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We present two probabilistic models to estimate the risk of introducing infectious diseases into previously unaffected
countries/regions by infective travellers. We analyse two distinct situations, one dealing with a directly transmitted infection
(measles in Italy in 2017) and one dealing with a vector-borne infection (Zika virus in Rio de Janeiro, which may happen in the
future). To calculate the risk in the first scenario, we used a simple, nonhomogeneous birth process. The second model proposed
in this paper provides a way to calculate the probability that local mosquitoes become infected by the arrival of a single infective
traveller during his/her infectiousness period. The result of the risk of measles invasion of Italy was of 93% and the result of the risk

of Zika virus invasion of Rio de Janeiro was of 22%.

1. Introduction

Many countries where infectious diseases had been consid-
ered controlled in past decades are reporting the invasion of
some exotic and frequently unknown infectious diseases that
are spread by infected travellers/immigrants [1, 2]. Historical
examples of disease invasion are numerous. A particular
tragic invasion was the invasion of Europe by the Black Death
in XIV century, which started probably in China and travelled
by ship until reaching European shores where it decimated
from a quarter to a half of the European population [3, 4].
Another tragic invasion occurred in the beginning of the
last century when between 50 and 100 million individuals
worldwide died victims of the Spanish Flu, which probably
started in an American army barrack in the United States in
1918 and rapidly was spread by travellers to others areas of the
world [5, 6]. Many years later SARS affected many countries,
spread by infected travellers [7, 8]. In 2009 the swine flu
pandemic (HINI) frightened the world, exemplifying the
dangers of international spread of communicable diseases
[9, 10]. The recent outbreak of Ebola, which spilled over to
the United States showed how individuals travelling from

infected to uninfected areas of the world can be dangerous [11,
12]. Other recent examples of infectious diseases spreading by
travellers include the Zika virus outbreak in Latin America,
in particular in Brazil, which was imported from the French
Polynesia by infected travellers [13]. Now, Europe is in the
grip of a huge measles outbreak caused by the recent waves of
nonvaccinated immigrants and the low vaccination coverage
of some European countries [14-17].

Human mobility networks are playing an increasing role
in the spread of communicable diseases [1, 19], at both
the international and the national levels and even between
different districts in the same city. Infected travellers can
introduce infectious agents to new areas and populations [3].
The highest risk for global health now is the indisputable fact
that a traveller with an infectious disease can reach virtually
any part of the world within 24 h. The current staggering vol-
ume, speed, and reach of travel are unprecedented, showing
a virtually uninterrupted growth—from 25 million in 1950 to
278 million in 1980, 528 million in 1995, and 1087 million in
2013 [20]. Asia and the Pacific recorded the fastest relative
growth across all World Tourism Organization (UNWTO)
regions, with a 6% increase in international arrivals per year
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in recent years and Asia is the epicentre of many infectious
diseases [20]. Africa, another continent with many emerging
infectious diseases, saw an increase of 5%. International
tourist arrivals worldwide are expected to increase by 3.3%
per year from 2010 to 2030 to reach 1.8 billion by 2030,
according to UNWTO’s long-term forecast Tourism Towards
2030 [20].

Current methodological approaches to estimate the risk
of diseases in travellers still have many shortcomings [9,
21-23]. For example, estimations based on notifications of
imported cases underestimate the risk. This is so because
many diseases are either not notifiable to authorities or even if
legally notifiable are underreported, as not every traveller will
report her/his condition to healthcare providers. Moreover,
many imported diseases may go unnoticed because of a high
frequency of asymptomatic cases that may also contribute
to the transmission of diseases. In the absence of good data
on importation and exportation of infectious diseases via
international travellers, mathematical models can provide an
additional tool for the estimating the risks involved.

Situations where a relatively small number of infected
individuals travel to previously disease-free areas are partic-
ularly critical. In these cases, the deterministic formulation
of risk is not sufficient and hence the necessity of new
probabilistic models to estimate the risk of disease invasion.
Here, a probabilistic model is developed, taking into account
air travel volume, force of infection in the country of dis-
embarkation, and herd immunity due to either background
immunity or immunization coverage by vaccination. Two
distinct situations related to the spread of infections by trav-
ellers are considered, namely, a directly transmitted infection
and a vector-borne infection. We used the case of measles in
Europe and the potential spread of Zika virus to disease-free
but Aedes-infected areas (Rio de Janeiro, Brazil) as a proof of
principle and to illustrate the methods. Uncertainty analysis
was considered as confidence intervals and the simulation
were carried out by solving the specific equations analytically.

2. Case 1. Directly Transmitted Infection

The model assumes that a density of infected individual, IITI(O)
(see [24]), arrived at t = t, and remains infective for a period
of (ug + Yy + o)~ weeks, that is,

Ij; (t)
. 0
= Ip; (0) exp [= (pgg + v + ) (£ = 10)] 0 (£ — )

where py, Y5> and oy are the natural mortality rate, the recov-
ery rate from infection, and the disease-induced mortality
rate, respectively, and 0(t — t,) is the Heaviside step function.
If the region where these infected travellers arrive had an area
A the number of them is I};(O)A.

The total number of measles cases, Measles,,,,, infected
by these travellers, one year after its introduction (A = 52
weeks), is given by

Measles, .,

tot+A T SH p
= 1., (t) —dt 2
L oty 0 - 2)
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where o is the potentially infective contact per unit time
between infected and susceptible individuals and Sp; and Ny,
are the susceptible and total population, respectively.

The risk of measles invasion of a previously unaffected
country, Risk,,,.q..» can be defined as the probability that
at least one autochthonous case be produced by the arrival
of one single infected individual at the area during his/her
infectiousness period. To calculate this risk, we assumed a
nonhomogeneous simple birth process [25], which describes
the introduction of the disease. Note that we are interested
only in the estimation of the risk of infection and, therefore,
recovery from the infection is not considered in the risk
estimation.

Let P,(t) be probability of n cases. The probability gener-
ating function of such process is P(x,t) = Y, P, (t)x". After
some calculation [25] we obtain

Put)= 41+ ! 3)

eP®/(x—1) - _[Ot A (1) ePDdr

where x is a dummy variable, a = I;(0)A, and A(t) is the
“birth rate of the process”; in this case the incidence of the
infection and is defined as A(t) = a(IE(t)SH(t)/NH), where
S (t) is obtained by solving (A.1) from the Appendix using
the parameters obtained in the next section and described
in Table 2. In (3), p(t) = - _[Ot AMD)O(r — ty)dt, T is a
dummy variable and 0(z — t,) is the Heaviside step function,
introduced to simulate the moment the infected traveller
arrives. Note that p(t) has no physical meaning and was
introduced to simplify the notation.

We assumed that the region to be studied has an area A
and that the number of infected travellers arriving at t = ¢ is
a = I (0)A. We set a = 1 from now on.

Expanding (3) in powers of x we find that the risk, that
is, the probability of having n infected individual at time ¢,
denoted Risk (n,t) as

measles

RiSkmeasles (11, t)
min(n,a) a a+n-— ] -1 a—i n—i
=y (. a®™ BB (4a)
=0 ] a—-1

(1-a®)-p@®)
The risk (probability) of having no infected individuals is

Risk,,pp50s (0,1) = o (£)* (4b)
In (4a) and (4b)
a(t)=1- ; ! ,
er® + Io A1) 0 (T —t,) erPdr
o )
Bt)=1-

er® + Lj A(0)0 (1 - t,) ePDdr

Note that neither a(t) nor 3(t) have any physical meaning
and were introduced to simplify the notation. Note also that
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both «(t) and f(¢) increase with time reaching a constant
value denoted a and f3, respectively.
The probability of at least 1 autochthonous case in a
previously unaffected region can be calculated as follows:
Risk

measies = P (Number of secondary cases > 1)

(6)

=1-a

The upper and lower values of 95% confidence intervals
for the number of secondary cases are given by

_In(0.975) +In (1 - &)
Miower = In ([3)

_ In(0.025) +In(1 - &)
upper — In (ﬁ)

m

2.1. The Case of Measles in Europe. In 2017, Europe reported
more than 21,000 cases of measles, including 35 deaths (a
mortality rate of 6.0x10™> month™)[14]. This represents a
fourfold increase from 2016 when just 5,273 cases were
reported. This outbreak was due to two factors: first, there
was an overall decline in routine immunization coverage,
with particularly low coverage among marginalised groups,
in addition to interruption in vaccine supply or under-
performing disease surveillance; second, large numbers of
nonvaccinated immigrants flooded Europe in previous years
(5,136,383 since 2011, according to the European Asylum
Support Office, [17]).

According to the Communicable Disease Threat Report
[14], the highest numbers of cases of measles since 1 January
2017 were reported in Romania (8,274), Italy (4,885), and Ger-
many (919), the three countries which received the highest
numbers of immigrants from undervaccinated areas [17].

Let us analyse the case of Italy where, according to the
ECDC [14], the measles vaccination coverage is less than
84% (well below the herd immunity threshold of 95%). If
we assume for 2017 the same proportion of immigrants
from measles undervaccinated countries to Europe as the
one observed in 2015 (3% see [17]), then of the around
700 thousand immigrants that arrived in Europe in 2017,
around 21 thousand settled in Italy. In that year, Italy
reported 4,885 measles cases, as mentioned above. Assuming
a vaccination coverage of 80%, it is possible to estimate
the risk of measles introduction by considering the effective
reproduction number R(#) = R,(Sy(t)/Np), where R, =
o/(py + Yy + ay) is the basic reproduction number [26].
So, the effective reproduction number reaches a value of
5, a value compatible with the 20% susceptible individuals,
the proportion of nonvaccinated individuals in Italy. This is
because the basic reproduction number of measles is around
25 and therefore R(t) = Ry (Sy(t)/Ny) = 25 % 02 = 5.
Assuming a recovery rate y; = 3.33 month™', a natural
mortality rate py; of 110x10~> month™", a disease-induced
mortality of az; = 6.0x10™> month™, and using the expression
for R, we estimated that the potentially infective contact rate
is 0 = 10 month™'. By using these parameters it is possible
to calculate A(t) = U(IZI(t)SH(t)/NH), and « of (6). From

this equation it follows that the probability that one single
infective immigrant, arriving in Italy on January 1%, could
generate at least one secondary, autochthonous measles case
with a probability of around 93%, which is reasonably high
risk. The 95% CI for the number secondary cases is (0.89 -
1.40). In other words, one secondary case will be produced by
a single traveller with confidence interval between 0.89 and
1.40 cases per unit area.

As we estimated the basic reproduction number of
measles in Italy at the time of the outbreak as equal to 5,
it would be interesting to estimate the number of infected
individuals necessary to arrive to guarantee that at least one
secondary infection would be generated. In other words, what
would be the value of a in (4a) that would make [1-p(0)] = 1.
The result is that seven infected immigrants would guarantee
the invasion of measles in Italy.

We have no way to know how many infective individuals
arrived with measles in Italy in 2017 but with the above
assumptions and the method proposed here, it is possible,
although very laborious, to backcalculate how many infected
immigrants would be necessary to generate the observed
4,885 cases in 2007.

Table 1 shows the variables and parameters used in this
section as well as their biological meanings.

2.2. Sensitivity Analysis. Since we are interested in the risk
of disease introduction, only the first generation of cases is
considered. In this section we calculate the sensitivity of the
risk to the model’s parameters. As the risk is dependent only
on the “birth rate” of the infection, we calculate the sensitivity
to the integral of this variable, that is, the number of cases.
The incidence of the infection (“birth rate”) has been defined
as A(t) = alg(t)(SH(t) /Npgp). Therefore, the number of cases
of measles, Measles generated by the infected travellers
is given by (2),

cases’

Measles, .. = J O’IZI ) SH—(t)dt (8)
0 NH

where once again I};(t) = 15(0) exp[—(pg + yg + ap)(t —
£0)16(¢ — ).

In order to estimate the sensitivity of the number of
measles cases generated by the infected travellers, we simu-
lated a SIR model, described in Appendix, with the parame-
ters as in Table 1, and varied each one by 1 percent.

Table 2 shows the results of the sensitivity analysis
according to the general (3). The results represent the relative
variation in Measles ., when we vary the parameters by 1%.

Therefore, the risk of measles invasion is less sensitive
to the duration of the infection in the traveller, 1/yy,, than
to the potentially infective rate 0. For every 1% variation
in the o parameter there will be a 1.01% of variation in the
number of cases whereas for every 1% variation in the yy
parameter there will be a 0.61% of variation in the average
number of cases, in the first generation of the infection (that
is, t = 1/(pgy + Y51 + &z7)). Note that the model is sensitive to
neither the human mortality rate nor the additional mortality
induced by the disease.
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TABLE 1: Model variables and parameters, their biological meaning, and values for the measles case. The parameter values were taken from

[18].

Parameter/Variable Meaning Value

Sy(t) Density” of susceptible individuals Si(0) =20% of Italy Population
I};(t) Density of infected travelers IZI(O) =1

I, (1) Density of infected individuals I,(0)=0

Ny (t) Density of individuals Italy Population

2% Human natural mortality rate 1.10x10~> month ™"

oy Additional Measles mortality rate 6.00x10~> month ™

Vi Measles recovery rate 3.33 month™

o Potentially infective contact rate 10

*density means “number of individuals per unit area.”

TABLE 2: Sensitivity analysis. Relative variation in the number of
cases when we vary the parameters by 1% per time unit in the first
generation of the infection.

Sensitivity of the number of cases to the parameters

Parameter Relative variation
(%)

o 1.01

. 0.00

Vi (-) 0.61

ay 0.00

3. Case 2. Vector-Borne Infection

As in Case 1, we assume that a density of infected individuals
arrivesatt = t,. We wish to calculate the probability that these
infected individuals produce zero latent mosquitoes, that is,
Pr,—o(t) for t > t,.

As in the previous section, we assume that the infected
travellers infectiousness lasts on average 1/(yy + Yy + op)
times units. Therefore,

I (1)
r 9
= I (0) exp [— (pgr + yer + o) (£ = £0)] 0 (£ = 1)

(note that (9) has the same form as (1)). However, the
parameters pyy, Ypp> and ay; are different and are defined in
Tables 1 and 3. In Table 1 the values refer to measles whereas
in Table 3 they refer to ZIKV.

We wish to estimate the probability that the infected
traveller produces at least one latent mosquito along his/her
infectiousness period. For this we used the same formulation
as in Case 1 with the difference that in this case the “birth”
term refers to the incidence of infection for mosquitoes,
Ap,,(t). Note that, as in Case 1, we are interested only in the
estimation of the risk of infection and, therefore, recovery
from the infection is not considered in the risk estimation.

The incidence of the infection for the mosquitoes is given

by

SO tye-1) )
Ny

/\LM (t) = ac

In (10) the number of susceptible mosquitoes S,,(t) is
obtained by solving

ds,, (t) Sy (£)
gt = —ac Iy () + I}; (1)] Iz\frH
(11)
e [Ny 83 0] + 1

In (11), the value of N, and dN,,/dt were obtained by the
methods described in [24] considering a dengue outbreak.
On the other hand, the value of I;;(f) is obtained by solving
the following system:

dSy, (t)

dt

= —ac[1, @+ 15 0] 29 1 gy [Ny - 8, 0)

H
dN,,
T Tar

ALy (1)

dt

Iy () + I (1)
= acS, (t) —[ 1 N n )] — YL ()
H
= tpLpg (1)

dl
%(t) = YL () = parpg (1)
dS (t)

dt

_ S (£)

= —ably, (t) N + pirr (N = Sy (1) + oy (£)

H

dl S
#(t) = ably () N_I; — (g + yu + agg) Iy (1)
dRy (1) _

i Ve [T (0)] = Ry (2)
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TABLE 3: Model parameters, their biological meaning, and values for the ZIKV case. The parameter values were taken from [18].

Parameter Meaning Value
a A. aegypti biting rate 10.040 month™
b Fraction of bites actually infective to humans 0.610
Ue Human natural mortality rate 0.001 month ™’
oy ZIKV mortality rate negligible
Vi ZIKV recovery rate 0.080 month™"
Y Latency rate in mosquitoes for ZIKV 0.320 month™
U Natural mortality rate of mosquitoes 2.330 month™
c A. aegypti susceptibility to ZIKV 0.530

IIT{ (t) 3.1 The Case of Zika Virus in Brazil. In this section we

= IIT{ (0) exp [ (s + v + o) (£ = £0)] 0 (t — 1)
Ny =Sy (8) + Iy () + Ry (t)
Sy (0) = Ny
I, (0) = Ry, (0) = 0
(12)
Finally, in (12) Ny refers to the total local population
density of humans.

Therefore, we can use (4a) and (4b) to calculate the
Risk ;1 (n, 1) as

minta) fg\ fa+n-—j-1 .
Risk iy (n,1) = z ( ) ( ! )“(t)aj
=0 \J a-1
j (13)
BO (1-a®) - B©))
and the risk (probability) of having no infected individuals is
Risk 1y (0,1) = a (£)" (14)
In (13) and (14), as in Case 1, we assumed that the region

to be studied has an area A and that the number of infected
travellers arriving at t = t, isa = I;(0)A (we seta = 1).

In addition, a(t) = 1 - 1/("® + [} A, (D)0(z — to)e?dr),
(1) = 1-e"0 )" + [} Ay (1)0(r ~ tg)e?dr), and p(t) =
[y Ap, (00 - ty)dr.

As in Case 1 the probability of at least one autochthonous
case, after a suitable time, in a previously unaffected region
can be calculated as follows:

P (Number of secondary cases > 1) =1 —a” (15)
The risk, therefore, is
Riskzcy = 1= pr,-0 (16a)

where

Pry-0=a" (16b)

detail the calculation of the risk of Zika virus(ZIKV) invasion
of an Aedes infested area where the virus has not been
reported. The risk of invasion, Risk, (t), is defined as the
probability of infected traveller will produce at least one
secondary infection throughout the mosquitoes population
along his/her infectiousness period.

The model’s parameters, biological meaning, and values
used in the simulations of this section are shown in Table 3.

We used this method to estimate the probability of
ZIKV invading the city of Rio de Janeiro assuming the same
mosquito density as in the dengue outbreak of 2012, the most
important in the history of dengue in that city. Provided
that the local Aedes population is at least as competent to
transmit ZIKV as it is to transmit dengue, then the risk of
invasion, as defined above, caused by an infected traveller
arriving at the worst moment is around 22%. The 95% CI for
the number of infected mosquitoes produced by one single
infective traveller is (0.21-5.44). In other words, one infected
mosquito will be produced with confidence interval between
0.21 and 5.44 mosquitoes per unit area.

We decided not to include diagrams for the two models
(measles and Zika) to save editorial space, since the structure
of both the Kermack-Mackendrick model [26] of the first case
and the Ross-Macdonald model [18] for the second case are
well known.

3.2. Sensitivity Analysis. In this section we calculate the
sensitivity of the risk to the models parameters. As in
this case the risk is dependent only on the force of the
infection, we calculate the sensitivity of the integral of this
variable. The incidence of infection is defined as A Ly (t) =
abl, (t)(Sg(t)/Ny). Therefore, the number of cases of ZIKV,

ZIKV,,..., generated by the infected travellers, will be
ZIKV 05 = I ably (t) Sull) 4y 17)
0 N H

where once again IIE(t) = IIE(O) exp[—(pyg + yy + a)(t —
£0)10(E — £y).

In order to estimate the sensitivity of the number of
ZIKV cases generated by the infected travellers, we simulated
a Ross-Macdonald model, described in Appendix, with the
parameters as in Table 3, and varied each one by 1 percent.



TABLE 4: Sensitivity analysis. Relative variation in the number of
ZIKV cases when we vary the parameters by 1% per time unit.

Sensitivity of the number of ZIKV cases to the parameters

Parameter Relative variation
(%)

a 1.48

c 74 %107

b 74 %107

Urr 0.0

Vu (-)1.5x107°

Table 4 shows the results of the sensitivity analysis
according to the general (3). The results represent the relative
variation in ZIKV,,,., when we vary the parameters by 1%.

Therefore, the risk of ZIKV invasion is orders of magni-
tude more sensitive to the biting rate and the probability of
transmission from human to mosquitoes and vice versa, from
mosquitoes to humans than the duration of the infection in
the traveller, 1/yy, or the mortality rate in humans y;.

4. Discussion

In this note, we present two probabilistic models that intend
to provide risks estimations of infectious diseases introduc-
tion into previously unaffected countries/regions. We analyse
two distinct situations, one dealing with a directly transmitted
infection and one dealing with a vector-borne infection. For
calculating the risk in the first scenario we used a known
model due to Bailey [25] (see also [27]) in which the disease
spreads as a simple, nonhomogeneous birth process. The
incidence of the infection is the main (in fact, the only)
parameter in the model and this is justified by the fact that we
are only interested in the risk of disease introduction rather
than its full dynamics. This model allows the calculation,
through a Probability Generating Function (3), that one
single infective traveller arriving in a previously uninfected
area produces one secondary, autochthonous case, along
his/her infectiousness period (1). As a proof of principle,
we apply this first model to the case of the current measles
outbreak in Italy, triggered probably by one or more infective
immigrants from non/undervaccinated areas of the world.
This resulted in a risk, according to our definition, of 93%.
Note that this is the probabilistic risk of one secondary case
and as we estimate the basic reproduction number of measles
in Italy in 2017 as equal to 5, it should be expected that one
single infective traveller would introduce the infection in the
region he/she arrives in. Even though the basic reproduction
number, R, is defined as the number of secondary infections
one single infective individual will produce along his/her
infectiousness period [26], in the determinist setting of an SIR
model for measles in our example, the value of R, is exactly
5. However, as the number of infective individuals in a given
restricted geographical area tends to be small, it is important
to calculate the chance that even when the conditions for
the disease invasion to occur are present, none or just a
small number of cases are produced and then vanishes. This
is known as stochastic extinction. In the case of measles

Computational and Mathematical Methods in Medicine

in Europe 2017, this chance is low (7.0%) even though we
consider only a single infected traveller arriving in a very large
area. As mentioned above, the expected number of infected
travellers that seeded measles in Italy in 2017 estimated by
(4a) resulted in only 7 infective travellers that would be
necessary to guarantee that measles would invade Italy.

The second probabilistic model proposed in this paper is
intended to provide a way to calculate the number of local
mosquitoes that would be infected by one single infective
traveller along his/her infectiousness period. Like in the
first model, this second model assumes that one infected
traveller remains infective by an average period of (uy +
Yi + o) units of time, after which he/she would either die
of natural causes or recover from the infection or die of the
disease. The model is simplified by the assumption that we
calculated the probability that the infective traveller infects
at least one mosquito, which turns into a latent mosquito.
Then we calculated the probability that the latent mosquito
would survive through the extrinsic incubation period, 1/y,,.
This mosquito, when biting the susceptible local inhabitants,
Sy(t), with a rate a and probability of infecting b, would
generate at least one autochthonous case with the probability
given of 22%. This should be compared with the risk of 93% of
measles invasion because measles in more infective than Zika,
as reflected by it bigger value of their reproductive numbers
(5 versus 2, see [28]).

The essential difference between the two models pre-
sented in this paper is that the first, a nonhomogeneous
simple birth process, is more suitable for directly transmitted
infections, like the measles example showed, whereas the
second, by including all the intermediate steps in the chain
of transmission, is more suitable for indirectly transmitted
infection, as exemplified by a vector-borne infection.

Finally, a note of caution with respect to the model’s
limitations is necessary. The main limitation of both models
presented in this note is the assumption of homogeneously
mixing population. According to this assumption, an infected
traveller would have the same probability of interact with any
susceptible individual of the local population. This is very
unlikely to be the case in real outbreaks. Therefore, spatial
heterogeneities should be included in the model to make the
results more realistic, a task for future works on this line of
research.

It should be clear that the results presented in this paper
should not be taken as definitive and were presented only as
a proof of concept and to illustrate the methods proposed. In
order to complete the analysis of the risk of disease invasion
by infective travellers of areas previously free of the infection
it would be necessary to address the other component of
the risk, namely the human movement from infected to
noninfected areas by, for instance, the use of gravity-diffusion
models [29].

Appendix
A.

In this Appendix we describe the SIR [26] model used for the
sensitivity analysis of Case 1.
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The model consists of 4 variables, susceptible individuals,
denoted Sy (), infected individuals, denoted I (¢), infected
travellers, denoted I};(t), and removed, denoted R(t). The
model is described by the following system:

dsy (t
%() o [Iy (1) + I ()] HL) — ppSy ()
+ g [T (8) + Ry (8) + Iy (8)]
+ oy [IH (t) + IIE (t)]
dly (1) _ S (t)
Iy () + I (1)] 222
il LGRS 0] N, .
— (g + yu + agg) Iy (1)
arl,
dt( ) —(ppg + v + ) I (t)
dR;(t) YH [IH (t) + Iy (t)] — Ry (2)
Ny (8) = Sg () + Iy () + I (£) + Ry (£)

where the parameters were described in Table 1 of the main
text.

We then calculated the total number of cases produced by
one infected traveller, according to

u (1)

Measles,,,; = J I () —dt (A.2)
0

which is (2) of the main text.

Finally, we varied each parameter by 1% of theirs baseline
values and calculated the relative variation in the number of
cases.

B.

In this Appendix we describe the Ross-Macdonald [18] model
used for the sensitivity analysis of Case 2.

The populations involved in the transmission are human
hosts and mosquitoes. Therefore, the population densities
for humans are divided into the following compartments:
susceptible individuals, denoted Sy (t), infected individu-
als, denoted I (t), infected travellers, denoted IITI(t), and
removed, denoted R(). The mosquitoes are divided into sus-
ceptible mosquitoes, S,,(t), infected and latent mosquitoes,
L,,(t), and infected and infectious mosquitoes, I,,(¢). The
parameters appearing in the model are defined in Table 3.

The model is defined by the following:

% = —ably (f) ——— SH Q + g (Ng = S (1)
+ ol (1)
i (t) abl (t) — —(ug +yu + o) I ()
dt Ny,

7
drt, (¢
dt( ) — (g + v + o) I (t)
d
Rg O (1 (O + If; ()] = Ry (1)
dS,, (1) [I4 (0) + T (1))
g - Sul) Ny
+ g (Lpg () + Iy (1)
d
Aarlt) _ s, 0 28Oy 10
H
= ppLpg ()
dr” 1 (t)
%(” acSy (t) 0] YarLas @)
= tpLps ()
d
IZIt(t) = yaLoar (8) = pprdpr ()
drt
I;t(t) = YML’IJ;/I (1) — pagIpg (8)
Ny =Sy+Ig+Ry
Ny =Sy + Lag+ Lh (8) + I+ I, (8)
(B.1)

We then calculated the total number of cases produced by

one infected traveller, according to
_ ()
ZIKV, ., = abIM (1) —dt (B.2)
0

which is (17) of the main text.

Finally, we varied each parameter by 1% of theirs baseline
values and calculated the relative variation in the number of
cases.
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