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Abstract

Background: Air pollution has been found to adversely affect children’s lung function. Forced expiratory volume
in 1 s and forced vital capacity from spirometry have been studied most frequently, but measurements of airway
resistance may provide additional information. We assessed associations of long-term air pollution exposure with
airway resistance.

Methods: We measured airway resistance at age 8 with the interrupter resistance technique (Rint) in participants of
the Dutch PIAMA birth cohort study. We linked Rint with estimated annual average air pollution concentrations
[nitrogen oxides (NO2, NOx), PM2.5 absorbance (“soot”), and particulate matter < 2.5 μm (PM2.5), < 10 μm (PM10) and
2.5–10 μm (PMcoarse)] at the birth address and current home address (n = 983). Associations between air pollution
exposure and interrupter resistance (Rint) were assessed using multiple linear regression adjusting for potential
confounders.

Results: We found that higher levels of NO2 at the current address were associated with higher Rint [adj. mean
difference (95% confidence interval) per interquartile range increase in NO2: 0.018 (0.001, 0.035) kPa·s·L− 1]. Similar
trends were observed for the other pollutants, except, PM10. No association was found between Rint and exposure
at the birth address.

Conclusions: Our results support the hypothesis that air pollution exposure is associated with a lower lung
function in schoolchildren.
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Background
Lung development starts in utero and tracks throughout
life [1, 2]. Therefore, maximum attained lung function in
early adulthood likely will be suboptimal in those with a
low lung function in early childhood and the threshold
for respiratory symptoms and disability like chronic ob-
structive pulmonary disease will be reached earlier [3, 4].
There is growing evidence for adverse effects of

long-term exposure to ambient air pollution on the lung
function of children from cross-sectional and longitu-
dinal studies [5–7]. Spirometry is considered the gold
standard for measuring lung function and forced expira-
tory volume in 1 s (FEV1), is often used as a measure of

airway obstruction in epidemiological studies [5]. How-
ever, reproducible spirometry is often not possible in
children. Interrupter resistance (Rint) requires less skill
and cooperation, and is feasible in young children [8, 9].
Moreover, since air flow limitations are partly caused by
increased airway resistance, direct measurements of air-
way resistance may provide additional information [10].
Only four studies so far investigated associations

between long-term air pollution exposure and airway
resistance and only one of them has repeated measures
of airway resistance to study changes in associations
with age. Findings of these studies are inconsistent.
Higher ambient air pollution exposure early in life was
associated with higher peripheral airway resistance from
impulse oscillometry (R5-R20) at age 16 in a Swedish
birth cohort [11], and with higher Rint at age 4 in our
PIAMA birth cohort [12]. Living within 50 m of a busy
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road was associated with a higher airway resistance (Raw)
in a cross-sectional study of children aged 5–7 years
from Eastern and Western Germany [13]. In contrast,
no association was found between life-time exposure to
air pollution and repeated measures of specific airway
resistance (Sraw) at ages 3, 5, 8, and 11 years in a birth
cohort from Manchester [14].
With the present study, we add to the currently

limited evidence regarding the association between
long-term air pollution exposure and airway resistance
with age. We analyzed associations of air pollution expos-
ure with Rint at age 8 years and changes in Rint between
4 and 8 years within the prospective PIAMA (Prevention
and Incidence of Asthma and Mite Allergy) birth cohort
study for which we previously reported positive associa-
tions between Rint at the age of 4 years and annual
average exposure to NO2, PM2.5 and “soot” at the birth
address [12].

Methods
Study design and study population
Details on the PIAMA birth cohort study have been
published elsewhere [15, 16]. In brief, pregnant women
were recruited from the general population in 1996–
1997 through antenatal clinics in the north, west and
center of the Netherlands. Non-allergic pregnant women
were invited to participate in a “natural history” study
arm. Pregnant women identified as allergic through a
screening questionnaire were allocated primarily to an
intervention arm with a random subset allocated to the
natural history arm. The intervention involved the use of
mite-impermeable mattress and pillow covers.
The study started with 3963 newborns. Parents

completed questionnaires on demographic factors, risk
factors for asthma and respiratory symptoms at birth, at
the child’s ages 3 months and 1 year and then annually
until the age of 8 years [16]. At the age of 8, all children
of allergic mothers and a random sample of children of
non-allergic mothers (total n = 1680) were invited for an
extensive medical examination and 1235 participated. As
part of the medical examination, interrupter resistance
(Rint) was successfully measured in 1003 children. We
excluded children who had used asthma medication
during the 12 h prior to the Rint testing (n = 11) and
children with missing data on use of asthma medication
(n = 9). The final study population for this study con-
sisted of 983 children with successful Rint measurements
and information on air pollution exposure at the birth
address (n = 975) and/or current home address (n = 965).
The Institutional Review Boards of the participating

institutes approved the study protocol, and written in-
formed consent was obtained from the parents or legal
guardians of all participants.

Rint measurements
Rint at the age of 8 years was our primary outcome.
Between October 11, 2004 and December 10, 2005 we
measured Rint (MicroRint, Micro Medical Ltd., Rochester,
Kent, UK) by trained personnel while sitting upright,
breathing quietly and wearing a nose clip with support of
cheeks and chin [8, 17]. All measurements were per-
formed with a filter (Micro Medical Ltd) in place. Shutter
closure was programmed at maximal expiratory tidal flow.
Rint was calculated as the ratio of mouth pressure before
and immediately after occlusion of the airway to airflow
(kPa·s·L− 1). Tracings were inspected immediately after the
measurement in the presence of the child. Rejection cri-
teria were: tachypnea, usage of the vocal cords, extreme
neck flexion or extension, and leakage of the mouthpiece.
Rint was calculated as the median of at least five acceptable
measurements out of ten for each child.
For a subset of the participants with Rint measure-

ments at age 8, Rint measurements from an earlier
medical examination at age 4 years, using the same
methodology, were available together with information
on annual average air pollution exposure at the home
address at the time of the 4-year Rint measurement
(n = 521). For these participants we calculated the
change in Rint between 4 and 8 years of age as a sec-
ondary outcome.

Air pollution exposure assessment
We estimated annual average air pollution concentra-
tions at the participants’ birth addresses and current
addresses at the time of the Rint measurements with
spatial land-use regression models that have been devel-
oped within the EU-funded ESCAPE (European Study of
Cohorts for Air Pollution Effects) project [18, 19]. These
land-use regression models are different from the
land-use regression models from the TRAPCA (Traffic-
Related Air Pollution and Childhood Asthma) project
[20] that have been used in the earlier analyses at age 4 [12].
The new ESCAPE models have a better performance
than the TRAPCA models and enable us to investigate
associations with nitrogen oxides (NOx) and particulate
matter with diameters of less than less than 10 μm
(PM10) and 2.5–10 μm (PMcoarse) in addition to nitrogen
dioxide (NO2), particulate matter with diameters of less
than 2.5 μm (PM2.5), and PM2.5 absorbance (“soot”,
determined as the reflectance of PM2.5 filters). In brief,
for the ESCAPE land-use regression models air pollution
monitoring campaigns were performed between October
2008 and February 2010 in the study area. Three 2-week
measurements of NO2 and NOx were performed at 80
sites within 1 year. Simultaneous measurements of PM2.5,
PM10, PMcoarse, and PM2.5 absorbance were performed at
40 of these sites. Results from the three measurements
were averaged to estimate the annual average [21]. We
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evaluated predictor variables of nearby traffic, population
and household density, and land use derived from Geo-
graphic Information Systems to explain spatial variation in
annual average concentrations. The land-use regression
models were then used to estimate annual average air pol-
lution concentrations at participants’ home addresses, for
which the same Geographic Information Systems pre-
dictor variables were obtained, without adjustment
for long-term changes in air pollution levels. Overall
model performance was evaluated by leave-one-out
cross-validation: Each site was sequentially left out from
the model while the included variables were left un-
changed. A brief description of the models including their
performance is provided in Additional file 1: Table S1.
The estimated annual average air pollution concentrations
from the land-use regression models were our primary es-
timates of exposure. Since air pollution measurements
were performed in 2008–2010, but cohort participants
were born in 1996–1997, in addition, we extrapolated pre-
dicted concentrations for the birth addresses (for which
the time difference with the ESCAPE measurements was
largest) back in time to account for long-term changes in
air pollution levels using the ratio between the years prior
and after birth and the ESCAPE monitoring year, based
on data from routine background monitoring network
sites in the study areas (for details see http://www.escape-
project.eu/manuals/). We used data from two years to
avoid back-extrapolation being influenced too much by
specific weather circumstances in a specific year. This
may become important when a cohort was recruited in
multiple years.

Covariates
Covariates were selected a priori based on previous
analyses at age 4 and published literature. Information
on sex, parental education (low: primary school, lower
vocational or lower secondary education; medium: inter-
mediate vocational education or intermediate/higher
secondary education; high: higher vocational education
and university), parental allergy (yes/no), maternal smok-
ing during pregnancy (yes/no), smoking in the child’s
home (yes/no), mold or dampness in the living room
and/or child’s bedroom (yes/no), any pets in the child’s
home (yes/no), use of gas for cooking (yes/no), presence
of an unvented gas water heater in the child’s home (yes/
no), presence of older siblings (yes/no), and Dutch nation-
ality (yes/no) was obtained from the parent-completed
questionnaires. Information on season, participant’s age,
height, and weight was collected during the medical
examination. Data on ambient temperature and rela-
tive humidity on the day of the Rint measurements
was retrieved from the Royal Netherlands Meteoro-
logical Institute (KNMI, http://www.knmi.nl/neder-
land-nu/klimatologie/gemeten-reeksen). Daily average

concentrations of NO2, PM10, and black smoke
(“soot”) on the day of the medical examination were
obtained from the Dutch National Air Quality
Monitoring Network (NAQMN, https://www.lml.rivm.
nl/gevalideerd/index.php/).

Data analysis
The association of Rint at age 8 years with annual aver-
age air pollution concentrations at the birth address and
current home address at the time of the 8-year Rint mea-
surements were analyzed by multiple linear regression
with and without adjustment for the potential confound-
ing variables described above. We adjusted for the same
potential confounders as in previous analyses at age 4
(i.e. sex, parental education, parental allergy, maternal
smoking during pregnancy, smoking in the child’s home,
mold or dampness, pets, use of gas for cooking, presence
of a unvented gas water heater, older siblings, Dutch
nationality) and air pollution levels on the day of the Rint

measurements. Covariates were selected from the ques-
tionnaire that coincided best with the exposure period.
We performed available case analyses, which results in
slightly different numbers of observations for the differ-
ent models.
In our secondary analysis, associations of changes in

Rint from age 4 to 8 years with annual average air
pollution concentrations during the period between the
two Rint measurements, taking into account changes in
residential address and occupancy at different addresses,
were analyzed by multiple linear regression with and
without adjustment for the same confounders (n = 519
of the 521 participants had complete information on
exposure during that period).
We performed a sensitivity analysis to explore to what

extent associations with air pollution exposures at the
birth address depended on the use of a purely spatial
(ESCAPE non back-extrapolated) or temporal-spatial
(ESCAPE back-extrapolated) model or the choice of the
land-use regression models (ESCAPE models vs
TRAPCA models that were used in analyses with Rint at
age 4). Moreover, we performed separate analyses for
children with and without asthma at age 8 and for chil-
dren who did and did not change address at any time
between birth and the 8-year Rint measurement. Asthma
was defined as a positive answer to at least two of the
three following questions: (1) “Has a doctor ever
diagnosed asthma in your child?”, (2) “Has your child
had wheezing or whistling in the chest in the last 12
months?”, (3) “Has your child been prescribed asthma
medication during the last 12 months?”, a definitions
that has been developed by a panel of experts within the
MeDALL consortium [22].
Functional relationships of the associations between

annual average air pollution concentrations and Rint at
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age 8 were explored using smoothing splines. As
exposure-response did not deviate significantly (p < 0.05)
from linearity, except for PM2.5 (see Additional file 1:
Figures S1 and S2), air pollution levels were entered as
continuous variables without transformation in all models.
Residual plots were used to check model assumptions.
Associations were assessed in single-pollutant models and
are presented as mean change in the dependent variable
for an interquartile range increase in exposure to facilitate
comparison of effect sizes between pollutants. Statistical
significance was defined by a two-sided α-level ≤ 5%, mar-
ginal statistical significance by a two-sided α-level ≤ 10%.
All analyses were performed using SAS statistical

software (version 9.4; SAS Institute Cary, NC, USA).

Results
Characteristics of the study population are presented in
Table 1. About half of the participants were female and
most had a Dutch nationality. By design, participants of
the intervention study were overrepresented among
participants of the 8-year medical examination and
consequently the percentage of children with allergic
parents was higher in the current study population than
in the full cohort (75% vs 51%). Other than that, differ-
ences between the current study population and the full
cohort were small (see Additional file 1: Table S2). Mean
(SD) Rint at age 8 was 0.66 (0.16) kPa·s·L− 1 (Table 2),
which is slightly higher than what would be expected
based on published reference values for children
being about 1.30 m tall [23]. Rint at age 8 years was
on average (SD) 0.30 (0.21) kPa·s·L− 1 lower than Rint

at age 4 years.
The distributions of the estimated annual average air

pollution concentrations at the participants’ birth
address, current home address at the time of the 8-year
Rint measurements, and for the period between the 4-
and 8-year Rint measurements are shown in Table 3.
Exposure contrasts were larger for NO2, NOx and PM2.5

absorbance than for PM2.5, PM10 and PMcoarse. Distribu-
tions of daily average air pollution concentrations,
temperature and relative humidity on the day of the Rint

measurements are presented in Table S3 in Additional
file 1. Correlations between annual average concentra-
tions of NO2, NOx and PM2.5 absorbance were high for
both birth and current addresses (r = 0.90–0.92, see
Additional file 1: Table S4) and moderate to high for
PM10 and PMcoarse. Correlations between annual average
concentrations at the birth address and current address
for the same pollutant were high (r = 0.74–0.85). Corre-
lations between annual average air pollution concentra-
tions and daily average concentrations on the day of the
Rint measurements were generally low (r = 0.02–0.42, see
Additional file 1: Table S5).

Rint tended to be higher in children with higher
estimated annual average concentrations of all pollutants
except PMcoarse at the current address, but this was less
consistent for exposures at the birth address (Table 4).
Associations attenuated after adjustment for potential
confounders, but remained marginally statistically sig-
nificant for NO2, NOx and PM2.5 absorbance at the
current address and PM2.5 at the birth address (p < 0.10).

Table 1 Description of the study population

Variable n/N (%)

Female sex 504/983 (51)

Parental education

Low 110/981 (11)

Medium 343/981 (35)

High 528/981 (54)

Parental allergy 739/983 (75)

Maternal smoking during pregnancy 147/974 (15)

Smoking in the child’s home

First year of life 233/980 (24)

Currenta 138/916 (15)

Mold/dampness in living room and/or child’s bedroom

First year of life 69/970 (7)

Currenta 51/910 (6)

Pets in the child’s home

First year of life 446/981 (45)

Currenta 454/900 (50)

Use of gas for cooking

First year of life 788/965 (82)

Currenta 732/958 (76)

Unvented gas water heater

First year of life 44/931 (5)

Currenta 21/932 (2)

Older siblings 469/982 (48)

Dutch nationality 913/964 (95)

Asthmab 103/957 (11)

Did not move house since birth 505/973 (52)
aAge 8 years except for use of gas for cooking and unvented gas water heater,
where no information was available from the 8-year questionnaire and data
from the 5-year questionnaire were used
bDefined as 2 out of the 3 following criteria: asthma ever, wheeze in the past
12 months and prescription of asthma medication in the past 12 months

Table 2 Description of Rint measurements at age 8 years

Variable N Mean (SD)

Rint [kPa·s·L−1] 983 0.66 (0.16)

Agea [years] 983 8.1 (0.3)

Heighta [cm] 983 132.8 (5.7)

Weighta [kg] 983 28.9 (4.9)
aAt the time of Rint measurements
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Rint was on average between 0.011 and 0.018 kPa·s·L− 1

higher per interquartile range increase in exposure to
these pollutants, which corresponds to 2–3% of the aver-
age Rint of 0.66 kPa·s·L− 1.
Annual average air pollution exposure at during the

period between the 4- and 8-year Rint measurements
was not associated with the change in Rint between 4
and 8 years (see Additional file 1: Table S6).
Adjusted associations of Rint at age 8 with air pollution

concentrations were very similar for back-extrapolated ES-
CAPE models and the older TRAPCA land-use regression
models for NO2, PM2.5, and PM2.5 absorbance that we used
in previous analyses at age 4 instead of the more recent ES-
CAPE land-use regression models that were used in the
main analysis, but twice as big as associations with non
back-extrapolated exposure estimates from the ES-
CAPE models (Table 5). Associations with exposure
at the current address were limited to non-asthmatics
(Fig. 1), but the number of asthmatics was small and
consequently confidence intervals were wide. The as-
sociations with annual average exposure at the
current address did not differ between participants
who did and who did not change address at any time
between birth and the Rint measurements (Fig. 2).

Discussion
Our results provide evidence that Rint at age 8 years was
higher in children with higher estimated annual average
air pollution concentrations, in particular in children
with higher concentrations of NO2, NOx and PM2.5

absorbance at the current address.
Our findings contribute to the growing body of evi-

dence on the long-term effects of air pollution exposure
on children’s lung function. Most studies performed so
far linked air pollution exposure to spirometry data [5]
and FEV1 mostly reflects large airway patency [24]. The
Rint technique that has been used in the present study
has been shown to detect changes in proximal and
more distal airway function [25]. Given the low
correlation (r = -0.41) between Rint and FEV1 at age 8
in our study population, the present analyses may
provide additional insight into the adverse effects of
air pollution on the airways of children.
The present analysis extends earlier analyses of associ-

ations between air pollution exposure at the birth
address and Rint at age 4 years in the same cohort [12].
Height has been found to be the best predictor of Rint

in children and the observed decrease from age 4 to
age 8 is in accordance with published reference eqs.

Table 3 Distribution of annual average air pollution concentrations at the participants’ birth address and current home address, and
for the period between the 4- and 8-year Rint measurements

Min P25 Median Mean P75 Max N

Annual average birth address

NO2 [μg/m
3] 9.4 18.9 23.3 23.4 27.3 48.1 975

NOx [μg/m3] 16.5 27.6 33.5 34.8 38.8 88.9 975

PM2.5 [μg/m3] 15.3 15.7 16.5 16.4 16.8 21.1 975

PM10 [μg/m3] 23.7 24.1 24.7 25.0 25.4 33.2 975

PMcoarse [μg/m3] 7.6 7.8 8.1 8.4 8.7 13.0 975

PM2.5 absorbance [10− 5/m] 0.85 1.09 1.24 1.25 1.36 2.99 975

Annual average at current addressa

NO2 [μg/m3] 9.4 18.2 22.7 22.6 26.6 52.1 965

NOx [μg/m3] 16.5 26.1 32.1 33.3 37.3 100.1 965

PM2.5 [μg/m3] 14.9 15.6 16.5 16.4 16.8 19.3 965

PM10 [μg/m3] 23.7 24.0 24.6 24.8 25.2 29.8 965

PMcoarse [μg/m3] 7.6 7.8 8.0 8.3 8.5 11.2 965

PM2.5 absorbance [10−5/m] 0.85 1.06 1.22 1.22 1.33 2.13 965

Annual average for the period between the 4- and 8-year Rint measurementb

NO2 [μg/m3] 9.4 19.1 23.0 22.9 26.7 40.4 519

NOx [μg/m3] 16.5 27.0 32.8 33.9 37.8 82.7 519

PM2.5 [μg/m
3] 15.3 15.8 16.5 16.4 16.8 20.4 519

PM10 [μg/m
3] 23.7 24.1 24.6 24.9 25.2 33.3 519

PMcoarse [μg/m
3] 7.6 7.8 8.1 8.3 8.5 11.9 519

PM2.5 absorbance [10−5/m] 0.85 1.09 1.24 1.23 1.33 1.99 519
aAt the time of the 8-year Rint measurement
bonly for participants with successful Rint measurements at both, ages 4 and 8 years
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[23]. The observed 2–3% higher R
int

at age 8 years
per interquartile range increase in air pollution levels
is consistent with the association estimates at age
4 years (i.e. 0.025–0.031 kPa·s·L− 1 per interquartile
range increase in exposure, which corresponds to 3%
of the mean Rint of 0.96 kPa·s·L− 1). Together with
our finding that there was no association between air
pollution exposure and change in Rint between ages 4
and 8 years this suggests that the difference in Rint

between participants with high and low levels of air

pollution exposure does not further increase with age,
but remains rather constant between ages 4 and
8 years. Few other studies assessed the association
between air pollution and airway resistance. Our find-
ings confirm the findings of a Swedish birth cohort
study that found that higher levels of NOx and PM10

early in life were associated with higher peripheral
airway resistance (R5-R20) at age 16 [11]. In a
cross-sectional study of more than 2500 children aged
5–7 years from Eastern and Western Germany living

Table 5 Adjusted associationsa between Rint and estimated annual average concentrations at the birth address from single-pollutant
models – ESCAPE non back-extrapolated vs ESCAPE back-extrapolated vs TRAPCA land-use regression models

Pollutant ESCAPE model – non back-extrapolated ESCAPE model –back-extrapolated TRAPCA model

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value

NO2 0.005 (−0.010, 0.021) 0.4770 0.012 (−0.001, 0.026) 0.0768 0.011 (−0.003, 0.024) 0.1228

NOx 0.002 (−0.008, 0.013) 0.6868 0.009 (−0.001, 0.019) 0.0935 ---b

PM2.5 0.017 (−0.001, 0.034) 0.0611 0.026 (0.009, 0.043) 0.0022 0.012 (−0.005, 0.029) 0.1543

PM10 0.002 (−0.008, 0.012) 0.7013 0.017 (0.001, 0.033) 0.0340 ---b

PMcoarse 0.002 (−0.007, 0.010) 0.7391 0.010 (−0.002, 0.023) 0.1144 ---b

PM2.5 abs. 0.008 (−0.004, 0.021) 0.1813 0.016 (0.004, 0.029) 0.0113 0.012b (−0.002, 0.026) 0.1055
aAssociations are presented as mean difference in Rint per interquartile range increase in air pollution exposure (β) with 95% confidence intervals (CI). Adjusted for
sex, age, height, weight, parental education, parental allergies, maternal smoking during pregnancy, smoking in the child’s home, mold/dampness in living room
and/or child’s bedroom, pets in the child’s home, use of gas for cooking, unvented gas water heater, older siblings, Dutch nationality, season; average air pollution
concentration (NO2 in models with long-term NO2 and NOx; PM10 in models with long-term PM2.5, PM10, and PMcoarse; black smoke in models with long-term
PM2.5 absorbance), ambient temperature and relative humidity on the day of the Rint test
bNot available

Table 4 Associationsa between Rint and estimated annual average air pollution concentrations at the birth address and current
home address from single-pollutant models

Pollutant [increment] Model 1b Model 2c

β (95% CI) p-value β (95% CI) p-value

Birth address N = 975 N = 869

NO2 [8.4 μg/m3] 0.011 (− 0.001, 0.024) 0.0831 0.005 (− 0.010, 0.021) 0.4770

NOx [11.2 μg/m3] 0.007 (− 0.002, 0.017) 0.1195 0.002 (−0.008, 0.013) 0.6868

PM2.5 [1.1 μg/m3] 0.023 (0.007, 0.039) 0.0056 0.017 (−0.001, 0.034) 0.0611

PM10 [1.3 μg/m3] 0.006 (−0.004, 0.016) 0.2612 0.002 (−0.008, 0.012) 0.7013

PMcoarse [0.9 μg/m3] 0.003 (−0.008, 0.013) 0.6354 0.002 (−0.007, 0.010) 0.7391

PM2.5 abs. [0.27 10−5/m] 0.013 (0.001, 0.024) 0.0274 0.008 (−0.004, 0.021) 0.1813

Current addressd N = 965 N = 808

NO2 [8.4 μg/m3] 0.022 (0.008, 0.035) 0.0016 0.018 (0.001, 0.035) 0.0334

NOx [11.2 μg/m3] 0.016 (0.006, 0.026) 0.0025 0.011 (−0.001, 0.022) 0.0781

PM2.5 [1.1 μg/m3] 0.024 (0.006, 0.042) 0.0106 0.017 (−0.004, 0.039) 0.1079

PM10 [1.1 μg/m3] 0.012 (0.001, 0.023) 0.0285 0.005 (−0.007, 0.017) 0.4275

PMcoarse [0.7 μg/m3] 0.006 (−0.004, 0.016) 0.2335 0.000 (−0.011, 0.011) 0.9974

PM2.5 abs. [0.27 10−5/m] 0.020 (0.007, 0.032) 0.0017 0.014 (0.000, 0.029) 0.0496
aAssociations are presented as mean difference in Rint per interquartile range increase in air pollution exposure (β) with 95% confidence intervals (CI)
bAdjusted for sex and age
cAdjusted for sex, age, height, weight, parental education, parental allergies, maternal smoking during pregnancy, smoking in the child’s home, mold/dampness in
living room and/or child’s bedroom, pets in the child’s home, use of gas for cooking, unvented gas water heater, older siblings, Dutch nationality, season; average
air pollution concentration (NO2 in models with long-term NO2 and NOx; PM10 in models with long-term PM2.5, PM10, and PMcoarse; black smoke in models with
long-term PM2.5 absorbance), ambient temperature and relative humidity on the day of the Rint test
dAt the time of the Rint measurements
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Fig. 1 Associations between Rint and estimated annual average concentrations at the current home address for children with and without
asthma at age 8 years. Associations are presented as mean difference in Rint per interquartile range increase in air pollution exposure (β) with
95% confidence intervals (CI). Adjusted for sex, age, height, weight, parental education, parental allergies, maternal smoking during pregnancy,
smoking in the child’s home, mold/dampness in living room and/or child’s bedroom, pets in the child’s home, use of gas for cooking, unvented
gas water heater, older siblings, Dutch nationality, season; average air pollution concentration (NO2 in models with long-term NO2 and NOx; PM10

in models with long-term PM2.5, PM10, and PMcoarse; black smoke in models with long-term PM2.5 absorbance), ambient temperature and relative
humidity on the day of the Rint test

Fig. 2 Associations between Rint and estimated annual average concentrations at the current home address for children who did and who did
not change address at any time between birth and the Rint measurements. Associations are presented as mean difference in Rint per interquartile
range increase in air pollution exposure (β) with 95% confidence intervals (CI). Adjusted for sex, age, height, weight, parental education, parental
allergies, maternal smoking during pregnancy, smoking in the child’s home, mold/dampness in living room and/or child’s bedroom, pets in the
child’s home, use of gas for cooking, unvented gas water heater, older siblings, Dutch nationality, season; average air pollution concentration
(NO2 in models with long-term NO2 and NOx; PM10 in models with long-term PM2.5, PM10, and PMcoarse; black smoke in models with long-term
PM2.5 absorbance), ambient temperature and relative humidity on the day of the Rint test
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within 50 m of a busy road, but not annual average
concentration of total suspended particles, was associ-
ated with higher Raw [13]. In contrast, no associations
were found between life-time exposure to nitrogen di-
oxide (NO2) and particulate matter with a diameter
of less than 10 μm (PM10) and repeated measures of
Sraw at ages 3, 5, 8, and 11 years in a birth cohort
from Manchester [14]. A quantitative comparison of
the observed air pollution effects between our study
and the other studies is limited by the different out-
comes and exposure measures that were used.
An advantage of the current analysis over the earlier

analyses at age 4 is that we were able to investigate the
relevance of early life versus recent exposure. The more
consistent associations with exposure at the current
address as compared to exposure at the birth address
are consistent with findings for FEV1 and FVC at age
6–8 years from five European birth cohorts including
PIAMA [26]. Further evidence for an association of
airway resistance with current air pollution exposure
comes from the German study [13]. So far, only the Swed-
ish study has assessed associations of airway resistance
with air pollution exposure at different time points and
found, opposite to the present study, associations with ex-
posure during the first year, but not during the year pre-
ceding the lung function measurements [11].
Oxidative stress-induced inflammation has been hy-

pothesized as a main mechanism underlying the respira-
tory health effects of air pollution [6]. We observed
associations with airway resistance in particular for the
more traffic-related pollutants NO2, NOx and PM2.5

absorbance and less consistently with particulate matter
mass concentrations (PM2.5, PM10, and PMcoarse).
However, the relevance of specific air pollutants remains
unclear due to the high spatial correlation between pol-
lutants, which is an inherent limitation of population
studies investigating air pollution effects under real life
conditions. Also, the more consistent associations with
NO2, NOx and PM2.5 absorbance could be at least partly
explained by the better performance of the land-use re-
gression models for NO2, NOx and PM2.5 absorbance as
compared to the PM models (see Additional file 1: Table
S1) and consequently a smaller exposure measurement
error for these pollutants. Since Rint measurements are
probably influenced by the resistance of small airways,
we speculate that an effect of nitrogen oxides and small
particles may be due to penetration into small airways.
It can be argued that a potential limitation of our

study is that the land-use regression models that we
used to estimate exposures were based on measurements
performed in 2008–2010, while study participants were
born in 1996/97 and airway resistance measurements
at age 8 were performed in 2004/2005. However,
several studies from Europe and North America have

demonstrated that spatial contrasts of air pollutants,
in particular NO2 and elemental carbon are stable
over periods of 7 and more years [27–29]. Moreover,
air pollution measurements performed in 2008–2010
were highly correlated with air pollution measurements in
1999–2000 [30]. However, associations of Rint at age 8
with exposure at the birth address were about doubled
when we used back-extrapolated exposures and estimated
exposures from an older land-use regression model that
was based on the 1999–2000 measurements suggesting
that using non back-extrapolated ESCAPE exposure esti-
mates most likely results in an underestimation of associa-
tions with Rint.
Another potential limitation of our study is that we

restricted our study to air pollution exposure at the
residential address and did not include non-residential
exposures (e.g. at school) and time-activity patterns.
Although data from our cohort and the Swedish study
show high correlations between home and school
address exposures during the primary school period [31,
32], we cannot rule out that measurement error is differ-
ential, e.g. that it differs between asthmatic and
non-asthmatic children, because of asthmatic children
possibly being more likely to spend more time at home.
Children with at least one allergic parent were over-

represented in our study sample (75% vs 51% in the full
PIAMA cohort). Together with the fact that highly edu-
cated Dutch parents are over-represented in the PIAMA
cohort, this may limit the generalizability of our findings
to the full PIAMA cohort and to the general population.

Conclusions
In conclusion, our results support the hypothesis that air
pollution exposure is associated with a higher airway
resistance in schoolchildren.

Additional file

Additional file 1: Table S1. Land-use regression models with model
performance (leave-one-out cross-validation R2, R2LOOCV), Table S2.
Comparison of characteristics between the study population (n = 983)
and the full PIAMA cohort (n = 3963). Table S3. Distribution of daily
average air pollution concentrations, temperature and relative humidity
on the day of the Rint measurements. Table S4. Spearman correlations
between annual average air pollution concentrations at the participants’
birth and current addresses. Table S5. Correlations of estimated annual
average air pollution concentrations at the birth and current address at
the time of the 8-year Rint measurements with daily average air pollution
concentrations on the day of the Rint tests. Table S6. Associations *

between change in Rint from age 4 to age 8 years (Rint age 4 – Rint age 8)
and estimated average air pollution concentrations during the period
between the two Rint measurement from single-pollutant models.
Figure S1. Smoothing splines of the relationship between annual
average air pollution concentrations at the birth address and Rint at age 8
from single-pollutant models. Figure S2. Smoothing splines of the
relationship between annual average air pollution concentrations at the
current address at the time of the Rint measurement and Rint at age 8
from single-pollutant models. (DOCX 1123 kb)
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