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A B S T R A C T

The use of continuous flow microreactors offers an interesting approach among the process intensification tools
available. Fouling in a microreactor during synthesis of industrially relevant nanoparticles was investigated. In
order to achieve this, microscale synthesis of phosphated TiO2 nanoparticles from titanium(IV) isopropoxide
(TTIP) and titanium(IV) butoxide (TBUT) was employed. A continuous three step process, consisting of hy-
drolysis of the respective alkoxide, phosphate modification and precipitation was developed. The resulting
catalyst was characterized by means of nitrogen adsorption, dynamic light scattering and SEM/EDX. It was
observed that TTIP resulted in massive fouling, while a stable process was possible with TBUT. This was related
to the nucleation time of the particles. The particle size directly after the critical hydrolysis step was in-
vestigated. The particles formed with TTIP as a precursor (3.4 nm) were larger than those obtained from TBUT
(2.4 nm). Diffusion based reactant concentration gradients within the multilamellar micromixer were calculated,
and the corresponding Damköhler numbers for mixing were estimated to be 2.6∙10−3 for TBUT and 3.5∙10−2 for
TTIP respectively. These numbers highlight the influence of incomplete mixing on fouling for TTIP as a pre-
cursor. Thus, our work demonstrates the necessity to consider the reaction kinetics during process intensification
by miniaturization.

1. Introduction

Process intensification (PI) plays a major role in approaches adopted
in green chemistry. While numerous different methods and definitions
are present, a generalized definition has been supplied by Stankiewicz
et al. They conclude that all common definitions of process in-
tensification can be reduced to the key aspect to use innovative mea-
sures in order to achieve a substantial improvement [1]. Continuous
processing and process miniaturization are, especially when combined,
very interesting routes towards an intensified process [2]. The in-
creased control over heat and mass transfer, the ease of serial reactions
and increased active surface to volume ratio (i.e. for catalysis) allow for
faster reaction rates, lower energy consumption and higher yields
[3–7]. These advantages, but also the possibility to use more severe
process conditions, have become the driving forces for intensification
by miniaturization [2,7–13]. The use of batch and continuous micro-
reactor technology involving solids (i.e. catalysts) has become an in-
teresting new field in (bio)catalysis [14–18]. Miniaturization of che-
mical fluid and gas phase reactions is a promising approach for
industrial application; however, continuous microreactor processing

involving solids is much less popular [3]. One of the main obstacles for
the downscale and intensification of chemical processes involving solids
is the fouling and clogging of microstructured devices [19–24]. Despite
the obstacles, green and intensified microreactor routes for nano-
particle synthesis are most desirable as nanoparticles have become in-
valuable not only as catalysts, for optoelectronics and nanomedicine
[25], but also in everyday applications [26]. TiO2 nanoparticles in
particular play an important role due to their diverse application in
sunscreen, paints, toothpaste, solar cells, electrochemical electrodes,
capacitators and heterogeneous catalysis [27,28]. The increasing pro-
duction of TiO2 nanoparticles in the last five years from between 3300
and 13000 tons per year in 2011 [29] to an estimated 50.000 tons in
2016 [30] as well as the predicted production of 2.5 million tons in
2025 [31] clearly underline the industrial relevance of flexible and
sustainable TiO2 synthesis processes.

Synthesis of TiO2 nanoparticles is of great interest and has been
reviewed thoroughly [27,32]. While there are different synthesis routes
towards TiO2-nanoparticles which can be adopted, including sol-gel,
microemulsion, precipitation, hydrothermal, solvothermal, electro-
chemical and biological synthesis of TiO2 nanoparticles [32,33], the
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sol-gel process from titanium(IV)alkoxides and water in the parent
solvent of the respective alkoxide is of special interest due to its mild
reaction conditions. The reaction is especially dependent on the hy-
drolysis ratio and the ratio of water to alkoxide. Additionally, it may be
tuned by use of both acid and base content, solution composition and
temperature. Ambient temperature, product homogeneity, low tem-
perature sintering and ease of functionalization of the resulting nano-
materials are further advantages of this synthesis route [32,34,35]. In
order to estimate the influence of mixing efficiency on particle forma-
tion and fouling, the reaction as well as mixing time can be utilized. The
respective kinetics of the particle formation were studied thoroughly.
Thus, the sol-gel TiO2-synthesis, as a well-known process of industrial
interest, is especially suited for exemplary downscale into the micro-
reactor and fouling investigation. Azouani et al. observed that initial
particle nucleation at a radius of ∼2.6 nm by initial hydrolysis takes
place almost instantaneously [36]. Afterwards, if the hydrolysis ratio
and pH are tuned accordingly, a near linear increase of the particle
radius up to the nucleation point at around 4 nm is observed. As soon as
particle radius has reached ∼4 nm, aggregation of particles occurs and
the particle size increases rapidly [37,38]. The kinetics of the nuclea-
tion, based on a power law relation, have been elaborated by numerous
studies [36–40]. Induction time kinetics for TTIP have been proposed
by Soloviev et al. (Eq. (1)) [36–38]. They proposed a model including a
correction term for initial hydrolysis with k as rate constant, Cn = TTIP
concentration and Cw as water concentration.

= −

− −Ct k·C ( 1.45C )ind n
1.5

w n
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An analogous model, but without the respective correction term for
initial hydrolysis, was developed by Golubko et al. for TBUT [39], as
stated in Eq. (2).

=

− −t k C C· ( )ind n w
2 5 (2)

Nucleation time kinetics have previously been used by Mohamedani
et al. to explain mixing and nucleation phenomena in TiO2 synthesis in
a spinning disc reactor [40]. During the particle formation, pH plays an
important role in stabilization of TiO2-nanoparticles below the nu-
cleation point. Simonsen et al. reported formation of larger particles
only at a pH above 3, with nucleation rate increasing with pH for both
TTIP and TBUT [41]. This is due to the dependence of the particle’s zeta
potential on the presence of acids and bases. However, the fact that pH
values were measured in the respective parent alcohol of the titanium
(IV)alkoxide used has to be taken into account. The topic of pH de-
termination in organic solvents and the measurement thereof is still
under investigation and different approaches have been published
[42,43]. The use of the pH value by Simonsen et al., based on H3O+ ion
concentration in organic solvents, does not reflect the original auto

hydrolysis definition of pH in water. For the present paper the apparent
pH is introduced as a term to describe pH values derived from the si-
mulated hydrolysis of water by nitric acid in n-butanol and 2-propanol
as solvents by assuming complete hydrolysis. Despite the difficulty of
pH definition, addition of a strong acid allows prevention of particle
aggregation during the TiO2-sol-gel synthesis [41].

TiO2 can be synthesised as amorphous material as well as in three
different crystal forms, namely brookite, rutile and anatase. On the
surface of anatase, TiO2 crystals have a lower coordination number
than within the crystal lattice. Those sites are called coordinatively
unsaturated surfaces. Due to their unsaturated coordination, those sites
show Lewis acid activity. This activity can be utilized for catalysis such
as the access of 5-hydroxymethylfurfural (5-HMF) from carbohydrates.
5-HMF has great potential for industrial application. It serves as a
substrate for the oxidation to 2,5-dicarboxylic acid, a potential re-
placement of terephthalic and other fossil based diacids for the synth-
esis of bioplastics. Other interesting products to be synthesised from 5-
HMF are dimethylfuran and 2-methylfuran, which may serve as biofuels
[34,44]. The works of Nakajima et al. and Atanda et al. optimized the
catalytic performance of TiO2 for 5-HMF synthesis by phosphate mod-
ification of anatase nanoparticles through addition of phosphoric acid
or ammonium phosphate during the process. The resulting catalyst, in
combination with a biphasic solvent, produced yields of 80% and
drastically reduced the formation of undefined polymers during the
reaction [34,44–46]. This novel phosphate doped TiO2 catalyst is a
promising candidate for further process optimization.

Utilization of micromixers for rapid mixing of reactants plays an
important role during the design of microreaction systems, especially in
the case of solid particle synthesis. However, industrial application is
often inhibited by fouling [3]. Kockmann et al. identify two di-
mensionless numbers as boundary conditions for the deposition pro-
cess. The Péclet Number (Pe) has been defined as the ratio of char-
acteristic diffusion time (tD) and characteristic flowtime (tF), while the
Stokes Number (St) provides the relation of the particle relaxation time
(tP) and the characteristic flow time, as denoted in Eqs. (3) and (4).
Further information on Péclet and Stokes Numbers is provided in the
Supplementary information (SI) (Eqs. (10)–(14)).

=Pe t
t
D

F (3)

=St t
t
P

F (4)

Despite the outcome of their study that no universal fouling re-
mediation strategy can be applied but that an individual approach is
necessary for each microreactor process, a Péclet number smaller than
5∙106 to prevent particle deposition by diffusion and a Stokes number

Nomenclature

List of abbreviations

PI Process intensification
TTIP Titanium(IV)isopropoxide
TBUT Titanium(IV)butoxide
5-HMF 5-Hydroxymethylfurfural
THF Tetrahydrofuran
NMP N-methyl-2-pyrrolidone
HPLC High performance liquid chromatography
BET Gas adsorption according to Stephen Brunauer, Paul Hugh

Emmett and Edward Teller
BJH Method to calculate pore size distribution according to

barrett-Joyner-Halenda
P-TiO2 Phosphate modified titaniumdioxide
SEM/EDXScanning electron microscope/energy-dispersive X-ray

spectroscopy

List of Symbols

Cn Alkoxide concentration (mol L−1)
Cw Water concentration (mol L−1)
Dam Damköhler number for mixing
Dp Particle diameter (nm)
Pe Peclet number
St Stokes number
tD Characteristic diffusion time (s)
tF Characteristic flow time (s)
tind Induction time (s)
tM Mixing time (s)
tP Particle relaxation time (s)
tR Reaction time (s)
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smaller than 5∙10−2 to avoid particle deposition at the wall by inertia
are suggested [19].

The concept of the Damköhler number Dam for mixing as the rela-
tion of mixing time and reaction time is stated in Eq. (5). tR denounces
the reaction time and tM the mixing time. This Damköhler number
provides a simple approach to estimate whether mixing phenomena
have an impact on the reaction kinetics [47–50].

=Da t
tm
M

R (5)

In general, a Damköhler number for mixing smaller than 10−2 is
necessary to prevent significant impact of mixing phenomena on pro-
duct formation kinetics. The relevance of the Damköhler number for
mixing in microscale TiO2-nanoparticle synthesis has been demon-
strated by Azouani et al., who adapted the flow rate to increase the
Reynolds number and thus decrease the effect of mixing on reaction
rate [51].

Our aim was to investigate and optimize fouling within an in-
dustrially relevant microreactor system to provide data for fouling re-
mediation during intensification of processes involving solids.
Therefore, this work exemplarily shows the miniaturization of
phosphated TiO2 nanoparticle synthesis as a multistep continuous mi-
croreactor process utilizing a modular microreactor setup. Continuous

multistep synthesis is achieved by serial setup of a slit plate- [52,53], a
comb [54] and a valve mixer [55–57]. Both titanium(IV)isopropoxide
(TTIP) and titanium(IV)butoxide (TBUT) are investigated as precursors
for the reaction in order to elucidate the influence of mixing and re-
action speed on fouling in a continuous microreactor process. The re-
spective particles are characterized according to their physical and
chemical properties by means of nitrogen adsorption, dynamic light
scattering (DLS) and SEM/EDX. The resulting catalyst is then ex-
emplarily used to catalyse the conversion of glucose to 5-HMF.

2. Methods

2.1. Materials

Titanium(IV)isopropoxide (≧97%), Titanium(IV)butoxide (≧97%),
2-propanol (≧99.8%), ammonium hydroxide solution (25%), HMF,
glucose (≧96%), fructose (≧99%), phosphoric acid (85%), N-methyl-2-
pyrrolidone (NMP) (≧99%), tetrahydrofuran (THF) (≧99%) and sodium
hydroxide (≧97%) were purchased from Sigma-Aldrich. Nitric acid
(65%) was purchased from Carl Roth (Arlesheim, Schweiz). Millipore
water with a conductivity of 0.055 mS cm−1 was used. All materials
were used without further purification.

Fig. 1. Diagram of the microreactor used for catalyst synthesis. In mixer 1, the titanium(IV)alkoxide (reactant 2) is mixed with water (reactant 1), forming a colloidal solution. In mixer 2,
phosphoric acid solution (reactant 3) is added and in the last stage ammonium hydroxide solution (reactant 4) is admixed to precipitate the phosphate modified titania.
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2.2. Catalyst synthesis

A modular microreactor (Ehrfeld Mikrotechnik, Wendelsheim,
Germany) was used for the continuous flow catalyst synthesis (see
Fig. 1). A detailed list of the microreactor modules used in this study is
provided in the SI (Table 9). In the first stage, a solution of 1.79 g water,
5.01 g nitric acid and 91.24 g 2-propanol was mixed with 18.36 g TTIP,
dissolved in 44.65 g 2-propanol, in a slit plate mixer. Subsequently,
1.01 g phosphoric acid dissolved in 123.62 g 2-propanol was added to
the reaction by use of a comb-type mixer. Finally, a solution of 14.79 g
water, 4.93 g ammonium hydroxide solution (25%) and 136.80 g 2-
propanol was added in a valve mixer. Volume flow rates of pumps 1–4
were set to 2, 2, 2.6 and 3.2 mL min−1, respectively. Pump performance
was controlled gravimetrically and were within ± 5% of the set point
values. Temperature after the slit-plate mixer was set to 75 °C and
control was achieved by heating feed 1 and 2. For thermal equilibra-
tion, feed one was switched on and feed 2 was set to pure 2-propanol/
butanol. Once the reaction temperature of 75 °C in the first mixer was
achieved, feed 2 was switched to TTIP solution and the reaction was
thus started. 10 min later, a sample was collected at the outlet of the
multimixer setup for determination of primary particle size by DLS.
Thereafter, feeds 3 and 4 were switched on. The white product solution
at the end of the microreactor was collected. Additionally, primary
particle formation was analysed directly after the first slit plate mixer to
investigate the fouling mechanism and behaviour of different sub-
strates.

The suspension was centrifuged for 15 min. The solids were washed
twice with acetone and once with hexane as a solvent. For each washing
step, the sediment was re-suspended in 20 mL of solvent by stirring and
5 min of ultrasonic treatment. For better sedimentation during cen-
trifugation, 150 μL of ammonium hydroxide solution (25%) were added
for each washing step.

The received sediment was dried for 12 h in vacuum at 80 °C, fol-
lowed by 4 h at 120 °C. The dried sediment was heated at a rate of
5 °C min−1 and kept at 600 °C for 3 h in static air. Experiments were
carried out twice for consistency.

2.3. Catalyst characterization

Primary particle size was measured by DLS using a Malvern
Zetasizer Nano ZEN3600 (Malvern Instruments, Herrenberg, Germany)
equipped with a 633 nm laser. Colloidal samples were measured
without prior dilution.

The specific surface area was determined at 350.15 °C on a
NOVA3000 (Quantachrome, Boynton Beach, USA) instrument by ni-
trogen adsorption and evaluation using the gas adsorption method ac-
cording to Stephen Brunauer, Paul Hugh Emmett and Edward Teller
(BET) method [58]. For the porosity calculation, the isotherm was
evaluated according to the method by Barrett-Joyner-Halenda (BJH)
method [59]. The catalyst was dried at 80 °C for 4 h prior to nitrogen
adsorption measurements.

Scanning electron microscope images were collected on a Quanta
FEG 250 instrument (FEI, Hillsboro, USA) at an acceleration voltage of
10 kV. The catalyst was fixed on carbon tape without any sputtering.
Phosphorous/titanium composition was verified using an EDX detector.

Raman spectra were recorded using an Alpha UHTS 300 (WITec,
Ulm, Germany) with a 532 nm laser.

For catalytic conversion of glucose to 5-HMF, 0.52 g of glucose and
0.40 g of sodium chloride were dissolved in 2 mL of water. 6 mL THF,
2 mL NMP and 0.125 g of catalyst were added. The reaction was carried
out in a microwave reactor (Biotage, Uppsala, Sweden) at 175 °C for
105 min. After centrifugation for 10 min, the liquid was decanted and
the two phases separated.

2.4. HMF quantification

5-HMF, fructose und glucose were quantified by HPLC using a
Nucleogel Sugar 810H VA 300/7.8 column (Macherey-Nagel, Düren,
Germany). The calibration range was 0.1–2 g L−1. A 1200 Series
(Agilent Technologies, Santa Clara, USA) HPLC system was used. The
chromatography was carried out in isocratic mode. The mobile phase
was a mixture of 90% acetonitrile and 10% water containing 0.1%
trifluoroacetic acid. The flow was 0.4 mL min−1 for 45 min. For de-
tection, a G1315C diode array detector at 275.4 nm (Agilent
Technologies, Santa Clara, USA) for 5-HMF and a 1290 Infinity II
evaporative light scattering detector (Agilent Technologies, Santa
Clara, USA) for glucose and fructose were used. Retention times were
12.8 for glucose, 14.2 for fructose and 38.2 min for 5-HMF respectively.

2.5. Modelling of the mixing in the LH2 slit plate mixer

Python 2.73 (Python Software Foundation, Delaware, USA) was
used for the modelling of the diffusion based mixing within the Ehrfeld
LH2 slit plate mixer used as mixer one (for a detailed list of the mi-
croreactor modules used, please refer to Table 8 in the SI). The re-
spective diffusion model according to the Einstein Smoluchowski rela-
tion (SI; Eq. (15)) and Fick’s second law of diffusion (SI; Eq. (7)) is
elaborated in detail in the (SI). Van der Waals radii of molecules were
estimated using MarvinSketch 16.10.3.0 (ChemAxon, Budapest,
Hungary).

3. Results

3.1. Localization of fouling

Pressure measurement within the microreactor system was used as
an indicator for fouling during catalyst synthesis. As can be seen from
the pressure curves depicted in Fig. 2, the first reaction step is, when
utilizing TTIP as a precursor, subjected to a massive increase in process
pressure up to 60 bar (solid line). Often, the setup would clog com-
pletely before significant amounts of product were obtained. Interest-
ingly, the pressure increase, indicating fouling within the reactor/mi-
cromixers, is not observed if TBUT is used as a precursor (dashed line).
Additionally, no TiO2 residue in the micromixer was found for TBUT as
precursor. Fouling in the first mixing step was identified as the cause of
the pressure increase. It was postulated that particles formed before a
homogeneous mixture of the TTIP- and water feed was achieved. Thus,
inhomogeneous reactant concentrations and pH resulted in undesired
rapid particle formation kinetics and insufficient stabilization of the

Fig. 2. Exemplary pressure increase of the LH2 slit plate micromixer mixing (Water/
Nitric acid and the respective titanium(IV)alkoxide for TTIP (solid line) and TBUT (dotted
line)).
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particles. This is supported by the lack of fouling for the less reactive
TBUT and the lack of significant fouling in the consecutive mixers. It
was furthermore observed that older TTIP and 2-propanol batches
caused even more massive fouling (data not shown). This phenomenon
has previously been reported, as the hygroscopic properties of 2-pro-
panol can cause a decrease in observed nucleation time of TiO2 [37].
One of the causes for the fouling may thus be water contamination in
the TTIP feed. In this case, the nucleation would already have started

before entering the mixing region. Another possible explanation is the
faster reaction rate of TTIP compared to TBUT. Therefore, the reaction
with TTIP reaches critical particle size before mixing is complete, re-
sulting in particle deposition and agglomeration, thus causing fouling.

3.2. Investigation of fouling causes

To further investigate the fouling, the primary particle size directly
after the first mixer was measured for three different precursor-solvent
combinations: TBUT in n-butanol, TBUT in 2-propanol and TTIP in 2-
propanol. TTIP in n-butanol was not investigated due to the higher
reactivity of TTIP compared to TBUT because a reaction, analogous to
the production of TBUT from titanium(IV)chloride with n-butanol [60],
was expected to influence respective experiments. The average primary
particle size measured directly after the hydrolysis step of the TTIP
produced particles was larger (3.4 ± 0.1 nm) than the primary particle
size measured at the end of the reactor (2.2 ± 0.1 nm). The decrease in
size over the second and third process step can be explained by a
homogenization effect due to shear stress in the valve mixer (third
mixer). Despite the fact that homogenization of particles has not been
described for this mixer, the strong emulsifying effect of the valve mixer
described in literature [61] underline this coherence. After the slit plate
mixer, the two samples with TBUT, in butanol (2.4 ± 0.7 nm) and 2-
propanol (2.4 ± 0.5 nm), both resulted in a smaller primary particle
size than the sample with TTIP in 2-propanol. For TBUT as a precursor,
the particle size directly after the slit plate mixer did not differ from
that at the end of the consecutive three step reaction setup. 14% of
particles within the TTIP sample were larger than 4.8 nm, while this
fraction included only 0.5% (in butanol) and 2.4% (in 2-propanol) for
the TBUT samples (Fig. 3). Thus, the TTIP in 2-propanol sample was the
only precursor combination tested that included significant particle
amounts ≧5 nm. This number is provided by Ehrfeld BTS Mikrotechnik
as the maximum particle size to be used within the LH2 slit plate mixer.
The effect of 2-propanol hygroscopicity alone does not sufficiently ex-
plain these results. If this were the case, the tests with TBUT in 2-pro-
panol should have produced similarly large particles as in the experi-
ments with TTIP. However, the large number of particles sized larger
than 2.6 nm (80%) in the TTIP sample in presence of nitric acid
(pH < 3) are unusual and indicate non-optimal mixing due to a nu-
cleation time smaller or close to the order of magnitude of the mixing
time. Such effects are well known in continuous processing and mixing
[47–51].

The mixing times for the different compounds were estimated to be
between 1.72 s (TTIP in 2-propanol) and 0.47 s (H2O in 2-propanol)
according to manufacturer information (further information in Eq. (8)
of the SI). However, the relevant timeframe for fouling within the mi-
crostructures is the first millisecond after the fluid passes through the
multilamellation structure. During this time, the reactant flow passes
through the microscale slit of the aperture plate (Fig. 4). Thus, any
accumulation of particles within the mixing structure takes place within
this timeframe. The concentration gradients of reactants, H3O+ and
NO3

−
, as well as the hydrolysis ratio during the first mixing operation,

were thus postulated as a fouling cause.

3.3. Mixing simulation in the LH2 slit plate micromixer

To elucidate the reactant distribution within this critical timeframe,
the diffusion-based mixing at the border between two fluid lamellae
within the LH2 slit plate mixer was further investigated by diffusion
simulation. An explanatory figure for the multilamellation mixing, as
employed in the LH2 slit plate mixer, is displayed in Fig. 4.

The reactant concentrations and the apparent pH depicted in Fig. 5,
as elaborated in the Introduction, clearly show that the reaction con-
ditions within the critical microstructured part of the LH2 slit plate
mixer are not homogeneous. The hydrolysis ratio (Fig. 5b), which
strongly determines reaction rate/nucleation time, is significantly

Fig. 3. Particle size of TiO2 particles directly after the first mixer for TBUT in Butanol
(solid line), TBUT in isopropanol (dashed line) and TTIP in isopropanol (dotted line).

Fig. 4. Mixing principle of the Ehrfeld LH2 slit plate multilamellation mixer (with per-
mission of Ehrfeld Mikrotechnik BTS) [62].
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influenced by the diffusion gradient. It becomes very large and ap-
proaches infinity when the alkoxide concentration approaches 0. The
simulated concentration data for H2O and TTIP in Fig. 5b additionally
elucidate the concentration gradients at the lamellae interfaces within
the micromixing structure. The simulation data revealed that regions
with an alkoxide concentration in the 10−1 mol L−1 order of magnitude
and a hydrolysis ratio between 2 and 10 are present close to the liquid
interfaces. These results obtained for one interface region can be ex-
trapolated for all the interfaces between the 40 fluid lamellae. These
areas, with sufficient alkoxide concentration to allow a reaction and a
hydrolysis ratio above 2, are most likely the cause for large particle
formation and deposition within the microscale structures. Besides the
inhomogeneous reactant concentrations subsequently to the first mixer,
the apparent pH (as denoted in Fig. 5b) serves as a measure to estimate
stabilization of TiO2 particles by pH, as described by Su et al. [63]. As
stated in the Introduction of the present paper, the pH measured in

organic solvents cannot directly be related to pH measurements in
water as a solvent. Additionally, it has to be noted that the modelled
apparent pH values higher than seven are the result of dilution of the
nitric acid/hydronium ions by the diffusion gradient. Furthermore,
protolysis of the respective parent alcohol was neglected. However, an
apparent pH above 3 still causes a lack of stabilization of TiO2 particles
<3 nm due to decrease in the particles zeta potential [41]. Unstabilized
conditions are thus present within wide sections of the microfluidic
mixing zone, as depicted in Fig. 5b. If the hydrolysis ratio has been
increased due to hygroscopicity of the 2-propanol, this can additionally
cause fouling. If water is present in the TTIP feed, the temperature in-
crease in the heat exchanger directly before the LH2 slit plate mixer
increases the reaction speed. This may cause additional particle pre-
cipitation and fouling in the micromixer prior to stabilization.

Known reaction kinetics for TiO2-particle induction times (Eqs. (1)
and (2)) do not offer a distinctive correction for pH and are only valid at

Fig. 5. Diffusion simulation for the phase border between two fluid lamellae, containing H2O, nitric acid and TTIP within the mixing structure of the LH2 slit plate mixer at beginning
middle and end of the aperture plate of the LH mixer. The different parameters plotted are related to the positions in flow direction as follows: 0 μm (solid lines), 150 μm (dashed lines)
and 300 μm (dotted lines) after multilamellation. a.) cross section across the microfluidic aperture plate channel of the Ehrfeld LH2 slit plate mixer showing the multilamellation of TTIP
and the water/nitric acid mixture and the respective positions plotted b.) apparent pH (grey) and hydrolysis ratio (black) at the middle (dashed lines) and end of the (dotted lines)
aperture plate c.) concentration of alkoxide (black) and water (grey) at the beginning (solid lines), in the middle (dashed lines) and at the end (dotted lines) of the aperture plate (no
significant difference was determined between TTIP and TBUT, the respective figure for TBUT as a precursor can be found in the SI, Fig. 1).

Table 1
Primary particle size (DP), induction times (tind), mixing times (tM), Damköhler number for mixing (Dam), Stokes Number (St) and Peclet (Pe) Number after the LH2 slit plate mixer and
relevant characterization numbers for the hydrolysis reaction step.

Substrate DP (nm) [m/a/x]a Dam tind (s) tM (s) Pe [m/a/x]a St [m/a/x]a

TTIP 1.5/3.4/10.1 3.5∙10−2 33 1.15 4.4∙108/1.01∙109/2.99∙109 4.98∙10−6/2.56∙10−5/2.26∙10−4

TBUT 1.3/2.4/5.6 2.6∙10−3 657 1.72 5.31∙108/9.8∙108/2.29∙109 3.01∙10−6/6.40∙10−5/3.48∙10−4

a The indexes [m/a/x] refer to the respective values for minimum, average and maximum particle size as determined by DLS measurement.
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a limited hydrolysis ratio range. Thus, kinetic modelling of the induc-
tion time of titanium dioxide particles from alkoxide precursors could
not be applied to the mixing model. However, the published kinetics for
TBUT indicate an induction time which is three to four orders of
magnitude longer than that for TTIP. An estimation of induction time
for the perfectly mixed reactants, under consideration of the Arrhenius
equation based on the data obtained by Park et al. [64] (for further
information please refer to SI, Eqs. (3)–(6), Table 1), but neglecting the
pH influence, results in induction times of 33 s and 657 s for TTIP and
TBUT as precursors respectively. This scenario assumes the complete
mixing of both reactants before any reaction takes place. The diffusion
simulation shows that such optimal conditions are not present. How-
ever, this estimation of the induction time allows the relation of mixing-
and reaction times to be approximated. The respective Damköhler
numbers for mixing derived from these numbers are 3.5∙10−2 for TTIP
and 2.6∙10−3 for TBUT respectively. This additionally underlines the
influence of micromixing on the particle formation and fouling within
the microstructures of the LH2 slit plate mixer for use of TTIP as pre-
cursor as well as the fouling remediation by use of TBUT, as a Dam-
köhler number between 102 and 10−2 indicates a competition of mixing
and reaction [48–50]. Calculation of the Stokes and Péclet Numbers for
particle sizes measured after the LH2 slit plate mixer does not provide
further insight into the particle deposition mechanism, as the Péclet
number is larger than 106 and the stokes number is smaller than 5∙10−2

for all particles formed in the LH2 slit plate (Table 1). The respective
values for nucleation time, mixing time, Damköhler, Stokes and Péclet

number are summarized in Table 1.

3.4. Physical properties of nanoparticles produced with TTIP and TBUT

Despite the fouling problem of TTIP as a precursor, both processes
yielded phosphate TiO2 particles of anatase modification (Raman
spectra can be found in Fig. 2 of the SI). Nitrogen adsorption shows a
higher adsorbed N2 volume for catalysts made from TTIP (as shown in
Fig. 6). The respective nitrogen adsorption isotherms are depicted in
Fig. 3 of the SI. The pore size distribution derived from nitrogen ad-
sorption shows that the pore size of TTIP derived P-TiO2 is larger than
that of catalyst produced with TBUT (as shown in Fig. 6).

However, the porosity of the TBUT catalyst is lower with
0.139 mL g−1 compared to 0.242 mL g−1 for the TTIP catalyst. This is
in line with the published trends as the slower reaction/nucleation rate
results in formation of more compact TiO2 particles when TBUT is used.
Similar effects have been observed by Faleras et al. [65]. The difference
in porosity is depicted in the scanning electron microscope image in
Fig. 7. While the catalyst produced with TTIP consists of a fine network
(Fig. 7B), the one produced from TBUT features an agglomeration of
small compact spheres (Fig. 7A) (Table 2).

The primary particle size distributions at the end of the micro-
reactor with a mean particle size of 2.4 ± 0.1 nm (TBUT) and
2.2 ± 0.1 nm (TTIP) do not show significant differences between ex-
periments (see Table 2 and Fig. 4 in the SI). As mentioned earlier,
homogenization effects of the valve mixer in the third reactions step are
a plausible explanation for the decrease of TTIP particle size and in-
creased uniformity of the particles at the outlet compared to measure-
ments after the first mixer.

3.5. Conversion of glucose to 5-HMF

P-TiO2 catalyst particles derived from TBUT and TTIP were ex-
emplarily used for 5-HMF synthesis and yielded ca. 40% of 5-HMF from
glucose while conversion was over 90% for all catalyst samples. While
the original works of Atanda et al. report 5-HMF yields of up to 90%,
those high yields were achieved under a defined pressure of 20 bar
[44]. The utilization of a microwave reactor with rapid heating/cooling
and lack of pressure control within the microwave reactor at least
partially explains the lower yields compared to literature data, as a
higher degree of polymerization of the produced 5-HMF is expected to
cause the low yield compared to the works of Atanda et al. The partition
of the catalytically more active anatase modification of the P-TiO2 in
relation to the rutile and brookite modified partitions was not evaluated
during our study. Quantification of the different crystal modification
partition was able to provide further insights and allow optimization of
the catalyst.

Fig. 6. The pore size distributions of the catalysts gained by evaluation of the nitrogen
adsorption isotherm according to the BJH method for catalysts made from titanium(IV)
isopropoxide (circles) and titanium(IV)butoxide (triangles). a and b indicate measure-
ments for independent catalyst production processes.

Fig. 7. Scanning electron microscope image of TiO2 catalysts. A.: Produced from TBUT; the structure consists of more solid spheres forming a network, B.: Produced from TTIP; the
structure is a fine more homogenic network.
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4. Conclusion

This work clearly elucidates the importance of controlling particle
formation for intensified processes applying microreactor technology
and involving solids. It is demonstrated that fouling, as one of the main
obstacles for industrial scale microreactor synthesis of nanoparticles,
can be remediated. The data presented demonstrates that tuning of
reaction and mixing times becomes invaluable for remediation of
fouling during the synthesis of phosphate modified TiO2 particles in
microstructured devices. The first of the three consecutive reaction
steps was identified as the crucial operation in terms of fouling re-
mediation. The change of the alkoxide precursor from TTIP to TBUT
was used to remediate fouling and the rapid nucleation/precipitation of
TTIP was identified as the cause of increasing backpressure. DLS mea-
surement of particle size distribution after the critical reaction step was
employed, and particles sizes larger than 5 nm were found only when
TTIP was used as precursor. The underlying concentration gradients
during the critical timeframe within the micromixing structures were
investigated by diffusion simulation. The hydrolysis ratio of the reac-
tion, as well as the apparent pH/H3O+ within the Ehrfeld LH2 slit plate
mixer, showed large gradients of reaction conditions within the mi-
crofluidic structures within the Ehrfeld LH2 slit plate micromixer. The
Damköhler numbers were calculated based on estimated mixing and
reaction/nucleation times. These numbers indicated a competition of
mixing and reaction as the underlying cause for particulate fouling
within the LH2 slit plate mixer for use of TTIP as a precursor, and thus
provide a plausible explanation for fouling remediation when using
TBUT. The resulting catalysts were characterized thoroughly, and ex-
emplarily used for 5-HMF synthesis with a yield of 40% 5-HMF.
Catalytic results were comparable for both substrates, despite differ-
ences in porosity and surface area. Optimization of the catalyst by
tuning substrate concentrations and reaction parameters can be used to
increase 5-HMF yield. Additionally, fine tuning of the 5-HMF synthesis
in the microwave reactor is a promising approach to exploit the full
potential of the produced phosphate modified titania catalysts.
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