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Abstract 46 

Infection is a common complication of cystic fibrosis (CF) airways disease. Current 47 

treatment approaches include early intervention with the intent to eradicate 48 

pathogens in the hope of delaying development of chronic infection and chronic use 49 

of aerosolized antibiotics to suppress infection.  The use of molecules that help 50 

restore CFTR function, modulate pulmonary inflammation, or improve pulmonary 51 

clearance, may also influence the microbial communities in the airways.  As the 52 

pipeline of these new entities continues to expand, it is important to define when key 53 

pathogens are eradicated from the lungs of CF patients and equally important, when 54 

new pathogens might emerge as a result of these novel therapies. 55 

 56 

 57 
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Predicted median life expectancy for people with cystic fibrosis (CF) is now reaching 72 

into the 5th decade (1).  This dramatic rise is attributable to numerous research 73 

advances resulting in an improved understanding of the biology of CFTR (cystic 74 

fibrosis transmembrane conductance regulator) dysfunction and its consequences 75 

for innate immunity resulting in chronic infection, inflammation and lung damage.  76 

This knowledge has successfully translated into a variety of new treatments which 77 

have disease modifying potential.  78 

 79 

Antimicrobial therapy to eradicate initial or repeated episodes of Pseudomonas 80 

aeruginosa positive sputum delays onset of chronic P. aeruginosa infection 81 

improving life expectancy (2,3).  Other interventions that have contributed to 82 

improved life expectancy include: development of agents to help restore CFTR 83 

function; interventions to improve nutrition; using azithromycin as an 84 

immunomodulator; improving pulmonary clearance with ancillary mucoactive 85 

therapies such as hypertonic saline, DNAse and/or inhaled mannitol; infection control 86 

strategies; and as a last resort, lung transplantation (2,3,4).  However, median 87 

predicted survival for CF patients is still substantially lower than that of the general 88 

population. The destruction of lung architecture, secondary to inflammation in 89 

response to chronic infection, is the major contributor to this shortened life span.  90 

Although advances in antimicrobial therapy have contributed significantly to 91 

increased life expectancy, they have also resulted in the emergence of multi-drug-92 

resistant organisms that currently limits the long term effectiveness of this important 93 

treatment strategy (5). 94 

 95 

As additional solutions for the care and treatment of CF patients are studied, an 96 

international working group of CF care providers, epidemiologists, and medical 97 

microbiologists gathered to address two questions which are important in 98 

considering the implementation of new antimicrobial agents: (i). when has a specific 99 

pathogen been eradicated from CF airways in an individual?; and (ii) when has an 100 

organism emerged as a pathogen in people with CF  either de novo or as a result of 101 

these novel therapeutic approaches? 102 

 103 

Defining “pathogen eradication” in individuals 104 
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Much of the improvement in life expectancy in people with CF is predicated on 105 

understanding how to prevent the establishment of chronic pulmonary infection. The 106 

major respiratory pathogen is a distinctive phenotype of P. aeruginosa referred to as 107 

“mucoid” (1). Mucoid strains of P. aeruginosa are highly adapted to grow in the CF 108 

airway.  Key features of mucoid P. aeruginosa is a biofilm mode of growth that 109 

makes the organism refractory to innate immunity and antimicrobial therapy and a 110 

hypermutator phenotype which results in increased antimicrobial resistance (1, 6).  111 

The initial steps of the establishment of chronic infection with mucoid P. aeruginosa 112 

is colonization/infection with a non-mucoid strain (1,3).  Genotyping studies suggest 113 

that initial colonization/infection is due to unique P. aeruginosa strains arising from 114 

the environment, although individuals may be infected with similar strains (6,7,8).  115 

However, what is less clear is whether individuals with similar strains obtained them 116 

from the environment or via cross-infection from another person with CF.  Early 117 

studies showed that aggressive antimicrobial therapy of non-mucoid strains delayed 118 

the establishment of chronic infection (1,3).  Subsequently two large studies, EPIC 119 

(9) and ELITE (10) determined the efficacy of eradication of P. aeruginosa using 120 

aerosolized tobramycin in different regimens with (EPIC) or without (ELITE) oral 121 

ciprofloxacin.  Both were able to show that 28 days of aerosolized tobramycin alone 122 

led to negative cultures in approximately 90% of patients and the median time to 123 

next positive culture for P. aeruginosa was 2 years (9, 10). Adding ciprofloxacin, 124 

treating for longer duration (56 days), and routine treatment every 3 months did not 125 

improve outcomes.  Further data from the EPIC cohort shows that individuals that 126 

had sustained eradication of P. aeruginosa were less likely to develop chronic 127 

infection compared to those with early recurrence of infection (9).  The finding of a 128 

mucoid strain is a poor prognostic factor with a lower probability of eradication 129 

following therapy (11) and greater likelihood of having symptoms (2).  Taken 130 

together, these data support the notion  that regular culture of airways samples 131 

(surveillance cultures) beginning in infancy, with the express purpose of detecting P. 132 

aeruginosa during the early stages of infection, are an important standard of care for 133 

people with CF (2).  When a positive airway culture occurs, the current practice is to 134 

use aerosolized antimicrobials for a fixed duration to eradicate P. aeruginosa (12).  135 

Registry data showing a striking decline in P. aeruginosa prevalence in a number of 136 

countries attest to the effectiveness of this eradication strategy (13, 14, 15). The 137 

optimal antibiotics and duration of treatment has not been fully established, but a 138 
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prolonged treatment duration of three months compared to one month and the 139 

addition of oral antibiotics (16, 17) are not superior to one month of inhaled 140 

tobramycin.   141 

Other organisms that are pathogenic in the CF lung include members of the 142 

Burkholderia cepacia complex particularly Burkholderia cenocepacia, 143 

Staphylococcus aureus with methicillin resistant (MRSA) strains being observed with 144 

increasing frequency, and Mycobacterium abscessus (1,3).  MRSA is the only 145 

organism for which a multi-center eradication study has been attempted (18).  Here, 146 

a complex eradication scheme of oral antimicrobials, nasal mupirocin, chlorohexidine 147 

mouthwash and body wipes, and environmental cleaning including wiping 148 

environmental surfaces and weekly washing of towels and linens was employed. It 149 

was found that 54% of the CF subjects in the treatment arm remained free of MRSA 150 

after 12 weeks compared to 10% in the control population.  Owing to their low 151 

prevalence and limited antimicrobial choices due to resistance, multi-center 152 

eradication trials are not likely for either B. cepacia complex or M. abscessus (19,20) 153 

 154 

Eradication presumes that a target organism has been eliminated from the airways. 155 

To understand how eradication might be defined clinically, it is first important to 156 

understand how chronic infection is defined.  There have been a number of different 157 

definitions  of chronic CF lung infection (21).  These definitions are based on the 158 

persistent presence of a target organism e.g P. aeruginosa¸ and in some definitions, 159 

an antibody response to the organism of interest (21).  Since antibody tests are not 160 

widely available or standardized (22), most definitions used in clinical trials of chronic 161 

infections are based on sequential culture findings (9,10).  The most widely used 162 

definition of chronic CF lung infection is the Leed’s criteria (5, 23).  It has primarily 163 

been used to define chronic P. aeruginosa infection in CF children. CF persons are 164 

categorized as having no infection, being free of infection, intermittent infection, or 165 

chronic infection. The initial definition was based on “monthly” cultures but has 166 

evolved to one based upon the presence or absence of target organisms in four or 167 

more respiratory specimens collected in a 12 month period (21,23).  Patients defined 168 

as having intermittent infection comprise those who have cultures positive for a 169 

target organism in <50% of samples, with those defined as chronically infected target 170 

organism culture positive in >50% of specimens.   171 
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Some investigators advocate for the use of qPCR as a surrogate for traditional 172 

culture for a specific target organism using the rationale that it is more sensitive than 173 

culture, especially in individuals who are unable to expectorate sputum (24, 25, 26).  174 

One study showed, however, that qPCR could not differentiate between subjects in 175 

whom eradication was successful and those who failed (25).  As such, the utility of 176 

qPCR in eradication studies remains uncertain and requires further investigation.   177 

It is important to recognize that the meaning of eradication in the research setting 178 

likely has different meanings for the research scientist compared to the research 179 

subject.  The research subject should understand that eradication does not equal 180 

“cure” and that the primary goal of eradication treatment is to delay onset of chronic 181 

infection (9, 10, 11).  Most subjects will “fail” eradication efforts at some point in the 182 

future.  This failure may be the result of a recurrence of infection with the initial 183 

infecting agent or infection with a new strain of the same bacterial species (27). 184 

 185 

In CF clinical trials, the definition of “eradication” varies widely from a negative 186 

culture at one week to three negative cultures over at least a six-month period after 187 

treatment cessation (10,11,12,18, 28).  A definitive definition of “eradication”; would 188 

be valuable so that trials could be more easily compared. However, defining failure 189 

of eradication by a specific treatment is complicated by at least three factors.  First, 190 

in non-sputum producers especially children under five years of age, 191 

oropharyngeal/deep throat swabs are often used for culture.  Although these cultures 192 

tend to have good specificity, sensitivity is lacking meaning “false” eradication might 193 

be reported (29).  Secondly, it may be difficult to differentiate “failure of eradication” 194 

with re-infection with a new genotype of the same target organism.  Finally, the 195 

retention of indistinguishable genotypes in the oropharynx following successful lower 196 

airway antimicrobial therapy also raise important questions concerning upper airway 197 

reservoirs and how to best determine eradication in non-expectorating patients (7).  198 

Because oropharyngeal cultures are unreliable in reflecting what organisms are 199 

present in the lower airway, a second approach, a sinonasal washing may have 200 

value (29).  Although a positive P. aeruginosa sinonasal culture has a strong 201 

correlation with the finding of the organism in the lower tract, it has a sensitivity of 202 

only 66% meaning one-third of individuals with P. aeruginosa in the lower tract will 203 

be culture negative.  The accurate detection of P. aeruginosa in the lower respiratory 204 

tract using non-invasive techniques is challenging in the non-expectorating patient.  205 
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 206 

Eradication studies generally have not examined genotypes of the target organism 207 

prior to the initiation of therapy to enable comparison to the target organism isolate 208 

found post intervention. Moreover, they do not utilize multiple sampling strategies 209 

which assess both the upper and lower airway compartments.  These approaches 210 

would be necessary for differentiating failure to eradicate (i.e. persistence of infection 211 

with the same strain) from re-infection either with the same or a different strain of the 212 

organism.  This issue is further complicated by how many morphotypes should be 213 

genotyped pre- and post-intervention and what genotyping method should be used.  214 

Several PCR based methods have been used in molecular epidemiology studies of 215 

P. aeruginosa (7,8). The PCR-based method likely to offer the greatest 216 

discriminatory power is multi-locus sequence typing (MLST) (30).  Another widely 217 

used method is pulsed field gel electrophoresis (PFGE) (30, 31) which has the 218 

advantage of being a widely accepted typing scheme that has been used for a 219 

variety of molecular epidemiology applications (32, 33).  However, this technique is 220 

technically demanding and mutations, small insertions or deletions may cause 221 

organisms with the same genetic ancestry to appear to be distinct clones; whereas 222 

MLST is considered to be a more stable genotyping platform (30, 31).  Overall, 223 

whole genome sequencing (WGS) is regarded as the most discriminatory of all 224 

typing methods (34). Ideally, as WGS becomes less expensive and more widely 225 

accessible, it will become the method of choice for bacterial strain typing. A major 226 

barrier to using WGS typing as epidemiologic tool is how to define if isolates belong 227 

to a specific clone. , The number of single nucleotide polymorphisms (SNPs) that 228 

defines a clone varies from organism to organism. For example, Marvig et al (6) 229 

reported that P. aeruginosa isolates recovered from CF children and young adults of 230 

the same clone type differed by 122 SNPs, while different clone types differed 231 

>10000 SNPs.  By contrast, isolates of vancomycin-resistant enterococci (VRE) 232 

found to be indistinguishable by PFGE showed a diversity of <10 SNPs, 233 

indistinguishable MRSA isolates differed by <100 SNPs; whereas, unrelated VRE 234 

and MRSA PFGE types showed a divergence of approximately 4,000 and 20,000 235 

SNPs, respectively (34).  Before WGS method is adopted in clinical trials, clear 236 

definitions of what constitutes a clone and how many SNPs are necessary for 237 

isolates to be considered as unrelated clones needs to be determined.   238 
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As the development of novel CF therapies accelerate, a clear definition of what 239 

constitutes eradication.will allow for the design of rigorous studies that measure the 240 

effectiveness of these therapies and differentiate recurrence from re-infection with a 241 

different strain of the same organism.  For now, the following recommendations 242 

should be considered:- 243 

 244 

1. Eradication is best defined by obtaining multiple specimens (minimum of 3), 245 

over an extended time period (six months), all of which should all be negative for the 246 

target organism. 247 

2. Genotyping of multiple colony types` of specific target organisms should be 248 

done at enrollment by a highly discriminatory technique (preferably WGS but PFGE 249 

or MLST may be reasonable substitutes) and compared to any target organisms 250 

found post-intervention.  The number of isolates to be typed should be based on 251 

what is economically feasible.      252 

 253 

Defining population-level pathogen emergence 254 

 255 

The issue of when an organism “emerges” in a population has consequences for 256 

the use of novel therapeutics in CF patients.  The term “emerging pathogen” is one 257 

that is greatly overused in the literature.  This overuse most likely reflects the lack of 258 

a clear definition of what is an “emerging pathogen.”  Mathematically based 259 

definitions of “emerging pathogen”, for example using segmented linear regression, 260 

are retrospective, but nevertheless offer a definition of greater precision (35). A 261 

widely used definition would be a “clinically distinct condition whose incidence in 262 

humans has increased” (36), but that suggests one should establish the time horizon 263 

over which this increase has happened, the population affected, and how much of an 264 

increase there has been when declaring “emergence (37).”  265 

Pathogens that have emerged in CF patients according to this definition during the 266 

past four decades are members of the B. cepacia complex during the 1980s and 267 

MRSA during the first decade of this century.  In the early 1980s, three CF centers in 268 

North America reported a new organism in CF patients called, at that time, 269 

Pseudomonas cepacia (19).  This organism appeared to be truly novel causing a 270 

syndrome named the “cepacia syndrome” in which there was rapid pulmonary 271 

decline and in some cases bacteremia, a rare occurrence in people with CF, 272 
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resulting in death within months of infection but only rarely causing serious infection 273 

in other patient populations (20).  This syndrome was found to be primarily due to a 274 

single species, B. cenocepacia, which is one of the 21 different species eventually 275 

characterized within the B. cepacia complex (19, 38).  As molecular typing tools 276 

improved, centers where B. cenocepacia emerged were most often dominated by a 277 

single clone first recovered in a specific geographic locale (e.g. ET12 278 

(Edinburgh/Toronto), PHDC, and Midwest strains) (18,20).  The ET12 strain has 279 

subsequently been found throughout Canada, the United Kingdom and Ireland (18, 280 

20,39).  These B. cenocepacia strains, refractory to antimicrobial clearance, and able 281 

to be spread from person-to-person were eventually controlled by strict infection 282 

control practices.  283 

The use of selective media to isolate members of the B. cepacia complex coupled 284 

with the use of genomic (DNA sequencing) and proteomic (matrix-assisted laser 285 

desorption/ionization time-of-flight mass spectrometry or MALDI-TOF MS) identification 286 

techniques has resulted in the recognition of a number of “emerging” organisms 287 

(19,20).  With the use of aerosolized tobramycin, the frequency with which 288 

Stenotrophomonas maltophilia and Achromobacter spp., two organisms resistant to 289 

tobramycin, are detected has increased (13,20).  However, there is considerable 290 

debate as to whether either of these organisms are pathogens in chronic CF lung 291 

disease.  Some studies suggest that S. maltophilia is a pathogen in settings where it 292 

can be proven that the patient is mounting a humoral response to the organism (40, 293 

41,42); however, a large population-based study suggested otherwise (43). Similar 294 

data exists for Achromobacter spp suggesting that the organism is playing a 295 

pathogenic role in patients who mount a humoral response to it (20). Other much 296 

less frequently detected organisms (<1% prevalence) include Burkholderia gladioli, 297 

Burkholderia pseudomallei, Ralstonia spp., Chryseobacterium sp., Pandorea spp., 298 

and Inquilinus spp.) (19,20).  Insufficient longitudinal clinical data exists for people 299 

with CF infected with these organism in part due to the infrequency with which these 300 

organisms  are recovered. 301 

 302 

 303 

Another organism that has clearly emerged in CF persons has been MRSA in the 304 

United States during the first decade of this century.  Chronic MRSA infection in CF 305 

is associated with declining lung function and premature death (44).  Unlike B. 306 
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cenocepacia, the rise in MRSA in people with CF has paralleled the rise of MRSA in 307 

other US populations (13, 18, 45).  Interestingly, MRSA has not increased in other 308 

countries with robust CF registry data such as the United Kingdom and Australia 309 

both of whom have been better able to control MRSA spread in the general 310 

population (15, 45) 311 

Finally, the non-tuberculous mycobacteria (NTM) have also been described as 312 

“emerging” in people with CF.  However the presence of NTM in people with CF was 313 

first described in the early 1990s based on data gathered in part in the 1980s (46).  314 

NTM found in people with CF predominantly comprise Mycobacterium avium 315 

complex and M. abscessus isolates.  To say that an organism has “emerged,” there 316 

needs to be evidence of an increase in its incidence. The problem in describing 317 

these organisms as ‘emerging pathogens’ is that there are historic data suggesting 318 

that it has been present in adult CF persons for at least 30 years.  Increasing 319 

numbers of NTM infected CF persons in this century have been reported in the US, 320 

Israel, and Germany (47, 48, 49, 50).  In the US, data has been gathered in a 321 

systematic manner only over the past five years.  These data are further complicated 322 

by the fact that there is little standardization in how these organisms are detected 323 

and identified, thus making the data available of questionable value (47).  Part of the 324 

increased detection of these organisms is likely due to both increased clinical 325 

awareness and improved genomic and proteomic based identification techniques 326 

(20).  Another interesting possibility is that the combination of aggressive 327 

antimicrobial therapy over many years coupled with general improvements in overall 328 

health has created a CF adult population that is “primed” to be colonized/infected 329 

with environmental organisms that are highly resistant to antimicrobials.  Examples 330 

of such organisms include M. abscessus, MRSA, S. maltophilia and Achromobacter 331 

spp.(19,20)  332 

There are two intriguing observation concerning M. abscessus in CF lung disease 333 

that should be noted. First, there is a developing body of evidence that indicates that 334 

M. abscessus is associated with declining lung function in CF populations (49, 50) 335 

with the rate of pulmonary decline greater than seen with other CF pathogens (51).   336 

Secondly, a recent study has shown that a specific clone of M. abscessus may have 337 

spread globally (52).  Could this clone be analogous to the B. cenocepacia clones 338 

that emerged in the 1980s and the MRSA US300 clone that emerged in the early 339 

part of this century in CF patients?  Animal and in vitro studies suggest that this 340 
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strain demonstrates increased virulence when compared to other unique M. 341 

abscessus strains; however, further clinical and environmental studies are needed to 342 

determine its significance and origins (52). 343 

 344 

An important recent finding is the recognition that patients with chronic CF lung 345 

disease have a unique microbiome which is resilient to antibiotic treatment (53).  346 

Within the context of this observation are two important findings.  First, anaerobic 347 

bacteria and streptococci are frequently important components of this microbiome 348 

and changes in their relative abundance may be associated with pulmonary 349 

exacerbations (54,55,56,57).  Secondly, as lung function declines, there is a 350 

decrease in airway microbial community diversity with certain organisms 351 

predominating  (54,55,56,57,).  Not surprisingly, these predominant organisms are 352 

those considered the major CF pathogens and include P. aeruginosa, B. cepacia 353 

complex and S. aureus.  The role of NTM in the CF lung microbiome is presently 354 

unclear as challenges exist in their detection by current microbiome analysis 355 

methods. 356 

 357 

Microbiome analysis by next generation sequencing will provide greater 358 

understanding of CF lung microbial communities and should eventually provide 359 

information on how organism interactions result in lung pathology.  In the short term, 360 

the recognition of increased recovery of specific target organisms known to be 361 

associated with CF lung disease such as P. aeruginosa, MRSA, S. aureus, B. 362 

cenocepacia, and M. abscessus in patients receiving novel therapies will be 363 

important.  Additionally investigators must be aware of the presence of organisms 364 

currently not associated with chronic CF lung infection which may be found with 365 

increasing prevalence in clinical trials of novel therapies.    366 

 367 

The ability to accurately and reliably categorize CF patients, as having acquired an 368 

“emerging” pathogen or as having “eradicated” an existing infection, pivots on the 369 

intrinsic ability of clinical microbiology techniques to detect important shifts in patient 370 

microbiologic status. CF clinical microbiology laboratories are encouraged to follow 371 

best practice guidelines, as documented in the CUMITECH 43 guidelines (58), as 372 

well as the UK Cystic Fibrosis Trust Consensus Guidelines “Laboratory standards for 373 

processing microbiological samples from people with cystic fibrosis”(59).  However, 374 
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application of these largely culture-based techniques may not be optimal to address 375 

issues of sensitivity and specificity to support microbiological status shifts, while 376 

other testing modalities (e.g. PCR or microbiome analysis) may allow greater 377 

precision.   378 

As we move forward with clinical trials in CF lung disease it will be important for data 379 

safety monitoring boards to insist on the careful gathering of microbiology data.   380 

 381 

1. Given the current technology and the understanding that specific organisms 382 

dominate the CF lung microbiome, predominant organisms even when they 383 

represent “normal flora” should be identified.   384 

2. It will also be useful to establish reference laboratories similar to the national 385 

Burkholderia cepacia reference laboratories where organisms such as P. 386 

aeruginosa, MRSA, M. abscessus and perhaps others can be genotyped to 387 

determine if specific clones which may be more virulent are emerging as a result of 388 

specific therapies.   389 

3. Microbiome analysis should be considered once a firm interpretative standard 390 

is available which can be used to determine if a particular therapy is associated with 391 

adverse alteration of the CF microbiome.    392 

 393 

  394 
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