
Bridgewater State University
Virtual Commons - Bridgewater State University

Honors Program Theses and Projects Undergraduate Honors Program

5-1-2018

The Key to Cryptography: The RSA Algorithm
Clifton Paul Robinson

Follow this and additional works at: http://vc.bridgew.edu/honors_proj

Part of the Computer Sciences Commons

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.

Recommended Citation
Robinson, Clifton Paul. (2018). The Key to Cryptography: The RSA Algorithm. In BSU Honors Program Theses and Projects. Item 268.
Available at: http://vc.bridgew.edu/honors_proj/268
Copyright © 2018 Clifton Paul Robinson

http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=vc.bridgew.edu%2Fhonors_proj%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages

The Key to Cryptography: The RSA Algorithm

Clifton Paul Robinson

Submitted in Partial Completion of the
Requirements for Commonwealth Interdisciplinary Honors

in Computer Science and Mathematics

Bridgewater State University

May 1, 2018

Dr. Jacqueline Anderson Thesis Co-Advisor
Dr. Michael Black, Thesis Co-Advisor

Dr. Ward Heilman, Committee Member
Dr. Haleh Khojasteh, Committee Member

BRIDGEWATER STATE UNIVERSITY

UNDERGRADUATE THESIS

The Key To Cryptography: The

RSA Algorithm

Author:

Clifton Paul ROBINSON

Advisors:

Dr. Jackie ANDERSON

Dr. Michael BLACK

Submitted in Partial Completion of the Requirements

for Commonwealth Honors in Computer Science and Mathematics

Dr. Ward Heilman, Reading Committee

Dr. Haleh Khojasteh, Reading Committee

ii

Dedicated to

Mom, Dad, James, and Mimi

iii

Contents

Abstract v

1 Introduction 1

1.1 The Project Overview . 1

2 Theorems and Definitions 2

2.1 Definitions . 2

2.2 Theorems . 5

3 The History of Cryptography 6

3.1 Origins . 6

3.2 A Transition . 6

3.3 Cryptography at War . 7

3.4 The Creation and Uses of RSA 7

4 The Mathematics 9

4.1 What is a Prime Number? . 9

4.2 Factoring Numbers . 10

4.3 Factoring Products of Two Prime Numbers 10

4.4 The Use of Fermat’s Little Theorem 10

4.5 The Factoring Algorithms . 11

4.5.1 Trial Division . 11

4.5.2 Pollard Rho . 11

4.5.3 Continued Fraction Factoring 12

4.5.4 Quadratic Sieve . 15

iv

5 Computing Languages 16

5.1 Python . 16

5.2 SageMath . 16

5.3 Java . 16

6 Implementation of the Algorithms 17

6.1 Overview of the Program . 17

6.1.1 Pseudo-code of the Algorithms 17

6.2 Implementing Algorithms . 18

6.2.1 Trial Division . 18

6.2.2 Pollard’s Rho . 18

6.2.3 Quadratic Sieve . 18

6.2.4 Continued Fraction Factoring Algorithm 18

7 Data and Observations 19

7.1 Comparison of Algorithms . 19

7.1.1 Graphs . 20

8 Improving The Code 24

8.1 Automated Programming . 24

8.2 More Programming Languages 24

9 Conclusion 25

9.1 Future Threats . 25

9.2 Final Thoughts . 25

Acknowledgements 26

Bibliography 27

A Code Appendix 28

A.1 The Main Code Used . 28

v

BRIDGEWATER STATE UNIVERSITY

Abstract
The Key To Cryptography: The RSA Algorithm

Cryptography is the study of codes, as well as the art of writing and

solving them. It has been a growing area of study for the past 40 years. Now

that most information is sent and received through the internet, people need

ways to protect what they send. Some of the most commonly used

cryptosystems today include a public key. Some public keys are based around

using two large, random prime numbers combined together to help encrypt

messages.

The purpose of this project was to test the strength of the RSA

cryptosystem public key. This public key is created by taking the product of

two large prime numbers. We needed to find a way to factor this number

and see how long it would take to factor it. So we coded several factoring

algorithms to test this. The algorithms that were implemented to factor are

Trial Division, Pollard’s Rho, and the Quadratic Sieve. Using these algo-

rithms we were able to find the threshold for decrypting large prime num-

bers used in Cryptography.

HTTPS://WWW.BRIDGEW.EDU/

1

Introduction

1.1 The Project Overview

In public-key encryption systems, if someone is able to break the public
key they can fully decrypt the message. The main goal of this project was to
test the threshold of the RSA public key. We wanted to test the semiprime
number public-key against different factoring algorithms to find the thresh-
old of RSA on a regular computer.

The way we tested this was by implementing the different algorithms
into several different computer languages. Then we would collect data and
compare the algorithms against each other and from that find the threshold
of RSA compared to the specific algorithms.

Section two contains all of the theorems and definitions needed for this
research. This gives a general overview of what one will see throughout
the paper as well as some mathematic background that is based on prime
numbers and factoring.

Section three is about the history of Cryptography. It covers several main
topics that helped define this subject, such as how it started and how it
evolved over the years. We will also show the creation and use of the RSA
cryptosystem because of the importance to this research.

All of the math is explained in section four, which covers prime num-
bers and general factoring, the two main parts of this research. It also shows
the math behind the algorithms and how they work when they are factoring
numbers.

Section five quickly outlines all of the programming languages used
throughout the research. Sections six and seven cover the implementation of
the algorithms as well as the observations taken from the data. Section seven
displays all of the graphs that were created from the time measurements.

Lastly, in sections eight and nine we talk about improvements that can be
made to the code in the future as well as draw a conclusion from the research.
In addition, we discuss potential risks to public-key encryption in the future,
especially with respect to quantum computing.

2

Theorems and Definitions

2.1 Definitions

• Algorithm

– An algorithm is a well-defined procedure that allows a computer
to solve a problem.

• Carmichael Number

– A Carmichael number is an odd composite number which passes
the Fermat Primality Test for every base, b, that is relatively prime
to that number. These numbers can often be confused with prime
numbers in factoring.

• Cipher

– Also known as a cryptographic algorithm, is a mathematical func-
tion which uses plaintext as the input and produces CIPHERTEXT
as the output and vice versa.

• CIPHERTEXT

– The encrypted text or message.

• Continued Fraction

– A continued fraction is a fraction created by an iterative process
that can possibly be infinite of the form:

a0 +
1

a1 +
1

a2 +
1
· · ·

Where a0 is any integer and ai is a positive integer for i ≥ 1.

2.1. Definitions 3

• Cryptography

– The art of writing or solving codes.

• Cryptology

– The science and art of making and breaking codes and ciphers.

• Cryptosystem

– A suite of cryptographic algorithms needed to implement a
particular security service, most commonly for achieving
confidentiality (encryption). Typically, a cryptosystem consists of
three algorithms: one for key generation, one for encryption, and
one for decryption.

• Decryption

– The process of taking encoded or encrypted text or other data
and converting it back into text that can be read and understood.
(Terms and Definitions)

• Encryption

– The process of converting information or data into a code,
especially to prevent unauthorized access. (Terms and Definitions)

• Fermat Primality Test

– This is a test created by the mathematician Fermat to determine
whether a number is a probable prime. By Fermat’s Little The-
orem, if p is a probable prime and a is not divisible by p, then
ap−1 ≡ 1 (mod p). With this test, we will pick all a’s not divisible
by p to see if it is a prime number.

• Modular Arithmetic

– A system of arithmetic for integers, where numbers "wrap around"
upon reaching a certain value called the modulus.

• plaintext

– The original text or message.

• Prime Number

– A whole number greater than 1 whose only positive integer factors
are 1 and itself.

4 Chapter 2. Theorems and Definitions

• Public-Key Cryptography

– Public key cryptography uses an encryption algorithm in which
two keys are produced. One key is made public while the other is
kept private. The public key and the private key are cryptographic
inverses; what one key encrypts only the other key can decrypt.
Public key cryptography is also called asymmetric cryptography.

• Quantum Computing

– This is an area in computer technology that is based off of
Quantum Theory. It works differently than regular computers,
instead of bits it uses something called qubits that can take on the
value 0, or 1, or both simultaneously, which makes these
computers far superior than others. (Google’s Quantum Computer Is
100 Million Times Faster Than Your Laptop)

• RSA

– The acronym stands for Rivest, Shamir, and Adelman, the
inventors of the technique. RSA is one of the first public-key
cryptosystems and is widely used for secure data transmission.
The basic security in RSA comes from the fact that, while it is
relatively easy to multiply two huge prime numbers together to
obtain their product, it is computationally difficult to go the
reverse direction: to find the two prime factors of a given
composite number. It is this one-way nature of RSA that allows
an encryption key to be generated and disclosed to the world, and
yet not allow a message to be decrypted. (Glossary of Cryptographic
Terms)

• Semiprime Number

– These are numbers that are the product of two prime numbers.
This means the only divisors are 1, itself, prime 1, prime 2.

• Time Complexity

– Time complexity is a concept in computer science that deals with
the quantification of the amount of time taken by a set of code or
algorithm to process or run as a function of the amount of input.
(Time Complexity)

2.2. Theorems 5

2.2 Theorems

Theorem 1 (The Fundamental Theorem of Arithmetic).
Every integer greater than 1 can be written as a product of prime numbers, perhaps
with just one prime in the product, and this product is unique when the primes are
written in non-descending order.

pe1
1 × pe2

2 × ...× pek
k =

k
∏
i=1

pei
i

Theorem 2 (Infinite Prime Numbers).
The number of prime numbers is infinite.

Proof. (The Prime Pages)
Suppose that p1, ..., pk were all of the prime numbers.
Let n = p1 × p2 × ...× pk + 1.
Then n is not divisible by any pi because n mod pi = 1 for every i.
By Theorem 1, n can be written as the product of one or more prime numbers.
So, n is divisible by some prime, which cannot be one of the pi.
Therefore, the assumption that p1, ..., pk are all of the prime numbers is false,
and the number of all primes is infinite.

Theorem 3.
If n is composite, then n has a prime factor p ≤

√
n.

Proof.
If n is composite, then it has at least two prime factors.
Let p and q be two of them.
Assume p ≤ q, then n ≥ pq ≥ p2

So p ≤
√

n.

Theorem 4 (Fermat’s Little Theorem).
If p is a prime number and n is an integer not divisible by p, then p divides np−1− 1,
that is, np−1 ≡ 1 (mod p).

Corollary 4.1. If p is a prime number and n is an integer, then np ≡ n (mod p).

Theorem 5 (Euclid’s First Theorem).
If p is a prime number and p|ab then p|a or p|b.

6

The History of Cryptography

3.1 Origins

Throughout history, people have needed to protect their secrets. For
thousands of years, people have been using codes and ciphers to protect
those secrets. Back then, cryptography started off as an art; it was only
studied by writers and artists. It was used as early as 1900 BCE in Ancient
Egypt. During these times the Egyptians would create a code using
hieroglyphics by switching the order of them and only people who knew the
order could translate the message. (Cryptology)

As the years went on these methods become more clever and involved.
The Greeks contributed a lot to cryptography, including two ciphers, the
Spartan Scytale and the Polybius Square. The scytale was used by the
Spartan army to send messages without being detected. Two people in the
army would have two pieces of wood that were equal in diameter. The
messages would be written on strips of leather wrapped around the wood.
These messages could only be read if the strip was wrapped around a wood
of the same size. The Polybius Square was another unique technique. The
Greeks used a 5 by 5 square, with sides labeled 1 through 5 on the top and the
side, while the squares would be filled with the alphabet (Cryptology). Each
letter is associated with a two-digit number, one digit each coming from the
side and top.

3.2 A Transition

Up until the Greeks, Cryptography was considered to be a form of
literature because it would just be manipulating writing. Once the Romans
came along the focus shifted from literature to mathematics. The
Caesar Cipher, named after Julius Caesar, started to implement tiny amounts
of math, mainly addition. This cipher, more commonly referred to as the shift
cipher, shifts the original letters in the message a certain amount of spaces
and returns a random group of letters. For example, using our

3.3. Cryptography at War 7

alphabet, if we shifted the letters 5 spaces then the letter ’A’ would be changed
to ’F’ and the person receiving this message would be able to convert it back.

3.3 Cryptography at War

Cryptography has fully transitioned to mathematics and computer
science now. Governments use different encryptions to secure their secrets
and private messages. Banks use cryptography to secure accounts and
transactions. Credit card companies will ensure that their cards get encrypted
when used to keep customers’ information safe. The list goes on.

An important part of recent history during World War II involves the
Enigma Machine. The Nazis were using a type of rotor machine that was
referred to as Enigma. This machine has multiple stages, so
every step changes the letters. These messages would be sent over the radio
and would be intercepted by the allies but they could never decrypt them.
Luckily, the Polish Cipher Bureau was able to obtain the detailed structure of
an enigma machine so they could recreate it. (Cryptology)

Shortly before the invasion of Poland, the agents were able to meet up
with British cryptographers in France to decrypt the Enigma. The British
code group at Bletchley Park was able to find the decryption and because of
this, helped end the war early saving millions of lives. One of the
members of the British group was Alan Turing, the conceptual founder of
modern computing. Recently, Hollywood turned this story into a movie
called The Imitation Game starring Benedict
Cumberbatch as Alan Turing.

3.4 The Creation and Uses of RSA

In 1977, the RSA Algorithm was created by Ron Rivest, Adi Shamir, and
Leonard Adleman. This is an algorithm that is used in public-key
encryptions (Hoffstein, Pipher, and Silverman, 2008). Public-key encryption
is when a user publishes a public key so that other users can encrypt and
send messages to them. However, each user has their own private key for
decryption. The reason that the decryption key is so important is that it is
extremely hard to find the decryption key from the public key. This is
because the public key is created by using two large prime numbers
multiplied together.

8 Chapter 3. The History of Cryptography

RSA is now considered an older algorithm, but it is still being used by
some companies as well as the government to encrypt messages. On the next
page, we will see a table that walks you through how sending messages in
RSA works. With this table, you will be able to also send messages with RSA.

Bob Alice

Key Creation

• Pick your secret primes, p
and q. Compute N = pq

• Choose an encryption ex-
ponent, e, and make sure
gcd(e, (p− 1)(q− 1)) = 1.

• Publish N and e.

This is the part where Bob will
create a public key so people can

send him messages.
(For back and forth

communication Alice will create
her own public key)

Encryption

During this step Alice will encrypt
her message and send it back to

Bob for him to decrypt it.

• Choose a plaintext message
to encrypt, m.

• Use Bob’s public key (N, e) to
compute c ≡ me(modN).

• Send the ciphertext message,
c, to Bob.

Decryption

• Compute d satisfying: ed ≡
1(mod(p− 1)(q− 1))

• Compute m′ ≡ cd(modN).

• Then, m′ =plaintext m

If everything is done correctly, Bob
will receive the message that Alice

sent.

(Wagstaff, 2013)

This table shows how you can send messages using RSA.

9

The Mathematics

4.1 What is a Prime Number?

Prime numbers are an integral part of mathematics, especially when it
comes to factoring. We know that a prime number is a number that is only
divisible by 1 and itself. One amazing thing about prime numbers is that any
whole number is comprised of different primes. For example, let’s look at
the number 100:
When you start to factor 100 you get:

2× 50

2 is a prime number so it cannot be factored anymore but 50 can:

50 = 2× 25

Again, 2 is prime so then:

25 = 5× 5

So finally, 100 can be written as:

100 = 2× 2× 5× 5 or 100 = 22 × 52

This is helpful when factoring because every number can be expressed as
different prime numbers multiplied together. Prime numbers are the
building blocks of whole numbers. Most importantly, every positive integer
greater than 2 can be factored into primes in a unique way. (Hardy et al., 2008)

In Cryptography, prime numbers are important, especially today. A
decent amount of the modern computer encryptions use prime numbers to
create large numbers. The reason people still use that technique is that there
has been no efficient way to factor large numbers that are a product of two
primes.

Most of the encryption techniques that use products of prime numbers
are called "Public-Key Encryptions," because the number is known to
everyone. However, this is hard to factor as the number gets larger (Hardy et
al., 2008). Therefore, you can make the encryptions stronger by using larger
prime numbers. So, as long as there is no efficient way to factor these
numbers, prime numbers will always play a role in current Cryptography.

10 Chapter 4. The Mathematics

4.2 Factoring Numbers

Every number has factors, they are the numbers that are multiplied
together to create that number. Some numbers have multiple factors and
some only have two (other than 1 and itself). We want to focus on factoring
the numbers that only have two prime factors, these are called semiprime
numbers. The reason we do not focus on the numbers with multiple prime
factors is that they can be associated with multiple prime numbers.

As we saw in Section 4.1, numbers can be written only as products of
prime numbers. When you get into prime factorization, certain numbers can
be comprised of many different prime numbers. However, with semiprime
numbers, there will only be two prime numbers in the prime factorization
form. So the question becomes, how can we factor these numbers easily?

4.3 Factoring Products of Two Prime Numbers

One problem with semiprime numbers is that there is no easy way to
factor them once they get big enough. There are some incredibly fast
factoring algorithms that work great; the problem is that they can only work
for so long before the numbers get too big. Going back to the RSA algorithm,
a semiprime is one of the safest public keys one can have because once it
gets big enough it will just take too long to factor (Wagstaff, 2013). There is a
belief that once quantum computing becomes real, we will be able to factor
any number instantly. However, we are probably still years away from fully
obtaining this technology.

4.4 The Use of Fermat’s Little Theorem

The work of famous French mathematician, Pierre de Fermat, is extremely
helpful when it comes to prime numbers in general. Fermat’s Little Theorem
is useful for primality testing as well as for proving that the RSA Algorithm
is correct. If this theorem is implemented into code it can check to see if larger
numbers are prime or not.

The problem is that this theorem can take longer to run as the numbers
get larger. People may cut corners, not check every number, and a number
will seem to be a prime number, that is not. This theorem is mostly used to
help determine what isn’t a prime number. Sometimes there are numbers that
pass the test, like Fermat pseudoprimes and Carmichael numbers, but are not

4.5. The Factoring Algorithms 11

actually prime numbers. These will mess up public keys because you are not
actually using prime numbers. When this theorem is used correctly then it
is a really powerful theorem that makes prime factorization and public-key
cryptography easier.

4.5 The Factoring Algorithms

4.5.1 Trial Division

Trial Division is the factoring algorithm that we used as the base model
for comparison. This is because trial division is the easiest to understand out
of all the algorithms. There are downsides to this though; it is considered the
most laborious of the factoring algorithms.

The way this algorithm works is by using the trial division test. We take
a number, n, and check every number less than n (in Theorem 3) to see if it
can be factored. When all of the factors are found you will see every possible
factor for n and if you go a step further with this algorithm you can put n in
its prime factorization form.

4.5.2 Pollard Rho

The Pollard’s Rho method is a factoring algorithm that was created by
John Pollard in 1975. This algorithm works by using modular arithmetic to
iterate a polynomial until a cycle is detected and then the number can be
factored (Wagstaff, 2013). On a basic level, this is how this method works:
The number we are trying to factor is N, where N = pq and p and q are both
unique prime numbers. So we need to find either p or q.

• Pollard’s Rho uses the function f (x) = x2 + b in Zn

• From this we follow the orbit, which looks like this:

– S→ f (S)→ f (f (S))→ ...

• It will keep continuing until it finds a number that is a factor of N. What
we do is we compare S to f n(S) as we iterate. We compute
GCD(N, f n(S) − S). If this value is not 1, then we have potentially
found a factor of N.

12 Chapter 4. The Mathematics

4.5.3 Continued Fraction Factoring

A continued fraction is just another way of writing fractions. It is a way
to compute the square root of a number extremely accurately. The form of
continued fractions is shown below:

a0 +
1

a1 +
1

a2 +
1
· · ·

This form is called a continued fraction. The value of an must be an
integer. A continued fraction can also be rational or irrational, it depends on
the number. Continued fraction representation of numbers such as π or e are
infinitely long. Given a number, α, a continued fraction can be created by
using the recursive algorithm:

ai = [αi]

αi+1 =
1

αi − ai

To understand continued fractions better, we shall look at an example:

Let α = 437

√
437 = 20 + (

√
437− 20)

= 20 +
1

1√
437−20

√
437+20√
437+20

= 20 +
1

20+
√

437
37

4.5. The Factoring Algorithms 13

20 +
√

437
37

= 1 +
−17 +

√
437

37
= 1 +

1
37

−17+
√

437
−17−

√
437

−17−
√

437

= 1 +
1

−629−37
√

437
−148

= 1 +
1

17+
√

437
4

17 +
√

437
4

= 9 +
−19 +

√
437

4
= 9 +

1
4

−19+
√

437
−19−

√
437

−19−
√

437

= 9 +
−76− 4

√
437

−76
= 9 +

1
19+
√

437
19

19 +
√

437
19

= 2 +
−19 +

√
437

19
= 2 +

1
19

−19+
√

437
−19−

√
437

−19−
√

437

= 2 +
1

361+19
√

437
76

= 2 +
1
1

19+
√

437
4

19 +
√

437
4

= 9 +
−17 +

√
437

4
= 9 +

1
4

−17+
√

437
−17−

√
437

−17−
√

437

= 9 +
1

68+4
√

437
148

= 9 +
1
1

17+
√

437
37

17 +
√

437
37

= 1 +
−20 +

√
437

37
= 1 +

1
37

−20+
√

437
−20−

√
437

−20−
√

437

= 1 +
1

(37∗20)+37
√

437
37

= 1 +
1
1

20+
√

437
1

20 +
√

437 = 40

This will now continue to repeat

14 Chapter 4. The Mathematics

We know to stop there because for square roots every continued fraction
repeats eventually. So in this example it went:

20, 1, 9, 2, 9, 1, 40

When we finally see the repetition, the final number in the sequence will be
double the first number (i.e. 20 ∗ 2 = 40).

In Cryptography, continued fractions can actually be used to factor.
Continued fractions can also be used for

√
n and it will continue to use the

form we saw above: √
n = 1 +

x− 1
1 +
√

n

Using different numbers as integers from every step of the continued fraction
we can create a strong algorithm that factors numbers well. There are five
integers in this algorithm: i, qi, pi, Qi, Ai (Wagstaff, 2013). i is just the step
you are on, so it will start at 0 and work its way up until the fraction ends.
Ai is computed outside of the method, but it is the numerator of the i-th
convergent. In the continued fraction method, once it is computed then every
part of it is used to help factor. Each integer has a specific location in the
continued fraction and they are used to create a table to compute different
integers. These are the positions:

qi +
1

pi+
√

α
Qi

We are able to use continued fractions to factor because they help us find
perfect square solutions. The key fact is the relationship between all of these
variables when we compute the continued fraction. We have
(−1)iQi = A2

i−1 − B2
i−1N, which implies A2

i−1 ≡ (−1)iQi (mod N). Thus, if
we can find a Qi that is a perfect square (or we can build a perfect square by
multiplying together different Qi), then we have a solution to the congruence
below. The solution is to x2 ≡ y2 (mod n). Then that means (x + y)(x− y) ≡
0 (mod n) and continuing going until we are able to find the factors of our
original number (Wagstaff, 2013). However, the continued fraction factoring
algorithm was overshadowed by the Quadratic Sieve. In 4.5.4 you will learn
about the second step of both algorithms. Both use the second step, but the
first steps are different, with the Quadratic Sieve being more efficient.

4.5. The Factoring Algorithms 15

4.5.4 Quadratic Sieve

The Quadratic Sieve Algorithm was invented by Carl Pomerance in 1981.
It is a method that is built off of previous ideas by two mathematicians,
Kraitchik and Dixon. (Wagstaff, 2013)

This algorithm is similar to the Continued Fraction Factoring Algorithm.
The difference comes in the initial step. Unlike the Continued Fraction, the
sieve uses outputs from a quadratic polynomial to construct perfect squares.
In the second step, we use linear algebra to find and create different perfect
squares if there are none created originally, this allows us to factor the initial
number.

Year ago, there was an RSA challenge number that was created. It was a
129-digit semiprime that needed to be factored (Wagstaff, 2013). The Quadratic
Sieve was used to factor this number. This algorithm is much more advanced
than the trial division method. This is actually one of the top factoring
algorithms that you can use today.

16

Computing Languages
One of the main goals of this project was to implement the factoring

algorithms into code. From the code, we would take our data. We ended up
using three programming languages: Python, Sage, and Java.

5.1 Python

Python was created in the late 1980s and it is one of the most commonly
used languages today in programming. Throughout this research, it was also
the main language that was used. Python is a language that is able to handle
numbers no matter how large they get, however, the runtime is slower than
other languages. Python is also good when you need to explain the code; it
is usually straightforward and can be explained easily. We were also lucky
that Python had an easy to implement timer so we could gather extremely
accurate data.

5.2 SageMath

SageMath was brought into this research late, but it ended up being the
most effective language for what we needed. SageMath is actually a form of
the language Python, but it adds in tons of new math functions. So this gave
us a lot of extra information that we could use, including certain factoring
algorithms. This is still a fairly new language and it also runs on a server.
So because of this gathering time measurements can be different because of
how busy the server is. However, you can download your own copy of Sage
so it doesn’t depend on server traffic.

5.3 Java

Initially, we expected Java to be useful for this research, however, it was
the opposite. This language was faster at factoring, but it is good with large
numbers. We could have added different classes to improve larger numbers,
but it was not needed when researching this topic.

17

Implementation of the Algorithms

6.1 Overview of the Program

The original program that was created did much more than factor
numbers. We created a program that was like a sandbox, where we could just
test and create anything based on prime numbers. We implemented different
factoring algorithms, prime number generators, and many things that
surround prime numbers. This was to get a better understanding of
everything based on this topic, rather than just factoring semiprimes.

6.1.1 Pseudo-code of the Algorithms

Trial Division

def trial_division(n):

a = []

f = 2

while n > 1:

if (n % f == 0):

a.append(f)

n /= f

else:

f += 1

return a

Pollard Rho

x = 2; y = 2; d = 1

while d = 1:

x = g(x), where g(x)=(x2+1) mod n

y = g(g(y))

d = gcd(|x - y|, n)

if d = n:

return failure

else:

return d

18 Chapter 6. Implementation of the Algorithms

6.2 Implementing Algorithms

Coding these algorithms was half of the battle in this research. We had
to find the pseudo-code, understand the algorithms, and then write code for
them to work. In the end, we coded two of the algorithms and used a built-in
function for the other.

6.2.1 Trial Division

Implementing Trial Division was the easiest out of all the factoring
algorithms. As you can see from the pseudo-code it is only several lines long.
The actual code for this algorithm is shown in the appendix. This algorithm
is the most trivial, so it was the easiest to create. This is because there is not
much mathematics involved other than just division.

6.2.2 Pollard’s Rho

Pollard’s Rho was more difficult to implement. The code is only slightly
longer, however, the algorithm only works most of the time. There are certain
times where the algorithm wouldn’t be able to factor a number or it just
returned 1. The way we fixed this problem was by creating a loop around
the algorithm. The loop cycles through the algorithm multiple times until a
real answer is shown. The actual Python code for this algorithm is shown in
the appendix.

6.2.3 Quadratic Sieve

The Quadratic Sieve algorithm is the most complex out of all the ones we
chose. SageMath has a built-in factoring algorithm that uses the Quadratic
Sieve. From this algorithm, we were able to factor numbers just by calling the
function from SageMath. This saved us tons of time and gave us the perfectly
created code for this project.

6.2.4 Continued Fraction Factoring Algorithm

When it came to the Continued Fraction Algorithm (CFRAC) we actually
decided not to implement it. After researching both the Quadratic Sieve and
the CFRAC we saw that the algorithms were very similar to the second step.
So because of this, and how close both algorithms were in design, the CFRAC
was not really used and implemented.

19

Data and Observations

7.1 Comparison of Algorithms

We want to also look at time complexity for each algorithm. This is looking
at the efficiency of the algorithm, or how long it takes for the function to run.

Trial Division Pollard’s Rho Continued Fraction Quadratic Sieve

O(
√

n) O(
√

p) ≤ O(n1/4) O(e
√

2ln(n)ln(ln(n))) e(1+o(1))
√

ln(n)ln(ln(n))

Initially, we believed that the more advanced algorithms would be faster
at factoring the semiprime numbers. However, it was on a much larger scale
than we expected. When we look at the algorithms this is how the strength
and speed are:

Quadratic Sieve ≥ Continued Fraction > Pollard’s Rho > Trial Division

When we look at the different time complexities Pollard’s Rho shows us
right away that it is better than Trial Division. Actually, Trial Division’s time
complexity shows us that we should not be using it because it is a
ineffective algorithm for factoring. Pollard’s Rho is decent, compared to
Trial Division, but it is overshadowed by the Continued Fraction and the
Quadratic Sieve. We can see that those two algorithms are similar in
complexity, but the Quadratic Sieve is just slightly better. This time
complexity is a good example as to why it was chosen over the Continued
Fraction factoring algorithm.

If you are the person creating an algorithm you will want the time
complexities of the factoring algorithm to be bad. This is because the slower
the algorithm is the better the factoring algorithm is. In the case of RSA,
people who are using this method to send and receive messages will hope
people use the trial division algorithm to break the public key.

The important part to know is that if you are attempting to break this
public key, an algorithm with a strong time complexity is better, but if you
want your information secure when you send messages you want it to be a
bad time complexity.

20 Chapter 7. Data and Observations

7.1.1 Graphs

For every algorithm that was implemented, we collected timed data to
compare the algorithms against each other. Each algorithm has a graph that
shows the data collected from the tests we ran. These tests were testing the
speed of the algorithm in seconds compared to how many digits there were
to factor. These graphs are able to show the algorithms against each other
better than just explaining it.

There are several types of line graphs here. There are three individual line
graphs for the three implemented algorithms. The comparison of the three
algorithms against each other depending on the number of digits (The length
of a Semiprime number). We will also see the comparison of some algorithms
in different languages.

Figure 7-1: Trial Division Timing Graph

When we look at the Trial Division graph, we see it doing well at
factoring numbers up to 16 digits. Once we get past 16 digits then the
algorithm becomes slow and the program will exit out before it can finish
factoring. Sadly, this algorithm was not able to factor up to 20 digits, but
it still was good enough to compare against other algorithms. We used the
Trial Division Algorithm as a constant for our research because of how trivial
it was.

7.1. Comparison of Algorithms 21

Figure 7-2: Pollard’s Rho Timing Graph

Unlike the Trial Division algorithm, Pollard’s Rho was able to factor up
to 20 digits. It was fairly quick up to 20 digits, only taking about 3 seconds.
However, once we got past 20 digits the algorithm was not able to factor
anymore because of how long it took. Similar to the Trial Division, Pollard’s
Rho did not perform as well as expected. For factoring digits 1 to 20 it
performed extremely well, however it dropped off so quickly once it got
larger that it made it slow.

Figure 7-3: Quadratic Sieve Timing Graph

The Quadratic Sieve graph looks much different than the other two
algorithms. This is because the sieve works best with large numbers. We
were able to factor semiprime numbers up to 70 digits long. This is a huge
improvement from the first two algorithms. This was also expected because
of how strong it is. I believe that if we allowed more time to gather data we
would have been able to factor the 129-digit number associated with RSA.

22 Chapter 7. Data and Observations

Figure 7-4: Algorithm Comparison Timing Graph

Looking at all three algorithms together shows a lot about their different
rates. Trial Division ends up going off the graph fairly quick. This shows
the strength of the other two algorithms and also how weak Trial Division is.
Pollard’s Rho looks good compared to Trial Division, but when you see the
Quadratic Sieve it beats all of them. The sieve almost looks like a completely
flat line because it factors 20-digit semiprimes in under one second. This is
great proof of how powerful the Quadratic Sieve is compared to the others.

Figure 7-5: Python Vs. Java Timing Graph

7.1. Comparison of Algorithms 23

Comparing the same algorithm in different languages is interesting to
look at. Out of all the graphs, this was the most interesting one to me. This
is because although we are applying the exact same algorithm; but it can
perform differently depending on the language. Here we see Pollard Rho in
both Python and Java. Up until 20 digits, Java performs slightly better, but
although Python is known as a slower language, it did well in comparison.
It was disappointing that we were not able to look at the algorithms more
deeply in other languages but that could be looked at in the future when
there is more time.

Figure 7-6: Time Complexity Graph

Time complexity is important when comparing algorithms. Figure 7-6
looks at the time complexity equations for the four algorithms. All four
algorithms have decent time complexity graphs, but you can see which
equations are better. This graph was created by a equation generator, it looks
at all of the equations and graphs them to be compared. It is interesting
to look at the Continued Fraction and the Quadratic Sieve because of how
similar they are. The Sieve gains a small edge that you can barely see, but it
is just fast enough to beat out the Continued Fraction.

There is actually another interesting part of the Quadratic Sieve and
Continued Fraction time complexities. It comes at the beginning of the graph.
It dips down right after the beginning. This shows both of these algorithms
are better as it increases in size, which is expected. This graph also proves
the strength of our algorithms compared against each other.

24

Improving The Code

8.1 Automated Programming

In research, there is always room for improvement. Over the course of
this project, the code improved a lot by updating it, but there is still a lot that
can be added to make it run more smoothly and more automated. A single
program could be created to do everything at once. So there would be a
program that would have the four factoring algorithms implemented
correctly. The program would randomly select a semiprime number and
have the algorithms attempt to factor it while it is collecting the data. Once
the program finishes running it would create different graphs for users to
compare the algorithms in real time. This type of program would be perfect
because users would be able to start the program and it will run all day while
the user can do other research. The main goal of improving the code in the
future would be making an automated program.

8.2 More Programming Languages

Originally, the plan was to implement factoring algorithms in multiple
languages and compare them. However, we ended up focusing mostly on
Python because of what it offered. Implementing these factoring algorithms
in other languages and comparing them against each other would be
interesting to see. On a very small scale we saw Python vs Java, but to see
it on a larger scale with more algorithms would help give us a better picture
when comparing everything. Potential languages that would be used would
be Matlab, Java, C++, SageMath, and C.

Lastly, if we were able to use a server to test algorithms we would possibly
see better data when factoring larger numbers. This would probably be the
most important improvement to the project because we have been using a
regular laptop for everything.

25

Conclusion

9.1 Future Threats

The RSA public key is so simple, but it is so hard to break. Prime numbers
are such an interesting topic because we know so much about them but at the
same time, we barely know anything as well. It is extremely impressive that
the RSA cryptosystem has lasted for over 40 years. It appears that public
keys will keep being used until there is an easy way to factor the semiprime
numbers.

A threat to these types of public keys is currently being worked; it is called
Quantum Computing. If Quantum Computing becomes more than just a
theory and works on the scale it is expected to work, it would be able to factor
any number almost instantly. This would make many of today’s
cryptosystems obsolete but also bring in a new age of encryption techniques.
The reason this is so fast is that it can hold values of 0, 1, or both at the same
time with "quantum bits". Regular bits can just hold one value at a time, not
multiple, which is why Quantum Computing is so much faster. Currently,
many companies has been working towards creating a quantum computer.

9.2 Final Thoughts

This research was a step in the right direction for learning more about
Public-Key Encryption Systems. These have had a big impact on
Cryptography in the modern era because of how strong their public keys are.
Seeing all of the factoring algorithms and comparing them against each other
showed an interesting fact: there are some very advanced algorithms, but
there is still no perfect or effective way to factor these numbers. Sure, some
algorithms are much more powerful than others, but it is just crazy to think
about how there is no one algorithm to factor all numbers. Moving forward
in Cryptography, it will be interesting to see where Quantum Computing
goes and if Public-Key Encryptions will last to see 50 years. However, for
now, we will continue to use what we have until we are faced with a problem
that puts our information at risk.

26

Acknowledgements

This thesis was only possible because of the help of many individuals.
Writing a thesis is no easy task and I would like to extend my sincerest thanks
to everyone that helped.

First, I would like to thank my advisor, Dr. Jackie Anderson. Someone who
spent over a year working with me on this project and without her amazing
knowledge and guidance would not have been able to complete this research.

Next, I would like to thank my other advisor, Dr. Michael Black. He is
someone who helped add an interdisciplinary look at this project and was
always available to help when it was needed.

I would also like to thank the members of my reading committee, Dr. Ward
Heilman, and Dr. Haleh Khojasteh. They took the time to help edit and make
this thesis better than it was before and gave great feedback for this paper.

Also, a special thanks to Undergraduate Research at Bridgewater State
University for supplying us with an Adrian Tinsley Program (ATP) Summer
Grant for Undergraduate Research. This gave us the opportunity to put in so
much time and effort and helped bring this research to a new level.

Lastly, I would like to thank Bridgewater State University’s Computer
Science and Mathematics departments for giving me the opportunity to
conduct and complete an interdisciplinary honors thesis and being
supportive in the process as well.

27

Bibliography

Caldwell, C. The Prime Pages. Available at https://primes.utm.edu/ (1994).
Engelfriet, Arnoud. Glossary of Cryptographic Terms. Available at http://www.

pgp.net/pgpnet/pgp-faq/pgp-faq-glossary.html (2002).
Hardy, G. H. et al. (2008). An Introduction to the Theory of Numbers. 6th. Oxford:

Oxford University Press.
Heilman, Ward. Cryptology. The Class "Introduction to Cryptology" at Bridge-

water State University (Fall 2016).
Hoffstein, J., J. Pipher, and J. H. Silverman (2008). Introduction to Mathematical

Cryptography. 1st. New York, NY: Springer Science Business Media.
IBM. Terms and Definitions. Available at https://www.ibm.com/support/

knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.

80.doc/security-component/jsse2Docs/terms.html (2018).
Nield, David. Google’s Quantum Computer Is 100 Million Times Faster Than

Your Laptop. Available at https://www.sciencealert.com/google-s-
quantum-computer-is-100-million-times-faster-than-your-laptop

(2015).
Techopedia. Time Complexity. Available at https://www.techopedia.com/

definition/22573/time-complexity (2018).
Wagstaff, S. S. (2013). The Joy of Factoring. Providence, RI: American Mathe-

matical Society.

https://primes.utm.edu/
http://www.pgp.net/pgpnet/pgp-faq/pgp-faq-glossary.html
http://www.pgp.net/pgpnet/pgp-faq/pgp-faq-glossary.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/terms.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/terms.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/terms.html
https://www.sciencealert.com/google-s-quantum-computer-is-100-million-times-faster-than-your-laptop
https://www.sciencealert.com/google-s-quantum-computer-is-100-million-times-faster-than-your-laptop
https://www.techopedia.com/definition/22573/time-complexity
https://www.techopedia.com/definition/22573/time-complexity

28

Code Appendix

A.1 The Main Code Used

These are the needed for a lot of the code:

import random

import math

import re

from fractions import gcd

def primeNumber(n):

This program checks to see if a number is prime or not

squareRoot = int(math.sqrt(n)+1)

if all(n%i!=0 for i in range(2,squareRoot)):

print(n, "is a prime number.")

else:

print(n, "is a composite number.")

def primeGenerator(n,outfileName):

outfile = open(outfileName, "w")

primeList = []

for num in range(2,n):

if all(num%i!=0 for i in range(2,int(math.sqrt(num))+1)):

print(num, file=outfile)

primeList.append(num)

outfile.close()

print("\nThe", len(primeList),"prime numbers have been written to",

outfileName)

A.1. The Main Code Used 29

def primeGeneratorParameters(a,b,outfileName):

outfile = open(outfileName, "w")

primeList = []

for num in range(a,b):

if all(num%i!=0 for i in range(2,int(math.sqrt(num))+1)):

print(num, file=outfile)

primeList.append(num)

outfile.close()

print("\nThe", len(primeList),"prime numbers have been written to",

outfileName)

def FLT(n):

primeTest = 2**(n-1)

if(n==2):

print(n, "is a prime number.")

elif(n%2==0):

print(n, "is not a prime number.")

elif(primeTest % n == 1):

print("There is a possibility that", n, "is a prime number.")

else: ## If nothing else is there then it is not a prime ##

print(n, "is not a prime number.")

def normalFactor(number):

factors = []

squareRoot = int(math.sqrt(number)+1)

for num in range(1, squareRoot):

if(number%num == 0):

factors.append(num)

factors.append(int(number/num))

print(" ", num, "x", int(number/num), "=", number)

print("")

print("There are", int(len(factors)/2), "ways to factor", number)

30 Appendix A. Code Appendix

def pollardRho(N):

b = random.randint(1, N-3) ## finds a random b ##

s = random.randint(0, N-1) ## finds a random s ##

A = s

B = s

def f(x):

return ((x**2)+b)%N

g = 1

attempt = eval(input("How many times would you like to attempt this? "))

print("")

for i in range(attempt):

while(g == 1):

A = f(A) ## sends A through the f(x)

B = f(f(B)) ## sends B through f(x) twice

g = gcd(A-B,N) ## sets g to the gcd

if(g < N):

break ## exit loop

else:

print("attempt", i+1)

if(g < N):

print(g, "is a proper factor of", N)

print(int(N/g), "is a proper factor of", N)

else:

print("\nRestart and try again.")

	Bridgewater State University
	Virtual Commons - Bridgewater State University
	5-1-2018

	The Key to Cryptography: The RSA Algorithm
	Clifton Paul Robinson
	Recommended Citation

