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ABSTRACT 

Electricity is one of the most stolen commodities in the world. Electricity theft can be defined 

as the criminal act of stealing electrical power. Several types of electricity theft exist, 

including illegal connections and bypassing and tampering with energy meters. The negative 

financial impacts, due to lost revenue, of electricity theft are far reaching and affect both 

developing and developed countries. . Here in South Africa, Eskom loses over R2 Billion 

annually due to electricity theft.  Data mining and nonparametric statistical methods have 

been used to detect fraudulent usage of electricity by assessing abnormalities and abrupt 

changes in kilowatt hour (kWh) consumption patterns. Identifying effective measures to 

detect fraudulent electricity usage is an active area of research in the electrical domain. In 

this study, Support Vector Machines (SVM), Naïve Bayes (NB) and k-Nearest Neighbour 

(KNN) algorithms were used to design and propose an electricity fraud detection model. 

Using the Nelson Mandela Bay Municipality as a case study, three classifiers were built with 

SVM, NB and KNN algorithms. The performance of these classifiers were evaluated and 

compared.  
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CHAPTER 1: INTRODUCTION 
 

1.1: BACKGROUND 

The Republic of South Africa, commonly referred to as South Africa, is the southernmost 

country in Africa and is bordered by the South Atlantic and Indian Oceans. South Africa is 

divided into nine provinces, of which there are 52 districts, comprising eight metropolitan and 

44 district municipalities. Eskom, is the primary energy supplier in the country, generating 

almost 95% of South Africa’s energy. It also transmits and distributes electricity to industrial, 

mining, commercial, agricultural and residential customers and redistributors.  Municipalities 

purchase electricity from Eskom to distribute to its customers, thereby generating revenue to 

supplement their operational expenses. Each year, municipalities and Eskom lose revenue 

from electricity theft. Electricity theft is one of the major problems faced by not only South 

Africa but the rest of the world, in both developing and developed countries alike. The annual 

Emerging Markets Smart Grid: Outlook 2015 study revealed that electricity theft resulted in 

global losses of almost US$90 billion (T&DWorldMagazine, 2015). According to this study, 

India suffered annual losses amounting close to $16.2 Billion, followed by Brazil ($10.5 

Billion) and Russia with $5.1 Billion (T&DWorldMagazine, 2015). PowerNews (2013) stated 

that the United States of America lose almost $6 billion (R61 billion) annually due to 

electricity theft, whereas in the United Kingdom about £299 million (R4.7 billion) is lost each 

year from gas and electricity theft. 

The Nelson Mandela Bay Municipality (NMBM) is one of the eight metropolitans in South 

Africa and is located on the coast of Algoa Bay in the Eastern Cape Province. It comprises 

the city of Port Elizabeth, the nearby towns of Uitenhage and Despatch, as well as 

surrounding rural areas. The NMBM is also facing issues of electricity theft. According to the 

regional radio broadcaster, the NMBM loses close to R80 million annually due to electricity 

theft. In 2014, the metropolitan lost approximately R218 million due to both technical and 

non-technical losses (AlgoaFM, 2014). These two types of losses are discussed further in 

the following section.  

1.2: NON-TECHNICAL LOSSES 

When investigating electricity supply from source to end users, electric energy losses refer to 

the amounts of electricity injected into the transmission and distribution grids that users have 

not paid for. These losses are categorised into technical and non-technical (Nagi etal.,2008). 

Technical losses consist primarily of power dissipation in the conductors and equipment 

used for transmission and distribution lines. In contrast, non-technical losses are caused 
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mainly by electricity theft, non-payment by customers, and errors in the billing systems. The 

minimisation of technical losses is an engineering problem and falls outside the scope of this 

research. The main focus for this study is to identify a statistical model which can be used to 

understand better the nature of non-technical losses.  

1.3: THE STATEMENT OF THE PROBLEM 

In NMBM, electric customers are billed according to their monthly electricity usage in kilowatt 

hour (kWh). The billing systems used per customer rely on the type of meter used, i.e. credit 

or prepaid. In the case of credit meters, customers are charged based on consumption 

meter readings. In the case of pre-paid meters, customers are charged when they buy their 

energy meter units. These records are then stored in NMBM’s billing systems and 

databases. However, some customers tamper with their meters or perform illegal 

connections and are not billed for the amount of electricity they consume. As a result, the 

NMBM experiences a loss in revenue. . In an attempt to reduce this non-technical loss, the 

municipality contracted Amat Security and Cleaning Services (Pty) Ltd (Amat), a company 

with specialist expertise to track and expose fraudulent clients. 

Amat conducts on-site inspections of electric meters and checks and reports any 

irregularities. However, inspections are carried out at random, are time consuming and 

difficult to conduct. Although the NMBM’s database comprises a large amount of stored 

data, the municipality currently does not have an intelligent system of extracting meaningful 

patterns or information from these databases in order to identify non-technical losses. An 

intelligent system incorporating statistical methods will help the NMBM identify suspicious 

consumption patterns, focus customer inspections and target most likely fraudulent 

customers. Such a model is proposed in this study. 

1.4: OBJECTIVES OF THE STUDY 

The main objective of this study was to propose a model to detect and predict fraudulent 

activities by studying abnormalities in customers’ monthly kWh consumption patterns.  

Support Vector Machines (SVM), Naïve Bayes (NB) and k-Nearest Neighbour (KNN) 

statistical classification algorithms were used to develop three classifiers. These classifiers 

were compared and the classifier with the highest fraud detection rate and lowest 

misclassification rate was selected as the most suitable fraud detection model. 
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1.5: CHAPTER SUMMARY 

The remainder of this dissertation is as follows. Chapter 2 provides a comprehensive 

literature review of studies assessing non-technical losses and Chapter 3 presents the 

research methodology and data. The results of this study and corresponding discussion are 

provided in Chapter 4, and the conclusion in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1: INTRODUCTION 

Analysing non-technical losses is a topical area of research in the electricity sector and 

involves finding patterns in electricity consumption data. Data mining is a computational 

process that discovers patterns in such large data sets, and incorporates artificial 

intelligence, machine learning, statistics and database systems. Data mining aims to find 

insights that are statistically reliable from the data (Elkan, 2001). As there is no known 

statistical distribution associated with electricity consumption patterns, data mining 

techniques are therefore often the preferred method of analysis, when compared to the 

alternative model-based statistical methods (Jaya & Tamilselvi, 2013). 

Many studies investigating the detection of non-technical losses have been conducted using 

electrical engineering methods. These include; the use of central observer meters (Bandim, 

et al., 2003), vigilant energy metering (Anand, De, & Naveen, 2003), power line impedance 

(Pasdar & Mirzakuchaki, 2007), smart meters (Depuru, Wang, & Devabhaktuni, 2010), and 

many others. However, there are relatively few published research studies, particularly in 

South Africa, focussed on the use of data mining techniques to detect non-technical losses. 

Where available, studies related to the detection of non-technical losses, and potential data 

mining techniques, are reviewed in this chapter. The majority of this chapter is on critical 

evaluation of the different methodologies used in analysing non-technical losses so as to 

identify the appropriate approach for investigating these losses in NMBM.  

2.2: SUPPORT VECTOR MACHINES 

Statistical learning theory was introduced by Vapnik in the 1960’s (Vapnik, 1999). This is a 

theoretical analysis of the problem of function estimation from a given collection of data  

(Vapnik, 1999). In the 1990’s, new types of learning algorithms based on the statistical 

learning theory named Support Vector Machines (SVM), were proposed. The SVM is a 

classification method used in fraud identification and prediction, for classification of both 

linear and nonlinear data. This technique uses nonlinear mapping to transform the original 

training data into a higher dimension. It then searches for the linear optimal separating 

hyperplane on this new dimension. This hyperplane is called the decision boundary and it 

separates tuples of one class from another. The SVM finds the decision boundary using 

important training tuples called the “support vectors” and the “margin”. The support vectors 

and the margins will be formally defined in Chapter 3. Although the foundation for the SVM 

method has been around since the 1960’s, the first paper on this method was presented in 
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1992 by Boser, Guyon and Vapnik. Since 1992, the SVM classification method gained 

popularity in many applications such as; text classification (Joachims, 1998), gene analysis 

(Guyon et al, 2002), facial expression recognition (Michel & Kaliouby, 2003), and many 

others (Fradkin & Muchnik, 2006).  

Nagi et al. (2008) conducted a study to detect non-technical losses using SVM in the power 

system of Tenaga Nasional Berhad in Malaysia. The proposed SVM classifier identified 

transactions of potential fraudulent customers in order to facilitate an onsite inspection.  This 

study reported that out of the total number of candidates shortlisted by the SVM classifier, 

53% were confirmed, upon inspection, to be fraudulent cases. That percentage is called the 

fraud detection hit rate. A similar study by the same authors was conducted in 2010 (Nagi et 

al.,2010). The main objective of this study was to improve the hit rate achieved in the 

previously mentioned 2008 study. In addition to monthly energy consumptions, theft of 

electricity information, credit worthiness rating information, high risk customer information 

and irregularity report information, were all included in the fraud detection model. The 

inclusion of the additional data in the fraud detection model improved the hit rate from 53% 

to 60% (Nagi et al, 2010). 

Depuru, Wang and Devabhaktuni (2011) addressed some of the factors associated with the 

detection of electricity theft such as; geographical location, size of customer [agricultural 

(small, medium), commercial (small, medium, large) and residential (very small, small, 

medium, large)] and, season of the year. In their study, the SVM classifier was trained and 

tested on data sets collected by smart meters in different geographical locations in India. 

Smart meters are used by electric utilities to record electricity consumption during specific 

intervals of time. Electrical energy consumption patterns under normal operations and under 

electricity theft were studied and customers classified into three groups. A training set 

consisting of 440 customers was used to train the SVM classifier. Then, the trained SVM 

classifier was used on a test set consisting of 220 customers. Accuracy is defined as the 

proportion of customers that are correctly classified by a classifier. The learned SVM 

classifier achieved an accuracy of 98.4%. 

Several studies on SVM have been conducted in other domains. Bhattacharyya et al (2011) 

used SVM to detect credit card fraud. The SVM classifier was compared with the Random 

Forests (RF) and Logistic Regression (LR) classifiers. The SVM classifier proved to be 

competitive with the RF and LR classifiers.  In telecommunications, the SVM classifier was 

used to detect fraudulent subscriptions of customers (Hamid & Sepehri, 2011). The results 

demonstrated that the SVM classifier had the best performance in comparison to the 
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Decision Tree classifier and the Neural Network classifier. Ravisankar et al (2011) aimed to 

identify companies that resorted to financial statement fraud. They studied and compared 

the Neural Network, SVM, LR, Generic Programming and Group Method of Data Handling. A 

data set of companies in China was used to train and test the classifiers and the SVM 

classifier performed the best. 

2.3: NAÏVE BAYES 

In statistics, the NB classifiers are probabilistic classifiers, based on applying Bayes 

Theorem with strong (naïve) class independence assumptions between the features. The 

NB method was introduced in the 1960’s, and since then it has been applied to fraud 

detection. The NB classifiers have been found to be competitive, more advanced data 

mining techniques, such as SVM. These classifiers are easy to implement and have fast 

processing time (Rennie et al., 2003).The following section reviews some of the published 

research studies on the NB classifiers. 

Nizar, Zhao and Zhang (2007) used the NB in conjunction with the DT algorithm to 

determine what arrangement of load profile data provided the most successful fraudulent 

detection scenario. In their study, the data was rearranged into different time frames that 

were averaged over days, weeks, months and years. The DT algorithm proved to be more 

accurate when the data was arranged into daily and monthly averages. The limitation to the 

success of the DT approach was the computational time, which was much slower than the 

NB classifier. For both methods, the lowest accuracy was found when the data was arranged 

on a yearly basis. The highest accuracy for both classification systems was for daily average 

consumptions. 

A case study on automobile insurance claims was conducted by Viaene, Derrig and Dedene 

(2004). The NB classifier was used to identify and detect fraudulent claims. This was a 

comparative study, with the NB classifier compared to the AdaBoosted Naïve Bayes (AB) 

and AdaBoosted weights of evidence (ABWOE). The ABWOE had the best performance, 

with accuracy of 84.43%, followed by the AB, with 84.41% and lastly the NB classifier, at 

83.03% accuracy. It is important to note that the difference between accuracy of these 

classifiers was very small.  

2.4: K-NEAREST NEIGHBOUR  

The k-Nearest Neighbour (KNN), first proposed by Fix and Hodges (1952), is a non-

parametric statistical method used to estimate probability density functions for statistical 
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classification. The KNN method is an intuitive, easily explained procedure (Henley & Hand, 

1996). In this algorithm, unknown tuples are predicted according to the class of its k nearest 

neighbours. Figure 2.1  illustrates the 3-nearest neighbours and 7-nearest neighbours of the 

unknown tuple, which is placed at the centre of circle (the red star). For the case of 3-

nearest neighbours, there are two neighbours of class B and one neighbour of class A. As 

the number of nearest neighbours for class B is greater than the number of nearest 

neighbours for class A, the unknown tuple is classified as class B. For the second case, 

there are four tuples belonging to class A and three tuples belonging to class B, and as the 

number of nearest neighbour for Class A is greater than that of Class B, the unknown tuple 

is given class B. To avoid a tie between classes it is advisable to use an odd number for the 

value of k. The illustrations depicted in Figure 2.1 show the importance of the value of k. 

  
Figure 2.1: The 3-nearest neighbour and 7-nearest neighbour comparison 

A distance metric used to measure similarity between the unknown tuples and the training 

tuples is another important parameter in the KNN method as it influences the performance of 

the classifier. In an attempt to find the best distance metric to use for subsequent training of 

the KNN classifier, Mulak and Talhar (2015) compared the Euclidean distance, Chebychev 

distance and Manhattan distance (also known as the City Block distance). These distance 

metrics were compared in terms of accuracy, sensitivity and specificity. For a binary 

classification problem with positive and negative classes, accuracy is defined as the 

proportion of all correctly classified tuples. “Sensitivity” is the proportion of all positive tuples 

that are correctly classified and Specificity is the proportion of all negative tuples that are 

correctly classified. Sensitivity and specificity are performance measures and are formally 

defined in Chapter 3. The KNN classifier was trained using the three mentioned distance 

metrics on a dataset from Knowledge Discovery in Databases (KDD). The results in terms of 

accuracy, sensitivity and specificity are depicted in Figure 2.2, 2.3and 2.4 respectively 

(Mulak & Talhar, 2015). 

𝐴𝐴2 

𝐴𝐴1 

7-nearest neighbours Class A 

Class B 

𝐴𝐴2 

𝐴𝐴1 

3-nearest neighbours 

Class A 

Class B 
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Figure 2.2: Accuracy comparison Figure 2.3: Sensitivity comparison 

It is evident from Figure 2.2 that the Manhattan distance was the most accurate. The 

comparative results using sensitivity are shown in Figure 2.3. In terms of sensitivity, the 

Manhattan distance was the most successful when compared to the Euclidean and 

Chebychev distances. , The specificity rate is described for the three distance metrics Figure 

2.4 and again, the Manhattan distance proved better than the other two distance metrics. 

 

Figure 2.4: Distance metrics compared in terms of specificity (Mulak & Talhar, 2015) 

 

Henley and Hand (1996) proposed the KNN classifier as a method to assess credit 

worthiness of consumers. The KNN classifier was compared with traditionally used methods 

such as the Linear Regression, LR and DT. A data set consisting of “bad” and “good” credit 
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consumers from a large mail order company was used. The KNN method’s performance was 

better in predicting consumer credit risk when compared to the traditional methods. The KNN 

classifier was compared with the Fuzzy Multivariate Rule Building Expert System (FuRES), 

Artificial Neural Networks (ANN), Canonical Variates Analysis (CVA), Classification and 

Regression Trees (CART) and the Discriminate Partial Least Squares (DPLS) in 

classification of pyrolysis mass spectra (Alsberg et al, 1997). Two pyrolysis mass data sets 

were used to solve the classification problem. The DPLS and ANN methods achieved the 

highest accuracy in classification of both data sets, followed by FuRES and KNN methods. 

Although the KNN classifier did not achieve the highest accuracy, the results showed that it 

was competitive with the other methods. 

2.5: RELATED RESEARCH STUDIES IN SOUTH AFRICA 

Davidson (2002) proposed a method to estimate non-technical losses. In the study,  sources 

of non-technical losses were identified as; non-payment of electricity bills, unauthorised line 

tapping and diversion, and, losses due to faulty meters and equipment etc. According to 

Davidson (2002), the cost associated with non-technical losses can be estimated using the 

following equation 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝐸𝐸𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 +𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 

where, 

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = Unit cost of electricity, 

𝐸𝐸𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 = Total system loss defined as the difference between energy generated and 

delivered, 

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = Maintenance and additional operation costs, 

𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶 = Technical loss cost component. 

To estimate the cost of non-technical losses, the magnitude of technical losses, 

maintenance costs, operational costs, and other additional costs, needs to be evaluated.  

The relationship between the distribution of data and a classifier performance was studied by 

van der Walt and Barnard (2006). The data was simulated using a multivariate Normal 

distribution. Six different classifiers, namely the NB classifier, the Gaussian classifier, the 

DT, the KNN classifier, the multi-layer perceptron (MLP) and SVM, were used to design 

three experiments with different scenarios.  In experiment 1, data sets for correlated and 

uncorrelated variables were simulated and each data set had three classes. For the data 

with correlated variables, the Gaussian classifier had the lowest error rate in comparison to 
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the other classifiers. The error rate is defined as the number of observations that are 

incorrectly classified, and will be formally defined in Chapter 3. The NB classifier achieved 

the lowest error rate over all the uncorrelated data sets in experiment 1. Experiment 2 

involved various data sets with noise added to the output data. The aim of this experiment 

was to study the effect of noise in choosing the optimal value of k in the KNN classifier. It 

was found that the value of k increases monotonically as the noise in the output data 

increases. In the third and final experiment, two-dimensional data with different standard 

deviation was used to study the effect of a constant distance metric use by the KNN 

classifier. It was found that the KNN classifier performs poorly with high error rate when a 

constant distance metric is used over different data sets (van der Walt & Barnard, 2006). 

Doorduin et al.(2004) used simulations and models based on prepaid electricity consumption 

to discuss the feasibility of using  remote check meters to measure the magnitude of electric 

energy losses and electricity theft in a low voltage reticulation network. The study concluded 

that mobile remote check meters can be used to detect illegal consumption of electricity. 

Potential fraudulent consumers can then be inspected to confirm the simulated results. 

Another study involved the use of the DT and the NB classifier to detect malware infections 

on a network (Stalmans & Irwin, 2011). The analysis was performed on  network traffic from 

a large South African university as well as a local school. The results demonstrated that the 

NB classifier outperformed that of the DT. 

There is no study known by the author that used data mining algorithms for the detection of 

non-technical losses in South Africa. However, some of these algorithms have been 

employed in other areas, such as image segmentation (van der Merwe & Engelbrecht, 

2003), computer science (Stalmans & Irwin, 2011), and medical diagnostic (Johnson, 2012).  

2.6: CHAPTER SUMMARY 

The objective of this study was to propose an electricity fraud detection model. A review of 

the literature demonstrated that data mining and nonparametric statistical methods have 

been used extensively in fraud detection. The most popular methods include the Artificial 

Neural Networks, Decision Trees, Support Vector Machines, Naïve Bayes, and k-Nearest 

Neighbour. In electricity fraud detection, the most widely used nonparametric statistical 

method is Support Vector Machines. The Support Vector Machines have been found to be 

theoretical, easy to analyse, data driven and robust (Jaya & Tamilselvi, 2013). In fraud 

detection, this method outperforms other classifiers such as the Artificial Neural Networks, 

Logistic Regression and Discriminant Analysis (Ravisankar et al, 2011). The originality of 

this study is in the use of the Support Vector Machines method together with the Naïve 
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Bayes method, which is fast and easy to use (Rish, 2001) and the k-Nearest Neighbour 

method, to propose a model for the detection of fraudulent electricity consumption. There is 

no evidence of the use of these methods in the detection of electricity fraud in South Africa.  
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CHAPTER 3: RESEARCH METHODOLOGY AND DATA 
 

3.1: INTRODUCTION  

Statistical data classification is a form of data analysis that can be used to extract useful 

information from data. Such analysis is used to build models or classifiers to describe 

important data classes. For instance, a classifier can be used to classify a bank loan 

application as either “safe” or “risky”. Another example would be assigning an email to 

“spam” or “not spam”, or classifying a credit card transaction as either “fraudulent” or “not 

fraudulent” (Jaya & Tamilselvi, 2013). There are many applications of data classification, 

including fraud detection, target marketing, manufacturing and medical diagnosis etc. In this 

study, statistical data classification was used to analyse non-technical losses. In this chapter, 

techniques for statistical data classification and the background theory to analyse non-

technical losses are discussed. 

3.2: STATISTICAL DATA CLASSIFICATION 

Data classification is a two-step process. The first step, called the “training phase” involves 

building a classifier from a set of data using a classification algorithm. In this step a 

classification algorithm builds a classifier by learning from a training set comprising database 

tuples and their corresponding labels (Kohavi, 1995). A tuple is characterised by an 𝑛𝑛-

dimensional vector, 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) showing 𝑛𝑛 measurements made on the tuple from 𝑛𝑛 

database attributes, 𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛, respectively. Each attribute represents a feature of 𝑋𝑋. 

Each tuple is assumed to belong to a predefined class which is determined by another 

attribute called “class label”. Each value on the “class label” attribute serves as a category or 

a class, and these values are discrete and unordered. The individual tuples making up the 

training set are called the training tuples. There are two types of training phase, namely 

“supervised learning” and “unsupervised learning”. In “supervised learning”, the class label of 

each tuple is known, whereas in “unsupervised learning”, the class labels are not known in 

advance (Kohavi, 1995). 

In the second step, a test set is used to evaluate performance of the learned classifier, this is 

called the “testing phase”. This set consists of test tuples and associated class labels. These 

tuples are randomly selected from the general data set and were not used to build the 

classifier. It is conventional to designate two thirds of the data as training set and the 

remaining one third as a test set (Kohavi, 1995). “Accuracy of a classifier on a given test set 

is the proportion of test set tuples that are correctly classified by the classifier” (Han & 
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Kamber, 2006). When evaluating performance, the class label of each test tuple is compared 

with the class label predicted by a classifier for that tuple. If the accuracy of a classifier is 

acceptable, then that classifier can be used to predict data tuples with unknown class labels. 

Data with unknown labels are referred to as “previously unseen” data. In addition to 

accuracy, sensitivity and specificity were used to evaluate performance of classifiers. 

Sensitivity and specificity are formally defined in Section 3.8. 

3.3: DATA ACQUISITION AND INTEGRATION 

The data was acquired from the NMBM in Microsoft Office Excel format and stored in 

relational tables in Microsoft SQL Server Management Studio 2014. Pre-processing was 

performed in order to transform the raw data into appropriate format for the subsequent 

analysis. The data consisted of 247 552 customers for a period of 24 months from March 

2013 to February 2015. 

Depicted in Table 3.1 is the structure of the data for a particular month. The “ATTP 

Customer” column indicates whether or not a customer was eligible for free basic electricity. 

Those who were eligible, were appointed a “Yes” and any remaining customers, a “No”. The 

tariff code was assigned to a customer based on where the customer resided. Units billed 

indicated the customer’s electricity consumption for the whole month in kWh. The customer’s 

electricity consumption for all the months on the database were merged into one table using 

SQL Server 2014 Management Studio queries. Each customer was given an identity called 

customers’ id, which were integers ranging from 1 to 247 552. The merged data is 

summarised in Table 3.2. 

Table 3.1: Electricity customers’ information for a particular month 

Meter number ATTP 
customer 

Tariff code Units billed 
(kWh) 

Address 

Meter Number 1 Yes T01 36.00 Address 1 

⋮ ⋮ ⋮ ⋮ ⋮ 

Meter Number 247 552 No A32 256.71 Address 247 552 
 

Table 3.2: Electricity customers’ consumptions in kWh 

Customer’s 
Id 

Mar 2013 Apr 2013 May 2013 Jun 2013 … Feb 2015 

1 467.7 470.5 432.9 418.0 … 512.7 
⋮ ⋮ ⋮ ⋮ ⋮ … ⋮ 

247 552 595.9 676.6 679.9 710.5 … 788.8 
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The following line graph (Figure 3.1) illustrates the total consumption for each of the months 

recorded in Table 3.2. The integers on the horizontal axis correspond to the 24 months of 

the period starting from March 2013 and ending in February 2015, where, month one 

corresponds to March 2013.There is is no apparent seasonality within each month, as the 

data show some cyclic behaviour with a period of 12 months. There was no apparent trend 

in the data during this period. 

 
Figure 3.1: Line graph for total consumption in kWh per month 

The data was pre-processed prior to statistical assessment in order to correct 

inconsistencies and to remove noisy data (i.e. data with incorrect attribute values). Noisy 

data arise from a number of sources, for example; the wrong address or multiple addresses 

assigned to a meter number, a faulty data collection instrument,  human or computer errors  

at data entry, or during data transmission, inconsistencies in naming convention or data 

code used, and,  inconsistent formats for input fields such as date. 

The data in Table 3.2 was filtered for extraction of customer load profiles and features. SQL 

Server 2014 Management Studio queries were used to remove all the duplicates in the 

monthly kWh consumption data, all the customers that had zero consumption (0 kWh) 

throughout the whole 24 month period, and all the customers who registered after the first 

month. Duplicates were removed to avoid redundancy in the data.  All customers with zero 
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consumption throughout the period, and the customers who registered after the first month, 

were manually inspected and did not form part of the subsequent analysis. After customer 

filtering, only 110 740 customer records were found usable for statistical assessment and 

these formed the population of this study. 

Inspections were performed on randomly selected customers in the Nelson Mandela Bay 

region in order to identify fraudulent and honest customers.  A total of 3 156 customers were 

inspected during the period dated March 2015 to December 2015. Of these, 2420 were 

classified as clean cases and 736 as fraudulent. The status of the electricity meters for these 

customers was tested using electrical engineering devices. All customers found to have 

committed fraud were tagged in the database as “fraudulent” and honest customers as 

“clean”. The 3 156 inspected customers were extracted from the population of 110 740 

customers Table 3.4. Each inspected customer was given either a “-1”, if the customer was 

clean, or a “1”, if the customer was fraudulent. This coding was used to transform categorical 

values into numerical values. The structure of this data is shown in Table 3.3. 

Table 3.3: The sample data used for statistical analysis  

Customer id* Mar-13 (kWh) Apr-13 (kWh) … Feb-15 (kWh) Class label 

1 240.5 192.5 … 334.4 -1 
2 787.2 862.1 … 292.9 1 
3 459.3 419.1 … 711.0 -1 
4 128.5 128.5 … 121.5 1 
⋮ ⋮ ⋮ … ⋮ ⋮ 

3 155 153.9 96.2 … 83.6 -1 
3 156 115.1 141.8 … 158.8 1 

 Daily average consumptions were computed for each customer on the 24 month database. 

This was achieved by taking the monthly consumption and dividing it by the number of days 

in each corresponding month. These daily average consumptions were selected as features 

related to customer’s load profiles (Nagi et al, 2008). A customer’s load profile was 

characterised by the vector 𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛] , 𝑖𝑖 = 1,2, … ,𝑁𝑁, where 𝑁𝑁 =3 156 was the total 

number of customers in the sample and 𝑛𝑛 = 24, the total number of months. Each customer 

had a load profile characterised by 24 features. Table 3.4 documents typical daily load 

profiles for different customers. 
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Table 3.4: Daily load profiles of 3 156 customers with 24 features 

Customer id* Mar-13 (kWh) Apr-13 (kWh) … Feb-15 (kWh) Class label 

1 7.7581 6.4167 … 11.9429 -1 
2 25.3935 28.7367 … 10.4607 1 
3 14.8161 13.9700 … 25.3929 -1 
⋮ ⋮ ⋮ … ⋮ ⋮ 

3 156 3.7129 4.7267 … 5.6714 1 
 

3.4: DATA NORMALISATION 

In statistical classification, data is normalised into a form appropriate for analysis. Each load 

profile is normalised by scaling its values so that they fall within a small specified interval. 

Normalisation speeds up the training phase and prevents attributes with initially large values 

from outweighing those with initial small ones. Various techniques are used for data 

normalisation, such as min-max normalisation, z-score normalisation and normalising by 

decimal scaling (Han & Kamber, 2006). 

If a load profile, 𝑋𝑋𝑖𝑖 has a minimum value of 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖 and a maximum value of 𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑖𝑖, then, in 

min-max normalisation, the original data is linearly transformed by mapping a value, 𝑥𝑥𝑖𝑖𝑖𝑖, of 𝑋𝑋𝑖𝑖 

to 𝑥𝑥𝑖𝑖𝑖𝑖∗  in the range [𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥∗ 𝑖𝑖,𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥
∗
𝑖𝑖] by calculating 

𝑥𝑥𝑖𝑖𝑖𝑖∗ =
𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖

 𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑖𝑖
�𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥∗𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥∗ 𝑖𝑖� +𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥∗ 𝑖𝑖. 

In z-score normalisation, the values of an attribute are normalised using the mean and the 

standard deviation of the attribute. A value, 𝑚𝑚, of an attribute,𝐴𝐴 , is normalised to 𝑚𝑚∗ by 

computing 

𝑚𝑚∗ =
𝑚𝑚 − 𝜇𝜇𝐴𝐴
𝜎𝜎𝐴𝐴

, 

where 𝜇𝜇𝐴𝐴 and 𝜎𝜎𝐴𝐴 are the mean, and standard deviation, of the attribute A respectively. 

Normalising, by decimal scaling,  moves the decimal point of the original value. The original 

value, 𝑥𝑥𝑖𝑖𝑖𝑖  ,of a load profile, 𝑋𝑋𝑖𝑖 , is normalised to 𝑥𝑥𝑖𝑖𝑖𝑖∗  by calculating  

𝑥𝑥𝑖𝑖𝑖𝑖∗ =
𝑥𝑥𝑖𝑖𝑖𝑖
10𝐶𝐶

, 
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where 𝑡𝑡 is the smallest integer, such that the max��𝑥𝑥𝑖𝑖𝑖𝑖∗ �� < 1. 

The z-score normalisation is useful when the minimum and maximum values of the attributes 

are not known. Normalisation by decimal scaling and z-score normalisation tend to change 

the values of the original data by a large margin. In contrast, the min-max normalisation 

preserves the relationships between the attributes. Another advantage of the min-max 

normalisation is that the new interval can be determined in advance, which is not possible in 

the other two methods. 

After considering the limitations and advantages of the three methods, it was decided to use 

the min-max normalisation to normalise the daily average consumptions shown in Table 3.4. 

These daily average consumptions were normalised such that all the values fell within the 

interval [0,1] (Nagi et al, 2008). The daily average consumptions were normalised as follows 

𝑁𝑁𝑁𝑁 =
𝑁𝑁 − min(𝑁𝑁)

max(𝑁𝑁) −min(𝑁𝑁), 

where 𝑁𝑁 represents the daily average consumption of a customer, min(𝑁𝑁) and max(𝑁𝑁) are 

minimum and maximum values in the feature set respectively. The normalised data was then 

used for statistical analysis, the methods of which are discussed in the following sections. 

The theory of SVM is presented in the following Section, 3.5, and the NB and the KNN 

methods are discussed in Sections 3.6 and 3.7 respectively. These three methods were 

implemented in the subsequent building and testing of the SVM, NB and KNN classifiers. 

3.5: SUPPORT VECTOR MACHINES 

The SVM method is used to classify linear and nonlinear data. For linear data, two cases 

exist - the case when the data is linearly separable, and when it’s linearly inseparable (Boser 

et al.,1992). In this section, the methodology followed to classify linear and nonlinear data 

using linear and nonlinear SVM classifiers respectively, is discussed. The linear SVM 

classifier for separable cases is presented in Section 3.5.1 and for inseparable cases, 

Section 3.5.2. The nonlinear SVM classifier is introduced in Section 3.5.3.  

3.5.1: LINEARLY SEPARABLE DATA 

In this section, the SVM method is discussed using a binary problem for the case when data 

is linearly separable.  Let 𝐷𝐷 be a given training set with associated training tuples 𝑋𝑋𝑖𝑖 and 

class labels, 𝑦𝑦𝑖𝑖, 𝑖𝑖 = 1,2,3, … ,𝑑𝑑, where 𝐷𝐷 is defined as follows 
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𝐷𝐷 = �

𝑋𝑋1 𝑦𝑦1
𝑋𝑋2 𝑦𝑦2
⋮ ⋮
𝑋𝑋𝑑𝑑 𝑦𝑦𝑑𝑑

�. 

Each 𝑦𝑦𝑖𝑖 can take one of two values, either −1 or 1, that is, 𝑦𝑦𝑖𝑖  𝜖𝜖 {−1,1}, corresponding to 

“clean” and “fraudulent” cases respectively. To help with visualisation, let’s consider a case 

where there are only two input attributes 𝐴𝐴1 and 𝐴𝐴2, as depicted in Figure 3.2. The data 

shown in Figure 3.2 is linearly separable as there exists a straight line separating all the 

tuples of class 1 from those of class 2. It is evident that there are infinitely many straight lines 

that can be drawn to separate the tuples of these two classes. When the SVM classifier s 

trained, it searches for the best straight line to separate the data with minimum classification 

error on previously unseen tuples. This best straight line is called the decision boundary. If 

there were only three input attributes, the decision boundary would be the separating plane. 

In general, in an 𝑛𝑛-dimensional space, where there are 𝑛𝑛 input attributes, the decision 

boundary is a hyperplane. 

 
Figure 3.2:  2-D training data that are linearly separable (Han & Kamber, 2006) 

In the SVM method, the decision boundary is the hyperplane with maximum margin. To 

understand the concept of a margin consider Figure 3.3 and 3.4.These illustrate two possible 

hyperplanes and their associated margins. Both hyperplanes correctly classified all the data 

tuples, with no classification error. However, the hyperplane in Figure 3.3 has a smaller 

margin when compared to the hyperplane in Figure 3.4.    

𝐴𝐴2 

𝐴𝐴1 

       Class 1, 𝑦𝑦 = 1 (Fraudulent customer) 

         Class 2, 𝑦𝑦 = −1 (Clean customer) 
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Figure 3.3: Small margin hyperplane   Figure 3.4: Large margin hyperplane 

The hyperplane with the larger margin is more accurate at classifying future data tuples than 

that with the smaller margin. This is because hyperplanes with large margins are likely to 

have a better generalisation error than those with small margins. Generalisation error is 

defined as a measure of how accurately an algorithm is able to predict output values for 

previously unseen data (Steinbach, Vipin, & Tan, 2006). Classifiers that produce 

hyperplanes with small error margin are likely to be affected by model over-fitting and tend to 

generalise poorly on unseen data (Steinbach et al, 2006) 

Structural risk minimisation (SRM) is a statistical learning principle that relates the margin of 

a linear classifier to its generalisation error (Steinbach et al, 2006). The SRM principle 

provides an upper bound of a generalisation error 𝑅𝑅, with probability 1 − 𝜂𝜂 as: 𝑅𝑅 ≤ 𝑅𝑅𝑒𝑒 +

𝜑𝜑 �ℎ
𝑑𝑑

, log(𝜂𝜂)
𝑑𝑑

�, where 𝜑𝜑 is a monotone increasing function of model capacity ℎ, 𝑅𝑅𝑒𝑒 is the 

training error and 𝑑𝑑 is the number of training tuples. The capacity of a linear classifier is 

inversely proportional to its margin. Classifiers with small margins have higher capacity and 

are more capable of fitting many training sets. However, according to the SRM principle, as 

the classifier’s capacity increases, the generalisation error bound will also increase. 

Therefore is it desirable to have linear classifiers whose decision boundaries have maximum 

margins and  respectively smaller generalisation error bounds. The SVM classifier is one of 

the classifiers for which the SRM principle holds (Steinbach et al, 2006). 

3.5.2: THE LINEAR SVM CLASSIFIER: SEPARABLE CASE 

A linear SVM is a classifier that searches for a linear hyperplane with the largest margin. For 

this reason, a linear SVM classifier is known as a maximum margin classifier. To understand 

how a SVM classifier searches for such boundary, the definitions of a decision boundary and 

the margin of a linear classifier are required.  

𝐴𝐴2 

𝐴𝐴1 

Small margin 

𝐴𝐴2 

𝐴𝐴1 

Large margin 
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DECISION BOUNDARY OF A LINEAR SVM CLASSIFIER 

Consider a binary classification problem consisting of 𝑑𝑑 training tuples. Each tuple is 

denoted by,(𝑋𝑋𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑑𝑑, where 𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛] corresponds to an attribute set 

for the 𝑖𝑖𝐶𝐶ℎ tuple. Let 𝑦𝑦𝑖𝑖  𝜖𝜖 {−1,1} be the class label of a training tuple. For any linear SVM 

classifier, the boundary decision can be expressed as 

𝑊𝑊 ∙ 𝑋𝑋 + 𝑏𝑏 = 0, 

where 𝑊𝑊 is a weight vector , and 𝑏𝑏 is a scalar, called the bias, and 𝑊𝑊 ∙ 𝑋𝑋 is a dot product of 

𝑊𝑊 and 𝑋𝑋. 

 
 Figure 3.5: Decision boundary and a margin of SVM classifier for separable case 

Depicted in Figure 3.5 is a two-dimensional training set consisting of two attributes 𝐴𝐴1 and 

𝐴𝐴2. A decision boundary that separates the training tuples into their respective classes is 

shown with the solid black line, namely, 𝐻𝐻. All the tuples located on this line must satisfy the 

equation,  𝑊𝑊 ∙ 𝑋𝑋 + 𝑏𝑏 = 0. For example, if 𝑋𝑋𝑎𝑎 and 𝑋𝑋𝑏𝑏 are two tuples located on the decision 

boundary then 

     𝑊𝑊 ∙ 𝑋𝑋𝑎𝑎 + 𝑏𝑏 = 0 

and 

        𝑊𝑊 ∙ 𝑋𝑋𝑏𝑏 + 𝑏𝑏 = 0 . 

where 𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑎𝑎 is a vector parallel to the decision boundary and is directed from 𝑋𝑋𝑎𝑎 to 

𝑋𝑋𝑏𝑏 (Steinbach et al, 2006). As the dot product 𝑊𝑊 ∙ (𝑋𝑋𝑏𝑏 − 𝑋𝑋𝑎𝑎) is equal to zero, the direction of 

𝐴𝐴2 

𝐴𝐴1 

       Class 1, 𝑦𝑦 = 1  

         Class 2, 𝑦𝑦 = −1  

𝑚𝑚 

𝐻𝐻 

𝐻𝐻1 

𝐻𝐻2 
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𝑊𝑊  is perpendicular to the decision boundary. Any training tuples that belong to class 1 

satisfy the following equation 

𝑊𝑊 ∙ 𝑋𝑋𝐶𝐶 + 𝑏𝑏 = 𝑘𝑘, 

where 𝑘𝑘 > 0, and for any training tuple belonging to class 2, the following must hold 

𝑊𝑊 ∙ 𝑋𝑋𝑐𝑐 + 𝑏𝑏 = 𝑘𝑘′, 

where 𝑘𝑘′ < 0. Therefore, the class label of any test tuple, 𝑍𝑍, can be predicted as 

𝑦𝑦 = �
1 𝑖𝑖𝑖𝑖 𝑊𝑊 ∙ 𝑍𝑍 + 𝑏𝑏 > 0
−1 𝑖𝑖𝑖𝑖 𝑊𝑊 ∙ 𝑍𝑍 + 𝑏𝑏 < 0. 

THE MARGIN OF A LINEAR SVM CLASSIFIER 

The two hyperplanes, 𝐻𝐻1 and 𝐻𝐻2, which are parallel to the decision boundary, 𝐻𝐻, on Figure 

3.5 can be expressed algebraically as 

𝐻𝐻1:𝑊𝑊 ∙ 𝑋𝑋1 + 𝑏𝑏 = 1, 

𝐻𝐻2:𝑊𝑊 ∙ 𝑋𝑋2 + 𝑏𝑏 = −1. 

The margin of the decision boundary,𝑚𝑚, is given by the distance between these two 

hyperplanes. Subtracting the two equations, the margin of the decision boundary, 𝑚𝑚 can be 

calculated as follows 

𝑊𝑊 ∙ (𝑋𝑋1 − 𝑋𝑋2) = 2 

‖𝑊𝑊‖× 𝑚𝑚 = 2 

∴ 𝑚𝑚 =
2

‖𝑊𝑊‖ . 

LEARNING A LINEAR SVM CLASSIFIER 

The training phase of the SVM method involves the estimation of the weight vector, 𝑊𝑊 and 

the bias, 𝑏𝑏, from a given training dataset. 𝑊𝑊 and 𝑏𝑏 are called the parameters of the SVM 

model, and are chosen in such a way that for any training tuple, 𝑋𝑋𝑖𝑖 

𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 ≥ 1 , if 𝑦𝑦𝑖𝑖 = 1 and 𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 ≤ −1 if 𝑦𝑦𝑖𝑖 = −1. 
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These inequalities can be combined into one inequality, as follows 

𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) ≥ 1, 𝑖𝑖 = 1,2, … ,𝑑𝑑 . 

For the SVM classifier, the margin of the decision boundary must be the maximum margin. 

Finding this maximum margin is equivalent to minimising the following objective function 

𝑖𝑖(𝑊𝑊) =
‖𝑊𝑊‖2

2
 . 

The inequality,𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) ≥ 1, and the function, 𝑖𝑖(𝑊𝑊) = �𝑊𝑊‖2

2
 , are used to formally define 

the learning task involved in the linear SVM method, for the case when data is linearly 

separable.  

Definition 1 (Linear SVM: Separable Case) (Steinbach et al, 2006) 

Formally, the learning task in separable linear SVM is the optimisation problem 

min
𝑊𝑊

‖𝑊𝑊‖2

2
 

subject to 𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) ≥ 1, 𝑖𝑖 = 1,2, … ,𝑑𝑑. 

The above problem is a convex optimisation one, as the objective function is quadratic and 

the constraints are linear. This convex optimisation problem can be solved by the standard 

Lagrange multiplier method.  

Assume that 𝜆𝜆𝑖𝑖 ≥ 0 , for  𝑖𝑖 = 1,2, … ,𝑑𝑑. The Lagrangian for the optimisation problem is then 

given by 

𝑁𝑁𝑝𝑝 =
1
2
‖𝑊𝑊‖2 −�𝜆𝜆𝑖𝑖(𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1)

𝑑𝑑

𝑖𝑖=1

, 

where the parameters 𝜆𝜆𝑖𝑖 are Lagrange multipliers for 𝑖𝑖 = 1,2, … ,𝑑𝑑. The Lagrange multiplier 

method involves writing a constrained problem as an unconstrained one. The problem in 

Definition 1 is equivalent to the following unconstrained problem 

min𝑁𝑁𝑝𝑝 =
1
2
‖𝑊𝑊‖2 −�𝜆𝜆𝑖𝑖(𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1) .

𝑑𝑑

𝑖𝑖=1
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To minimise 𝑁𝑁𝑝𝑝 , derivatives with respect to 𝑊𝑊 and 𝑏𝑏 must be taken, and set to zero yielding 

𝜕𝜕𝑁𝑁𝑝𝑝
𝜕𝜕𝑊𝑊

= 0 ⇒𝑊𝑊 = �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖

𝑑𝑑

𝑖𝑖=1

, 

𝜕𝜕𝑁𝑁𝑝𝑝
𝜕𝜕𝑏𝑏

= 0 ⇒�𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑑𝑑

𝑖𝑖=1

 . 

To find feasible solutions for 𝑊𝑊, 𝑏𝑏 and 𝜆𝜆𝑖𝑖, the inequality constraints in Definition 1 re 

transformed to equality constraints. This transformation lead to the following Karush-Kuhn-

Tucker (KKT) conditions, 𝜆𝜆𝑖𝑖 ≥ 0 and 𝜆𝜆𝑖𝑖[𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1] = 0 . 

These KKT conditions suggest that the Lagrange multipliers 𝜆𝜆𝑖𝑖, are zero, except when         

𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) = 1. Training tuples, where 𝜆𝜆𝑖𝑖 > 0 lie on the hyperplanes 𝐻𝐻1 and 𝐻𝐻2 (refer to 

Figure 3.5) and are known as support vectors. All the remaining training tuples, that lie 

neither on 𝐻𝐻1 nor𝐻𝐻2, have  𝜆𝜆𝑖𝑖 = 0. From the equations,  𝑊𝑊 = ∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑑𝑑
𝑖𝑖=1  and 𝜆𝜆𝑖𝑖[𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 +

𝑏𝑏) − 1] = 0, it is evident that the parameters 𝑊𝑊 and 𝑏𝑏 depend only on the support vectors. 

The problem of solving the quadratic optimisation can be simplified by writing the Lagrangian 

as the function of Lagrange multipliers only (this is known as dual problem). Substituting 

𝑊𝑊 = ∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑑𝑑
𝑖𝑖=1  and ∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0𝑑𝑑

𝑖𝑖=1  into min𝑁𝑁𝑝𝑝 = 1
2
‖𝑊𝑊‖2 − ∑ 𝜆𝜆𝑖𝑖(𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1) 𝑑𝑑

𝑖𝑖=1 ,yields 

the dual Lagrangian 

𝑁𝑁𝑑𝑑 = �𝜆𝜆𝑖𝑖 −
1
2
�𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖 ∙ 𝑋𝑋𝑖𝑖 .
𝑖𝑖,𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 

The main differences between primal and dual Lagrangians are summarised in Table 3.5. 

Table 3.5: The main differences between primal and dual Lagrangians 

Primal Lagrangian Dual Lagrangian 
Involves only Lagrange multipliers and 

training data. 

Involves Lagrange multipliers, training data 

and the parameters of decision boundary. 

Minimisation problem. Maximisation problem. 

To obtain the Lagrange multipliers 𝜆𝜆𝑖𝑖, the dual optimisation problem is solved using 

quadratic programming numerical methods. Once 𝜆𝜆𝑖𝑖 are known, the support vectors are 

used to obtain the parameters 𝑊𝑊 and 𝑏𝑏 of the decision boundary using the equations, 𝑊𝑊 =
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∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖𝑑𝑑
𝑖𝑖=1  and 𝜆𝜆𝑖𝑖[𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1] = 0 . Therefore, the decision boundary can now be 

written as, ∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑋𝑋𝑖𝑖 ∙ 𝑋𝑋𝑑𝑑
𝑖𝑖=1 + 𝑏𝑏 = 0, and any test tuple, 𝑍𝑍, classified as  

𝑖𝑖(𝑍𝑍) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑊𝑊 ∙ 𝑍𝑍 + 𝑏𝑏) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛��𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 ∙ 𝑧𝑧 + 𝑏𝑏
𝑑𝑑

𝑖𝑖=1

� . 

If 𝑖𝑖(𝑍𝑍) = 1, then the test tuple is classified as a positive class, that is class 1, and if 𝑖𝑖(𝑍𝑍) =

−1, the test tuple  classified as a negative class, namely, class 2. 

3.5.3: THE LINEAR SVM CLASSIFIER: INSEPARABLE CASE 

The data shown in Figure 3.6 is similar to that in Figure 3.5. However,  two new tuples, P 

and Q, are illustrated in Figure 3.6. This is an example of a data set that is linearly 

inseparable, as the linear hyperplane with the maximum margin cannot correctly classify all 

the tuples. This hyperplane, 𝐻𝐻, misclassify both P and Q with some training error. Note that 

even though the linear hyperplane, 𝐼𝐼, with a smaller margin, classify all the tuples with zero 

training error, 𝐻𝐻 is still the preferred hyperplane as a decision boundary due to its larger 

margin and corresponding smaller generalisation error. The formulation of the SVM classifier 

in the previous Section constructs decision boundaries that did not accommodate training 

errors. To incorporate small training errors in the model, a soft margin approach is used, 

allowing the SVM method to construct a linear decision boundary even when the data is not 

linearly separable. Therefore, the problem in Definition 1 is re-formulated to incorporate the 

case when the data is linearly inseparable.  

 
  Figure 3.6: Decision boundary and a margin of SVM classifier for inseparable case 

In order to do this, a positive-valued slack variable, (𝜉𝜉𝑖𝑖), is introduced, resulting in the 

constraints of the optimisation problem in Definition 1 being 

𝐴𝐴2 

𝐴𝐴1 

       Class 1, 𝑦𝑦 = 1  

         Class 2, 𝑦𝑦 = −1  

𝐻𝐻 

P 

Q 
I 
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𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖    if 𝑦𝑦𝑖𝑖 = 1, 

𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 ≤ −1 + 𝜉𝜉𝑖𝑖  if 𝑦𝑦𝑖𝑖 = −1, 

∀𝑖𝑖 ∶ 𝜉𝜉𝑖𝑖 > 0. 

The objective function must also be modified to penalise a decision boundary with large 

values of slack variables. The modified objective function is given by 

𝑖𝑖(𝑊𝑊) =
‖𝑊𝑊‖2

2
+ 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑑𝑑

𝑖𝑖=1

, 

where 𝐶𝐶 is the parameter representing the penalty for misclassifying training tuples. The 

choice of the parameter 𝐶𝐶 depends on the model’s performance on the validation set. The 

parameter 𝐶𝐶 is termed the capacity. The primal Lagrangian of the new optimisation problem 

can be expressed as follows 

𝑁𝑁𝑝𝑝 =
‖𝑊𝑊‖2

2
+ 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑑𝑑

𝑖𝑖=1

−�𝜆𝜆𝑖𝑖[𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1 + 𝜉𝜉𝑖𝑖]
𝑑𝑑

𝑖𝑖=1

−�𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 . 

The inequality constraints are then transformed to equality constraints using KKT conditions, 

as follows 

𝜉𝜉𝑖𝑖 ≥ 0, 𝜆𝜆𝑖𝑖 ≥ 0, 𝜇𝜇𝑖𝑖 ≥ 0 , 

𝜆𝜆𝑖𝑖[𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏) − 1 + 𝜉𝜉𝑖𝑖] = 0, 

𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖 = 0.  

Note that 𝜆𝜆𝑖𝑖 ≠ 0 if the training tuples lie on the lines 𝑊𝑊 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 = ±1 or 𝜉𝜉𝑖𝑖 > 0. Lagrange 

multipliers, 𝜇𝜇𝑖𝑖 are equal to zero for any misclassified training tuples. When the data is linearly 

separable the slack variables, 𝜆𝜆𝑖𝑖,  are equal to zero, however for linearly inseparable data, 

the slack variables are positive and less than the capacity, that is, 0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐶𝐶. The Lagrange 

multipliers can be obtained by solving the dual problem numerically, using quadratic 

programming techniques. Consequently, these multipliers can be used to find the 

parameters 𝑊𝑊 and 𝑏𝑏 of the decision boundary. The SVM formulations explained in this 

Section and in Section 3.5.2 provide a methodology for constructing linear decision 

boundaries that classify training tuples into their respective classes. The following Section 

describes an approach to be adopted when using the SVM method to data sets that have 

non-linear decision boundary. 
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3.5.4: THE NON-LINEAR SVM CLASSIFIER 

In the case of a non-linear SVM classifier, the decision boundary is non-linear. For this 

reason, the data is transformed from the original coordinate space 𝑋𝑋 into a transformed 

space, Φ(𝑋𝑋), such that a linear decision boundary can be used to separate training tuples in 

the transformed space. The drawback of this approach is the potential to suffer from the 

curse of dimensionality for problems with high-dimensional data. However, this can be 

avoided by using a method known as the kernel trick. The linear decision boundary in the 

transformed space is expressed as 

𝑊𝑊 ∙ Φ(𝑋𝑋) + 𝑏𝑏 = 0. 

Definition 2 (Non-Linear SVM) 

The learning task for a non-linear SVM can be formalised as the following optimisation 

problem:min
𝑊𝑊,𝑏𝑏

1
2
‖𝑊𝑊‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑑𝑑

𝑖𝑖=1  

subject to 𝑦𝑦𝑖𝑖(𝑊𝑊 ∙ Φ(𝑋𝑋) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖  , 𝑖𝑖 = 1,2, … ,𝑑𝑑. 

The dual Lagrangian of this optimisation problem is given by 

𝑁𝑁𝑑𝑑 = �𝜆𝜆𝑖𝑖 −
1
2
�𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖

 

𝑖𝑖,𝑖𝑖

Φ(𝑋𝑋𝑖𝑖) ∙ Φ�𝑋𝑋𝑖𝑖�.
𝑑𝑑

𝑖𝑖=1

 

The Lagrange multipliers, 𝜆𝜆𝑖𝑖 are obtained using numerical methods for quadratic 

programming. The parameters, 𝑊𝑊 and 𝑏𝑏, of the linear decision boundary in the transformed 

space are then determined using the following equations 

𝑊𝑊 = �𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝑋𝑋𝑖𝑖),
𝑑𝑑

𝑖𝑖=1

 

𝜆𝜆𝑖𝑖 �𝑦𝑦𝑖𝑖 ��𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝑋𝑋𝑖𝑖) ∙ Φ�𝑋𝑋𝑖𝑖� + 𝑏𝑏
𝑑𝑑

𝑖𝑖=1

� − 1� = 0, 

where 0 ≤ 𝜆𝜆𝑖𝑖 ≤ 𝐶𝐶,∀𝑖𝑖. Finally, any training, 𝑍𝑍 , can be classified by using the following 

equation:  𝑖𝑖(𝑍𝑍) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑊𝑊 ∙ Φ(𝑍𝑍) + 𝑏𝑏) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛�∑ 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖Φ(𝑋𝑋𝑖𝑖) ∙ Φ(𝑍𝑍) + 𝑏𝑏𝑑𝑑
𝑖𝑖=1 �. 
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Learning a non-linear SVM classifier involves calculating the dot product between the pairs 

of vectors in the transformed space, that is, Φ(𝑋𝑋𝑖𝑖) ∙ Φ�𝑋𝑋𝑖𝑖�. This can be computationally costly 

and the problem can suffer from the curse of dimensionality. To avoid these issues, the 

kernel trick method is used. 

Definition 3 (The Kernel trick)  (Steinbach et al, 2006) 

The dot product Φ(𝑋𝑋𝑖𝑖) ∙ Φ(𝑋𝑋𝑖𝑖) can be regarded as a measure of similarity between any two 

tuples, 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖, in the transformed space. The Kernel trick is the method used to compute 

similarities in that space using the original attribute set. The similarity function, 𝐾𝐾 is defined 

as 

𝐾𝐾�𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖� = Φ(𝑋𝑋𝑖𝑖) ∙ Φ�𝑋𝑋𝑖𝑖�. 

The function, 𝐾𝐾, is known as the kernel function. A few issues needs to be addressed when 

using the non-linear SVM method. Firstly, the form of the mapping function, Φ, is not known. 

Secondly, working in high-dimensional feature space could be very costly. The kernel trick 

addresses both problems. Firstly, the kernel function is the function of the original attribute 

set, thus the form of the mapping function, Φ, need not be known. Secondly, since the 

computations re performed in the original space, issues related to the curse of 

dimensionality can be avoided. Mercer‘s Theorem provide conditions under which the kernel 

function can be expressed as the dot product of any two input vectors. The kernel function 

used in non-linear SVM must satisfy the Mercer’s Theorem. 

Mercer’s Theorem (Steinbach et al, 2006) 

A kernel function 𝐾𝐾 can be expressed as 

𝐾𝐾(𝑢𝑢, 𝑣𝑣) = Φ(𝑢𝑢) ∙ Φ(𝑣𝑣), 

If, and only if, for any function 𝑠𝑠(𝑥𝑥) such that ∫𝑠𝑠(𝑥𝑥)2𝑑𝑑𝑥𝑥 is finite, then 

�𝐾𝐾(𝑥𝑥,𝑦𝑦)𝑠𝑠(𝑥𝑥)𝑠𝑠(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 ≥ 0. 
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The radial basis function (rbf) kernel, also known as Gaussian kernel, is a kernel function 

based on Euclidean distance (Nagi et al, 2008). In this study, Gaussian kernel was used to 

write the dot product Φ(𝑋𝑋𝑖𝑖) ∙ Φ(𝑋𝑋𝑖𝑖) as function of original data as follows 

𝐾𝐾�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖� = Φ(𝑋𝑋𝑖𝑖) ∙ Φ�𝑋𝑋𝑖𝑖� = 𝑒𝑒−𝛾𝛾�𝑋𝑋𝑖𝑖−𝑋𝑋𝑗𝑗�
2

 . 

Note that the Gaussian kernel has only one parameter, namely, 𝛾𝛾. This parameter is called 

the rbf kernel parameter. Another important parameter in the SVM method is the capacity 𝐶𝐶, 

which was introduced in Section 3.5.3. The rbf kernel parameter and the capacity are 

obtained experimentally. Performance measures are used to find the optimal values of, 𝛾𝛾, 

and 𝐶𝐶, several of which are presented in Section 3.8. The training framework proposed for 

SVM parameter optimisation is shown in Figure 3.7.  

 
Figure 3.7: Flowchart of training engine (Nagi et al. 2008) 

 

In summary, the SVM is a supervised learning method used for statistical classification of 

linear and non-linear data. Given a set of training tuples, each belonging to one of two 

classes, the SVM training algorithm builds a classifier that assign new tuples to one of the 

two classes. Training is performed by finding the parameters of the decision boundary, which 

is a hyperplane with largest margin. The decision boundary is then used to classify tuples 

with unknown class labels. 

Find optimal SVM 
parameters (C, 𝛾𝛾), using 

Grid-Search 

10-fold cross-validation 
using classifier data 
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No 
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3.6: NAÏVE BAYES  

The NB classifiers are statistical classifiers that predict class membership with associated 

probabilities. That is, in addition to classifying a given tuple, a Bayes classifier also assigns a 

probability that a given tuple belongs to a particular class. Bayes classification is based on 

Bayes Theorem. Bayes classifiers exhibit high accuracy and speed when applied to high 

dimensional data (Han & Kamber, 2006). 

Naïve Bayes classifiers assume that the effect of an attribute value on a given class is 

independent of the values of the other attributes. This assumption is called class conditional 

independence (Han & Kamber, 2006). The class conditional independence is made to 

simplify computations and for this reason is said to be naïve. Bayesian belief networks are 

graphical models that account for class conditional dependence. For the purpose of this 

study, only NB classifiers will be discussed and subsequently used for classification. 

3.6.1: BAYES THEOREM 

Let 𝑋𝑋 be a given data tuple, characterised by measurements made on a set of 𝑛𝑛  attributes, 

𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛, such that, 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛). In Bayesian Theory, 𝑋𝑋 is considered the 

evidence. Define, 𝐻𝐻 as the hypothesis that the data tuple, 𝑋𝑋 , belongs to a particular class, 𝐶𝐶. 

In the NB classification, the objective is to compute the probability that the hypothesis, 𝐻𝐻,  is 

true, given observed tuple, 𝑋𝑋, that is 𝑃𝑃(𝐻𝐻|𝑋𝑋). This probability, 𝑃𝑃(𝐻𝐻|𝑋𝑋), is called the posterior 

probability of 𝐻𝐻, conditioned on 𝑋𝑋. The probability that the hypothesis is true, 𝑃𝑃(𝐻𝐻), is called 

the prior probability of 𝐻𝐻. 𝑃𝑃(𝑋𝑋) is the prior probability of 𝑋𝑋. The posterior probability of 𝐻𝐻 

conditioned on 𝑋𝑋, can be computed using the Bayes Theorem. 

 

Bayes Theorem (Han & Kamber, 2006) 

𝑃𝑃(𝐻𝐻|𝑋𝑋) =
𝑃𝑃(𝑋𝑋|𝐻𝐻)𝑃𝑃(𝐻𝐻)

𝑃𝑃(𝑋𝑋)
. 

where the probabilities, 𝑃𝑃(𝐻𝐻),𝑃𝑃(𝑋𝑋|𝐻𝐻),   𝑃𝑃(𝑋𝑋) are estimated from the given data. The following 

Section presents a methodology for using Bayes Theorem to build a NB classifier. 
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3.6.2: NAÏVE BAYES CLASSIFICATION 

The NB classification works as follows (Han & Kamber, 2006): 

1. Let 𝐷𝐷 be a given training data set with associated class labels, where each training tuple 

is described by a vector 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛). 

2. Suppose that there are 𝑡𝑡 classes,𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝐶𝐶. Given a tuple, 𝑋𝑋, the NB classifier will 

predict that 𝑋𝑋  belongs to the class having the highest posterior probability, conditioned 

on  𝑋𝑋. That is, the NB classifier predicts that any tuple 𝑋𝑋 belongs to the class 𝐶𝐶𝑖𝑖 if and 

only if  

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) > 𝑃𝑃�𝐶𝐶𝑖𝑖�𝑋𝑋� for 1 ≤ 𝑗𝑗 ≤ 𝑡𝑡, 𝑗𝑗 ≠ 𝑖𝑖. 

Thus 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) is maximized, the class 𝐶𝐶𝑖𝑖 for which 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) is maximised is called 

maximum posteriori hypothesis. The posterior probability, 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) is computed using 

Bayes theorem as 

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) =
𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖)

𝑃𝑃(𝑋𝑋)
. 

3. Since 𝑃𝑃(𝑋𝑋) is the same for all classes, only 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖) need to be maximised. The 

class prior probabilities can be estimated by 

𝑃𝑃(𝐶𝐶𝑖𝑖) = �𝐶𝐶𝑖𝑖,𝐷𝐷�
𝑑𝑑

,  

where �𝐶𝐶𝑖𝑖,𝐷𝐷� is the number of training tuples of a class 𝑖𝑖 in 𝐷𝐷, and 𝑑𝑑 is the total number of 

training tuples in 𝐷𝐷.  

4. The values of the attributes are assumed to be conditionally independent of one another 

given the class label of the tuple, therefore for 𝑖𝑖 = 1,2, … , 𝑡𝑡, 

𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) = �𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

 

= 𝑃𝑃(𝑥𝑥1|𝐶𝐶𝑖𝑖) × 𝑃𝑃(𝑥𝑥2|𝐶𝐶𝑖𝑖) × … × 𝑃𝑃(𝑥𝑥𝑛𝑛|𝐶𝐶𝑖𝑖). 

The probabilities 𝑃𝑃(𝑥𝑥1|𝐶𝐶𝑖𝑖), 𝑃𝑃(𝑥𝑥2|𝐶𝐶𝑖𝑖), … ,𝑃𝑃(𝑥𝑥𝑛𝑛|𝐶𝐶𝑖𝑖) are estimated from the training tuples. 

The continuous valued attributes are assumed to follow a Normal distribution with mean, 

𝜇𝜇 and standard deviation, 𝜎𝜎 defined by the density function 

𝑠𝑠(𝑥𝑥, 𝜇𝜇,𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎
𝑒𝑒

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2 , 

such that 𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶𝑖𝑖) = 𝑠𝑠�𝑥𝑥𝑘𝑘 ,𝜇𝜇𝐶𝐶𝑖𝑖 ,𝜎𝜎𝐶𝐶𝑖𝑖�, where 𝜇𝜇𝐶𝐶𝑖𝑖  and 𝜎𝜎𝐶𝐶𝑖𝑖 are mean and standard deviation of 

the values of 𝐴𝐴𝑘𝑘 for training tuples of class 𝐶𝐶𝑖𝑖. 

5. To predict the class label of 𝑋𝑋, 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖) is computed for each class 𝐶𝐶𝑖𝑖. The NB 

classifier then predicts that the class label of tuple 𝑋𝑋 is 𝐶𝐶𝑖𝑖 if and only if 

𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖) > 𝑃𝑃�𝑋𝑋�𝐶𝐶𝑖𝑖�𝑃𝑃�𝐶𝐶𝑖𝑖� for 1 ≤ 𝑗𝑗 ≤ 𝑡𝑡, 𝑗𝑗 ≠ 𝑖𝑖. 
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Despite the fact that the independence assumptions are often inaccurate, the NB classifier 

has properties that make it remarkably useful in practice. In particular, the separation of the 

class conditional feature distributions means that each distribution can be independently 

estimated as one-dimensional distribution. This avoids problems stemming from the curse of 

dimensionality. Another advantage of the NB classifier is its ability to explicitly associate 

probabilities to each predicted tuple. 

3.7: K-NEAREST NEIGHBOUR METHOD 

The k-nearest neighbour is a non-parametric method that is used for the purpose of 

statistical classification. This method, first introduced in the early 1950’s was computationally 

expensive when given high dimensional data. As a result, KNN only gained popularity in the 

1960’s when improved computational power was available (Han & Kamber, 2006).  

3.7.1:  K-NEAREST NEIGHBOUR CLASSIFICATION 

The KNN classifiers are said to learn by analogy as they compare a given test tuple with k 

training tuples that are similar to it. The training and test tuples are described by 

𝑛𝑛 −dimensional vectors in a 𝑛𝑛 −dimensional pattern space. Given a test tuple with unknown 

class label, the KNN classifier will search for k training tuples in the pattern space that are 

closest to the given test tuple. The “closeness” is defined in terms of distance metrics, such 

as Euclidean distance and City Block distance. The k training tuples are called the k nearest 

neighbours, hence the name k-Nearest Neighbour. The test tuple is then given the label that 

is most common among its k nearest neighbours. The Euclidean and the City Block distance 

metrics are defined as follows 

The Euclidean distance between any two tuples, 𝑋𝑋1 = (𝑥𝑥11,𝑥𝑥12, … , 𝑥𝑥1𝑛𝑛) and 𝑋𝑋2 =

(𝑥𝑥21,𝑥𝑥22, … , 𝑥𝑥2𝑛𝑛) is defined as 

𝑑𝑑(𝑋𝑋1,𝑋𝑋2) = ��(𝑥𝑥1𝑖𝑖 − 𝑥𝑥2𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

, 

and the City Block distance (also known as the Manhattan distance) between two tuples, 

 𝑋𝑋1 = (𝑥𝑥11,𝑥𝑥12, … , 𝑥𝑥1𝑛𝑛) and 𝑋𝑋2 = (𝑥𝑥21,𝑥𝑥22, … , 𝑥𝑥2𝑛𝑛) is defined as 

𝑑𝑑1(𝑋𝑋1,𝑋𝑋2) = �|𝑥𝑥1𝑖𝑖 − 𝑥𝑥2𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

. 
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The determination of the value of k and choosing a distance metric are done experimentally. 

The value of k heavily depends on the empirical data. Performance measures such as 

sensitivity, error rate or accuracy are used to determine the best value of k (Han & Kamber, 

2006). The sensitivity and other performance measures are formally defined in Section 3.8. 

In this study, sensitivity was chosen as a primary measure of accuracy and was used to find 

the optimal value of k.  

In this study, the procedure followed in finding the value of k is described as follows  

• Sensitivity was computed for each value of k from 1 to 100.  

• For each value of k, 500 different training and test sets combinations were used to 

compute sensitivity estimates for that particular value of k.  

• The average sensitivity was then computed for each value of k.  

• The averages of sensitivity estimates were then plotted against the values of k.  

• The value of k that maximises the sensitivity was chosen to train the final KNN 

classifier.  

The procedure described above was repeated twice, first, using the Euclidean distance and 

secondly, the City Block distance. The distance metric that produced highest sensitivity 

estimates was then used to train the final KNN classifier. 

3.8: CLASSIFIER PERFORMANCE MEASURES 

After a classifier has been trained, the following questions arise: 

1. How accurately can the classifier predict class labels of previous unseen data? 

2. How can performance of different trained classifiers be compared? 

3. What is performance? 

4. How can performance be estimated? 

The aim of this section is to address the above questions. Section 3.8.1 presents measures 

to determine performance of a classifier. These measures can be implemented using the 

holdout method, which is discussed in Section 3.9.  

3.8.1: PERFORMANCE MEASURES OF A CLASSIFIER 

Using a training data set to build a classifier, as well as using the same training set to 

estimate performance, can pose the danger of model over-fitting. In fact, if a training set is 

used to estimate the performance, then the estimates will be optimistic of the true 
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performance. For this reason, a test set, with class labelled tuples that were not used to train 

the classifier, s used to estimate the performance of a classifier.  

The following are the definitions of various performance measures for a binary classification 

problem 

Table 3.6: Definitions of several performance measures (Han & Kamber, 2006) 

Performance 
measure   

Definition 

Accuracy The proportion of test tuples that are correctly classified by the 

classifier. 

Misclassification 

rate /Error rate 

The proportion of test tuples that are incorrectly classified by the 

classifier. 

Positive tuples The tuple of main class of interest (e.g. Fraudulent customers). 

Negative tuples The tuple of the other class (e.g. Clean customers). 

True positives Positive tuples that are correctly classified by the classifier. 

True negatives Negative tuples that are correctly classified by the classifier. 

False positive  Negative tuple that are incorrectly classified as positive tuples. 

False negative Positive tuples that are incorrectly classified as negative tuples. 

Sensitivity  Proportion of positive tuples that are correctly classified. 

Specificity  Proportion of negative tuples that are correctly classified. 

The confusion matrix is an important tool used to analyse how well a classifier classifies 

tuples of different classes. A confusion matrix for two classes, 𝐶𝐶1 and 𝐶𝐶2 is shown in Table 

3.7.  

Table 3.7: A confusion matrix for positive and negative tuples 

 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 

𝑪𝑪𝟏𝟏 true positives false negatives 

𝑪𝑪𝟐𝟐 false positives true negatives 

Sensitivity, specificity and accuracy are defined algebraically as follows (Han & Kamber, 

2006) 

𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 =
𝑡𝑡_𝑝𝑝𝑝𝑝𝑠𝑠
𝑝𝑝𝑝𝑝𝑠𝑠

, 
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𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 =
𝑡𝑡_𝑛𝑛𝑒𝑒𝑠𝑠
𝑛𝑛𝑒𝑒𝑠𝑠

, 

𝑚𝑚𝑠𝑠𝑠𝑠𝑢𝑢𝑎𝑎𝑚𝑚𝑠𝑠𝑦𝑦 = 𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 �
𝑝𝑝𝑝𝑝𝑠𝑠

𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑛𝑛𝑒𝑒𝑠𝑠
� + 𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 �

𝑛𝑛𝑒𝑒𝑠𝑠
𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑛𝑛𝑒𝑒𝑠𝑠

�. 

Where; 𝑡𝑡_𝑝𝑝𝑝𝑝𝑠𝑠 is the number of true positive tuples correctly classified, 𝑝𝑝𝑝𝑝𝑠𝑠 is the total number 

of positive tuples, 𝑡𝑡_𝑛𝑛𝑒𝑒𝑠𝑠 the number of true negative tuples correctly classified, and, 𝑛𝑛𝑒𝑒𝑠𝑠 the 

total number of negative tuples.   

3.9: THE HOLDOUT METHOD 

The Holdout method was used to calculate performance measures from a given empirical 

data. This method was also useful to compare different trained classifiers. In this method, a 

given data set was randomly partitioned into a training set and a test set. It is a convention to 

allocate two-thirds of the data to the training set and the remaining one-third to the test set 

(Kohavi, 1995).The training set was used to build a classifier and the test set to estimate the 

performance of the learned classifier. This method is illustrated graphically in Figure 3.8. The 

random subsampling method is a variation of the holdout method, in which the holdout 

method is repeated 𝑝𝑝 times (Han & Kamber, 2006). The overall accuracy was then defined 

as the average of accuracy estimates obtained from each iteration. Sensitivity, specificity 

and error rate estimates were defined in a similar manner under the random subsampling 

method. The advantage of using the random subsampling method is that several estimates 

can be calculated for each performance measure. This enabled clarity on how the estimates 

varied from sample to sample. 

 
Figure 3.8: Performance evaluation with the holdout method (Han & Kamber, 2006) 
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3.10: FRAMEWORK FOR CUSTOMER CLASSIFICATION 

In this Section, the framework of the approach followed to design and to develop the 

classification model is presented. Depicted in Figure 3.9 is the general framework for the 

approach adopted to propose the fraud detection model. The Holdout method was repeated 

500 times and for each case, sensitivity, specificity and error rates determined for the SVM, 

NB and KNN classifiers. Sensitivity, specificity and error rate were then used to compare the 

performance of these classifiers.  

 
  Figure 3.9: General framework for the design and development of fraud detection model 

3.11: CHAPTER SUMMARY 

In this chapter, the methodology followed to derive the fraud detection model was presented. 

The method involved using three classification algorithms to derive three classifiers, namely, 

the SVM, NB and KNN classifiers. These were compared and the classifier with highest 

fraud detection ability chosen. The ability to detect electricity fraud was determined using the 

sensitivity, specificity and error rate estimates. The random subsampling method was used 

to build and test the said classifiers. The results are presented in the following Chapter.
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CHAPTER 4: RESULTS AND DISCUSSION 
 

4.1: INTRODUCTION 

The aim of this study was to design a classifier that could be used as a model to identify and 

detect electricity fraud in NMBM. Three classification algorithms, Support Vector Machines 

(SVM), Naïve Bayes (NB) and k-Nearest Neighbour (KNN) were used to train three 

classifiers. Matlab R2012a (7.14.0.739) 32 bit (win32), was used for the purpose of training 

and testing the classifiers. The performance of these classifiers was then evaluated and 

compared, the results of which are presented this chapter. Firstly, the results with respect to 

the SVM classifier are discussed, followed by those of the NB and KNN classifiers. Finally, 

the results of all three classifiers are compared in Section 4.5. 

4.2: SUPPORT VECTOR MACHINES RESULTS 

The holdout method was used to train and test the SVM classifier using the empirical data in 

Table 3.3. The dataset consisted of 3 156 customers, 2420 of which were classified as 

fraudulent, and 736 as clean, cases. This data set was randomly partitioned into a training 

and a test set. Roughly two thirds of the data tuples formed a training set and the remaining 

one third a test set. The training set consisted of 2 102 customers, of which approximately 

78% were clean, and 22% fraudulent, cases. By comparison, the test set comprised of 1 052 

customers, of which 75% were clean and 25% were fraudulent. The number of customers 

allocated to training and test sets is shown in Table 4.1. 

Table 4.1: The summary of training and test sets for the SVM classifier 

 Clean Fraudulent Total 
Training set 1 632 470 2 102 

Test set 788 264 1 052 

Total  2 420 734 3 154 

The SVM classifier was trained on the training set and the performance thereof estimated 

using the test set.  The test set was then used to calculate the values in the confusion 

matrix. The corresponding confusion matrix, illustrating the number of correct and incorrect 

classifications, is shown in Table 4.2. The columns correspond to the true labels, and the 

rows to the class labels predicted by the SVM classifier. The numbers of correct 

classifications are the values in the main diagonal of the confusion matrix, and 

misclassifications, the off diagonal values. Ideally, all the values should lie in the main 
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diagonal and all the off diagonal values should be zero. This would mean that the classifier 

correctly classifies all the test tuples. However in practice, the off diagonal values are hardly 

zeros. Thus, a good classifier is characterised by having off diagonal values that are very 

small in comparison to the values in the main diagonal. 

Table 4.2: Confusion matrix for the SVM classifier 

Pr
ed

ic
te

d 
la

be
ls

  True labels 
Fraudulent Clean Total 

Fraudulent 209 104 313 

Clean 55 684 739 

Total 264 788 1052 

 

From the above confusion matrix, sensitivity, specificity, error rate and accuracy estimates 

were calculated as follows 

𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 =
209
264

× 100% = 79.17%, 

𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 =
684
788

× 100% = 86.80%, 

𝑒𝑒𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 𝑎𝑎𝑚𝑚𝑡𝑡𝑒𝑒 =
55 + 104

1052
× 100% = 15.11%, 

The sensitivity represented the percentage of fraudulent cases correctly identified by the 

classifier. This was an important measure, given the aim of this study, and a desirable 

estimate of this measure would be at least 80%. The number of clean cases was always 

very large when compared to the number of fraudulent ones, and as such, the specificity 

estimate was always be greater than the sensitivity. The high specificity rate implied that 

there would be very small number of clean cases identified as fraudulent. The error rate was 

another imperative measure to consider, as it measured the percentage of misclassified 

customers. 

 According to the confusion matrix in Table 4.2, the SVM classifier produced a sensitivity 

which was just above to 79%. The specificity estimate was well above 86% and the error 

rate estimated to be close to 15%. Although all three measures produced satisfactory 

results, the sensitivity estimate was still preferred to be at least 80%. 
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The measures calculated from Table 4.2 were attained using one training set and one test 

set. Would the results be the same if different training and test sets were used? To address 

this question, the random subsampling method was used. In this method, the holdout 

method was repeated 500 times. That is, 500 combinations of training and test sets were 

used to train and test the SVM classifier respectively. Sensitivity, specificity and error rate 

estimates were calculated for each iteration. The results for the 500 iterations, with 

associated averages and standard deviations for each measure, are depicted in Table 4.3. 

These measures were then plotted on one set of axes against the number of the iteration.  

The resulting line graphs are shown in Figure 4.1. All of the estimates were relatively 

constant over different test sets. The sensitivity estimate was around 80% for all the test 

sets, while the specificity estimate was constant, at approximately 88%, and the error rate 

close to 14% for all the sets. The standard deviation, for all the estimates, was less than 3%. 

Table 4.3: Performance measure estimates for SVM classifier before parameter optimisation 

Number of the iteration Sensitivity Specificity Error rate 
1 0.7556 0.9021 0.1293 

2 0.7826 0.8936 0.1331 

⋮ ⋮ ⋮ ⋮ 

500 0.7917 0.8680 0.1511 
Average: 0.7954 0.8812 0.1389 

Standard deviation: 0.0254 0.0114 0.0093 
 

 
Figure 4.1: Various performance measures obtained in 500 iterations for SVM classifier 
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4.2.1: PARAMETER OPTIMISATION 

Experimentally it was found that the optimal values of the capacity and the radial basis 

function (rbf) parameter were, 𝐶𝐶 = 2.1639 and 𝛾𝛾 = 1.3542 respectively. The SVM classifier 

was then trained and tested using the optimal parameters. The confusion matrix calculated 

using the optimal parameters is shown in Table 4.4. This confusion matrix was then used to 

calculate the sensitivity, specificity and error rate estimates.  

Table 4.4: SVM confusion matrix with optimum parameters 
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  True labels 
Fraudulent Clean Total 

Fraudulent 199 102 301 

Clean 42 709 751 

Total 241 811 1052 

 

𝑆𝑆𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 =
199
241

× 100% = 82.57%, 

𝑆𝑆𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 =
709
811

× 100% = 87.42%, 

𝐸𝐸𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 𝑎𝑎𝑚𝑚𝑡𝑡𝑒𝑒 =
42 + 102

1052
× 100% = 13.69%. 

Even though the specificity and the error rate estimates did not change significantly after 

parameter optimisation, the sensitivity estimate improved from 80% to 82.5%. Again, to test 

whether this change was significant or due to chance, the random subsampling method was 

used with the optimal parameters to obtain 500 different estimates for each performance 

measure. These estimates are shown in Table 4.5 and corresponding line graphs depicted in 

Figure 4.2.  

Table 4.5: Performance measure estimates for SVM classifier after parameter optimisation 

Number of the iteration Sensitivity Specificity Error rate 
1 0.8434 0.8618 0.1426 
⋮ ⋮ ⋮ ⋮ 

500 0.8257 0.8742 0.1369 
Average: 0.8249 0.8663 0.1434 

Standard deviation: 0.0223 0.0113 0.0087 
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Figure 4.2: SVM performance measures with optimised parameters 

 

The random subsampling method was useful to determine how each performance measure 

changed over different test sets. In this Section, this method was used extensively to 

evaluate the performance of the SVM classifier. The SVM classifier produced satisfactory 

results to predict fraudulent usage of electricity using kWh consumption, with average 

sensitivity of approximately 83%, specificity of roughly 87% and error rate close to 14%. In 

the following Sections, the random subsampling was also used to evaluate the performance 

of the NB and the KNN classifiers. This method was also used to compare the performance 

of the three classifiers of interest in Section 4.5. 

4.3: NAÏVE BAYES CLASSIFICATION RESULTS 

The NB classifier was built using the holdout method and the given empirical data. The 

training and test sets are summarised in Table 4.6. Depicted in Table 4.7 is a confusion 

matrix corresponding to the test set.  
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Table 4.6: The summary of training and test set for NB classifier 

 Clean Fraudulent Total 
Training set 1622 480 2102 

Test set 798 254 1052 

Total  2420 734 3154 

 

Table 4.7: NB confusion matrix on a particular test set  
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  True labels 
Fraudulent Clean Total 

Fraudulent 179 120 299 

Clean 75 678 753 

Total 254 798 1052 

 

The following are estimates calculated using the confusion matrix in Table 4.7. 

𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 =
179
254

× 100% = 70.47%, 

𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 =
678
798

× 100% = 84.96%, 

𝑒𝑒𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 𝑎𝑎𝑚𝑚𝑡𝑡𝑒𝑒 =
75 + 120

1052
× 100% = 18.54%, 

The specificity estimate was approximately 85%, and the sensitivity close to 70%, with an 

error rate of less than 20%. Therefore, the NB classifier predicted clean cases with a high 

probability, almost 85%, whereas the probability of detecting fraudulent cases was lower, 

approximately 70%.  

To effectively evaluate the performance of the NB classifier, different samples of training and 

test sets were used to calculate the sensitivity, specificity and error rate estimates. The 

random subsampling method was used to provide 500 partitions of training and test sets. For 

each partition of training and test set, the sensitivity, specificity and error rates estimates 

were calculated, the results of which are shown in Table 4.8. 
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Table 4.8: The NB accuracy estimates for 500 combinations of training and test sets 

Number of the iteration Sensitivity Specificity Error rate 
1 0.7200 0.8354 0.1920 
2 0.7229 0.8431 0.1854 
3 0.6920 0.8466 0.1901 
⋮ ⋮ ⋮ ⋮ 

500 0.7047 0.8496 0.1854 
    

Average: 0.7331 0.8472 0.1795 
Standard deviation: 0.0254 0.0120 0.0102 

 

The results achieved from the 500 samples were consistent with those from the NB 

confusion matrix in Table 4.7. That is, the average sensitivity estimate was just above73%, 

with average specificity of around 85% with an average error rate of less than 20%. All the 

estimates had small sample variation, with standard deviations less than 3%. These 

estimates are graphically plotted in Figure 4.3. 

 

Figure 4.3: Performance measure for NB classifier 
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4.4: K-NEAREST NEIGHBOUR 

In the KNN method, a test tuple was given the class label most common amongst k training 

tuples closest to it. The similarity was measured in terms of distance metrics. Before the 

KNN classifier was trained, two important questions needed consideration. Firstly, what 

value of k should be used? Secondly, which distance metric should be applied? In this 

Section, the methodology followed in finding the optimum value of k and choosing the best 

distance metric is presented and the subsequent results of KNN classifier discussed. 

4.4.1: FINDING THE OPTIMUM VALUE OF K 

The optimum value of k was chosen from the sequence of values that grow linearly from 1 to 

100, that is, (1,2,3, … . ,100). For each value of k, the random subsampling method was used 

to calculate 500 estimates for sensitivity. This analytical routine was repeated twice, firstly 

using the Euclidean distance and then using the City Block distance. To minimise 

computational time, only sensitivity, which was equivalent to fraud detecting rate, was used 

as the performance measure. The results are presented in Table 4.9 and Table 4.10 

respectively for the Euclidean and the City Block distance metrics. 

Table 4.9: KNN sensitivity estimates for different values of k using Euclidean distance. 

Iteration number k=1 k=2 k=3 … k=10 … k=99 k=100 
1 0.5691 0.5397 0.6595 … 0.6420 … 0.5138 0.5451 

2 0.5858 0.5950 0.6781 … 0.6582 … 0.5323 0.5310 

3 0.5709 0.6409 0.6563 … 0.6423 … 0.5496 0.5403 

4 0.5991 0.6375 0.6429 … 0.7021 … 0.5792 0.5214 

5 0.5809 0.6275 0.6280 … 0.6574 … 0.5000 0.5583 

6 0.5837 0.5737 0.6111 … 0.6513 … 0.5519 0.5267 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

500 0.6513 0.5830 0.6154 … 0.7083 … 0.5394 0.5385 

         

Average: 0.6039 0.6056 0.6267 … 0.6460 … 0.5337 0.5373 

Standard deviation: 0.0318 0.0326 0.0305 … 0.0289 … 0.0267 0.0279 
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Table 4.10: KNN sensitivity estimates for different values of k using City Block distance 

Iteration number k=1 k=2 k=3 … k=10 … k=99 k=100 
1 0.7386 0.7000 0.7195 … 0.7778 … 0.6278 0.6667 
2 0.7149 0.6695 0.7352 … 0.7336 … 0.6545 0.7126 
3 0.6504 0.6496 0.7561 … 0.8049 … 0.6967 0.6923 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

500 0.6778 0.6417 0.7239 … 0.7804 … 0.5394 0.5385 
         

Average: 0.6820 0.6791 0.7167 … 0.7507 … 0.6852 0.6887 

Standard 
deviation: 0.0306 0.0309 0.0279 

… 
0.0263 

… 
0.0266 0.0256 

The average sensitivity estimates were calculated for each value of k and for each distance 

metric. The line graphs of average sensitivity versus the value of k is shown in Figure 4.4. It 

was evident that the City Block distance produced higher average sensitivity estimates when 

compared to the Euclidean distance. Thus, the City Block distance was chosen for the 

subsequent training and testing of the KNN classifier. Although the City Block distance 

yielded higher average sensitivity estimates, the values of k which yielded maximum 

average sensitivity estimates, ranging from 10 to 30, were not unique. The average of these 

values was 20, but as that is an even number, the optimum value of k was chosen to be 21. 

The odd number was chosen to avoid ties between the classes of k nearest neighbours. 

 
Figure 4.4: KNN average sensitivity estimates against the values of k 
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Using the City Block distance and k equal to 21, the KNN classifier was then trained and 

tested using the holdout method on the given empirical data. A confusion matrix for the KNN 

classifier is depicted in Table 4.11. 

Table 4.11: KNN confusion matrix for a particular test set 
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  True labels 
Fraudulent Clean Total 

Fraudulent 185 88 273 

Clean 61 718 779 

Total 246 806 1052 

The estimates for performance measures, obtained using the KNN confusion matrix are as 

follows 

𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 =
185
246

× 100% = 75.20%, 

𝑠𝑠𝑝𝑝𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 =
718
806

× 100% = 89.08%, 

𝑒𝑒𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎 𝑎𝑎𝑚𝑚𝑡𝑡𝑒𝑒 =
61 + 88

1052
× 100% = 14.16%, 

The accuracy estimates varied from sample to sample. To investigate this variation, the 

random subsampling method was used to calculate sensitivity, specificity and error rate 

estimates from 500 different samples of training and test set. For each iteration, a training 

set was used to train the KNN classifier, then a test set applied to calculate sensitivity, 

specificity and error rate estimates. The evaluation results are depicted in Table 4.12 and in 

Figure 4.5. 

Table 4.12: KNN accuracy estimates for 500 iterations 

Number of the iteration Sensitivity Specificity Error rate 
1 0.7610 0.8964 0.1359 
2 0.7259 0.9066 0.1397 
3 0.7609 0.8905 0.1378 
⋮ ⋮ ⋮ ⋮ 

500 0.7520 0.8908 0.1416 
Average: 0.7503 0.8980 0.1365 

Standard deviation: 0.0246 0.0105 0.0092 
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Figure 4.5: Performance measures for the KNN classifier 

The results from the confusion matrix were consistent with the averages calculated in Table 

4.12. The KNN classifier achieved average sensitivity of approximately 75%. The probability 

of correctly predicting clean cases was very high, almost 90%. The error rate was less than 

15%. 

4.5: COMPARISON OF THE THREE CLASSIFIERS 

In the previous Sections, individual performances of the SVM, NB and KNN classifiers were 

studied independently. In this Section, the performance of these classifiers were investigated 

collectively. That is, using the same training set, all three classifiers were trained and then 

tested on one test set. The random subsampling method was then used to compute 500 

estimates for each performance measure, namely, sensitivity, specificity and error rate. 

Finally, the performance of these classifiers was compared.  

Sensitivity estimates for the three classifiers of interest are shown in Table 4.13 and the 

corresponding line graphs plotted in Figure 4.6. The classifier with the highest sensitivity was 

the SVM, with an average rate of 83%. The KNN and the NB classifiers had approximately 

the same ability to detect fraudulent customers, with sensitivity rates of roughly 75% and 

73%, respectively. 
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Table 4.13: Sensitivity estimates comparison between the three classifiers 

Number of the iteration SVM KNN NB 
1 0.8536 0.7657 0.7113 

2 0.7759 0.6940 0.6897 

3 0.8268 0.7532 0.7532 

4 0.8093 0.7821 0.7743 

5 0.8511 0.7824 0.7443 

6 0.8452 0.7381 0.7421 

7 0.8392 0.7490 0.7647 

8 0.8306 0.7379 0.7379 

⋮ ⋮ ⋮ ⋮ 

500 0.8145 0.7783 0.7421 

 

Average: 0.8251 0.7500 0.7340 

Standard deviation: 0.024 0.028 0.027 

 

 

Figure 4.6: Graphical representation of sensitivity estimate for the three classifiers 



CHAPTER 4: RESULTS AND DISCUSSION 
 

48 
 

 

Depicted in Table 4.14 are various specificity rate estimates and their corresponding line 

graphs are illustrated in Figure 4.7. The KNN classifier proved to be more accurate than its 

competitors in predicting clean cases, with an average specificity close to 90%. The NB 

classifier performed the worst in terms of specificity, at roughly 85%, compared to the SVM 

classifier, which fared slightly better, with a probability of 87%.  

Table 4.14: Specificity estimates comparison between the three classifiers 

Number of the iteration SVM KNN NB 

1 0.8733 0.9016 0.8352 

2 0.8817 0.9085 0.8744 

3 0.8490 0.8794 0.8173 

⋮ ⋮ ⋮ ⋮ 

500 0.8700 0.8929 0.8315 

 

Average: 0.8661 0.8976 0.8461 

Standard deviation: 0.0121 0.0108 0.0131 

 

 

Figure 4.7: Graphical representation of specificity estimates for the three classifiers 
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All learned classifiers need to  have small error rates in order to guarantee that the lowest 

proportion of fraudulent cases are classified as clean, and vice versa. A good classifier is 

characterised by a small error rate. The SVM and KNN classifiers had jointly the smallest 

error rates, of roughly 14%, in comparison to the NB classifier, at 18%. Various error rate 

estimates are depicted in Table 4.15 and line graphs thereof shown in Figure 4.8 for the 

three classifiers. 

Table 4.15: Error rate estimates comparison between the three classifiers 

Number of the iteration SVM KNN NB 

1 0.1312 0.1293 0.1930 

2 0.1416 0.1388 0.1663 

3 0.1559 0.1483 0.1968 

⋮ ⋮ ⋮ ⋮ 

500 0.1416 0.1312 0.1873 

 

Average: 0.1435 0.1369 0.1801 

Standard deviation: 0.0096 0.0092 0.0105 

 

 

Figure 4.8: Graphical representation of specificity estimates for the three classifiers 
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4.6: CHAPTER SUMMARY 

In this chapter, the SVM, NB and KNN classification algorithms were used to build three 

classifiers. Statistical assessment of these classifiers was done and the performance thereof 

evaluated and compared using the sensitivity, specificity and error rate. The results are 

summarised in Figure 4.9. The SVM classifier demonstrated a high probability of correctly 

classifying the fraudulent cases with a rate of approximately 83%. In comparison, the KNN 

and the NB classifiers achieved a fraud detection rate of 75% and 73.4% respectively. The 

KNN classifier had the highest probability of correctly classifying the clean cases, followed 

by the SVM classifier and the NB classifier, which had the lowest classification rate in terms 

of the clean cases. The classifiers with the lowest misclassification rates were the KNN and 

the SVM ones, with error rates of approximately 14%. The NB classifier had an error rate of 

roughly 18%. 

 

Figure 4.9: The three classifiers compared in terms of sensitivity, specificity and error rate 

 

 

Average sensitivity Average  specificity Average error rate
SVM 82,51% 87,00% 14,35%
KNN 75,00% 89,29% 13,69%
NB 73,40% 83,15% 18,01%
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CHAPTER 5: CONCLUSION 
 

5.1: INTRODUCTION 

The purpose of this research study was to identify a statistical model to be applied in the 

detection of fraudulent electricity usage in NMBM. Such an intelligent model would predict 

fraudulent activities in electricity consumptions by detecting any abnormal usage patterns. 

Additional inspections were performed on potential fraudulent cases predicted by the model. 

Statistical classification algorithms were used to build three classifiers, of which the best 

classifier was used as the intelligent electricity fraud detection model. Generic algorithms, 

Support Vector Machines (SVM), Naïve Bayes (NB) and k-Nearest Neighbour (KNN) were 

utilised. The classifiers were built and tested on an empirical data set using the holdout and 

random subsampling methods. 

In this chapter, the findings presented in Chapter 4 are discussed and conclusions 

suggested. In Section 5.2, the performance of the SVM classifier is discussed, followed by 

those of the NB and KNN   classifiers in Sections 5.3 and 5.4 respectively.  A comparison of 

all three classifiers is discussed in the final Section, 5.5. 

5.2: THE SVM CLASSIFIER 

Classification results for the SVM classifier were affected by the choice of the rbf kernel 

parameter, 𝛾𝛾, and the capacity, 𝐶𝐶. Matlab R2012a, used to design and test the SVM 

classifier, had default parameters of, 𝛾𝛾 = 1 and 𝐶𝐶 = 1. Firstly, the SVM classifier was trained 

and tested using the default parameters.  Then the parameters were optimised and found to 

be,   𝛾𝛾 = 1.3542 and 𝐶𝐶 = 2.1639. The random subsampling method was then used to train 

and test the SVM classifier 500 times. Each time, sensitivity, specificity and error rate 

estimates were calculated. Subsequently, averages for each of these measures were 

calculated. This process was carried out both before, and after, parameter optimisation.  

The purpose of the proposed model was to detect fraudulent usage of electricity, and as 

such, sensitivity was nominated as the most significant measure of accuracy. The rationale 

for sensitivity, also referred to as the fraud detection rate, was that it measured the model’s 

ability to detect fraudulent cases. Although the emphasis focussed on sensitivity, the 

specificity and error rates were also important, hence all three measures were studied. 

On average, the error rate and the specificity were not affected by the SVM parameter 

optimisation, see Table 4.3 and Table 4.5. In contrast, the sensitivity rate increased from 
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approximately 80% to 83%. Thus, the SVM classifier, with optimised parameters, was used 

in the subsequent comparison of the three classifiers.  

5.3: THE NB CLASSIFIER 

The NB classifier assigned a posterior probability to each predicted tuple. In this study, a 

binary classification problem with classes, “fraudulent” and “clean” was solved. The historical 

electricity consumption data consisted of both fraudulent and clean customers. Training in 

Naïve Bayes was performed in such a way that, given the historical electricity consumption 

data, the probability that a customer was fraudulent, was computed and compared with the 

probability that the customer was clean. If the former probability was greater than the latter, 

that particular customer was classified as fraudulent, otherwise the customer was classified 

as clean. One of the test sets used to compute the performance measures for the NB 

classifier is shown in Table 5.1. This set consisted of 1 052 customers, of which 221 were 

fraudulent cases and 831 were clean. Under the columns, Mar-13, Apr-13,…,Feb-15, are 

normalised values of monthly kWh electricity consumptions, where, P(C|X) is the probability 

that the customer was clean given X, where X is 24-dimensional vector consisting of monthly 

kWh electricity consumptions for the 24 months period, and P(F|X) was defined similarly for 

the second class. 

Table 5.1: A test set for testing the NB classifier 

 ID** Mar-13 Apr-13 

 

⋯ Feb-15 True labels 
Predicted 

labels P(C|X) 

 

P(F|X) 
1 0.4812 1.0000 ⋯ 0.4974 Clean Clean 0.9980 0.0020 
2 1.0000 1.0000 ⋯ 0.9118 Clean Clean 1.0000 0.0000 
3 1.0000 0.5043 ⋯ 0.6615 Clean Clean 0.7075 0.2925 
4 0.6734 0.6354 ⋯ 0.5463 Fraudulent Fraudulent 0.3106 0.6894 
5 0.8874 0.8874 ⋯ 0.8391 Fraudulent Clean 1.0000 0.0000 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1052 1.0000 0.9593  0.6095 Fraudulent Fraudulent 0.0063 0.9937 

When the NB classifier was trained, the posterior probabilities, P(C|X) and P(F|X) were 

computed and compared. Whenever P(F|X) was greater than P(C|X), that particular 

customer was classified as fraudulent, otherwise the customer was classified as clean. 

These comparisons can be seen in Table 5.1. Note that these probabilities were not always 

1 and 0. For instance, there was a case where P(C|X) = 0.7075 and P(F|X) = 0.2925 for a 

particular customer and that customer was classified as clean as P(C|X) was greater than 

P(F|X). There was also one case when P(C|X)=0.3106 and P(F|X)=0.6894, and since P(F|X) 

was greater than P(C|X), that particular customer was classified as fraudulent. 
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The NB classifier was trained and tested using 500 different partitions of training and test 

sets. Each time 67% of the tuples were designated to the training set and 33% to the test 

set. Every time the NB classifier was tested, the sensitivity, specificity and error rate were 

computed. Finally, 500 estimates for each of these performance measures were obtained, 

see Table 4.8. 

As the number of clean cases was very large when compared to fraudulent ones, the 

average specificity was always higher than the average sensitivity. The NB classifier had a 

fraud detection rate (sensitivity) of roughly 73%, that is, out of every 100 fraudulent 

customers, the NB classifier correctly detected approximately 73. On average, the NB 

classifier detected clean cases, with probability close to 85%, together with an error rate of 

lower than 20%. 

5.4: THE KNN CLASSIFIER 

Before training the KNN classifier, the value of k was determined experimentally to be 21. 

The distance metric used to measure similarity between the unknown test tuple to its k-

nearest neighbours was the City Block distance. The rationale for using the City Block 

distance was that it performed better than the Euclidean distance, as seen in Figure 4.4. 

These results were consistent with findings of the study by Mulak and Tallar (2015). 

The value of k equals to 21 and the City Block distance were then used to train and test the 

KNN classifier. To account for variation in the training and test sets, the KNN classifier was 

trained and tested with 500 different training and test set partitions. Each time, the 

sensitivity, specificity and error rate estimates were calculated, the averages of which are 

summarised in Table 4.12. The KNN classifier produced a fraud detection rate close to 75%, 

with a very high specificity of roughly 90%, and small error rate of less than 14%. 

5.5: COMPARISON OF THE CLASSIFERS 

A flowchart illustrating the methodology followed in comparing the three classifiers is 

described in Figure 5.1. The loop started with p equals to one, the empirical data was then 

randomly partitioned into training set and test set. The training set was used to build the 

SVM, NB and KNN classifiers. These learned classifiers were used in conjunction with the 

test set in order to estimate accuracy, which was estimated by using the sensitivity, 

specificity and error rates. The value of p was then incremented in steps of one. When the 

value of p was less than or equal to 500, the above process was repeated. At the end of this 

procedure, 500 different estimates for the sensitivity, specificity and error rates were 
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attained. The averages of these estimates were calculated and the results thereof 

summarised in Table 5.2. 

Table 5.2: Average accuracy estimates  

 Estimates 
Performance 

measure 
SVM KNN NB 

Average sensitivity 82.51% 75.00% 73.40% 
Average  specificity 87.00% 89.29% 83.15% 
Average error rate 14.35% 13.69% 18.01% 

The error rate estimate for the NB classifier was significantly higher than that of the SVM and 

KNN classifiers, which had similar estimates by solely investigating the error rate, the SVM 

and the KNN classifiers received equal votes and the NB classifier minimum votes. 

However, the error rates were not sufficient to determine the classifiers’ ability to correctly 

classify previously unseen data. As a result, in addition to the error rate, the specificity and 

sensitivity were also compared.  The ability to correctly classify clean customers was similar 

for both the KNN and SVM classifiers, as evident by their almost equal estimates of 

specificity. The NB classifier performed poorly in correctly classifying the clean cases when 

compared to the other two classifiers. The specificity estimate for the NB classifier was close 

to 83%, and although this was an acceptable estimate, the SVM and KNN classifiers 

achieved higher estimates, of about 87% and 89% respectively. Prior to the consideration of 

the sensitivity, the SVM and the KNN classifiers were tied, and they both overshadowed the 

NB classifier. To break this tie, sensitivity estimates were also used in addition to the error 

rate and specificity estimates.  The NB classifier had the smallest sensitivity estimate, almost 

73%, followed by that of the KNN classifier, with roughly 75%. The SVM classifier had the 

highest sensitivity estimate, at approximately 83%, and as such, was deemed the best 

classifier. 
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Figure 5.1: Flowchart of the methodology followed in comparing the three classifiers 

 

5.6: CONCLUSION  

The ability of any classifier to correctly classify previously unseen data can be affected by 

the choice of the training and test sets. Hence, the classifiers developed in this study were 

trained and tested on several different training and test sets. The calculated estimates had 

small variations, as was evident from the standard deviations, which were small for all the 

accuracy estimates. The performance of a classifier was determined by how well it could 
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classify previously unseen tuples. Hence the test data set was used to evaluate the 

performance of the classifiers that were built. In this study, three classifiers were developed 

and used to classify test data sets. The SVM, the NB and the KNN classification algorithms 

were used to train the developed classifiers. The sensitivity, specificity and error rates were 

performance measures used in order to evaluate the classifiers’ performance. 

On average, the NB classifier erroneously classified customers with a rate of roughly 18%, 

which is high when compared to the 14% of the SVM and KNN classifiers. Fraudulent 

customers were correctly classified by the NB and the KNN classifiers, with probabilities 

close to 73% and 75% respectively. The sensitivity estimate for the NB classifier was the 

lowest. A possible reason for this was that the NB classifier assumed the values of the 

attributes were independent. The attributes used in this study may have been conditionally 

dependent. For future research, the Bayesian Belief network, which assumes conditional 

dependency, could be used instead of the Naïve Bayes. In contrast, the SVM classifier had a 

fraud detection rate of approximately 83%, better than the NB and KNN rates. The ability to 

correctly classify both clean and fraudulent cases, with probabilities of over 80%, gave the 

SVM classifier an edge over its competitors.  

This study proposed a classification model for the detection of non-technical losses in the 

NMBM. The proposed framework used the SVM method to build a fraud detection model for 

the classification of customers’ electricity consumption patterns. Results showed that this 

model was reliable in the identification of fraudulent electricity consumers in the metro. 

These consumers were inspected to confirm their status. Consumers that were found guilty 

were fined by the municipality. The implementation of the SVM method benefited the 

municipality in its handling of non-technical losses and resulted in tremendous savings. 
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APPENDICES  
 

APPENDIX A: SVM CLASSIFICATION MATLAB CODE 
 

clear 
clc 
%% In this program a SVM classifier is trained and tested using given data 
set 
  
%Read the data from microsoft excel file 
filename = 'Sample_with_labels.xlsx'; % Excel filename 
X = xlsread(filename,'B2:Y3157'); %X is a 3156 by 24 matrix 
y = xlsread(filename,'AA2:AA3157'); %y contain class labels 
[d,n] = size(X); % d is number of observations and n is number of variables 
  
%NORMALISE X 
XN = zeros(d,n); % XN is a matrix containing normalised values of X 
    for j = 1:d 
        XN(j,:) = (X(j,:)-min(X(j,:)))/range(X(j,:)); 
    end 
  
%Use random subsampling to obtain various accuracy estimmates 
p = 500; %p is the number of iterations 
specificity = zeros(p,1); 
sensitivity = zeros(p,1); 
error_rate = zeros(p,1); 
for i = 1:p 
     
% Create indices for training and test sets: 2/3 training: 1/3 test 
[train_indices, test_indices] = crossvalind('HoldOut', d,1/3); 
  
%Create training and test sets 
training_set = XN(train_indices,:); 
training_classlabels = y(train_indices); 
test_set = XN(test_indices,:); 
test_classlabels = y(test_indices); 
  
%Train the SVM model using training sets. 
svm_mdl = 
svmtrain(training_set,training_classlabels,'Kernel_Function','rbf','autosca
le',false,'rbf_sigma',1.3542,'boxconstraint',2.1639); 
  
%Classify the test set. 
predicted_classlabels = svmclassify(svm_mdl,test_set); 
  
%Check classification perfomance 
cp = 
classperf(test_classlabels,predicted_classlabels,'Positive',1,'Negative',0)
; 
  
specificity(i) = cp.Specificity; 
sensitivity(i) = cp.Sensitivity; 
error_rate(i) = cp.ErrorRate; 
  
end 
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 SVM PARAMETER OPTIMISATION CODE 
 

clear 
clc 
 
function yfit = ... 
    crossfun(xtrain,ytrain,xtest,rbf_sigma,boxconstraint) 
  
% Train the model on xtrain, ytrain,  
% and get predictions of class of xtest 
svmStruct = svmtrain(xtrain,ytrain,'Kernel_Function','rbf',... 
   'rbf_sigma',rbf_sigma,'boxconstraint',boxconstraint); 
yfit = svmclassify(svmStruct,xtest); 
 
  
%Read the data from microsoft excel file 
filename = 'Sample_with_labels.xlsx'; % Excel filename 
X = xlsread(filename,'B2:Y3157'); %X is a 3156 by 24 matrix 
y = xlsread(filename,'AA2:AA3157'); %y contain class labels 
[d,n] = size(X); % d is number of observations and n is number of variables 
  
%NORMALISE X 
XN = zeros(d,n); % XN is a matrix containing normalised values of X 
    for j = 1:d 
        XN(j,:) = (X(j,:)-min(X(j,:)))/range(X(j,:)); 
    end 
  
%Set up a partition for cross validation. This step causes  
%the cross validation to be fixed. Without this step, the cross  
%validation is random,so a minimization procedure 
%can find a spurious local minimum     
c = cvpartition(d,'kfold',10); 
  
  
  
%Set up a function that takes an input z=[rbf_sigma,boxconstraint], and 
returns the cross-validation value of exp(z). The reason to take exp(z) is 
twofold: 
%1. rbf_sigma and boxconstraint must be positive. 
%2. You should look at points spaced approximately exponentially apart. 
  
%This function handle computes the cross validation at parameters 
exp([rbf_sigma,boxconstraint]): 
minfn = @(z)crossval('mcr',XN,y,'Predfun', ... 
    @(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,... 
    xtest,exp(z(1)),exp(z(2))),'partition',c); 
  
%Search for the best parameters [rbf_sigma,boxconstraint] with fminsearch, 
setting looser tolerances than the defaults. 
opts = optimset('TolX',5e-4,'TolFun',5e-4); 
[searchmin fval] = fminsearch(minfn,randn(2,1),opts) 
z = exp(searchmin)  
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APPENDIX B: NB CLASSIFICATION MATLAB CODE 
 
clear 
clc 
%% In this program a Naive Bayes classifier is trained and tested using 
given data set 
  
%Read the data from microsoft excel file 
filename = 'Sample_with_labels.xlsx'; % Excel filename 
X = xlsread(filename,'B2:Y3157'); %X is a 3156 by 24 matrix 
[~,true_labels,~] = xlsread(filename,'Z2:Z3157'); % 
[d,n] = size(X); % d is number of observations and n is number of variables 
  
%NORMALISE X 
XN = zeros(d,n); % XN is a matrix containing normalised values of X 
    for j = 1:d 
        XN(j,:) = (X(j,:)-min(X(j,:)))/range(X(j,:)); 
    end 
  
%Use random subsampling to obtain various accuracy estimmates 
p = 500; %p is the number of iterations 
specificity = zeros(p,1); 
sensitivity = zeros(p,1); 
error_rate = zeros(p,1); 
for i = 1:p 
     
% Create indices for training and test sets: 2/3 training; 1/3 test 
  
[train_indices, test_indices] = crossvalind('HoldOut', d,1/3); 
  
%Create training and test sets 
training_set = XN(train_indices,:); 
train_labels = true_labels(train_indices); 
test_set = XN(test_indices,:); 
test_labels = true_labels(test_indices); 
  
%Train the Naive Bayesian classifier  
nb_mdl = NaiveBayes.fit(training_set, train_labels); 
  
%Predict class labels of the test set 
predicted_labels = predict(nb_mdl,test_set); 
  
%Check classification perfomance 
cp = 
classperf(test_labels,predicted_labels,'Positive','Fraudulent','Negative','
Clean'); 
  
%Compute posterior probalilities for each predicted class 
post = posterior(nb_mdl,test_set); 
  
specificity(i) = cp.Specificity; 
sensitivity(i) = cp.Sensitivity; 
error_rate(i) = cp.ErrorRate; 
  
end 
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APPENDIX C: KNN CLASSIFICATION MATLAB CODE 
 
clear 
clc 
  
%READ THE DATA FROM EXCEL FILE 
filename = 'Sample_with_labels.xlsx'; 
X = xlsread(filename,'B2:Y3157'); %X is a 3156 by 24 matrix 
true_labels = xlsread(filename,'AA2:AA3157'); % True class labels 
[d,n] = size(X); % d is number of observations and n is number of variables 
  
%NORMALISE THE DATA USING MIN-MAX NORMALISATION 
D = zeros(d,n); % D is the matrix containing normalised values of X 
    for j = 1:d 
        D(j,:) = (X(j,:)-min(X(j,:)))/range(X(j,:)); 
    end 
  
p = 500; %number of iterations    
sensitivity = zeros(p,1); 
specificity = zeros(p,1); 
error_rate = zeros(p,1); 
  
    for i = 1:p 
         
%PARTITION D INTO TRAINING AND TEST SETS 
[train_indices,test_indices] = crossvalind('HoldOut',d,(1/3)); 
training_set = D(train_indices,:); 
test_set = D(test_indices,:); 
training_labels = true_labels(train_indices); 
  
%CLASSIFICATION USING K NEAREST NEIGHBOUR APPROACH 
predicted_labels = 
knnclassify(test_set,training_set,training_labels,21,'cityblock'); 
  
%CHECK CLASSIFICATION THE PERFOMANCE 
test_labels = true_labels(test_indices); 
 %Positive label correspond to "fraudulent" and "negative" to clean 
cp = classperf(test_labels,predicted_labels,'Positive',2,'Negative',1); 
  
sensitivity(i) = cp.Sensitivity; 
specificity(i) = cp.Specificity; 
error_rate(i) = cp.ErrorRate; 
    end 
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APPENDIX D: MATLAB CODE FOR ALL THE CLASSIFIER 
 
clear 
clc 
  
%READ THE DATA FROM EXCEL FILE 
filename = 'Sample_with_labels.xlsx'; 
raw_data = xlsread(filename,'B2:Y3157'); %X is a 3156 by 24 matrix 
true_labels = xlsread(filename,'AA2:AA3157'); % True class labels 
[d,n] = size(raw_data); % d is number of observations and n is number of 
variables 
  
  
%NORMALISE THE DATA USING MIN-MAX NORMALISATION 
D = zeros(d,n); % D is the matrix containing normalised values of X 
    for j = 1:d 
        D(j,:) = (raw_data(j,:)-min(raw_data(j,:)))/range(raw_data(j,:)); 
    end 
     
    p = 500; %number of iterations 
    knn_sensitivity = zeros(p,1); 
    svm_sensitivity = zeros(p,1); 
    nb_sensitivity = zeros(p,1); 
     
    knn_specificity = zeros(p,1); 
    svm_specificity = zeros(p,1); 
    nb_specificity = zeros(p,1); 
     
    knn_error_rate = zeros(p,1); 
    svm_error_rate = zeros(p,1); 
    nb_error_rate = zeros(p,1); 
  
for i = 1:p 
     
    %PARTITION D INTO TRAINING AND TEST SETS 
    [train_indices,test_indices] = crossvalind('HoldOut',d,(1/3)); 
    training_set = D(train_indices,:); 
    test_set = D(test_indices,:); 
    training_labels = true_labels(train_indices); 
    test_labels = true_labels(test_indices); 
     
    %OBTAIN PREDICTED CLASSES FROM EACH MODEL 
    %knn with k = 21 and using sum of absolute differences 
    knn = 
knnclassify(test_set,training_set,training_labels,21,'cityblock'); 
     
    %svm with optimum parameters of gamma = 1.3542 and C = 2.1639 
    svm_structure = 
svmtrain(training_set,training_labels,'autoscale',false,..., 
        'kernel_function','rbf','rbf_sigma',1.3542,'boxconstraint',2.1639); 
    svm = svmclassify(svm_structure,test_set); 
     
    %nb with posterior probabilities, post 
    nb = predict(NaiveBayes.fit(training_set,training_labels),test_set); 
    post = 
posterior(NaiveBayes.fit(training_set,training_labels),test_set); 
     
    %COMPARE PERFOMANCE OF THE MODELS 
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    cp_knn = classperf(test_labels,knn,'Positive',2,'Negative',1); 
    cp_svm = classperf(test_labels,svm,'Positive',2,'Negative',1); 
    cp_nb = classperf(test_labels,nb,'Positive',2,'Negative',1); 
     
    %CALCULATE PERFORMANCE MEASURES 
    knn_sensitivity(i) = cp_knn.Sensitivity; 
    svm_sensitivity(i) = cp_svm.Sensitivity; 
    nb_sensitivity(i) = cp_nb.Sensitivity; 
     
    knn_specificity(i) = cp_knn.Specificity; 
    svm_specificity(i) = cp_svm.Specificity; 
    nb_specificity(i) = cp_nb.Specificity; 
     
    knn_error_rate(i) = cp_knn.ErrorRate; 
    svm_error_rate(i) = cp_svm.ErrorRate; 
    nb_error_rate(i) = cp_nb.ErrorRate; 
       
end 
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