
Bridgewater State University
Virtual Commons - Bridgewater State University

Honors Program Theses and Projects Undergraduate Honors Program

5-8-2018

The Restoration of UNIX: Emulating UNIX
version 1.0 on a 16-bit DEC PDP 11/20
John J. Gilmore Jr.

Follow this and additional works at: http://vc.bridgew.edu/honors_proj

Part of the Computer Sciences Commons

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.

Recommended Citation
Gilmore, John J. Jr.. (2018). The Restoration of UNIX: Emulating UNIX version 1.0 on a 16-bit DEC PDP 11/20. In BSU Honors
Program Theses and Projects. Item 285. Available at: http://vc.bridgew.edu/honors_proj/285
Copyright © 2018 John J. Gilmore Jr.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Virtual Commons - Bridgewater State University

https://core.ac.uk/display/160503115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=vc.bridgew.edu%2Fhonors_proj%2F285&utm_medium=PDF&utm_campaign=PDFCoverPages

1

The Restoration of UNIX: Emulating UNIX version 1.0 on a 16-bit DEC PDP 11/20

John J. Gilmore Jr.

Submitted in Partial Completion of the

Requirements for Commonwealth Honors in Computer Science

Bridgewater State University

May 8, 2018

Dr. Michael Black, Thesis Advisor

Dr. John Santore, Committee Member

Dr. Haleh Khojasteh, Committee Member

2

The Restoration of UNIX: Emulating UNIX version 1.0 on a 16-
bit DEC PDP 11/20

Author: John Gilmore

Mentor: Professor Michael Black

A thesis submitted in the partial pursuit of Departmental Honors, and the
fulfillment of a Bachelor’s of science in Computer Science.

Bridgewater State University

Bartlett College of Science and Mathematics Department of Computer Science

April 2018

3

Abstract

Next year, the one of the world’s first Operating Systems (OS) UNIX will celebrate its 50th

birthday. This relic of the past is objectively one of the most important creations that has ever influenced

the field of Computer Science. However, mysteries of this artifact were discovered in 1995. Two engineers,

Paul Vixie and Keith Bostic, dug deep enough to find several DEC tapes “under the floor of the computer

room [at Bell Labs]” (UNIX Past) which held several original binary files for UNIX. With much help from

several individuals, these two engineers were able to reverse engineer the binary tapes they found and

15 years later, put up a repository for this ancient system on GitHub. There it has stayed, waiting for

someone to use it like it was meant to be used, on a DEC PDP 11/20, the computer UNIX v1 was initially

written for. Currently, the PDP 11/20 can send and receive data via a homemade serial emulator we have

written in Java, and the PDP 11/20 has been loaded with a binary file for the BASIC programming language.

Once the entry point for BASIC can be determined, we will start to write code to emulate paper tape

readers to assist in loading UNIX v1 into the PDP 11/20's memory. In the end, we hope to have a fully

functional system running the one of the world’s first Operating Systems.

4

Acknowledgments

I need to thank my mentor Professor Michael Black for helping guide me through this project. He

helped answer questions that I had while being more of a guide than a teacher. He engaged me in

conversations about where we should be going rather than just giving me a straight answer because this

is new territory for us both. I would bring him my ideas on how to continue, and he would guide me in the

correct direction. I also need to thank my peer and associate Francis Duffy. He and I worked extensively

on many of the problems detailed in this work. Our discussions often led to the solutions necessary to

move forward. Undoubtedly, without them, I could not have made as much progress as I did.

5

Table of Contents

1. Part 1: Introduction, page 5

a. Section 1.1: The PDP 11/20, page 5

b. Section 1.2: UNIX, page 6

c. Section 1.3: Methodology , page 9

2. Part 2: The PDP 11/20, page 12

a. Section 2.1: The Architecture, page 12

b. Section 2.2: The Instruction Set, page 16

3. Part 3: Methodology, page 20

a. Section 3.1: Simh, page 20

b. Section 3.2: Communication, page 21

c. Section 3.3: The Bootstrap Loader, page 26

4. Part 4: Conclusion, page 30

a. Section 4.1: Further Work, page 30

5. Appendix A: Assembly Programs, page 32

6. Appendix B: Serial Emulator, page 34

7. Appendix C: Instruction Set, page 41

8. Bibliography, page 48

6

Part 1: Introduction

Section 1.1: The PDP 11/20

 The DEC PDP 11/20 is a 16-bit minicomputer, the word “mini” being a bit of a misnomer for the

modern day, as the PDP 11/20 accompanied with all its peripherals could take up an entire room. The

PDP 11/20 is an updated version of some of DEC’s earlier models of PDP computers, and is the first 16-

bit machine created by DEC. The PDP 11/20 had above average performance for its time, but it is

undoubtedly starting to show its age. Several primary systems that we have tried to use have been

malfunctioning, and it is indeed on its last legs.

 In the dawn of the 1970’s, DEC was already a well-defined company after its launch of the 12-bit

PDP 8 (“DEC”). During this time, computers were still in their infancy, and something as simple as a 12-

bit computer (compared to today’s 64-bit computers) was a major technological breakthrough, but this

was surely not the final accomplishment in the progress of computer architecture. In 1970 the DEC PDP

11/20 was released, and being one of the first 16-bit computers of its time, the PDP 11/20 quickly

became the most successful DEC product of all time (“DEC”).

 The 11/20 CPU model was designed with eight 16-bit data

“containers” called registers. The first six being general purpose

registers that one could use for data manipulation and storage, the

sixth register being the stack pointer, and register seven being the

program counter. The stand-alone memory size was only 64 kilobytes;

which is a stunningly small number compared to the size of memory

today. The astoundingly low memory cache caused several issues

throughout this research project. A single program you download from

the internet in the modern day is at least a few megabytes, hundreds of times bigger than the entire

7

memory on the PDP 11/20. The PDP 11/20 was constructed with over 70 unique instructions ranging

from something as simple as an add operation, to as complex as subroutine calls.

When the PDP 11/20 was initially sold, it came along with several necessary peripheral devices.

These included a Teletype I/O which could be used for a more natural interaction with the user and

paper tape readers which could be used to load complex and lengthy programs into main memory as

shown in Figure 1. In these paper tapes are where an assembler for UNIX may be loaded and read into

the PDP 11/20 as a series of 16-bit words. Our

setup is bare bones in comparison. We have the

computer and its interface without any additional

peripherals (the PDP 11/20 owned by my mentor

Michael Black shown in Figure 2). Nowadays it is a

miracle we even had a PDP 11/20 to use for our

research as it would be nearly impossible to find paper tape readers that would be still intact, and in

good enough condition to use to load UNIX.

Section 1.2: UNIX

 UNIX was the first operating system that made computing feasible for those who did not have

an in-depth understanding of how computers worked. Without UNIX, the world today may have been

vastly different. UNIX is the spiritual ancestor of all operating systems including the Windows, and MAC

Operating systems. The Linux OS was created from a directed transition from UNIX v7. Without UNIX as

a catalyst, computers may still only be something used behind the scenes instead of having a mass

appeal.

 UNIX version 1 was created at AT&T’s Bell Laboratories sometime in early 1969 by Ken

Thompson, and Dennis Ritchie (UNIX Past), but UNIX version 3, built in 1973, was the first version of the

8

OS to reach the public. It was received with an unexpectedly high positive response, and researchers,

engineers, government agencies, undergraduate institutions, and many others started to use UNIX to

improve the performance of their work. Soon enough, the open source OS was being manipulated into

hundreds of different versions to improve performance and increase the interaction with the user. “In

the early 1980's, the market for UNIX systems had grown enough to be noticed by industry analysts and

researchers. Now the question was no longer ‘What is the UNIX system?’, but instead, ‘Is a UNIX system

suitable for business and commerce?’” (UNIX Past). The OS started to be used by people who knew less

and less about the inner working of the computer, as the quality of the user interface got higher and

higher until the 7th and final version of the system was released in 1979. At this point, Bell Labs ceased

to create newer versions of UNIX, and it eventually evolved into the operating systems we have come to

know today. However, something seems to be missing. Once UNIX version four was released, its mass

appeal skyrocketed. In the excitement of the era, fewer and fewer people knew about where this

powerful system originated; the first and second versions of UNIX never saw the mass market, and all

that is left of these precious artifacts are seemingly just rumors. Not even the creators could recreate it

from the ground up. The single assembler that was created for the OS seemed to have disappeared

without any trace, and the humble beginnings of this revolutionary technology were utterly lost.

 In 1995, the UNIX heritage society (TUHS) was founded for the purpose to try and preserve

these late editions of UNIX, and several other ancient, and valuable artifacts. It quickly gained access to

many newer versions of old systems such as the binaries for UNIX v5, manuals for UNIX v4, the entire

repository for UNIX v7, and several former computer systems. Eventually, the organization got into

contact with Dennis Richie to shine some light on the affairs of ancient UNIX systems. Unfortunately, not

even the creator of UNIX could determine where the tapes for UNIX v1 had ended up (Toomey). After a

significant amount of lobbying by TUHS, they gained access to old Bell Labs research facilities where

miraculously two engineers Paul Vixie and Keith Bostic found several DEC tapes “under the floorboards

9

in the computer room.” These tapes included many exciting finds, but the most interesting involved that

of binary files for UNIX v1 itself (Toomey).

While this was undoubtedly an excellent milestone for TUHS, it takes a lot of reverse

engineering to understand just what conditions these tapes needed to function. Unlike with Windows,

you cannot just slip a CD into a CD reader and expect UNIX to pop up on a screen for the PDP 11/20 or

even a modern computer. Certain pre-environments much be constructed, and it may need a various

number of other peripherals to run. After these tapes were found, they were handed off to Warren

Toomey of Bond University in Australia. After several years of arduous work which he details in his paper

titled “The Restoration of Early UNIX Artifacts,” was able to reverse engineer the binary files, and restore

UNIX version 1 to most of its former glory, but it is still mildly flawed (Toomey).

The most prominent issue that he had faced in restoring UNIX v1 was that the assembler that

was provided on the tapes for UNIX v1 was written in an ancient dialect of the C language. This version

of C was so incompatible with the modern C language that the kernel for UNIX which was found on the

tapes could not run on the systems that he had at his disposal. In the end, to mitigate this issue, he was

forced to use the UNIX v2 shell to communicate with the UNIX v1 kernel (Toomey). Therefore, the

repository of UNIX v1 that can be found on GitHub is at its core the original version of UNIX, but alas, has

some makeup of v2. This is where their research ends, and where ours begins. No one has ever tried to

fully restore UNIX to running as it once did on a DEC PDP 11/20. It was once known that an assembler

for the PDP 11/20 did exist in some way, but history was not as kind to it as it was to the tapes of the

ancient UNIX artifacts found under Bell Labs. It is the goal of this research project to see UNIX come to

fruition, and get UNIX to the state it once started in.

10

Section 1.3: Methodology

Throughout the past several months we have faced several

problems and situations which strained our logic and reasoning

abilities, which we failed to anticipate. Before starting work with the

PDP 11/20, we had to get a reasonable basis for how the instruction

set, and the process of how to program the PDP 11/20. We did some

research into the old computer simulator Simh. Simh (as shown in

Figure 3) (Simh) is a project dedicated to creating freeware simulators

for hundreds of ancient, early, and modern computer systems. We

were able to install a

simulator for the PDP 11/20

and test several of its operations. Throughout the project,

we would continue to use the Simh simulator for the PDP

11/20 to use the PDP 11/20 indirectly. Simh offers a more

accessible, and more predictable interface, and allows for

easier debugging of source code for assembly programs

written for the PDP 11/20 (Simh).

With a good understanding of how to write source

code for the PDP 11/20, we moved onto the unexpectedly

arduous task of communicating with the PDP 11/20. After

only a few weeks, we were able to determine how to

communicate with the DL-11 serial card of the PDP 11/20 via

a 20-line Berg cable by deducing which lines were the Transmit (TX), Receive (RX), and Ground (GND)

11

lines for the Berg cable by using Figure 4 (Interfacing). After another few weeks, we were able to write a

program on the PDP 11/20 which would continuously send the character ‘A’ across the serial line (see

Appendix A P.1 for the source code). This program allowed us to determine the validity of the TX line

from the PDP to our computer.

Once the TX line was tested, it was time to check the RX line; which did not forfeit its secrets as

easily. When trying to send data from our computer, and to the PDP 11/20 we noticed something

strange happening. Whenever we would send a character, the character ‘A’ for instance, the PDP 11/20

would receive an entirely different, seemingly unrelated character. This issue persisted through several

separate trials of test programs. No matter what we sent, how we sent it, or even how we tried to

communicate with the PDP 11/20, for some reason every time the PDP 11/20 received something from

us, some degeneration in what was presumably the DL-11 serial card would interfere with the data

transfer.

We came to our first conclusion that perhaps it was the way that our laptop was transferring the

data which was jumbling up the output. We needed some way to gain stricter controls over the data

transfer, then the tools that the Arduino serial interface that we were using could supply to us. We

decided that the most efficient solution would be to create a homemade serial emulator which we could

program to use different settings, something that we could not do on the Arduino serial interface.

The research and development of our serial interfacing platform took priority over the next

several weeks as we tried to determine the correct way to set up a peer to peer socket communication

between our laptop, the serial port, and the PDP 11/20. Shortly, we were able to create a working serial

monitor that was able to set up the communication (see Appendix B) (Poon). We tested the already

known program on the PDP 11/20 which would continuously send the character ‘A’, and it seemed to

work correctly still. However, once we started to put effort back into getting the RX line to work, no

12

matter how we manipulated the data being sent, it still seemed as if the PDP 11/20 was receiving

random characters that did not correlate to the characters we were sending.

At this point, we were stumped on how to proceed. We had tried several solutions to the

problem, which we had been hoping would fix the issue, but we seemed to be right back where we

started. We next even went as far to taking out the DL-11 serial card to examine it. We looked at the

schematics, determined what specific lines that crossed it were meant to do. A few things seemed out of

place, but not even “fixing” the DL-11 solved the issue.

Finally, we noticed something strange. There seemed to be a peculiar pattern between the

characters that we were sending. Looking at the ASCII table in Figure 5, one can get a better

understanding of the pattern that was persisting.

Whenever we sent over the character ‘A’ (decimal

value 65), the PDP 11/20 would receive the

character ‘}’ (decimal value 125). If the character ‘B’

(decimal value 66) were sent then, the PDP 11/20

would receive the character ‘{’ (decimal value 123).

A ‘C’ (decimal value 67) would show as a ‘y’ (decimal

value 121). This pattern of a one to one relationship would continue for any important characters that

we may want to send. This degeneration seemed to imply some functional relationship between the

character which we sent, and the character that the PDP 11/20 would receive. This discovery was

reinvigorating because it implied that the error occurring inside of the PDP 11/20 was not random, but

rather systematic. Furthermore, if there was a defined functional relationship, then that means that we

can reverse the function to send the actual characters we want to send. To mitigate the issue we were

able to devise an equation that when we wanted to send a character to the PDP 11/20, the serial

13

emulator would be coded to change that character into the character that would produce the original

character back on the PDP 11/20’s side.

Having mitigated the most substantial issue we had run into so far, we turned towards our next

step in our process. To load UNIX onto the PDP 11/20, there would need to be tape drives which the OS

can poll for specific results throughout its operation. Unfortunately, we do not have any peripherals that

we can use with the PDP 11/20, so any peripherals that UNIX may need to run would have to be

simulated. Simulating such intricate, and old hardware would be near impossible to do with just the PDP

11/20 due to the complexity of programming it, and its small memory size. Therefore, we needed a

higher-level programming language to code to emulate the peripherals that we needed. Somehow, we

would need to load BASIC (one of the world’s first high-level programming languages) into the PDP

11/20’s core memory. We quickly began development on a loader written in the PDP 11/20 assembly

language which would take a binary file from our laptop and store the entire file into concurrent

memory addresses in the PDP 11/20. We were able to create just that (see Appendix A P.2), and by the

end of our first semester, were able to load what we believed to be the binary file for BASIC onto the

PDP 11/20.

Part 2: The PDP 11/20

Section 2.1: The Architecture

The central systems behind the inner architecture of a computer have not significantly changed

since their inception in the mid 1900’s. Computers have simply gotten smaller, and faster. Usually a

computer is operated between the connections between the different components which make up the

computers architecture. These components communicate through a single bus, also known to the PDP

11/20 as the UNIBUS.

14

Inside of a bus lies many wires which carry data from component to

component (this sits below the components seen in Figure 6). The number

of the wires inside of the UNIBUS is up to the specifications of the computer.

A 16-bit machine like the PDP 11/20, for instance, has a single UNIBUS which

has 16 individual wires which run along the main components of the system,

carrying essential data from master and slave components. Any peripherals

that one may want to connect to the PDP 11/20 will be in communication

with the rest of the computer through the UNIBUS as well. This relationship

allows for a well-organized system with top priority task handling. Based on

which components wish to send data, they must first request control of the

UNIBUS from the previous “master” of the UNIBUS. This master/slave

relation (which can be seen in Figure 7) gives each device that can request

use of the UNIBUS a specific priority. When two devices wish to access the

UNIBUS at the same time, the device with the higher priority is given control of the system. This priority-

based over-ride system controls the flow of data and detracts

from mis-interpolation of data (Olsen).

Every system in the PDP 11/20 is assigned a unique

memory address for the user to be able to gain control of it via

the UNIBUS and allows a wanted peripheral, register, device,

memory location, etc. to send information. For instance, for the

user to poll the central processor, the reference address is 10008. If the user wishes to poll the Teletype

Transfer line, the reference address 177566 is used. This is an extraordinarily powerful tool as it allows

the user to write programs which can poll TX and RX lines, and manipulate data going out, or coming in

(Olsen).

15

The processor is also given access to several registers which can be used to store, transfer, and

manipulate data. The user works heavily with these registers to perform most of any tasks they may

want to complete. These registers can almost be thought of variables in a higher-level language which

allows a programmer to store data and control it by referring to that variable in certain situations. The

PDP 11/20 comes with eight general purpose registers (r0, r1,…r7). The registers r6 and r7 are

exceedingly unique. The register r6 is used can be used as a way to poll the process stack; which holds

all processes that the PDP 11/20 must complete. In this way, a user could push a new instruction onto

the stack and have that take priority over any other instruction that the PDP 11/20 was about to

execute. A user also now could pop a process off the stack to stop a specific task from happening. These

abilities can be potent when used in specific situations. Furthermore, the register r7 holds the value of

the program counter (PC); which keeps track of the executed code in memory and interacts heavily with

the central processor of the PDP 11/20. Whenever an instruction gets popped off the stack after

successfully executing, the value stored in the PC changes (usually by increasing by instruction), and the

central processor polls the PC to determine the next instruction to perform. Having a register with this

specialty can be as powerful as the stack pointer. Manipulating r7 allows the user to change the

sequential run of a program and provides the ability to create subroutines; which can be entirely

separate programs which can be run inside of a more extensive program. Referencing the PC can also

give the user the ability to manipulate data that is anywhere within plus or minus 256 memory

addresses (Olsen).

The PDP 11/20 is also equipped with a central

processor status register (shown in Figure 8) (Olsen). Bits 5-

7 of this register store the current priority of the processor,

and bits 0-5 store conditional codes that can be flipped on or off based on the outcome of the previous

instruction run. In general, for most instructions, if the result of the last instruction resulted in a bit to be

16

carried from an arithmetic operation, then the first bit of the status register will be set; this is given the

condition designation ‘C’. If the result of the instruction resulted in an arithmetic overflow (AKA if the

result of an ADD instruction was greater than 32767 then this large of a number cannot be stored within

16 bits), then the second bit of the status register will be set; this is given the condition designation ‘V’.

If the result is zero, then the third bit of the status register will be set; this is given the condition

designation ‘Z’. The fourth bit is set if the result of the operation was negative; this is given the condition

designation ‘N’. Lastly, the fifth bit of the status register is purely for debugging purposes. It can be set

by the user at any point in a program and will cause a processor trap instruction which will hang up the

program (Olsen).

The PDP 11/20 which was used in this project contains over 32,000 memory addresses with

instructions and memory address locations represented as octal digits. For instance, the octal address

36215 could be expressed as the decimal number 15501, or the binary number 11110010001101.

Referencing these addresses can be accomplished through the primary interface of the PDP 11/20 by

turning the red and black switches on the front panel of the PDP 11/20 (which can be seen back in

Figure 2). Every address has the capability of storing a byte of data. For this reason, a single 16-bit

instruction is stored within every two memory addresses, making it impossible to save instructions

directly to odd-numbered addresses. This strange storage of instructions can often cause confusion

because many times numbers in instructions will be divided or multiplied by two, the reason that of the

word size of 16-bits. Furthermore, a significant amount of memory addresses is reserved for particular

purposes. For example, the addresses between 000000 and 00370 are strictly reserved for interrupt

vectors (which is important to note because we ran into an issue which described in greater detail in

Part 3). The top 4096 addresses are designated to peripheral device management registers (Olsen).

17

Section 2.1: The Instruction Set

Programming as it exists today is drastically different then what someone would consider

programming in the early 1970’s. In general, most programmers use higher level languages such as C++,

Python, Java, etc. while very few use assembly languages such as Windows X86 assembly language.

Before the creation of these smoother, easier to use, higher level languages, the only way to program a

computer was strictly just using the assembly language of the computer. Higher-level languages that

most use now do the same thing, just much more superficially. Higher level languages allow the user to

use assembly language in a more concrete and streamlined way. Everything you program breaks down

into assembly language, then straight into machine code with which the computer can understand. As

such, something that could take two lines to write in Java could take as much as five or six lines to write

in assembly language. Having to program straight assembly language into the PDP 11/20 can be a hassle

for this reason, and because there is a significantly higher amount of human interaction with the PDP

11/20 interface when programming assembly into there is a higher margin for human error. When you

are writing programs that are hundreds or thousands of lines long, you do not want to have a mistake

somewhere that would be close to impossible to find. For these reasons, we needed to get BASIC onto

the PDP 11/20, but the instruction set is an extremely integral part of daily interactions with the PDP

11/20. Several subtle nuances must be brought to light to understand how the PDP 11/20 operates.

The PDP 11/20 has over 80 individual instructions that can be used in conjunction with each

other to do just about anything the heart desires. An

instruction written to the PDP 11/20’s memory is in the form

of Figure 9. Two types of instructions can be written into

memory, single operand instructions, and double operand instructions. Single operand instructions

usually involve manipulating a single value stored in a register. An example of this can be seen in the INC

18

instruction in Appendix C. This instruction manages a single register by incrementing its contents by one.

Double operand instructions manipulate two registers at the same time, such as the MOV instruction

which can also be seen in Appendix C. This instruction can be used in several ways, but primarily involves

moving the contents from another address or another register, into a different register.

Every instruction follows the general form of: Operation (OP) code, source mode, a source

register, destination mode (if applicable), and the destination register (if applicable). Where the sections

involving destination, registers are only used in double operand instructions. Because of the lack of

these fields in single operand instructions, the OP field is usually a

12-bit number. Whereas, the OP field in double operand instructions

is often a 6-bit number. The OP field itself is like a nametag for the

instruction; every individual instruction has a unique OP code which

specifies which instruction you are using in each instance.

Individualizing instructions is, of course, is important because

otherwise, the computer would confuse itself between two different

instructions which may be written the same way (Olsen).

The PDP 11/20 has a vast repository of instructions at a

user’s disposal, many being only usable in very niche situations and

techniques. There are a few, however, which are incredibly vital and make up roughly 70% of any

program you may need to create on the PDP 11/20, and this paper would be remiss if it did not mention

how they are used, and how you write them. These two dominant instructions are the MOV and BR

commands (refer to Appendix C for a more comprehensive report on the instructions used throughout

this project). Without these instructions, it would be close to impossible to do anything significant on

the PDP 11/20. The MOV instruction (whose word diagram can be seen in Figure 10), as its name

suggests, moves data from one location to another. This instruction is exceptionally dynamic and can be

19

used to transfer any data in any situation. The user can move data between registers, immediate

numbers into registers, addresses onto the stack, the PC into a register, and several other cases. The BR

(which stand for branch, and whose word diagram can be seen in Figure 11) instruction is significantly

more complicated. BR lets you change the current address stored in the PC and lets you create what

would the equivalent of a for or while loops in a higher-level language. What makes it so complex is the

several different manipulations that this single instruction can take on; based on various parameters you

can write branch instructions that executes when different condition bits (N, Z, V, C) from the CPU status

word are set. If the last instruction causes the result to be zero and sets the Z bit to be one, then you can

make a branch that will branch on that condition. If the instruction causes a carry, and the C bit is set,

then you can write a branch that branches on that situation. You can write conditional branches which

check the values of two registers, and if they are equal then branch, or perhaps if you want to branch

when they are values are not identical; you can do that as well. There is no limit to how a user can

manipulate the branch instructions to create a truly dynamic program that can do nearly anything

(Olsen).

The past few paragraphs have explained in detail a few of the intricacies that go into

programming the PDP 11/20. However, these are only pieces towards a larger whole. There are eight

different ways (of which we will describe the most frequently used three), you can write the mode field

of the source and destination registers. This secondary instruction

field describes how you want to access the data from the register that

it is referring to. The three primary modes that are used the most

often are 00, 01, and 02. Mode 00 works by taking the data inside of a

specified register and using that as the data to be manipulated. For

instance, if we use the ADD instruction, and r0 contains 000002 and r1

contains 000001, and we want to add the actual numbers that are inside of r0 and r1 then we write,

20

060001. The first two digits (06) are the OP code specific to the double operand ADD instruction; the

third digit is the addressing mode of 0 which addresses on register 0 which is indicated by the fourth bit.

The fifth digit is the same and points to an addressing mode of 0 and refers to register one which is

shown by the last numeral. In this situation, the instruction would add the contents of r0 and the

contents of r1 and store it into r1.

 The addressing mode of 01 is like that of the zeroth addressing mode. This addressing mode is

still used on a register, and it still refers to the value in that register. The difference, however, is that the

01 addressing mode looks at the value inside of the register that it refers to, and what is inside of that

register, in this situation, should be another memory address. The instruction will then use the data

inside of that deferred memory address as the data used in operation. This mode is used the most when

working with peripheral devices, as this project relied on heavily. As a peripheral device is referred to by

a memory address, we can manipulate data coming in or going out of individual ports using the

peripheral address, and the 1st addressing mode. An example of this addressing mode is given in the

MOV instruction. Let us say we want to take in data from the serial RX port (177566), and r0 contains

said memory address. We can write the instruction 011001 to MOV data from the RX line into the r1

register. Where the first two digits 01 are the OP code for the MOV instruction, the third digit of 1 is the

mode referring to the zeroth register, and store that data into the first register.

 Lastly, for addressing mode 02, the PDP 11/20 will auto increment the data in the specified

register, and use that auto incremented data as the data in our operation. This is a robust mode to use

in conjunction with the PC register. In this way, you can increase the PC and use data in a successive

memory address in an operation. This type of instruction is the only way to move immediate numbers

straight into memory without direct user interaction. An example of this would be using the MOV

instruction to move an immediate into r1. The successive instructions of 012701, 000004 will move the

21

immediate number 4 into r1. Where 01 is the OP code for MOV, the third and fourth digits indicate an

auto-increment addressing mode on r7 (which is the PC) and move the data directly into r1.

Part 3: Methodology

Section 3.1: Simh

 Simh is an instrumental, and versatile program that is of paramount importance when working

with old and ancient computer systems. After the turn of the millennia, ancient computer systems like

the PDP 11/20 had already been out of production for several decades, and because of their age, most

surviving systems were deteriorating rapidly. Simh itself was designed for the sole purpose of

immortalizing these old systems, and it contains repositories for hundreds of old systems, not just the

PDP 11/20. When researching ways to emulate anything

on old hardware, it almost seems like the sentence “let us

start by trying this on Simh” is an industry standard. Thus,

initially after proposing this project, we were given the

task of running the latest version of UNIX (version 7), on

the Simh PDP 11/20. Fortunately, this has been done

seemingly hundreds of times in the past, and it was not

hard to find a generous amount of resources on the task.

A guide which we used by John D. Pressman on “How to Emulate UNIX V7 Using Simh (2015)” was

particularly useful. We quickly realized that when using software so near to a computer systems

architecture, we should be using Linux rather than any other operating system, as it gives the user

access to tools which go much more in-depth then what Windows or Mac OS can provide. We created a

dual boot for Ubuntu on our laptop to use Simh with the most efficiency. We were quickly able to

22

download, and unzip a directory for UNIX v7, simulate the PDP 11/20, and boot up UNIX v7 on the PDP

11/20 simulation (shown in Figure 12).

 Undoubtedly, Simh is the most important tool we have used throughout the journey of getting

UNIX v1 on the physical PDP 11/20. When we first started, we did not realize just how vital Simh would

be for writing assembly programs for the PDP 11/20. Debugging

code on the PDP 11/20 is notoriously tricky and challenging as

we quickly found out. Simh allowed us to be able to analyze

code which we wrote by being able to step through our

programs line by line, and analyze the registers, the current state

of the computer, and make sure each line was doing what we

expected. Admittedly, we could

do this on the PDP 11/20, but

reading binary, and translating that binary into octal digits in one’s head

can give a large margin for human error, Simh gave visualization to what

we were writing and allowed us to work as efficiently as possible.

Section 3.2: Communication

 The PDP 11/20 uses a DL11 Serial Interface card (shown in Figure

13) to accomplish the task of communicating with peripheral devices. In

the corner of one of the quadrants of the DL11, there is a port for a 40-pin

berg cable (the cable itself is shown in Figure 14) which would standardly be used to communicate with

a teletype printer or a paper tape reader. In our situation, we would use the berg cable, along with a

serial adapter cable (shown in Figure 15) which has wires for ground, 5 Volts, TX, and RX, to accomplish

the tricky act of communication. Initially, it was hard to determine which specific pins correlated to the

23

input ports on the berg cable. Because the berg cable is manufactured with the

intention of being able to be used in communication between almost any two

devices, there were several ports on the cable which were unnecessary, and not

needed to what we needed to accomplish. All we needed for the serial adapter was

the ground, TX, and RX ports, which are only 3 of the 40 ports we could choose

from. On the website RETROCMP, we found an article which contained an image

which significantly aided our ventures in finding the correct ports for the pins to be

attached to (“Interfacing with a PDP 11/05”).

 Now being able to set up a direct communication line between our laptop

and the PDP 11/20, we began work on researching the assembly language of the

PDP 11/20 to create a program which could send the character ‘A’ across the

transmit line. The simple program shown in Appendix A.P.1 was a quick creation

that we knew would be able to accomplish the task needed. Testing the program

resulted in a successful confirmation that the TX line on the PDP 11/20 worked

how it should and would send the character ‘A’ constantly to our computer (as

shown in Figure 16). The logical next step was to test that the RX line worked

properly as well. Creating another program (seen in Appendix A.P.0) which would

take a character sent from our laptop, and then the PDP 11/20 would send back

the next alphabetically ordered character back to our laptop, so if the character

‘A’ was sent, then the character ‘B’ should be received back. We loaded the program into memory,

tested it, and unfortunately, there was an immediate issue. The character which we would receive back

was nowhere close to the character we were expecting. If the character ‘A’ were sent, then we would

receive the character ‘}‘, and always receive the character ‘}‘; which in a way was a good thing because

at least the behavior was not random, but somehow systematic. Furthermore, if we went through the

24

ASCII table and sent the character ‘B’, we would get again a seemingly random character on an entirely

different part of the ASCII table.

 Something was apparently wrong with the RX line. We went through a considerable amount of

different ideas to try and resolve the issue: changing the program in the PDP 11/20 in case there was

something wrong with it, however, further testing of the program on Simh showed that it did work

properly on a more streamlined system, so the program was ruled out. We changed the berg cable in

case the RX line on it was damaged or corroded somehow, this just led to verifying that the berg cable

was indeed not the issue. We did the same with the serial adapter and came to the same conclusion. We

dug into some research on the connections on the DL11 card, and thought we found some issues, tried

re-soldering connections that we hoped would fix the problem, but again this led to no substantial

discoveries, we even went as far as to apply for a grant, and buy a new DL11 card, but the new card gave

the same output as always. We decided to try one last ditch effort which we had been discussing but

had not tried yet because it would be a considerable detour away from the goal of the project; we were

going to create a homemade serial console.

Up until this point we had been using a serial

console created for an Arduino. We had no reason to

believe that their software was corrupt in any way but

creating a console could give us a lot more freedom to

change and manipulate parameters such as baud rate,

stop bits, parity, and data bits. For the PDP 11/20, the

values of these parameters should be 1200 (because this

was the prevailing baud rate from 1970 computers), 1 (because whenever a serial communication is set

up, you need to have a bit which indicates the end of a line), 0 (the PDP 11/20 did not have a use for a

parity bit), and 8 (because the PDP 11/20 is a 16 bit, 2 byte computer, which can only have words of size

25

8 or 16), respectively. Changing any of these initial parameters could solve our issue. We discovered a

guide online on how to create a homemade serial emulator using Java created by Henry Poon (Poon).

With his guidance, we were able to develop a serial console (Appendix B) which gave us access to

change any of the input parameters mentioned earlier (particularly on lines 180-195 is where we can

manipulate these parameters). Figure 17 shows the process of how the serial console initially sets up a

communication with a specific COM port on our laptop, then sets up a buffered reader and an output

stream to read information coming from the PDP 11/20 and to write data to the PDP 11/20 respectively.

The console then prompts the user if they want to send a binary file or send a single character. Once the

user has posted all the information they want, the console will wait for data coming from the PDP 11/20

and display anything received by the user.

Finally, after creating an entire serial console, we used it to see if the RX line would work based

on various initialized parameters. To our dismay, it did not seem to help at all. We tried running several

tests with several different combinations of the parameters, and no matter how we set up the

connection, the character we received was incorrect. The only values of input parameters which gave a

reasonable output (other outputs would result in bizarre characters that did not even show up on the

ASCII table, they looked almost like Egyptian hieroglyphs) were the ones that seemed obvious to begin

with; 1200 for baud rate, 1 for stop bits, 0 for parity, and 8 for data bits. Having invested so much time in

creating a serial console and knowing that it was our last hope; made it extremely disheartening when it

did not work. All our attempts to fix the issue pointed to the same terrifyingly daunting conclusion; that

there was something innately, and profoundly wrong with an integral part of our PDP 11/20; attempting

to fix that large of an issue would have been way out of the scope of this project. Everything seemed

lost; until we noticed something interesting.

Up until this point, we had only been sending capital case letter characters; such as ‘A’, ‘B’, ‘C’,

etc. We decided to send other characters in the ASCII table just to see if we could find anything

26

interesting, and that is just what we found. We noticed that when we sent certain other characters, we

would get back ‘A’, ‘B’, and so on. Furthermore, no two sent characters would send back the same

character. This pattern meant that somewhere in the ASCII

table, every transmitted character had a relation to every

received character, implying some sort of one to one

function. We excitedly realized that there must be some

way to manipulate a character before leaving our computer

so that when the PDP 11/20 received the character, the

PDP 11/20 would perform its integrity error, and transform

it into the character we were trying to send all along. The

only thing left to do was determine what this function was.

The table on the right shows what we discovered. A clear pattern can be seen where the

sending characters value is decreasing by two every time, but the received characters value is

incremented by one every time. Now knowing this instead of fixing the actual issue of what was

happening inside of the PDP 11/20, we mitigated the problem and were able to come up with a function

of 𝑦𝑦 = 𝑥𝑥−127.5
−.5

. This function takes the character you want to send as input and changes it into a

different character which when sent will be received by the PDP 11/20 as the original character you

were trying to communicate. If we use the character ‘A’ as an example which has a decimal value of 65,

then y=125 which, referring to the table, when the character ‘{‘ is sent (which has decimal value 125),

then an ‘A’ is received by the PDP 11/20. Implementing this function into our serial console (which can

be seen on line 40 of the serial console source code), we were able to communicate with the PDP 11/20

successfully and get the program of the PDP 11/20 receiving a character and sending the next sequential

character back to work!

27

Section 3.3: The Bootstrap Loader

 Having accomplished the task of communication; the next step was to acquire a binary file for

BASIC (one of the world’s first high-level languages) and load it onto the PDP 11/20. A higher-level

programming language is something that could help us in achieving our final goal of loading UNIX v1

onto our PDP 11/20. We would be able to write programs in BASIC more easily than in the PDP 11/20’s

assembly language. We would be able to write an absolute loader for UNIX, to load UNIX into the PDP

11/20’s core memory. Typically, loading BASIC onto a PDP 11/20 would be a reasonably easy task. When

the PDP 11/20 was still being produced, paper tape images of BASIC could be obtained separately, and

with a paper tape reader, the PDP 11/20 could easily read information from the paper tape, follow

instructions given, and load BASIC. However, paper tape readers are excessively

hard to find, and the ones that do exist do not come cheap. Without the

necessary equipment on hand, we began to develop a bootstrap loader which

could accomplish the task of loading BASIC onto the PDP 11/20.

 To tackle the intricate task of creating our bootstrap loader, we must first

determine how to send the information via the homemade serial console and

decide whether we need to worry at all about the integrity error that was

tormenting our PDP 11/20. Once we obtained a binary file of BASIC, we would

need to open that file via our serial console and send over the individual

characters in pieces. The PDP 11/20 stores an entire word as a 16-bit, six octal

digit word. While sending information over, we would have to split up a single 16-bit line and separate it

into six octal digits. For instance, as shown in Figure 18, the number 1100111010001000 would be

equivalent to the octal number 147210. Once translated into an octal digit, the serial console sends one

of the following characters: ‘D’,’E’,’F’,’G’,’H’,’I’,’J’, or ’K’. Each of these characters correlates to a number

28

from 000 to 111. Thus, if the 3-bit binary number that is going to be sent is 000, then the serial console

will first transform that number into a ‘D’ and send it (this process can be seen on lines 31-85 of the

serial console source code in Appendix B). The reason that we start at ‘D’ instead of ‘A’ is that the

integrity error that plagues our PDP 11/20 still will not receive the character ‘C’. Thus, we started a little

further down the alphabet. Also, the reason we did not use the characters ‘1’, ‘2’, ‘3’, etc. to represent

000,001,010, etc. was because of the equation mentioned earlier in section 4.2. When we send the ‘D’,

or ‘E’, etc, across we apply the function that will change the sent characters value, and then send the

character. If we apply that function to the characters ‘1’, ‘2’, etc. then the characters that they would be

translated into do not exist on the primary ASCII table. The characters reside only in the extended ASCII

table, and just to be safe to avoid errors, we stuck with only translated characters that exist on the

primary ASCII table.

An assembly program which would have to take in a string of binary digits from a serial port, and

somehow store them in memory, promised to be a complex task; especially keeping in mind the

integrity error that our PDP 11/20 was demonstrating. After developing a few versions, and ironing out

several bugs, the loader (seen in Appendix A.P.2) was able to fully load a binary file of BASIC onto our

PDP 11/20. Figure 19 shows how the loader works visually, and Figure 20

shows how information is sent from the serial console. The loader first

initializes several registers: The register r0 is set to be the address register;

which will start at address 0 and will be incremented every time we store

an instruction in it. The register r1 is set up as the keyboard monitor

device; which is the device which will receive the incoming characters from

the laptop. The register r2 gets set up as an accumulator; which will start

empty and will be filled piece by piece with the bits which have been

converted from the characters sent by the laptop. The register r3 is set up

29

as the for-loop iterator; which will act as a variable with which we can check to see if a condition is met

over time. The register r4 is set up as the keyboard status register; which will be used to check if the TX

line is ready to be read from or has anything waiting to be read. Lastly, r5 will be the register which will

store the character sent over by the laptop. We clear out r5, just to make sure that there is nothing left

in there from a previous for loop iteration, and we then hang up the program, waiting for something to

be transmitted across to the keyboard status device of r4. Once something is detected, we move the

lower end byte from the TX line into r5. We only want the lower byte just in case an unexpected

transmitting error occurred and resulted in error bits propagating into the 15th or 16th bit. Next, we

convert the character which was just taken in from the laptop into a 3-bit binary number by subtracting

104 from it. 104 is the ASCII value for the character ‘D’, thus, if the character ‘D’ is taken in, then

subtracting 104 from it will result in 000. The same can be said for the character ‘E’ which is ASCII value

30

105. Subtracting 104 from the character ‘E’ would result in the value of 001. Using the BICB instruction,

the register r5 is then cleared out, except for the last 3 bits, just in case any unwanted bits are lying

around. The register r2 has its bits rolled over to the left to make room for the incoming bits that are

currently in r5. The bits in r5 are then added to the end of the bits in r2. The for-loop iterator register r3

is incremented and checked to see if its value is six. If it is six, then we continue with the program

linearly. If r3 is not yet six, then we branch back up to waiting for more characters to come in from the

laptop. This for loop will then take in more bits, move over the bits stored in r2, and place the new bits

at the end of r2, filling r2 eventually with a complete 16-bit instruction. Once the for loop has finished,

the accumulator register r2 is stored in a core memory address which is referenced by r0. The register r0

is increased to store the next instruction coming in into the next sequential memory address, and the

entire program restarts, essentially creating an infinite while loop which will forever be taking

information in and storing it in sequential addresses.

Having the loader entirely written, we were able to attempt our first process of loading BASIC

onto the PDP 11/20, and we

immediately ran into a few problems.

The source through which we acquired

the BASIC binary file must have been

incorrect, or perhaps to new of a

version of the language. We only

realized after trying to load the data

that it was approximately 60

megabytes in size; which is in the

range of hundreds of times more

massive than the entire memory size of the PDP 11/20. Apparently, there was no way in which we

31

would be able to store this whole file on this computer, even with a complex system created by us do to

so. At this point, we had to go back to the drawing board in looking for a different BASIC file which

would hopefully satisfy the storage requirements for the PDP 11/20. With luck, we were able to find not

only a different paper tape image of BASIC (seen in Figure 21) but also homemade absolute and

bootstrap loaders which were made to accompany the paper tape (Par). The accompanied loaders for

BASIC allowed us to quickly load and run the BASIC paper tape on simh rather smoothly, and we were

able to get a prompt asking us for user input; which was somewhat promising. We were able to type in

lines of BASIC code, send it over to the simulated PDP 11/20 via a telnet connection, and receive back

the proper output for that given BASIC program. Having confirmed it to work on Simh, it was hopefully

going to be an easy task of using our loader, and serial console, to load that BASIC binary file onto the

physical PDP 11/20, hit start, and then be prompted to send over code written in BASIC. However, as

one may be able to guess, things were not that simple. After manipulating the paper tape acquired from

PCjs.org to be appropriately read by the serial console; we tried executing the program the same way

we did on the simulated PDP 11/20, but this resulted in a near-immediate crash of the program.

Unfortunately, this is the current state of the matter. Several diagnostic tests have been run on the PDP

11/20, and the binary file which has been loaded onto the PDP 11/20, and so far, each test has been

inconclusive as to what may be causing the immediate crash.

Part 4: Conclusion

Section 4.1: Further work

With BASIC fully loaded and working correctly, the next steps are vast. The task next task moves

away from the PDP 11/20 itself and would require a user to create an absolute loader for UNIX v1 using

BASIC. An absolute loader would need to be intricately more complicated than the bootstrap loader

which was designed to be a bootstrap loader for BASIC. One would have to decipher the ancient files

32

that have been on GitHub for so many years on how to use, compile, and execute UNIX v1 on a PDP

11/20. The logical step would be to undoubtedly try and create an executable for UNIX v1 written in the

PDP 11/20’s assembly language, load that onto the Simh PDP 11/20 using a program written in BASIC

and execute it to load UNIX v1 onto Simh. In theory, this should work, and then be able to be

accomplished on the physical PDP 11/20, but in practice, there are no doubts that several complications

will arise somewhere.

In its heyday, the PDP 11/20 was a highly sophisticated, complex, and beautiful piece of human

ingenuity. While the core concept of the computer has not changed much since the time of the PDP

11/20, computers have noticeably gotten smaller, and faster, but that does not mean that we should

not admire these works of the past. Old technologies such as these have led us to new, creative, and

meaningful innovations which have furthered the development of our society. Restoring old computers

is not something that should just be done on a whim, or without much thought; it is something that

should, and desperately needs to be accomplished. If one cannot understand what has got us to this

point in history, then how can anyone make assumptions about the future? This ideology hints at the

true, massive scope of this project. When working with such an ancient machine, several unexpected

issues are expected to be encountered, and with such minimal resources at hand, can be excruciatingly

painful to fix. Even with a clear path in mind, this project is hard to have a definitive timetable in mind.

The unfortunate truth is that while this project has done the job of carving out a path to its destination,

the PDP 11/20’s glory has yet to be achieved. The building blocks have been put back in place for future

students, and seekers of knowledge to dive themselves into the world of these complex architectures.

33

Appendix A: Assembly Programs

For information on what any of the instructions in the following programs do, refer to Appendix C.

P.0

Address Machine Code Instruction Comment
000500 012701 mov [pc+],r1 put receive register into r1
000502 177562 177562 receive register address
000504 011102 mov [r1],r2 put what's in the receive into r2
000506 005202 inc r2 r2=r2+1
000510 012701 mov [pc+],r1 put transmit register into r1
000512 177566 177566 transmit register address
000514 010211 mov r2,[r1] send it back out

P.1

Address Machine Code Instruction Comment
000600 012701 mov [PC+], r1<--- | move 'A' into r1
000602 000101 'A' |
000604 012702 mov [PC+], r2 | move TX port into r2
000606 177566 177566 | (TX data port)
000610 010112 mov r1, [r2] | move whats in r1 to the TX line
000612 000772 branch -6<------- | go back 6 lines

 This program will move the character ‘A’ into register 1, and send into to the address which is

stored in r2 (hence why the indirect addressing mode is invoked in the mov r1,[r2] instruction). On our

laptops’ side we would be able to see a constant stream of ‘A’s coming across the serial port.

P.2

Address Machine Code Instruction Comment
037704 012700 mov [pc+],r0 start the address at 0
037706 000000 0
037710 012701 mov[pc+],r1 put keyboard monitor into a register
037712 177562 177562
037714 012702 mov[pc+],r2 <------- set up the accumulator register
037716 000000 0 |
037720 012703 mov[pc+],r3 | set up the "for loop" iterator
037722 000000 0 |
037724 012704 mov[pc+],r4<--- | move keyboard status register into r4
037726 177560 177560 | |
037730 160505 sub r5,r5 | | clears out register to be used again
037732 105714 TSTB[r4]<-- | | is keyboard ready to take something in?
037734 100376 b -2>-------- | | if not try it again
037736 111105 movb [r1],r5 | | what’s in keyboard monitor into r5
037740 162705 sub [pc+],r5 | | subtract 104 from r5
037742 000104 104 | |

34

037744 142705 BICB [pc+],r5 | | and r5 with 7 to get rid of any error bits
037746 177770 177770 | |
037750 006102 rol r2 | | mov bits in r2 over to left 3 times
037752 006102 rolr2 | |
037754 006102 rol r2 | |
037756 060502 add r5,r2 | | add the new character to r2
037760 005203 Inc r3 | | increase the iterator
037762 020327 cmp r3,[pc+] | | do iterator-6. If result != 0 then branch
037764 000006 6 | |
037766 100760 BMI -19>------- | | if result is not 0, branch
037770 010210 mov r2,[r0] | store the accumulator into an address
037772 062700 add [pc+],r0 | increase the address for next time by 2
037774 000002 2 |
037776 000746 b -24>----------------| restart

 P.2 is a more complicated program which is used as an absolute loader to load the BASIC bin file

onto the PDP 11/20. Refer to section 4.3 for an in-depth description of its design, and how it’s executed.

35

Appendix B: Serial Emulator

1 public class SerialEmu {

2 static SerialPort port = null;
3 static CommPortIdentifier portId = null;
4 static Scanner scan = new Scanner(System.in);
5 static BufferedReader fromPDP = null;
6 static PrintStream toPDP = null;
7 static int reversebits = 0, instructionLength = 8, counter = 0, readFromFile=1, Wait = 0;
8 static Boolean keepsending;
9 public static void main(String[] args) throws IOException, InterruptedException {
10 System.out.println("Welcome to the Serial Connection Emulator (SCE) for the PDP

11/20, proceeding with setup...");
11 setup();
12 System.out.println("Setup was succesful!");
13 System.out.println("Would like to send something or receive something? (s,r): ");
14 String answer=scan.next();
15 if(answer.equals("s")) {
16 keepsending=true;
17 }
18 else {
19 keepsending=false;
20 }
 //main program loop
22 DateTimeFormatter timeStampPattern = DateTimeFormatter.ofPattern("yyyy MM dd

HH mm ss ");
23 DataOutputStream writer = new DataOutputStream(new FileOutputStream("Files\\" +

timeStampPattern.format(java.time.LocalDateTime.now()) + "log.txt"));
24 while(keepsending){
25 char[] charArray = null;
26 if(readFromFile==0) {
27 System.out.println("What would you like to send?");
 //answer is what the user wants to send
28 answer = scan.next();
29 charArray = answer.toCharArray();
30 }
31 else {
 //going to send a file
32 System.out.println("Enter the directory of the file you wish to send: ");
24 String Directory = "C:/Users/gilmo/eclipse-

workspace/SerialEmu/Files/BASICOctalInBinary.txt";
25 File file = new File(Directory);
26 BufferedReader reader = new BufferedReader(new FileReader(file));
27 String text = reader.readLine();
28 charArray = text.toCharArray();
29 }
30 System.out.println(charArray.length/16);

36

31 if(charArray[0]=='0' || charArray[0]=='1') {
32 char singleCharacter = '0';
33 for(int i= 0; i<charArray.length-15; i=i+16) {
34 String SixteenBits = Character.toString(charArray[i]) +

Character.toString(charArray[i+1]) + Character.toString(charArray[i+2]) +
Character.toString(charArray[i+3]) + Character.toString(charArray[i+4]) +
Character.toString(charArray[i+5]) + Character.toString(charArray[i+6]) +
Character.toString(charArray[i+7]) + Character.toString(charArray[i+8]) +
Character.toString(charArray[i+9]) + Character.toString(charArray[i+10]) +
Character.toString(charArray[i+11]) + Character.toString(charArray[i+12]) +
Character.toString(charArray[i+13]) + Character.toString(charArray[i+14]) +
Character.toString(charArray[i+15]);

35 System.out.println(SixteenBits);
36 String FirstBit = SixteenBits.substring(0, 1);
37 String FifteenBits = SixteenBits.substring(1, 16);
38 if(FirstBit.equals("0")) {
39 singleCharacter = 'D';
40 singleCharacter = (char) ((singleCharacter-127.5)/-.5);
41 }
42 else if(FirstBit.equals("1")) {
43 singleCharacter = 'E';
44 singleCharacter = (char) ((singleCharacter-127.5)/-.5);
45 }
46 toPDP.print(singleCharacter);
47 for(int j = 0; j<15;j=j+3) {
48 String ThreeBits = FifteenBits.substring(j,j+1) +

FifteenBits.substring(j+1,j+2) + FifteenBits.substring(j+2,j+3);
49 if(ThreeBits.equals("000")) {
50 singleCharacter = 'D';
51 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
52 }
53 else if(ThreeBits.equals("001")) {
54 singleCharacter = 'E';
55 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
56 }
57 else if(ThreeBits.equals("010")) {
58 singleCharacter = 'F';
59 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
60 }
61 else if(ThreeBits.equals("011")) {
62 singleCharacter = 'G';
63 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
64 }
65 else if(ThreeBits.equals("100")) {

37

66 singleCharacter = 'H';
67 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
68 }
69 else if(ThreeBits.equals("101")) {
70 singleCharacter = 'I';
71 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
72 }
73 else if(ThreeBits.equals("110")) {
74 singleCharacter = 'J';
75 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
76 }
77 else if(ThreeBits.equals("111")) {
78 singleCharacter = 'K';
79 singleCharacter = (char) ((singleCharacter-

127.5)/-.5);
80 }
81 toPDP.print(singleCharacter);
82 }
83
84 }
85 }
86 else {
87 for(int i = 0; i<charArray.length; i++) {
88 char singleCharacter = charArray[i];
89 singleCharacter = (char) ((singleCharacter-127.5)/-.5);
90 toPDP.print(singleCharacter);
92 }
93 }
94 System.out.println((charArray.length)/16 + " instructions stored");
95 ArrayList<Character> received = new ArrayList<Character>();
96 delay();
 //Test input stream and read from serial
97 received = receiveData();
98 System.out.println("received data");
99 for(int i = 0; i<received.size(); i++) {
100 char thingToWrite = received.get(i);
101 writer.write(thingToWrite);
102 }
103 System.out.println("Keep sending?");
104 String response = scan.next();
105 if(response.equals("N")) {
106 break;
107 }
108 }
109 while(!keepsending) {

38

110 String received;
111 System.out.println("receiveing...");
 //Test input stream and read from serial
112 received = receiveData().toString();
113 System.out.println(received);
114 if(received.isEmpty()) {
115 System.out.println("Finished receiving, check file!");
116 break;
117 }
118 }
119 writer.close();
120 }
121 public static ArrayList<Character> receiveData() throws InterruptedException{
 //function to take input from the PDP
 //create a buffer first
122 char[] cbuf = new char[100];
123 for(int i=0; i<cbuf.length; i++) {
124 cbuf[i]='=';
125 }
136 ArrayList<Character> EndArray = new ArrayList<Character>();
137 try {
138 fromPDP.read(cbuf);
139 } catch (IOException e) {
140 e.printStackTrace();
141 }
142 for(int i = 0 ; i<cbuf.length; i ++){
143 if(cbuf[i]!='=') {
144 EndArray.add(cbuf[i]);
145 }
146 }
147 return EndArray;
148 }
149 public static void setup(){
 //sets up a connection name
150 String name = "PDP";
151 while(true){
152 while(true){

//user enters a port like "COM6", and this finds all available COM ports and
checks them against what the user entered, but has been hard coded to “COM6”

153 System.out.println("Please enter the communication port "
 + "you believe your serial device is "
 + "connected to.");
154 System.out.print(">> ");
155 String wantedPortName = "COM6";//scan.next();
156 Enumeration portIdentifiers = CommPortIdentifier.getPortIdentifiers();
157 System.out.println("Printing com ports...");
158 while (portIdentifiers.hasMoreElements()){
 //this prints out all the possible COM ports

39

159 CommPortIdentifier pid = (CommPortIdentifier)
portIdentifiers.nextElement();

160 System.out.println(pid.getName());
161 if(pid.getPortType() == CommPortIdentifier.PORT_SERIAL
 //checks all serial ports with requested port
 && pid.getName().equals(wantedPortName)){
162 portId = pid;
163 break;
164 }
165 }
166 if(portId == null){
 //if it wasn't found then restart the connection
167 System.err.println("Could not find serial port at " + wantedPortName +

"...restarting");
168 continue;
169 }
170 break;
171 }
 //cast commportidentifier portId to type SerialPort and attempt to open
172 try{
 //sets up the found port as a serial port
173 port = (SerialPort)portId.open(name,10000);
174 break;
175 }catch(PortInUseException e){
176 System.err.println("Port already in use: " + e + "restarting...");
177 }
178 }

//setting parameters of serial interface. 1200 is baudrate, you can vary instruction length to still
setup correctly to different machine

 //stopbits of 1 for every case, and no parity for every case
179 try {
180 if(instructionLength==8){
181 port.setSerialPortParams(1200, SerialPort.DATABITS_8,
182 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
183 }
184 if(instructionLength==7){
185 port.setSerialPortParams(1200, SerialPort.DATABITS_7,
186 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
187 }
188 if(instructionLength==6){
189 port.setSerialPortParams(1200, SerialPort.DATABITS_6,
190 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
191 }
192 if(instructionLength==5){
193 port.setSerialPortParams(1200, SerialPort.DATABITS_5,
194 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
195 }
196 }catch (UnsupportedCommOperationException e) {

40

//a catch statement just incase something went wrong. Most likely the user entered
something that wasn't 8,7,6,or 5 for the Databits

197 System.out.println(e + "Invalid System Parameters, stopping the connection...");
198 System.exit(1);
199 }

//the checker is just to check to see if neither the buffer of the reader are set up. If the checker
is 1 that means that one of them
//didn't get setup properly, and it shuts down the connection because there's no point in having
a connection that you can't use

200 int checker = 0;
201 try{
 //sets up a Buffered Reader to read what the PDP 11 is sending us
202 fromPDP = new BufferedReader(new InputStreamReader(port.getInputStream()));
203 }catch (IOException e){
204 //in case something went wrong with setting up the buffer
205 System.err.println("Can't open input stream: write-only");
206 fromPDP = null;
207 checker = 1;
208 }
 //attempts to initiate toPDP print, errors are handled
209 try {
210 //sets up a print steam to the PDP 11
211 toPDP = new PrintStream(port.getOutputStream(), true);
212 } catch (IOException e) {
213 if(checker==1){

//if the checker is 1 from not setting up the Buffer, then it just shuts down the
connection

214 System.err.println("Could not open input or output streams, stopping the
connection...");

215 System.exit(1);
216 }
217 System.err.println(e + "Can't open output stream: read-only");
218 toPDP = null;
219 }
 //closes the connection when the program stops
220 if (toPDP == null) toPDP.close();
221 if (fromPDP==null)
222 try {
223 fromPDP.close();
224 } catch (IOException e) {
225 e.printStackTrace();
226 }
227 if (port == null) port.close();
228 }
229 public static void delay() {
230 int delay = 0;
231 for(double i = 0; i<1000000; i++){
232 for(double j = 0; j<1000; j++){

41

233 delay++;
234 }
235 }
236 }
237}

 The above program is that of the serial emulator that was created for communicating with the

PDP 11/20. Refer to section 4.2 for an extensive description of its design and execution.

42

Appendix C: Instruction Set

The following section is dedicated to be a reference for every instruction used by the assembly

program written in Appendix B. You can find an in-depth description of the MOV and BR instructions in

section 2.1. These are the two most commonly used instructions, but the vast amount of a program is

made up of instructions other than these. Therefore, if any questions should arise as to what a specific

instruction does, attention should be directed here.

ADD

0 1 1 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: (Src) + (Dst) store into (Dst)

Condition Codes:

 Z: set if result = 0; cleared otherwise

 N: set if result < 0; cleared otherwise

 C: set if there was a carry from the most significant bit of the result; cleared otherwise

 V: set if there was arithmetic overflow as a result of the operation, that is, if both

operands were of the same sign and he result was of the opposite sign; cleared otherwise

Description: Adds the source operand to the destination operand and stores the result at the

destination address. The original contents of the destination are lost. The contents of the

source are not affected. Two’s complement addition is performed.

BICB

43

1 1 0 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: ~(Src) and (Dst) store into (Dst)

Condition Codes:

 N/A

Description: The BICB instruction clears each bit in the destination that corresponds to a set bit

in the source. The original contents of the destination are lost. The contents of the sources are

unaffected.

BMI

1 0 0 0 0 0 0 1 Offset Offset Offset Offset Offset Offset Offset Offset

Operation: (loc) stored into (PC) if N=1

Condition Codes:

 NA

Description: Tests the state of the N-bit and causes a branch if N is set. It is used to test the sign

(most significant bit) of the result of the previous operation. The Offset is treated as a signed

two’s complement displacement to be multiplied by 2 (because of the fact that each instruction

in a 2-byte instruction) and added to the program counter. The PC then points to the next word

in sequence. The effect is to Cause the next instruction to be taken from the address “loc”,

located up to 127 words backwards or forwards (+-256 bytes).

BR

44

0 0 0 0 0 0 0 1 Offset Offset Offset Offset Offset Offset Offset Offset

Operation: (loc) stored into (PC)

Condition Codes:

 NA

Description: Provides a way of transferring program control within a limited range with a one-

word instruction. The Offset is treated as a signed two’s complement displacement to be

multiplied by 2 (because of the fact that each instruction in a 2-byte instruction) and added to

the program counter. The PC then points to the next word in sequence. The effect is to Cause

the next instruction to be taken from the address “loc”, located up to 127 words backwards or

forwards (+-256 bytes).

CMP

0 0 1 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: (Src) – (Dst) store into (Dst) (particulary it’s (Dst) + ~(Src) + 1 store into (Dst))

Condition Codes:

 Z: set if result = 0; cleared otherwise

 N: set if result < 0; cleared otherwise

 C: set if there was a carry from the most significant bit of the result; cleared otherwise

 V: set if there was arithmetic overflow as a result of the operation, that is, if both

operands were of the same sign and he result was of the opposite sign; cleared otherwise

45

Description: Arithmetically compares the source and destination operands. Affects neither the

Src or Dst operands. The only reason to do this is if on the next line you have a JMP or BR

command which is activated under certain pretenses of the condition codes.

INC

0 0 0 0 1 0 1 0 1 0 Dst Dst Dst Dst Dst Dst

Operation: (Dst) + 1 store into (Dst)

Condition Codes:

 Z: set if result = 0; cleared otherwise

 N: set if result < 0; cleared otherwise

 C: not affected

 V: set if (Dst) used to hold 077777; cleared otherwise

Description: Adds one to the destination

MOV

0 0 0 1 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: (Src) store into (Dst)

Condition Codes:

 Z: set if (Src) = 0; cleared otherwise

 N: set if (Src) < 0; cleared otherwise

46

 C: not affected

 V: cleared

Description: Moves the source operand to the destination location. The previous contents of

the destination are lost. The contents of the source are not affected.

MOVB

0 0 1 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: N/A

Condition Codes:

 N/A

Description: Moves high order byte from source register into Destination regitser

ROL

0 0 0 0 1 1 0 0 0 1 Dst Dst Dst Dst Dst Dst

Operation: (Src) – (Dst) store into (Dst) (particulary it’s (Dst) + ~(Src) + 1 store into (Dst))

Condition Codes:

 Z: set if all bits of the result word are 0; cleared otherwise

 N: set if the high order bit of the result word is set, and thus rolled over; cleared

otherwise

 C: loaded with the high order bit of the destination

47

 V: loaded with the Exclusive OR of the N-bit and C-bit (as set by the completion of the

rotate operation)

Description: Rotates all bits of the destination left one place. Bit 15 is loaded into the C-bit of

the status word and the previous contents of the C-bit are loaded into bit 0 of the destination.

SUB

1 1 1 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: (Src) – (Dst) store into (Dst) (particulary it’s (Dst) + ~(Src) + 1 store into (Dst))

Condition Codes:

 Z: set if result = 0; cleared otherwise

 N: set if result < 0; cleared otherwise

 C: set if there was a carry from the most significant bit of the result; cleared otherwise

 V: set if there was arithmetic overflow as a result of the operation, that is, if both

operands were of the same sign and he result was of the opposite sign; cleared otherwise

Description: Subtracts the source operand from the destination operand and leaves the result

at the destination address. The original contents of the destination are lost. The contents of the

source are not affected.

TSTB

0 0 1 0 Src Src Src Src Src Src Dst Dst Dst Dst Dst Dst

Operation: (Dst) - 0

48

Condition Codes:

 Z: set if result = 0; cleared otherwise

 N: set if result < 0; cleared otherwise

 C: cleared

 V: cleared

Description: Examines the high order bit of the high order byte in the Src register. Used simply

just to set the condition codes Z and N. Mostly used to check status registers to see if they’re

ready to be used.

49

Bibliography

Beiser, Johan, et al. “Restoration of 1st Edition UNIX Kernel Sources from Bell Laboratories.” Github,

Online Repository, 4 May 2008, github.com/jserv/unix-v1.

“DEC PDP 11/20.” History of Computers and Computing, Birth of the Modern Computer, Electronic

Computer, PDP-11, History-Computers.com, history-

computer.com/ModernComputer/Electronic/PDP-11.html.

Par, Jeff. PCjs: DEC PDP-11 BASIC, www.pcjs.org/apps/pdp11/tapes/basic/.

Poon, Henry. “Serial Communication in Java with Example Program.” Henry Poon's Blog, 22 Jan. 2016,

blog.henrypoon.com/blog/2011/01/01/serial-communication-in-java-with-example-program/.

“Interfacing with a PDP 11/05: Sorting the Wires.” RETROCMP, RETROCMP, retrocmp.com/how-

tos/interfacing-to-a-pdp-1105/144-interfacing-with-a-pdp-1105-sorting-the-wires.

Olsen, Kenneth H. PDP 11/20 Handbook. Digital Equipment Corporation, 1971.

Pressman, John D. “How To Emulate Unix V7 Using Simh (2015).” Jdpressman.com, 27 Nov. 2015,

www.jdpressman.com/2015/11/27/how-to-emulate-unix-v7-using-SIMH-(2015).html.

 “SimH.” The Computer History Simulation Project, 3.9, The Computer History Simulation Project, 3 May

2012, simh.trailing-edge.com/.

Toomey, Warren. “The Restoration of Early UNIX Artifacts.” Usenix.com,

www.usenix.net/legacy/events/usenix09/tech/full_papers/toomey/toomey.pdf.

“UNIX Past.” Open Group, http://www.unix.org/what_is_unix/history_timeline.html.

	Bridgewater State University
	Virtual Commons - Bridgewater State University
	5-8-2018

	The Restoration of UNIX: Emulating UNIX version 1.0 on a 16-bit DEC PDP 11/20
	John J. Gilmore Jr.
	Recommended Citation

	tmp.1533670203.pdf.gnH28

