf , SO exists if

y1(
Tf

2
) = C(I + eAν

Tf
2 )−1[−eA((ν+1)

Tf
2 −L) − eA(ν

Tf
2 −L)

+ eAν
Tf
2 + I]A−1Bh < 0. (25)

y2(nTf ) = C(I + eAν
Tf
2 )−1[eA(nTf−L) + eA(ν

Tf
2 −L)

− eAν
Tf
2 − I]A−1Bh < 0. (26)

(25) and (26) leads to

Tf

2
>

1

(ν + 1)A
ln(eAL + eA(ν

Tf
2 +L) − eAν

Tf
2 ). (27)

Tf

2
<

1

2nA
ln(eAL + eA(ν

Tf
2 +L) − eAν

Tf
2 ). (28)
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Let Tf/2 = h1 satisfy (27). If2n > ν + 1, thenTf/2 =
h1 will never satisfy (28). For FOPDT plants,ν < 2n + 3
thus 2n > ν − 3. So (27) and (28) can be satisfied for a
common range of frequencies where (25) and (26) provide
the corresponding lower and upper bounds of frequencies
where SO of a certainν can exist. In example 1, atn = 1
and ν = 3, Tf/2 > 0.418 satisfies (25) andTf/2 < 0.643
satisfies (26). Hence,ν = 3 occurs for0.418 < Tf/2 <
0.643.

Next we will show that the range of frequencies,ωf for
adjacent orders,ν = 2j− 1 andν = 2j + 1 will not overlap
where j ∈ N+ and j > 1. Recall that for FOPDT plants,
only SO with ν < 2n + 3 will exist. Thus, if n = j, only
ν = 2j − 1 and2j + 1 can exist.

Rearranging the terms in (27) and (28),

(27) :
Tf

2
>

1

νA
[ln(eAL − e(ν+1)A

Tf
2 )− ln(I − eAL)]. (29)

(28) :
Tf

2
<

1

νA
[ln(eAL − enATf )− ln(I − eAL)]. (30)

Substitutingν = 2j − 1 into (29) will give the lower bound
on the range ofωf where SO of orderν = 2j − 1 exist.

(29) :
Tf

2
>

1

(2j − 1)A
[ln(eAL − ejATf )− ln(I − eAL)]. (31)

Substitutingν = 2j+1 andn = j in (30) will give the upper
bound on the range ofωf where SO of orderν = 2j + 1
exist.

(30) :
Tf

2
<

1

(2j + 1)A
[ln(eAL− enATf )− ln(I − eAL)]. (32)

If Tf/2 = h2 satisfies (31), it will never satisfy (32).
So the lower bound on theωf for ν = 2j − 1 will not
overlap with the upper bound forν = 2j + 1. So the range
of frequencies forν = 2j−1 andν = 2j +1 wherej ∈ N+,
will not overlap and for eachTf/2, only a single order of
SO can exist. This is confirmed in Fig. 6.

C. SO analysis for higher order plants

FO behaviours of the higher order plants generally follow
that of the first order plants. However, the self oscillation
behaviours vary and the SO behaviours differ greatly from
the first order plants. For the higher order plants with delay,
(21) can be satisfied for someωf by substitutingn = 0,
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ν = 3 into (24). Therefore,ν ≥ 2n + 3 can exist unlike SO
conditions for FOPDT plants.

Example 3:Consider a third order delayed plant,G(s) =
e−s

(s+1)3 . The range ofTf/2 for which each ν exists is
plotted in Fig. 7. It can be observed that for someTf/2
corresponding ton ≥ 0, SO of orderν ≥ 2n + 3 cannot be
excluded. For example, forn = 1, SO of ordersν = 3, 5, 7
do exist.

Recall from Section IV-A, that for first order non-delayed
plants, no SOs of any order can occur. This is in contrast
to higher non-delayed plants as shown in the following
example.

Example 4:Consider a fourth order non-delayed plant,
G(s) = −s+0.2

s4+2s3+1.31s2+0.34s+0.03 . Fig. 8 shows the ranges
of frequencies forν = 3, 5, 7, 9 where a single order ofν
was observed for a givenTf/2. Fig. 6, 7 and 8 also show
that the predicted bounds are a good indication of the actual
bounds on the range ofTf/2 where SO of a certainν can
occur. The bounds do not overlap and thus only a single
order of SO exist for a givenTf/2.

The following example shows that for some plants, several
νs can occur for a givenTf/2. The conditions under which
they happen depend on theR value of f(t) as well as the
initial states ofG(s) andθ.

Example 5:Consider a second order non-delayed plant,
G(s) = −s+0.2

s2+6s+7 with zero initial state vector. Fig. 9 shows
the plot of the calculated bounds against the simulated
bounds forν = 3, 5, 7. These bounds overlap forν = 3, 5, 7
indicating that multiple orders of SO are possible at these
frequencies and the actual order that occurs depend on the
magnitude ofR.

Fig. 10 is a plot of the relay switching time intervals when
the RFS was driven by af(t) with varying amplitudeR and
fixed frequency corresponding toTf

2 = 0.12. The amplitude
R of f(t) was varied in the simulation to obtain the different
orders of SO.R was varied as shown in Table I whileTf was
fixed at 0.12. Initially,R = 0.12 and FO withν = 1 was
observed. After a period of time,R was set toR = 0.0871
andν = 9 was observed even though the frequency off(t)
remained unchanged. By changingR further, SO withν =
11, 13, 15, 17 was observed to be possible. Next, the effect
of the initial conditions on the order of SO observed will be
shown.
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Fig. 10. Multipleνs of SO observed for example 5 with varyingR.
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Fig. 11. Effect of only varyingR for example 6, ’o’: Calculated bounds,
’¤’:Simulated bounds. TABLE I

TABLE OF R AND Rν,min FOR EXAMPLE 5.

ν 1 9 11 13 15 17
Rν,min 0.11 0.087 0.057 0.033 0.015 0.0015

R 0.12 0.0871 0.0571 0.0331 0.0151 0.0016

Example 6:ConsiderG(s) = s+0.2
s4+0.03s3+0.34s2+1.31s+2 .

The bounds ofTf/2 for eachν are shown in Fig. 11. It is
clear that the bounds overlap but it appears that the predicted
bounds are not accurate when compared to the simulated
bounds. Fig. 11 was obtained under zero initial conditions
of the state vector. The overlapping bounds indicate that
different νs are possible under the right conditions.

At Tf/2 = 0.699, when the initial state vector was
changed toz(0) = [−0.3955;−0.4220; 0.09896; 0.1838] and
f(t) was set withR = 0.1358 > R3,min = 0.1357 and
θ = 4.6783 rad, SO of orderν = 3 occurred at the first
switch. Whenθ was reset toθ = 0, ν = 5 occurred after
some initial transients. The oscillations are shown in Fig.
12. This result confirms the consequences of the overlapping
bounds in Fig. 12 which imply thatν = 3 and ν = 5 are
possible under the right conditions.

By further varying the initial state vector andθ, it was
possible to obtain simulated bounds ofTf/2 which are closer
to that predicted from our analysis. This is shown in Fig. 13
for the sameG(s) in this example. The two bounds are now
almost identical. The effect of varying the initial state vector
is best illustrated in Fig. 14 which shows a plot of the statez3

againstz4. R is fixed at0.26931 and the initial state vector,
z0 is varied from [0;0;0;0] to [1;1;0;0.5]. It can be seen that
the trajectories ofz(t) tend towards two different limit cycles
of orders,ν = 3 andν = 5.

V. CONCLUSION

In this paper, the frequency ranges where SO of a certain
order ν can exist, have been predicted. It was seen in the
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Fig. 12. (a) SO ofν = 3 obtained withθ = 4.6783. (b) SO ofν = 5
obtained withθ = 0.
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Fig. 13. Effect of varyingR, z0 and θ for example 6, ’o’: Calculated
bounds, ’¤’:Simulated bounds.

analysis that SO will not exist in first order non-delayed
plants. Single order of SO for a fixedωf will occur for first
order plants with delay and SO of order,ν ≥ 2n + 3 will
not exist. Single or multiple orders of SO for a fixedωf

are possible for higher order plants. It was found that the
existence of SO in RFS is dependent on several parameters,
the amplitudeR of the external forcing signal, the initial state
vectorz0, the initial phase offsetθ of the external signal and
the external forcing frequency,ωf . A variation in any of these
parameters can lead to a different SO behaviour. Due to the
complex behaviours involved, the prediction on the ranges of
frequencies where SO can exist is highly desirable. It would
be extremely tedious and inconvenient if the possibility of
SO existence has to be checked by searching through all
initial conditions. The predicted ranges of frequencies for
the existence of SO of a certain orderν have been verified
to be good for first order delayed plants and higher order
delayed and non-delayed plants.
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