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Abstract

Micellar liquid chromatography is a popular method used in the determination of a

compound's lipophilicity. This study describes the use of the obtained micelle–water

partition coefficient (log Pmw) by such a method in the prediction of human intestinal

absorption (HIA). As a result of the close resemblance of the novel composition of the

micellar mobile phase to that of physiological intestinal fluid, prediction was deemed

to be highly successful. The unique micellar mobile phase consisted of a mixed

micellar mixture of lecithin and six bile salts, i.e. a composition matching that found

in the human intestinal environment, prepared in ratios resembling those in the intes-

tine. This is considered to be the first method to use a physiological mixture of

biosurfactants in the prediction of HIA. As a result, a mathematical model with high

predictive ability (R2PRED =81%) was obtained using multiple linear regression. The

micelle–water partition coefficient (log Pmw) obtained from micellar liquid chromatog-

raphy was found to be a successful tool for prediction where the final optimum model

included log Pmw and polar surface area as key descriptors with high statistical signif-

icance for the prediction of HIA. This can be attributed to the nature of the mobile

phase used in this study which contains the lecithin–bile salt complex, thus forming

a bilayer system and therefore mimicking absorption across the intestinal membrane.
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1 | INTRODUCTION

The oral route is the most popular route of administration for pharma-

ceutical entities. However, the properties of compounds must be

suited to delivery via this route (Arlington, 2000; Kennedy, 1997;

Prentis, Lis, & Walker, 1988; Venkatesh & Lipper, 2000). Early
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identification of drug candidates with poor biopharmaceutical proper-

ties, such as poor aqueous solubility and oral bioavailability, is advan-

tageous to avoid potential economic loss on subsequent

unsuccessful clinical research. As a result, there has been a growing

interest in the early prediction of biopharmaceutical properties by

means of experimental and theoretical models.

Drug solubility and permeation are the two main properties that

affect drug absorption from the intestinal lumen (Amidon, Lennernäs,

Shah, & Crison, 1995; Johnson & Swindell, 1996; Norris, Leesman,

Sinko, & Grass, 2000). Once identified, drugs with poor solubility have
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a greater possibility for improvement when compared with those with

low intestinal permeability as drug solubility can be enhanced by

choosing a more suitable formulation option. As a consequence of

this, focussed synthesis of compounds with structures of reasonably

high permeability during the early stages of drug development is pref-

erential. Since drug lipophilicity is considered a key descriptor that

dictates permeation across biological membranes (Rutkowska, PajIk,

& Jóźwiak, 2012), the evaluation or determination of the lipophilicity

of a drug is important for its characterization to ensure its potential

to penetrate lipid barriers and subsequently be absorbed (Lipinski,

Lombardo, Dominy, & Feeney, 2001; Scott & Clymer, 2002). There-

fore, determining the lipophilicity of a compound can help in the

prediction of human intestinal absorption (HIA).

Having the ability to explore the effects of micelles on the behav-

iour of a compound, micellar liquid chromatography (MLC) has been

developed over the past 30 years to yield information on a wide

variety of compounds where a surfactant aqueous solution is used

above its critical micellar concentration (CMC; Berthod & Garcia‐

Alvarez‐Coque, 2000) (Ruiz‐Ángel, García‐Álvarez‐Coque, & Berthod,

2009). A very important physicochemical property indicating lipophi-

licity, log Pmw, can be obtained using MLC in the presence of different

surfactants as the micellar mobile phase to help characterize com-

pounds (Kawczak et al., 2010; Marina & Garcia, 2000). For example,

MLC has been used with a simple surfactant solution in previously

published work for the prediction of HIA for a series of compounds

using multiple linear regression analysis (Waters, Shokry, & Parkes,

2016). The novelty of the work presented in this study lies in the

use of a very unique mobile phase mimicking the in vivo intestinal

environment of humans. The composition of this mobile phase was

closely related to that of the intestinal fluid through a combination

of lecithin and bile salts which are normally found in the human intes-

tine, used in ratios matching those found physiologically (Wiedmann,

Liang, & Kamel, 2002).
2 | METHODS AND MATERIALS

Sodium deoxycholate (NaDC; 97%), sodium taurodeoxycholate

(NaTDC; 95%), sodium taurocholate (NaTC; ≥97%), sodium cholate

(NaC; 97%), sodium glycocholate (GC; ≥97%), sodium

glycodeoxycholate (GDC; ≥97%) and L‐α‐phosphatidylcholine from

dried egg yolk (≥50%) were used as purchased from Sigma Aldrich,

Dorset, UK for the preparation of stock solutions of mobile phase.

Analytical grade 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid

(HEPES buffer) was purchased from Sigma Aldrich, Dorset, UK. The

compounds considered in this work were caffeine 97% (Sigma Aldrich,

Dorset, UK), fenoprofen 97% (Fluka, Dorset, UK), acetaminophen 99%

(Sigma Aldrich, Dorset, UK), ketoprofen 98% (Sigma Aldrich, Dorset,

UK), phenylbutazone 99% (Sigma Aldrich, Dorset, UK), fluconazole

98% (Sigma Aldrich, Dorset, UK), carbamazepine 99% (Sigma Aldrich,

Dorset, UK), cimetidine (Sigma Aldrich, Dorset, UK), naproxen 98%

(Sigma Aldrich, Dorset, UK), terbutaline 96% (Sigma Aldrich, Dorset,

UK), zolmitriptan >98% (Sigma Aldrich, Dorset, UK), salicylic acid 99%

(Fisher Scientific, Loughborough, UK), ibuprofen 98% (BASF, Cheshire,

UK), acetyl salicylic acid 99% (Acros Organics, Geel, Belgium),
diclofenac 98% (TCI Europe, Zwijndrecht, Belgium), flurbiprofen 98%

(TCI Europe), nicotinic acid >98% (Sigma Aldrich, Dorset, UK) and

theophylline 98%, (TCI, Oxford, UK).
2.1 | Preparation of stock solution of micellar
mixture simulating the physiological bile salt mixture

A 17mM stock solution of a mixed micellar system was prepared by

transferring accurately weighed amounts equivalent to 2.71, 2.00,

2.08, 2.08, 4.70 and 3.43mM of NaTC, NaTDC, NaDC, NaC, NaGC

and NaGDC bile salts respectively and 0.75mM of egg phosphatidyl-

choline to a 250mL volumetric flask with buffer solution (10mM

HEPES, pH 6.5) in 0.15 M NaCl. The solution was then sonicated for

30min and stored for 12 h before use to allow the formation of stable

mixed micelles.
2.2 | Preparation of a mixed micellar solution for
dilution

Different concentrations of the micellar mixture were prepared over

the range of 5–17mM by diluting the stock solution using a 2mM

mixture solution. The 2mM mixture solution contained the same six

bile salts and lecithin used in the preparation of the stock mixture

solution in the same molar ratios. The 2mM diluting mixture was pre-

pared by transferring accurately weighed amounts equivalent to 0.32,

0.25, 0.24, 0.24, 0.55 and 0.4mM of NaTC, NaTDC, NaDC, NaC,

NaGC and NaGDC bile salts, respectively, and 0.75mM of egg phos-

phatidylcholine to a 250mL volumetric flask with buffer as detailed

previously. The resultant solution was sonicated for 30min then

stored for 12 h before use. Dilution was carried out in this way as

the 2mM mixture is considered to be the monomer bile salt concen-

tration that is required to be kept constant in each solution in order

to keep the size of the micelle constant while its concentration is

being changed (Wiedmann et al., 2002).
2.3 | Analytical instrumentation and measurement

Experiments were carried out with a chromatographic system

consisting of an Agilent 1100 series binary pump, a Rheodyne injector

through which 20 μL samples were injected in to the system and a UV

detector (Perseptive Biosystems UVIS‐205), set at a wavelength

appropriate for each drug producing a peak via Picolog software indi-

cating the retention of the solute within the column as a function of

time. The mobile phase was filtered through a 0.45 μm Nylon filter

and degassed in an ultrasonic bath. Data were recorded and then

analysed to obtain retention factors and each run was repeated three

times to ensure that reasonable accuracy and precision were achieved.

Analytical separation was accomplished using a reversed phase cyano-

propyl column (Spherisorb 5 μm, 15 cm × 4.6mm i.d., Waters). The

flow rate used was 1.34mL/min with all assays carried out at 37°C.

The mobile phase was placed in a water bath at 37°C throughout

the duration of all experiments.
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2.4 | Determination of dead time t0

The dead time (t0) is defined as the time taken by the solvent front to

reach the detector, measured by the injection of water (Pramauro,

Minero, Saini, Graglia, & Pelizzetti, 1988) or an organic solvent, e.g.

acetonitrile or methanol (Khaledi, 1988; Khaledi, Peuler, & Ngeh‐

Ngwainbi, 1987). In this work, dead time was determined by injecting

distilled water or acetonitrile in to the system and recording the reten-

tion time of the first peak that appeared after injection (solvent front).

The same method was repeated for each of the bile salt concentra-

tions used. A reliable value of dead time used in the calculation of

retention factor (k′) for all experiments (using eqn (1)) was determined

from an average of at least 10 recordings.

2.5 | Calculation of log Pmw

Retention behaviour of binding solutes as a function of the micellar

concentration [M] (concentration of surfactant monomers forming

micelles equal to total surfactant concentration minus the CMC) has

been explained by many proposed theoretical approaches such as

the Armstrong and Nome partitioning model, the Arunyanarat and

Cline‐Love model and the Foley model (Armstrong & Nome, 1981;

Arunyanart & Love, 1984; Garcia‐Alvarez‐Coque, Torres‐Lapasió, &

Baeza‐Baeza, 1997).

From the obtained chromatograms, the retention time of each

drug was recorded for each bile salt concentration (Figure 1). The

retention factor for each retention time was calculated using the

following equation:

k′ ¼ Retention time−dead timeð Þ
dead time

(1)

The reciprocal of each retention factor was obtained (1/k′) with

the average value plotted against the micellar concentration (CM) that

was calculated according to the following equation:

CMð Þ ¼ total surfactant concentration−CMC (2)

The partition coefficient (log Pmw) was obtained from the slope and

intercept of the line obtained from the plot of (CM) against (1/k
′):

log Pmw ¼ log intercept=slope½ � (3)

3 | RESULTS

3.1 | Mixed micellar system

Since bile salts and lecithin (phosphatidylcholine) are considered to be

two of the most common biosurfactants present in bile and involved in

the digestion process, it was important to study the effect of using a

mixed micellar system consisting of six bile salts and lecithin phospho-

lipid as a mobile phase in MLC. The mixed micellar system used in this

method consisted of a mixture of six bile salts (NaDC, NaC, NaTDC,

NaTC, NaGC and NaGDC) which included dihydroxy, trihydroxy, con-

jugated and unconjugated bile salts with lecithin phospholipid in

0.15 M NaCl with the pH controlled by HEPES buffer at 6.5. The

CMC of the mixed micellar system was deemed to be 0.0046 M based
on the average value of the CMCs of the bile salts included in the mix-

ture in 0.15 M NaCl [NaTC CMC = 0.004 M (Natalini et al., 2014),

NaDC CMC = 0.0024 M (Natalini et al., 2014), NaTDC CMC =

0.0024 M (Natalini et al., 2014), NaC CMC = 0.0075 M (Reis et al.,

2004), NaGC CMC = 0.009 M (Natalini et al., 2014) and NaGDC

CMC = 0.0022 M (Natalini et al., 2014)]. The bile salt–lecithin

mixed micellar solution was used over a concentration range

0.005–0.017 M. The mixed micellar system was prepared in molar

ratios similar to that present physiologically (Wiedmann et al., 2002).

Having both a positively charged choline head group and a nega-

tively charged phosphate group, lecithin is considered to be a zwitter-

ionic compound that tends to self‐assemble in water, forming

characteristic bilayer membrane‐like structures (Cheng, Oh, Wang,

Raghavan, & Tung, 2014). Bile salts are distinguishable from conven-

tional amphiphiles by their facial structure with polar and nonpolar

faces. Such uniqueness is what leads to the unusual micelle structures

formed upon bile salts’ self‐assembly in water, which further separates

them from conventional head and tail surfactants. Various models

have been proposed for bile salt micelle formation and several hypoth-

eses have been made regarding their aggregates’ structures formed

through hydrophobic interactions between the steroid nuclei of bile

salts (nonpolar face) and the hydrogen bonding between the bile salts

hydroxyl groups (polar face) (Malik, 2016). It was reported in previous

studies that short, rod‐like micelles were formed upon combining both

bile salts and lecithin in a mixture (Cheng et al., 2014). The lecithin–

bile salt complex is considered as a balanced system where the lecithin

on its own in water forms unstable bilayer structures of low aqueous

solubility because of its bulky hydrophobic tails inhibiting its solubility

in water that is compensated for and balanced by the presence of the

bile salts of much greater water solubility. These can, in small amounts,

stabilize the lecithin self‐assembled structures by intercalating into

these structures and thus promoting their water solubility, which is

one of the main physiological applications of bile salts.

Initially, it was suggested by Mazer, Benedek and Carey that the

aqueous lecithin/bile salt micelles were disc‐like in shape (Mazer,

Benedek, & Carey, 1980) but later on, different techniques provided

evidence that these micelles are cylindrical in shape and can further

grow into long flexible cylindrical micellar chains termed “worms”

(Madenci, Salonen, Schurtenberger, Pedersen, & Egelhaaf, 2011;

Walter, Vinson, Kaplun, & Talmon, 1991) which are similar to polymer

chains where they entangle in a transient network rendering the solu-

tion highly viscous (Dreiss, 2007; Schurtenberger, Scartazzini, & Luisi,

1989; Shchipunov, 2001). This transformation of short cylinders to

worms depends on the molar ratio of the two species and the ionic

strength where an almost equimolar ratio of bile salt–lecithin (with

high background counterion concentration) would induce the growth

of the cylindrical micelles to worms (Cheng et al., 2014). As a result,

caution was taken to avoid the formation of a highly viscous solution

since the prepared micellar mixture was to be pumped through the

chromatographic system. For this reason, the bile salt–lecithin mixed

micellar system was prepared in a molar ratio much higher than that

using an optimum counterion concentration (0.15 M NaCl).

Lecithin prefers to be present in the form of low‐curvature cylin-

drical‐shaped bodies owing to its two tails. It is expected that the bile

salts will stabilize the hemispherical end caps of these cylinders as bile



FIGURE 1 Chromatograms showing binding
behaviour of ketoprofen in increasing
concentrations of physiological micellar bile
salts mixture as a mobile phase (the dotted
line is only used for visual guidance)
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salts are generally present in water as highly curved small micelles.

Since stable end caps prevent the formed cylindrical micelles from fur-

ther growing into long chains, adding more bile salts will result in more
end caps being formed and therefore shorter cylinders (Cheng et al.,

2014). Figure 2 summarizes the mechanism of micellization in the bile

salt–lecithin mixed micellar system where lecithin prefers to form



FIGURE 2 Schematic of the self‐assembled structures formed by
lecithin with, and without, bile salt in water (Cheng et al., 2014)

TABLE 1 Calculated log Pmw values (using experimental micellar
liquid chromatography, MLC, data) and literature values of polar sur-
face area (PSA) for the 18 model compounds (https://pubchem.ncbi.
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bilayers when alone in water (left side of the figure). On the other

hand, when bile salts are added to the solution they bind to lecithin

head groups (Cheng et al., 2014) with themselves binding back‐to‐

back (Coello, Meijide, Núñez, & Tato, 1996) to each other, resulting

in expansion of the head group area (right side of the figure) (Cheng

et al., 2014; Madenci et al., 2011). As a result, bilayers turn into cylin-

ders where the net geometry changes from a cylinder to truncated

cone. In the case of low ionic strength, the negatively charged groups

of bile salts suffer from high repulsion forces; therefore bile salts get

packed at the curved hemispherical end caps of the cylinders. The

presence of a counterion (NaCl) of an optimum concentration is

important because it decreases or neutralizes the surface charge on

the micelle, thereby diminishing electrostatic repulsion and encourag-

ing interaction between micelle‐forming species and hydrophobic

association of bile salts and lecithin to give mixed micelles. It has to

be taken into consideration that, upon increasing the concentration

of counterion, the electrostatic repulsion between the bile salts

decreases; therefore the aggregation number of bile salt micelles

increases and bile salts become less likely to form the highly curved

end caps of the cylindrical mixed micelles, inducing the growth of

cylinders in to long chains which increase the viscosity of solution.
nlm.nih.gov/, December 2014)

Drug Log Pmw PSA

Acetaminophen 1.31 49.3

Acetylsalicylic acid 1.74 63.6

Caffeine 0.93 58.4

Carbamazepine 2.39 46.3

Cimetidine 1.97 88.89

Diclofenac 2.94 49.3

Fenoprofen 2.52 46.5

Fluconazole 1.40 81.6

Flurbiprofen 2.55 37.3

Ibuprofen 1.52 37.3

Ketoprofen 1.58 54.4

Naproxen 2.37 46.5

Nicotinic acid 1.55 50.2

Phenylbutazone 2.15 40.6

Salicylic acid 1.69 57.5

Terbutaline 2.96 72.7

Theophylline 1.02 69.3

Zolmitriptan 2.30 57.4
3.2 | Retention behaviour

Ideally when using an anionic surfactant and a cyanopropyl column,

neutral and cationic drugs are expected to show a binding interaction

as a result of entrapment of drug in the hydrophobic core of the

micelles (for neutral drugs) or electrostatic attraction (for cationic

drugs) or both, which leads to a decrease in the retention times of

these drugs with the increase in the mobile phase micellar concentra-

tion. On the other hand, anionic drugs are expected to show an

antibinding interaction owing to electrostatic repulsion between the

anionic drug molecules and the anionic micelles, which leads to bind-

ing of these drug molecules to the cyanopropyl column, increasing

their retention times with the increase in the micellar concentration

in the mobile phase (Armstrong & Stine, 1983; Ruiz‐Angel, Carda‐

Broch, Torres‐Lapasió, & García‐Álvarez‐Coque, 2009).

However, all the drug molecules in this study (neutral, cationic and

anionic) show a binding behaviour reflecting the preference of the

analysed drugs to the bile salt–lecithin mixed micelles of more stabil-

ity, bigger hydrophobic core diameter and core fluidity (de Castro,

Gameiro, Guimarães, Lima, & Reis, 2001). The binding of anionic drug
molecules to these mixed micelles could be attributed to diminished

repulsion forces between the micelles resulting from charge neutrali-

zation brought about by counterion (NaCl) binding, therefore over-

coming any remaining weak repulsion forces and not repelling away

from the micelles, i.e. solubilizing within the hydrophobic core of the

mixed micelles.

3.2.1 | Statistical modelling of HIA

Following analysis of a group of 18 model drugs using a physiologically

simulating bile salt–lecithin mixed micellar solution, followed by calcu-

lation of log Pmw from the calibration plots of 1/k′ against CM, the

obtained log Pmw and a number of other molecular descriptors such

as molecular weight, polar surface area (PSA), freely rotating bonds,

molar volume, dissociation constant (pKa), aqueous solubility, number

of hydrogen bond donors and number of hydrogen bond acceptors

were used for developing a model for prediction of %HIA. Experimen-

tally obtained log Pmw values (using this MLC method) with PSA as the

selected molecular descriptor included in the final model are shown in

Table 1.

For improving the linear relationship found between reported

%HIA and experimental log Pmw values, logit (HIA) was used as

reported in similar studies (Norinder, Österberg, & Artursson, 1999;

Raevsky, Fetisov, Trepalina, McFarland, & Schaper, 2000; Zhao et al.,

2002). As a result, transformation of human intestinal absorption

values to logit was carried out by substituting in eqn (4):

Logit %HIAð Þ ¼ log %HIA= 100−%HIAð Þð Þ (4)

Removal of drugs with %HIA values of 100 or 0% from the training set

was essential.

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov


FIGURE 3 Residual plot for optimal logit human intestinal
absorption (HIA) regression model

FIGURE 4 Partial regression plots of experimental logit HIA values again

TABLE 2 Experimental and predicted values for %HIA

Drug Experimental. %HIA Reference

Acetaminophen* 100 (Castillo‐Gar
Abad, & T

Acetylsalicylic acid 82 Castillo‐Gar

Caffeine 99 Yan, Wang,

Carbamazepine 84 Dressman, A
& Pancha

Cimetidine 68 Castillo‐Gar
Urtti, & Y

Diclofenac 54 Veber et al.

Fenoprofen 85 Hou, Wang,

Fluconazole 94 Newby, Frei

Flurbiprofen 92 Raevsky (20

Ibuprofen* 98 Newby et a

Ketoprofen 95 Newby et a

Naproxen 94 Castillo‐Gar

Nicotinic acid 94 Newby et a

Phenylbutazone 94 Hou et al. (2

Salicylic acid* 99 Raevsky (20

Terbutaline 25 Grès et al. (1

Theophylline 98 Kansy, Senn

Zolmitriptan 92 Newby et a

*Validation compounds.
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Minitab 17® was used in the statistical analysis of data. Data

was analysed using multiple linear regression where all of the previ-

ously mentioned molecular descriptors (data not shown) were

included and regressed against the dependant variable %HIA and

backward elimination modelling strategy was used. As a result, PSA

along with log Pmw were the only descriptors included in the final

developed model. Variables with high variance inflation factors were

removed to keep it within the acceptable limits. Finally, an optimum

model was obtained that provided a good summary of data. Assess-

ment of the variables remaining in the final model for significance

and relative importance was carried out using standardized coeffi-

cients and the associated p‐values.

The final model predictive ability was evaluated using adjusted‐R2

and R2 for prediction (R2PRED), which is able to indicate the predictive
st log Pmw and polar surface area (PSA)

Predicted %HIA

it, Cañizares‐Carmenate, Marrero‐Ponce,
orrens (2014)

98

it et al. (2014) 92

& Cai (2008) 99

midon, & Fleisher (1985); Varma, Sateesh,
gnula (2005)

87

it et al. (2014); Linnankoski, Mäkelä, Ranta,
liperttula (2006)

66

(2002) 64

Zhang, & Xu (2007) 83

tas, & Ghafourian (2015) 90

04) 88

l. (2015) 99

l. (2015) 96

it et al. (2014) 87

l. (2015) 97

007); Veber et al. (2002) 94

04) 95

998) 34

er, & Gubernator (1998) 98

l. (2015) 82



FIGURE 5 Regression plot of predicted %HIA values against the
literature %HIA
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ability of the model and consequently reflecting the capability for

applying the model.

Log Pmw was included in a model equation with %HIA experimental

values for orally administered drugs which allowed the prediction of

%HIA. Themodel obtained for the prediction of%HIA is given by eqn (5):

logit HIA ¼ 4:103–0:939 log Pmw−0:02218 PSA (5)

Fifteen drugswere used in the development of the final model where log

Pmw alongside the molecular descriptor (PSA) was included. The model's

R2 = 86.40%, R2adjust. = 84.13%, R2PRED = 80.73% and S = 0.247.

A 95% confidence interval for log Pmw is given by (−1.18, −0.699).

The t‐statistic and standardized coefficient of log Pmw are −8.51

(p < 0.05) and − 0.964, respectively, suggesting the statistical signifi-

cance of log Pmw as a predictor. Also the F ‐ratio of the overall model

is statistically significant, F = 38.12 and the p‐value is 0.007 (p < 0.05).

Figure 3 shows no marked relationship between residuals and pre-

dicted values while Figure 4 summarizes the model. The literature

and predicted values of %HIA are shown in Table 2 and Figure 5.

Three drugs (acetaminophen, ibuprofen and salicylic acid) were used

to test the obtained model. The model was able to predict the %HIA

for these compounds within a minimum of 0.61% and a maximum of

4.43% difference between predicted and published data for %HIA.

The statistical model developed from this study using a bile salts–

lecithin physiological mixture confirms an enhanced capability for

prediction of HIA, with an R2PRED of 81%, compared with a previous

study using simple micelles of one bile salt (R2PRED of 75%; Waters

et al., 2016). The current model involves fewer predictors (log Pmw

and polar surface area) than those in the previous model (logPmw,

molecular weight and solubility), which simplifies the model. Based on

previous research, PSA has been reported to be a successful parameter

in the prediction of intestinal absorption (Clark, 1999; Palm, Stenberg,

Luthman, & Artursson, 1997; Stenberg et al., 1999). Furthermore, drug

absorption‐relevant information has been shown to be sufficiently

encoded in lipophilicity, along with PSA, without explicit reference to

molecular weight (Egan, Merz, & Baldwin, 2000). These findings further

corroborate that the current model displays superiority over the previ-

ously developed one for predicting intestinal absorption.
4 | CONCLUSION

Development of an MLC method that used a physiologically resem-

bling bile salt–lecithin mixed micellar system was successful for the
prediction of HIA. This method had a significant impact on the elution

of compounds and the type of interaction they experienced upon

being injected into the MLC system. The bile salt–phospholipid combi-

nation had a higher solubilizing capacity for compounds than that of

the individual bile salt systems used before (Waters et al., 2016),

confirmed by the behaviour of all compounds into binding solutes

favouring the formed micelles. This developed MLC method has a

higher predictive ability for HIA (R2PRED = 81%) compared with previ-

ous models. Overall, it can be concluded that there is a close resem-

blance between the ‘physiologically occurring’ and ‘synthetic bile

salt–phospholipid micellar mixture’ used in this MLC method. This

helped the compounds to behave in a manner closer to how they

permeate through the human intestine, therefore simulating the

human intestinal absorption process to some extent and ultimately

leading to the construction of a mathematical model with a high pre-

dictive ability for HIA.
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