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ABBREVIATIONS 

GWAS = genome-wide association study 

NMSC = non-melanoma skin cancer 

 SCC = squamous cell carcinoma 

 BCC = basal cell carcinoma 

 PRS = polygenic risk score 

pT = p-value threshold 

PCA =principal components analysis 

1KG3 =1000 Genomes Phase 3 

CI = confidence interval 

RE model = Random effects model 
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OR = odds ratio 

HR= hazards ratio 

SE =standard error 

Padj=approximate adjusted p value 

Pbon=Bonferroni corrected p value 

 

ABSTRACT 

Renal transplant recipients have an increased risk of non-melanoma skin cancer (NMSC) compared 

to in the general population.  Here, we show polygenic risk scores (PRS) calculated from genome-

wide association studies (GWAS) of NMSC in general, non-transplant setting, can predict risk of, and 

time to post-transplant skin cancer. Genetic variants, reaching pre-defined p-value thresholds were 

chosen from published squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) non-transplant 

GWAS. Using these genome-wide association studies, BCC and SCC PRS were calculated for each 

sample across three European-ancestry renal-transplant cohorts (n=889) and tested as predictors of 

case:control status and time to NMSC post-transplant. BCC PRS calculated at p-value threshold 1x10
-

5
 was the most significant predictor of case:control status of NMSC post-transplant (OR=1.65; 

adjusted P=0.0008; AUC(full model adjusted for clinical predictors and PRS)=0.81). SCC PRS at p-

value threshold 1x10
-5

 was the most significant predictor of time to post-transplant NMSC (adjusted 

P=8.15x10
-7

; HR=1.42, concordance (full model)=0.74). PRS of non-transplant NMSC is predictive of 

case:control status and time to NMSC post-transplant. These results are relevant to how genomics 

can risk stratify patients to help develop personalised treatment regimens. 
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1. INTRODUCTION 

Renal transplantation is an effective therapy for end-stage kidney failure, with one-year graft 

survival rates of between 89 and 91% for deceased donor grafts and graft half-life of 8.8 years in the 

United States
1,2

. As a result of this success, malignancy is a common transplant complication, with 

non-melanoma skin cancers (NMSC) accounting for 95% of post-transplant malignancies
3
. Renal 

transplant recipients have an estimated prevalence of NMSC ranging from 2%-18%
4
 and an 

approximate 16-fold excess risk of developing basal cell carcinoma (BCC), and 65-fold increased risk 

of developing squamous cell carcinoma (SCC) relative to age-matched non-transplanted individuals
5
. 

A number of studies have evaluated clinical predictors of NMSC post-transplant 
6-8

 and robust 

predictors include age, sex and type of immunosuppressive treatment
6,8,9

.  

 

The immunosuppressive regime chosen for a patient can have a dramatic effect on their risk of 

developing skin cancer, as immunosuppressants can impair the immune system’s ability to scan for 

potentially oncogenic cells. Certain classes of immunosuppressant drugs have additional 

carcinogenic properties beyond their effects on the immune system
9
. For example, it has been 

suggested that azathioprine exposure when combined with UV light induces DNA damage, which can 

lead to tumorigenesis
9
. Conversely, mammalian target of rapamycin (mTOR) inhibitors, which is also 

used as an immunosuppressant in solid organ transplants, were reported to reduce skin cancer 

incidence post-transplantation
10

.  

 

Despite the increased risk of skin cancer, only one study has tested for germline genetic associations 

with skin cancer post-transplant on a genomic scale
7
. Studying SCC in a kidney and heart transplant 

population, the authors highlighted increased age and azathioprine exposure as risk factors for skin 

cancer, but no genome-wide significant genetic predictors were detected
7
. This study had limited 

power (n=388 cases) compared to GWAS of SCC and BCC in non-transplant populations (n=8058+) 

where robust genetic risk factors for NMSC were identified
11-14

.  
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The genetic architecture of NMSC in a transplant setting would appear to mirror that of complex 

human traits generally, where common genetic variants individually tend to have small effect sizes 

and limited clinical relevance, with some notable exceptions
15,16

. However, by combining effect sizes 

across variants one can create an overall ‘polygenic risk score’ (PRS)
17

 which might produce a more 

clinically relevant measure of genetic load for a given trait. For the purpose of this study, PRS was 

defined as the sum of all alleles associated with a trait weighted by the effect size of that allele as 

determined by a previous GWAS. 

 

Here we set out to leverage large, robust published GWAS, to develop a PRS of NMSC and test for 

ability to predict in a transplant setting, case-control status and time to developing NMSC.  

2. MATERIALS AND METHODS  

Written, informed consent was obtained from each participant in the study. Approval for ethics 

study protocols was received from appropriate review committees. 

2.1 Cohort 

Data on post-kidney transplant recipients was collected from Tennessee (Vanderbilt University 

Medical Centre, n=275), Dublin (Beaumont Hospital, n=280), Glasgow (Western Infirmary Glasgow, 

n=64) and Belfast (Belfast City Hospital, n=270). For the Dublin and Belfast cohorts, NMSC status was 

taken from de-identified National Cancer Registry Records. For the Tennessee cohort, NMSC status 

was retrieved from de-identified electronic medical records
7
. For the Glasgow cohort, cases were 

retrieved from hospital records. Due to the small case numbers in Glasgow (n-cases=4), these 

samples were merged with the Dublin cohort for further analyses. 

 

Analysis was carried out on three phenotypes in our post-transplant cohorts: SCC, BCC and any 

NMSC. A number of individuals reported NMSC but did not have a specific sub-type recorded. Such 

individuals were included in the any NMSC analysis but not the BCC or SCC analyses.  For the Cox 
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analysis (see statistical analyses section below), cases were defined as those who developed NMSC 

post-transplantation; controls are those who have no record of NMSC post-transplantation. Controls 

were censored at last known follow-up, date of renal allograft failure or patient death. For the 

logistic regression (see below), cases were defined as those who developed NMSC within ten years’ 

post-transplantation. Controls had to be at least ten years’ cancer free post-transplantation. This 

cut-off was selected as it incorporated previously reported peak incidence rates of NMSC post-

transplant whilst still allowing for a sufficient control group in the three cohorts 
5
. If individuals 

developed both SCC and BCC post-transplant, for the any NMSC Cox analysis – time to the first 

incidence of either was taken as the time of event. For the subtype analysis, time to the specific BCC 

or SCC event was taken as the time of event. Controls in the subtype (BCC and SCC) analysis had to 

be free of any NMSC post-transplant. 

 

Exclusion criteria were as follows: non-European individuals as determined via principal components 

analysis (PCA, see below), related individuals (one from each pair of individuals with PIHAT score 

>0.1 removed) and individuals who had any incidence of any type of NMSC prior to transplant. 

Azathioprine exposure, era of transplantation (pre-2000 vs. post-2000), age at transplantation and 

sex of recipient were tested as predictors of post-transplant NMSC status. Azathioprine exposure 

data was unavailable for the Belfast cohort. Individuals in the Tennessee cohort were on an oral 

immunosuppressive regimen of calcineurin inhibitor (predominantly tacrolimus) with 38 on 

azathioprine in addition to tacrolimus
7
. In the Belfast cohort, 199 individuals received cyclosporin A 

and six individuals received tacrolimus (73 individuals had missing immunosuppression data). In the 

Dublin/Glasgow cohort, 330 individuals received cyclosporin A and eleven individuals received 

tacrolimus with 278 exposed to azathioprine. The majority of the Tennessee cohort were 

transplanted post-2000 (n=220), with 47 being transplanted between 1990-2000 and eight patients 

transplanted pre-1990, with the year of transplant ranging from 1970 to 2011. In the Belfast cohort, 

the year of transplant ranged from 1986 to 2004 with 54 patients transplanted post-2000, 153 
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patients between 1990-2000 and 63 individuals being transplanted pre-1990. In the Dublin/Glasgow 

cohort, 13 individuals were transplanted pre-1990, 266 individuals were transplanted between 

1990-2000 and 65 individuals were transplanted post 2000 with the year of transplant ranging from 

1981 to 2006. 

 

2.2 Genotyping, imputation and data quality control 

Belfast and Glasgow samples were genotyped using the Illumina® 660K array as part of the UK and 

Ireland Renal Transplant Consortium (ukirtc.org) and the Wellcome Trust Case Control Consortium 3 

Study into Renal Transplant Dysfunction
18

. Genotyping details for the Dublin and Tennessee cohorts 

were described previously
7,19

.   

 

Tennessee, Dublin and Glasgow datasets were imputed using Impute2 and the 1000 Genomes Phase 

3 (1KG3) and Genomes of the Netherlands version 5 reference panels as previously described
20-24

. 

The Belfast dataset was phased and imputed via the Sanger Imputation Service using Eagle, PBWT, 

and 1KG3-reference panel
25-28

. SNP2HLA and the Type 1 Diabetes Genetic Consortium were used to 

impute HLA alleles for each cohort
29,30

.   

Imputed genotype probabilities were converted to hard-called genotypes using PLINK (Chang et al., 

2015). Calls with uncertainty greater than 0.05 were excluded using the hard-call threshold function. 

Variants with missingness >5%, info scores <0.95, minor allele frequency <0.05 and Hardy Weinberg 

p<1x10
-6

 were removed. PCA was performed using GCTA to identify population outliers
31

 and to 

control for population structure. PC (principal component) 1 and 2 were plotted using ggplot2 in R 

and outliers were identified
32

. To identify non-European descent individuals, each of the datasets 

was merged with the Human Genome Diversity Project (HGDP) dataset
33

 and PCs were calculated 

and plotted. Individuals that did not plot to the same region as the HGDP European groups were 

removed. 
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2.3 Polygenic risk scores 

PRS was defined as the sum of all alleles associated with a trait weighted by the effect size of that 

allele as determined by a previous GWAS
17

. SNPs and associated effect sizes (in this case, log OR) 

that reached pre-defined p-value thresholds (pT; 0.0001, 1x10
-5

, 1x10
-6

, 1x10
-7

, 1x10
-8

, 1x10
-9

) were 

extracted from the discovery GWAS results data from two previously published GWAS papers, one of 

SCC
13

 and one of BCC, both in a non-transplant population
14

. The full set of discovery SNPs and 

associated effect sizes needed for calculating the PRS can be accessed via 23andme. For more details 

on accessing this data see 
13

 and 
14

. Effect sizes for the SNPs that reached the given pT, along with 

the effect allele and associated rsID were extracted from these results. These SNP sets (one for each 

pT) were then extracted from the transplanted cohorts’ genotype data using PLINK’s extract 

function.  The genotype data was then pruned to remove SNPs in high linkage disequilibrium using 

PLINK with a 200kb sliding window, 10kb step size and r
2
 threshold of 0.25

34
. SCC PRS and BCC PRS 

were then calculated for each individual in our transplant cohorts using PLINK’s score function. In 

each cohort, PRSs were normalized to mean zero and standard deviation of one. 

 

2.4 Statistical analyses 

To evaluate the PRSs’ predictive value, they were tested as predictors of case: control status using 

logistic regression, and time to developing post-transplant NMSC using Cox proportional hazards 

models. Covariates included age at time of transplantation, era of transplant, site and the first eight 

PCs. Site was just included as a covariate for the Dublin-Glasgow analyses to account for the 

differences in obtaining NMSC status between the hospitals. Logistic regression was carried out 

using the glm function in R and Cox analysis was completed using the cox.ph function of the R 

survival package
35,36

. 
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To correct for multiple testing, we applied an approximate adjusted correction technique
37

. As the 

PRSs include subsets of the same overall group of SNPs, they are correlated. Bonferroni correction 

assumes tests are independent and therefore would be overly conservative. In this context, the 

following equation was applied
37

: 

                   
                     

Let Padj=adjusted p-value 

M=number of PRSs tested × number of phenotypes tested  

p(k)=unadjusted p-value for the given PRS score 

r(.k)=mean correlation among the outcomes other than outcome k 

After the p-values were adjusted for the number of PRSs tested using the above technique, further 

correction was applied to account for the three phenotypes being tested (NMSC, SCC and BCC) using 

Bonferroni correction.  

 

Beta coefficients were meta-analysed using the metafor R package
38

. The percentage of variation 

across the results from the different sites in the meta-analysis was accessed for heterogeneity using 

the I
2 

statistic
39

.  Receiver operator curves were calculated using the pROC package in R
40

. 

 

We performed decile analysis using the most significant PRS from the NMSC logistic regression (BCC 

pT1x10
-5

) and Cox analysis (SCC pT1x10
-5

). We merged the four datasets and divided samples into 

decile groups with the lowest polygenic load in the first decile and the highest PRS in the tenth 

decile.  Samples in each decile group were then compared to patients the first decile group and 

tested for association with NMSC using the previously described Cox and logistic regression analysis.  
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3. RESULTS 

Polygenic risk analysis was performed on 889 transplant recipients (567 males and 322 females), 239 

of whom developed any NMSC with 106 developing BCC and 150 developing SCC (see table 1) 

screened for European ancestry. Average time to developing NMSC was 2,837 days with a range 

from 91 to 7,343 days. In the total dataset, patients had a mean age of 47.3 years at time of 

transplantation and had an average follow-up (censoring at first skin cancer event, failure or death) 

of 9.0 years ranging from one to 10,398 days. During this follow-up period, there were 243 graft 

failures with an average of 6.7 years to graft failure. Patients demonstrated a one, five and ten-year 

graft survival of 95.4%, 85.8% and 65.3% respectively.  

 

In order to facilitate a comprehensive assessment of PRSs on post-transplant NMSC we first set out 

to identify the clinical variables influencing NMSC status in a post-transplant setting. In this context, 

we analysed age at time of transplantation, sex, era of transplant and azathioprine exposure using a 

logistic regression and Cox regression approach (see methods section). These were tested against 

NMSC, as well as the two main subtypes of NMSC: BCC and SCC to evaluate subtype specific 

differences. Age alone was found to be a significant predictor of NMSC, BCC and SCC in both the Cox 

and logistic regression analyses (see table 2) and was brought forward as a covariate in our analyses. 

Although era of transplantation was not a significant predictor of skin cancer, we felt it was 

appropriate to include it as a covariate as to account for differences in immunosuppression regimens 

which are known to influence the onset of NMSC post-transplant
41

. 

 

 

To investigate the impact of PRS on time to NMSC, we carried out a Cox proportional hazards 

analysis adjusting for age, era, eight PCs and clinical centre for transplantation (site) where 

appropriate (see methods section). The Cox analysis was carried out separately for each site and 

then meta-analysed across sites. Analysing the impact of SCC and BCC PRS on case: control status of 
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NMSC, we observed a number of PRSs significantly associated with time-to-event and case: control 

status of NMSC, BCC and SCC post-transplant (see table 3).   

 

SCC pT1x10
-5

 PRS was the most significant predictor of time to NMSC post-transplant and BCC 

pT1x10
-5

 PRS was the most significant predictor of NMSC post-transplant case: control status, with a 

number of other SCC and BCC PRSs at different p-value thresholds also reaching significance. There 

was a large degree of overlap in the SNPs that reached pT1x10
-5 

in BCC and SCC GWASs
13,14

, with 69% 

of the SNPs in the SCC PRS found in the BCC PRS at this threshold (see Table S1 and S2 for SNPs used 

for these scores). This overlap is consistent with our finding that both SCC and BCC PRSs were 

significant of time to and case:control status of NMSC. Figure 1 illustrates how an increase in SCC 

pT1x10
-5

 PRS leads to a faster time to developing NMSC. This effect was consistent across cohorts 

and the same trend was seen in the BCC and SCC sub analyses (see table 3). 

 

Increased BCC pT1x10
-5

 PRS correlated with an increased risk of developing NMSC within the first ten 

years’ post-transplant (see table 3). The afore-mentioned most significant results all had an I
2
 of 0% 

indicating there was low heterogeneity across the variation of results at the different sites.  

 

For the most significant PRS in the Cox and logistic NMSC analysis, we performed a decile analysis 

whereby samples in each decile group were compared to patients the first (lowest) decile group and 

tested for association with NMSC (see table 4). For this and for the proceeding receiver operator 

curve and concordance analyses we merged the three cohorts prior to analysing association with 

NMSC. We found that for each decile group, the lower PRS subset associated with lower risk of 

NMSC post-transplant and reduced time to NMSC post-transplant, with the highest polygenic load 

(10
th

 decile) group having a hazard ratio of 3.11 when compared to the first decile group.  
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To access the potential clinical applicability of the significant PRSs previously described, we 

performed a comparative receiver operator curve analysis that determined the area under the 

curves for the different predictive models (see figure 2). The most predictive model was the full 

model, which included age, site, era, SCC pT1x10
-5

 PRS and PCs. The area under the curve for the 

clinical model (which included ‘age’, ‘era’ and ‘site’) was 0.786 compared with 0.813 for the full 

model (which included ‘age’, ‘era’, ‘site’, ‘PRS’ and ‘PCs’) indicating that the genetic factors 

contribute additional predictive value. The area under the curve when PCs were excluded from the 

full model, leaving just clinical covariates and PRS, was 0.799. The PRS alone, without additional 

covariates, had an area under the curve of 0.60. To analyse the predictive value of the PRS in our Cox 

analysis of time to developing NMSC post-transplant we compared the concordance statistic (c-stat) 

of the full model (which included ‘age’, ‘era’, ‘site’, ‘PRS’ and ‘PCs’)  to the clinical model (‘age’, ‘era’ 

and ‘site’).  The c-stat measures the proportion of pairs of individuals in which the individual with the 

higher-risk predictor developed NMSC before the individual with the lower-risk predictor. We found 

that found the genetic component added additional predictive value when predicting time to NMSC 

post-transplant with a larger c-stat for the full model (0.74) compared to the clinical model (0.71) 

with the PRS contributing 0.02 and the PCs contributing 0.01. 

4. DISCUSSION 

Our findings show a significant association between polygenic effects of variants associated with NMSC in the 

general population and post-transplant NMSC. We found that individuals with increased polygenic risk for BCC 

and SCC as determined from a previous non-transplant GWAS had both increased risk of NMSC and faster time 

to NMSC post-transplant respectively. This effect was consistent across three different cohorts in over 800 

patients. We found the most significant PRS in our NMSC Cox analysis was that at pT1x10
-5

 indicating that 

signals that are below the genome-wide significance threshold (5x10
-8

) are contributing to the speed at which 

individuals develop NMSC after transplantation.   
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To analyse the potential clinical application of this work, we compared the area under the curve of 

the full model, which included PRS to that with only the clinical variables for predicting case: control 

status of NMSC. The full model had a larger area under the curve than the model with clinical 

variables alone indicating the PRS is adding some positive predictive value to the model. Similarly, 

for the Cox analysis we compared the concordance statistics of the model with and without the PRS. 

Again, the PRS had additional predictive value beyond that explained by clinical variables. Although 

clinical variables have a large impact on the development of NMSC post-transplant, there is 

unexplained risk, and with the addition of the PRS we do get increased predictive value (albeit 

modest, 0.02 of the concordance explained by PRS).  

 

Knowledge of a patient’s genetic risk of certain conditions could help clinicians to best determine 

what drugs would best suit what patients. Polygenic risk scores are reasonably cheap and easy to 

implement, with GWAS genotyping now costing less than €100 per individual. A recent study 

demonstrated the potential clinical utility of PRS in patients with bipolar affective disorder to stratify 

those who were at higher risk of non-response to lithium, finding that those with a high PRS for 

schizophrenia had a greater increased risk of non-response to lithium
42

. In transplant patients, 

clinicians have the option to tailor patients’ immunosuppression regimens and select from a number 

of different immunosuppressant treatments
43

. Incorporating PRSs for multiple outcomes such as 

post-transplant diabetes, cardiovascular risk as well as other forms of malignancy could allow for 

more accurate prediction of the risks for an individual patient on a specific treatment regime. For 

example, switching patients to sirolimus has been demonstrated to reduce risk of post-transplant 

skin cancer
44. The knowledge of a patient’s polygenic risk of skin cancer post-transplant could also 

inform less drastic interventions such as frequency of checks with dermatologists and may also 

increase a patient’s likelihood to take on board lifestyle interventions such as wearing sunscreen and 

carrying out regular skin checks. This being said, although highly significant, the effect size of the PRS 

found in this study is relatively small and therefore only those in the top deciles of the distribution of 
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polygenic burden (see table 4) could realistically benefit from interventions based on their PRS. 

However, this study is the first of its kind to look at GWAS based PRS in a transplant setting and is 

proof of concept of the potential clinical utility of these kinds of scores in transplant populations. 

The integration of genetic knowledge in the clinic could allow for more personalised post-transplant 

treatment regimens in the future and even get us one step closer to tolerant transplantations.  

 

PRSs have the potential to inform clinical care through the identification of patients at high genetic 

risk for a certain condition. This could inform not only therapeutic interventions but also patient’s 

lifestyle choices and the frequency/need for disease screening
45

. However, PRSs have a number of 

limitations in this setting. Firstly, there is a higher level of uncertainty around the levels of risk 

predicted by a PRS compared to risk estimates based on familial genetic variant screening (such as 

screening for BRCA1/2 alleles)
45

. Also, PRS have yet to fully incorporate rare variants, which may 

change an individual’s PRS. Communication of polygenic risk is also a major obstacle in their 

application for clinical care. It is vital that patients and clinicians are fully aware of what a risk 

determined via a PRS really means for the patient’s prognosis
45

. 

 

Our study had a number of limitations. Firstly, a number of clinical variables were unavailable 

including sun exposure or full immunosuppressant treatment data (such as dosage or changes in 

immunosuppression over time). Therefore, some of the unexplained variance from our models may 

have been characterised if there was more extensive clinical data available. This may have also lead 

to some confounding between the different cohorts as the Tennessee cohort was predominantly 

receiving tacrolimus whereas the Dublin/Glasgow and Belfast groups were predominantly treated 

with cyclosporine. However, we did attempt to control for this effect by including era of 

transplantation as a covariate in our analyses as different eras would have a predominant 

immunosuppression treatment regime. Previous studies have shown that NMSC risk is greater in 
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those treated with cyclosporine compared to tacrolimus treated patients
46

. However, we did not see 

a large amount of heterogeneity between the sites in the I
2
 analysis. 

 

Secondly, we cannot tell if the effect of PRS on skin cancer detected here is different from that 

expected within a non-transplant population. It is possible the predictive value we see in this 

transplant population is identifying those individuals at high risk of skin cancer regardless of setting. 

In this context, the study was limited by the lack of a non-screened population to test for difference 

in the effect size of PRS, across transplant and non-transplant populations. For this reason, we 

cannot say whether this effect is specific to post-transplant NMSC or applicable to NMSC in general 

nor can we determine if the effect is immunosuppression related. Further work will be required to 

answer this important question.  

 

Finally, this study was done a homogenous European population and so further work is required to 

assess the predictive ability of this risk score in other more diverse, non-European populations. The 

alleles used to calculate the PRS were taken from two European GWA studies. For accurate 

interpretation of polygenic risk of NMSC in non-European populations a GWAS ethnically matched to 

the population being studied should be used to select alleles
47

.  

 

In conclusion, we have illustrated that PRS can be used to predict case: control status of, and time to 

NMSC from the time of transplantation. We found that the PRS provides limited, but significant 

predictive value beyond what clinical variables alone can explain. As transplant populations are 

exposed to immunosuppression, surgery and, in most cases, long term chronic disease common 

genetic variants that may have small effects in the general population may have increased effects in 

these screened populations. Therefore, the utility of PRS in transplant settings could be a useful tool 

both clinically and for discovery of new biological mechanisms involved in transplant outcomes.  
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FIGURE LEGENDS 

Figure 1. SCC pT1x10
-5

 as a predictor of time to developing NMSC post-transplant 

Weight= proportion of data the given site contributed to overall model; coef [95% CI] = effect size 

with lower and upper 95% confidence intervals. Z_SCC_pT_0.00001 = normalized PRS of SCC at p 

value threshold 0.00001, RE model = Random effects model, models were adjusted for age, 

recruitment site, 8 PCs and era of transplantation (pre-2000 vs post-2000). 

 

Figure 2. Comparison of area under the curve in the logistic regression analysis 

Genetic model = Polygenic Risk Score (PRS) and first eight principal components (8 PCs); clinical 

model = age, era and site; Full model = PRS, first 8 PCs, age, era and site 
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TABLES 

 

 

Table 1. Summary statistics of total dataset 

Stdev = standard deviation, No. (%) male – Total/Cases/Controls = Number (and percentage) of 

males in total cohort, cases only and controls only, NMSC=non-melanoma skin cancer, SCC = 

squamous cell carcinoma, BCC= basal cell carcinoma, Total N with skin cancer data = number of 

individuals with skin cancer data available for given skin cancer type 

  NMSC SCC BCC 

Total N with skin cancer data 889 593 549 

Number of events 239 150 106 

Average days to event (stdev) 2837 (1920) 2897 (1927) 3314 (2121) 

Average days of follow-up in controls (stdev) 3456 (1881) 3387 (1854) 3387 (1854) 

No. (%) male - Total  567 (64%) 371 (63%) 343 (62%) 

No. (%) male - Cases 165 (69%) 105 (70%) 77 (73%) 

No. (%) male - Controls 402 (62%) 266 (60%) 266 (60%) 

Average age (years) at transplant (stdev) - 

Total 
47.27 (14.37) 48.72 (14.44) 47.99 (14.39) 

Average age (years) at transplant (stdev) - 

Cases 
52.26 (12.79) 54.19 (12.56) 52.69 (12.58) 

Average age (years) at transplant (stdev) - 

Controls 
45.44 (14.49) 46.86 (14.58) 47.01 (14.69) 
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Logistic 

 
NMSC SCC BCC 

Clinical 

Variable 
OR 

Lower 

CI 

Upper 

CI 
Pun Pbon OR 

Lower 

CI 

Upper 

CI 
Pun Pbon OR 

Lower 

CI 

Upper 

CI 
Pun Pbon 

Age 1.02 1.016 1.024 
2.56X10

-

12
 

3.07X10
-

11
 

1.02 1.01 1.03 3.27X10
-13

 
3.92X10

-

12
 

1.02 1.016 1.024 3.53X10
-14

 
4.24X10

-

13
 

Era 1.34 1.03 1.74 0.03 0.37 1.46 1.00 2.14 0.0521 0.63 1.50 0.89 2.51 0.1257 1 

Sex 0.85 0.76 0.96 0.007 0.08 0.84 0.75 0.95 0.005 0.06 0.90 0.79 1.02 0.09 1 

Azathioprine 1.13 0.95 1.34 0.18 1.00 1.11 0.93 1.32 0.24 1 1.11 0.91 1.34 0.32 1 

Cox 

 
NMSC SCC BCC 

Clinical 

Variable 
HR 

Lower 

CI 

Upper 

CI 
Pun Pbon HR 

Lower 

CI 

Upper 

CI 
Pun Pbon HR 

Lower 

CI 

Upper 

CI 
Pun Pbon 

Age 1.06 1.04 1.08 
3.35X10

-

24
 

4.02X10
-

23
 

1.07 1.05 1.09 3.85X10
-18

 
4.62X10

-

17
 

1.07 1.05 1.09 5.46X10
-13

 
6.55X10

-

12
 

Era 0.92 0.54 1.54 0.74 1.00 0.93 0.55 1.55 0.77 1 1.03 0.32 3.33 0.95 1 

Sex 0.65 0.47 0.91 0.01 0.12 0.64 0.45 0.91 0.01 0.12 1.57 0.72 3.43 0.31 1 

Azathioprine 2.23 1.04 4.78 0.04 0.48 3.06 0.84 11.17 0.09 1 0.76 0.44 1.32 0.33 1 

Table 2. Clinical meta-analyses results 

NMSC=non-melanoma skin cancer, SCC = squamous cell carcinoma, BCC= basal cell carcinoma, OR = odds ratio, HR= hazards ratio, Lower/Upper CI = 

lower/upper 95% confidence interval, Pun=uncorrected p value, Pbon=Bonferroni corrected p value (corrected for 12 tests). Estimate for sex is associated with 

females, OR/HR for age represents change in odds per year of age,   era = those who had transplant pre-2000 = 1 and those who had transplant from 2000 

onwards = 2.   
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Table 3. PRS logistic and Cox regression top results 

Meta-analysis results for logistic regression and Cox regression. Models were adjusted for age at 

time of transplant, era of transplant (pre-2000 vs 2000 onwards), recruitment site and the first 8 

principal components. (NMSC=non-melanoma skin cancer, SCC = squamous cell carcinoma, BCC= 

basal cell carcinoma, Top PRS = most significant polygenic risk score associated with given skin 

cancer in given model. OR = odds ratio, HR= hazards ratio, Lower/Upper CI = lower/upper 95% 

confidence interval, OR and HR based on 1 standard deviation increase in normalized PRS, 

Padj=approximate adjusted p value, Pbon=Bonferroni corrected p value (corrected for 36 tests); N = 

number of individuals tested 

  

Logistic 

Cancer 

Type 
Top PRS OR 

Lower 

CI 
Upper CI Padj Pbon 

N 

cases 
N 

NMSC BCC pT1x10
-5

 1.61 1.22 2.12 0.0022 0.03 165 438 

SCC SCC pT1x10
-9

 1.97 1.32 2.93 0.0023 0.03 100 283 

BCC SCC pT1x10
-6

 3.03 1.78 5.16 0.0001 0.0016 60 243 

Cox 

Cancer 

Type 
Top PRS HR 

Lower 

CI 
Upper CI Padj Pbon 

N 

events 
N 

NMSC SCC_pT1x10
-5

 1.41 1.24 1.61 
9.39E-

07 
1.29E-05 239 889 

SCC SCC_pT1x10
-6

 1.48 1.25 1.74 
9.35E-

06 
0.0001 150 593 

BCC SCC_pT1x10
-6

 1.67 1.35 2.06 5.5E-06 7.02E-05 106 549 
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Logistic 

Top PRS BCC pT0.00001 

PRS by decile OR Lower 

CI 

Upper 

CI 

P N N Cases 

2nd Decile 2.48 0.68 9.02 0.17 92 24 

3rd Decile 1.61 0.49 5.28 0.43 89 24 

4th Decile 2.20 0.76 6.35 0.15 94 31 

5th Decile 3.17 0.91 11.04 0.07 98 28 

6th Decile 1.32 0.40 4.38 0.65 101 26 

7th Decile 4.10 1.20 13.98 0.024 91 27 

8th Decile 6.06 1.67 21.92 0.006 96 34 

9th Decile 4.35 1.35 13.99 0.014 96 31 

10th Decile (highest) 5.22 1.65 16.57 0.005 89 36 

Cox 

Top PRS SCC pT0.00001 

PRS by decile HR Lower 

CI 

Upper 

CI 

P N N events 

2nd Decile 1.24 0.58 2.67 0.58 178 34 

3rd Decile 1.49 0.75 2.97 0.25 178 39 

4th Decile 2.09 1.00 4.35 0.049 178 41 

5th Decile 2.00 0.98 4.08 0.06 177 37 

6th Decile 1.90 0.93 3.87 0.08 178 42 

7th Decile 0.99 0.47 2.12 0.99 178 37 

8th Decile 1.83 0.93 3.61 0.08 178 43 

9th Decile 3.37 1.82 6.22 0.0001 178 55 

10th Decile (highest) 3.11 1.60 6.06 0.0008 177 47 
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Table 4. PRS logistic and Cox regression top results split by decile 

Samples in each decile group were compared to those in the first decile group (lowest PRS group). 

Analyses were adjusted for age, era of transplantation, geographic site and eight PCs.  SCC = 

squamous cell carcinoma, BCC= basal cell carcinoma, Top PRS = most significant polygenic risk score 

associated with given skin cancer in given model, pT = p-value threshold, OR = odds ratio, HR= 

hazards ratio, Lower/Upper CI = lower/upper 95% confidence interval, P= p value, N = number of 

individuals tested, N events = number of skin cancer events observed, N cases = number of individuals 

with non-melanoma skin cancer. 
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FIGURES 

 

Figure 1. SCC pT1x10
-5

 as a predictor of time to developing NMSC post-transplant 

Weight= proportion of data the given site contributed to overall model; coef [95% CI] = effect size 

with lower and upper 95% confidence intervals. Z_SCC_pT_0.00001 = normalized PRS of SCC at p 

value threshold 0.00001, RE model = Random effects model, models were adjusted for age, 

recruitment site, 8 PCs and era of transplantation (pre-2000 vs post-2000). 
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Figure 2. Comparison of area under the curve in the logistic regression analysis 

Genetic model = Polygenic Risk Score (PRS) and first eight principal components (8 PCs); clinical 

model = age, era and site; Full model = PRS, first 8 PCs, age, era and site 

 


