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Abstract

Background: Most infections are spread through social networks (detrimental effect). However, social networks may
also lower infection acquisition (beneficial effect). This study aimed to examine associations between social network
parameters and prevalence of self-reported upper and lower respiratory, gastrointestinal and urinary tract infections in
a population aged 40–75.

Methods: In this population-based cross-sectional cohort study (N = 3004, mean age 60.0 ± 8.2 years, 49% women),
infections within the past two months were assessed by self-administered questionnaires. Social network parameters
were assessed using a name generator questionnaire. To examine the associated beneficial and detrimental network
parameters, univariable and multivariable logistic regression was used.

Results: Participants reported an average of 10 people (alters) with whom they had 231 contacts per half year.
Prevalences were 31.1% for upper respiratory, 11.5% for lower respiratory, 12.5% for gastrointestinal, and 5.7%
for urinary tract infections. Larger network size, and a higher percentage of alters that were friends or acquaintances were
associated with higher odds of upper respiratory, lower respiratory and/or gastrointestinal infections (detrimental).
A higher total number of contacts, higher percentages of alters of the same age, and higher percentages of
family members/acquaintances were associated with lower odds of upper respiratory, lower respiratory and/or
gastrointestinal infections (beneficial).

Conclusion: We identified both detrimental and beneficial associations of social network parameters with the
prevalence of infections. Our findings can be used to complement mathematical models on infection spread,
as well as to optimize current infectious disease control.
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Background
Social networks are assumed to have a powerful influ-
ence on health [1–8]. The social network of an individ-
ual can be defined as the web of social relationships that
surround that individual (ego), referring to contacts with
other individuals (alters) [2]. Social relationships may
enhance the ability to resist infection but may also act as
a vehicle for the transmission of infections. Cohen et al.
(1997) demonstrated that individuals with a larger and/
or more diverse social network are less susceptible to
upper respiratory tract infections (URIs) [9]. Another
study showed that smaller social networks were associ-
ated with poorer immune response to influenza vaccin-
ation in young and healthy adults [10]. In addition,
better immune function has been found to be associated
with social support [4]: higher levels of social support
showed an association with increased natural killer cell
activity and decreased interleukin-4 concentration [11,
12]. However, having large and diverse social networks
may not always be protective. Hamrick et al. (2002)
found that larger social networks were associated with
increased numbers of URIs when host resistance to infec-
tious agents was compromised (e.g. among individuals with
high levels of stress) [13]. Large social networks were
associated with close proximity interactions with a
broad range of alters and hence an increased risk of ex-
posure to a broad range of infectious agents. Infectious
agents from an infected person can reach a susceptible
alter in close proximity, which is typically within a dis-
tance of 3 m or less [14, 15]. Previous studies have shown
that close-proximity interactions were highly relevant for
infectious disease transmission [14, 16, 17], and that close
contacts are a better proxy for several infection transmis-
sions than total contacts [14, 18].
To date, it is not yet fully understood which social net-

work characteristics are related to the risk of infections,
whether these characteristics have detrimental or benefi-
cial effects or both, and whether relations differ by type
of infection. Most previous research on the transmission
of infectious disease through social contacts was done using
mathematical disease transmission models [19–27]. Previ-
ous studies included measures on degree (which is the total
number of alters), mixing patterns (percentages of alters
younger than, same age or older than ego/percentages same
sex as ego), contact patterns (frequency and duration of
contact), relationships (e.g. household member/friend/col-
league) and social distance [19–26, 28–34].
Furthermore, most studies on networks and infections

so far addressed URIs alone [23, 27, 28, 30, 33, 34]. Also,
there is a lack of direct comparative data for different
types of infections. Different infectious diseases require
different modes of contact for transmission [17, 35].
URIs and lower respiratory tract infections (LRIs) are
mainly transmitted via droplets (sneezing, coughing),
whereas gastrointestinal infections (GIs) require surface
contamination and are related to food, personal hygiene
and/or close contact, and urinary tract infections (UTIs)
are more likely to arise from self-transmission or com-
promised immunity [35].
Infectious diseases are a major challenge in health care

of the older persons [36], aging is associated to increased
susceptibility to infections caused by an age-related com-
prised immune system [37, 38]. Therefore, insights into risk
factors for infections would be highly relevant to inform in-
fectious disease control strategies in middle-aged and older
persons.
The current study examines the detrimental as well as

the beneficial associations between a broad range of
network parameters and URI, LRI, GI, and UTI. Com-
parison across multiple infections will increase robust-
ness of the findings and provide insight into the social
network related determinants of infections in the spe-
cific group of people aged 40–75.
The current study adds insights into empirical egocentric

social network data with infection prevalences on four
different infectious diseases in an epidemiological study.
This may contribute to enhancement of current infectious
disease control, especially by non-pharmaceutical infection
prevention strategies [39, 40]. Moreover, by estimating
population social structures directly from egocentric
contact data, this article provides new information for
the estimation of transmission parameters, and thus a
basis for more realistic projections of epidemiological
data and the effects of interventions by mathematical
disease modelling.

Methods
Study population
In the present study, we used data from an observational
prospective population-based cohort study. The ration-
ale and methodology of The Maastricht Study have been
described by Schram et al. (2014) [41]. All individuals
living in the southern part of the Netherlands and aged
between 40 and 75 years were eligible for participation.
Recruitment strategies have been described previously
[41]. We included cross-sectional data from the first
3451 participants (baseline survey between November
2010 and September 2013) [41]. Participants adhere to a
protocol that covers 4 half day visits to The Maastricht
Study research center [41]. The present study includes
data from assessments and questionnaires that are given
within the first study site visit. Of the 3451 participants,
3004 individuals provided data on social network and
infections. The participants without social network and
infection data (n = 447, 12.9%) did not differ from those
with these data with respect to sex, educational level,
smoking status, alcohol use, diabetes status or body
mass index (BMI). However, participants who did not
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provide social network and infection data were slightly
younger than those who did (mean age 59 versus
60 years, (p < 0.001)).
Measurements
Social network
Multiple previous studies applied various methods and
techniques to collect empirical data on social networks
and contact patterns, such as reviewed by Read et al. [17].
In the present study, social networks were identified by

a name generator, one of the best known and most widely
used instruments for examining ego-centered network
data [42]. The name generator/interpreter is used to map
the ego-centered social network and to collect information
about the alters of an ego-centered social network, result-
ing in a detailed description of a participant’s social net-
work. An ego-centered network is defined as a network
centered on a specific individual, called the ego [43]. Each
person who has a relationship with an ego was defined as
an “alter” [44]. The social network measured within this
study mainly focused on close-proximity interactions [14].
A detailed description of the name generator question-

naire can be found elsewhere [45]. In brief, the name gener-
ator first requires a respondent to identify actual persons
(alters) in response to seven questions on different types of
contacts (e.g. persons who advised them on problems or
persons they visited for social purposes or that they could
go out with sometimes). For all seven types of contacts,
they were asked to indicate their frequency of contact with
this person over the last six months (daily or weekly,
monthly, quarterly, and half-yearly). In total, participants
could name a maximum number of 40 alters. Next, several
additional questions about all alters named were asked (sex,
age, type of relationship, geographical proximity).
Moreover, participants were asked to rate the state-

ments “most of my friends know each other” and “my
best friends know my family” on a five-point Likert scale
ranging from strongly agree to strongly disagree. Finally,
participants had to indicate whether they were a mem-
ber of a club (yes/no), and, if so, to identify the club(s)
concerned (sports club, volunteer organization, religious
group, self-support group, discussion group, Internet
club, or another organization) and how often they fre-
quented this club (daily/weekly, monthly, occasionally).
Self-reported infections
In a structured questionnaire, participants were asked
whether they had suffered from sudden symptoms such
as a cough, runny nose, sore throat, fever, vomitus with
fever, or pain when urinating, in the previous two months.
They were also asked whether they had suffered from sud-
den onset of influenza, pneumonia, urinary tract infection,
middle ear infection, diarrhea, or skin infection in the
previous two months. All of these questions were yes/no
questions.

General measurements
Self-administered questionnaires were used to assess
educational level (low (no education, primary education,
and lower vocational education)/medium (intermediate
vocational education, higher secondary education, and
vocational education)/high (higher professional education,
university)), employment status (employed/retired or not
employed/not known), smoking status (never/former/
current) and alcohol consumption (non-consumers/low
consumers (≤7 glasses per week for women, ≤ 14 glasses
per week for men)/high consumers (> 7 glasses per week
for women, > 14 glasses per week for men)). To determine
type 2 diabetes, all participants (except those who used in-
sulin) underwent a standardized 7-point 75 g. OGTT after
an overnight fast. Height, weight and BMI were assessed
as described previously [41], and defined according to the
WHO classification (normal (BMI < 25), overweight (BMI
25- < 30), and obese (BMI ≥30)).

Exposure variables: Social network parameters
First, in the literature we identified several social net-
work parameters that had previously been examined in
relation to infections. Next, the social network parame-
ters listed below were computed and used in the current
study. The majority of social network parameters used
in the current study focused on close-proximity interac-
tions as previous studies had shown their importance in
infectious disease transmission [14, 18].

Network size (degree)
Previous studies identified social network size as de-
terminant for several health outcomes and it is also
widely used in mathematical disease transmission
models [9, 10, 13, 16, 19, 25, 28, 33, 42, 46]. Therefore,
the degree of the social network was defined as the total
number of alters mentioned in the questionnaire and was
computed as the size of the ego network (network size).

Contact frequency
In line with several studies on mathematical modelling
of the spread of infectious disease, we also investigated
contact frequency [19, 21, 22, 25, 33]. First, we used
highest contact frequency (e.g. daily contact) for every
alter as an indicator of the actual contact frequency. For
example, if participants reported alter 1 as a person they
visited for social purposes, with a frequency of “daily or
weekly” and also named the same alter as a person who
provided practical help if they were sick, with a fre-
quency of “quarterly”, we considered “daily or weekly” as
the actual frequency of contact between the ego and the
alter. Second, we recoded the answer categories of the
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questionnaire in an estimated number of contacts per half
year. For example, “half-yearly” was assumed to comprise
one contact, “quarterly” two contacts, “monthly” 6 con-
tacts and “daily or weekly” 48 contacts [21]. Third, we
computed the sum of all contacts per half year as the total
contact frequency. In addition, we computed the percent-
ages of alters that the ego had daily/weekly, monthly,
quarterly and half-yearly contact with, for example as the
number of daily/weekly contacts divided by network size.

Geographical proximity
Previous studies included measures on home contacts
and distance from home [21, 22, 28, 33]. In the current
study, we calculated geographical proximity as the per-
centage of all alters that were household members, lived
within walking distance, lived less than half an hour away
by car, lived more than half an hour away by car, and lived
further away (e.g. in another country). For example, we
calculated the percentage of household members as the
number of alters living in the same household divided by
network size.

Network heterogeneity
In accordance with another study among social networks
in the Netherlands, we also computed heterogeneity of
age and sex [42]. To assess sex heterogeneity within the
ego’s network, we computed the Index of Qualitative
Variation (IQV) by Mueller and Schuessler (1961) [47].
This index indicates the probability that two randomly
chosen network alters belong to the same category. The
statistical formula for the derivation of the IQV can be
found in the Additional file 1. In brief, the IQV is defined
as the ratio of observed differences divided by maximum
possible differences, where “0” represents a fully homoge-
neous and “1” a fully heterogeneous network [47]. Ob-
served differences were calculated through multiplication
of the total number of men in the ego’s network by the
total number of women in the ego’s network. We calcu-
lated maximum differences as (network size/ 2)2 [47]. The
IQV was computed as observed differences/maximum
possible differences. We defined age heterogeneity of net-
work alters as the standard deviation of the mean age of
all alters of the ego [42].

Mixing
According to studies on mathematical infectious disease
modelling, we calculated mixing parameters for age mixing
patterns (whether the ego had contact with younger, same
age or older alters) and sex mixing patterns (whether the
ego had contact with alters of the same sex or the opposite
sex) [22, 28, 33]. To identify age mixing, we calculated
the difference between the ego’s age and the alter’s age
for every alter named. Next, we computed the percent-
ages of younger (> 15 years and 5 to 15 years younger),
same age (±5 years) and older (> 15 years and 5 to
15 years older) alters for each participant. To indicate
sex mixing, we calculated the percentage of same-sex
alters. For example, for a female participant the number
of her female alters was divided by her network size to
obtain the percentage of same-sex alters.

Type of relationship
The questionnaire also assessed the type of relationship
between the ego and the alter. To the best of our know-
ledge, this is the first study that examines network com-
position in terms of the type of relationship. To that
end, we computed the percentage of alters that were
family members, friends, colleagues and acquaintances.
For example, we calculated the percentage of family
members within the network as the number of family
members divided by network size. Whether the ego had
a partner was derived from the social network question-
naire and computed as having/not having a partner. A
partner was defined as an intimate relationship with an-
other person.

Density
We assessed network density in two questions [42, 48],
categorizing density scores separately for density of the
ego’s friends and density of the ego’s friends and family.
Density was defined as the extent to which alters in the
network know each other. Density between friends was
computed from the statement “most of my friends know
each other” (five-point Likert scale ranging from strongly
agree to strongly disagree) and density between friends
and family was computed from the statement “my best
friends know my family”. We used tertiles to compute
three equal groups of low density, medium density and
high density.

Superficial contacts
We included a proxy for more superficial contacts than
close-proximity interactions as transmission of infections
may also occur via contact with contaminated surfaces
or exposure that does not involve conversation or touch
[49]. We therefore constructed a variable representing the
total number of club memberships (and the number of
clubs the ego frequented on a daily or weekly, monthly or
occasional basis) as a proxy for superficial contacts.

Close proximity interactions
While all of the types of interactions in the name generator
suggest close and direct contact, the questions do not expli-
citly include information on whether an interaction is phys-
ical (e.g. kiss or handshake), face-to-face or by phone/
internet. Some interactions such as help with jobs around
the house or persons they visited for social purposes require
close proximity interactions, whereas other interactions
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such as advice on problems or provision of emotional sup-
port may have occurred by telephone/internet.
To assess the proportion of close proximity interac-

tions, we additionally computed the network size and
total contact frequency from those type of interactions
with alters that are by definition in close proximity; per-
sons who could offer them practical help if they were
sick, persons who helped them with small and larger
jobs around the house, persons who were also important
for them because of mutual activities, and/or household
contacts. The additionally computed social network size
of close proximity interactions represented 86% of the
total social network size (8,5 alters in a network of 10 al-
ters), and the total contact frequency of close proximity
interactions represented 87% of the total contact fre-
quency (202 contacts per half year in a total number of
231 contacts per half year).
In all analyses, the total network size and total contact

frequency per half year were used.
Outcome variables: Self-reported symptomatic infections
over the past two months
The symptoms “runny nose” and “sore throat” were
pooled as indicators of URI. Influenza, pneumonia and
fever were pooled as indicators of LRI. Pain when urinat-
ing and urinary tract infection were pooled as UTI.
Vomitus with fever and diarrhea were pooled as GI. We
excluded cough from the analysis because it is strongly
related to smoking and asthma [50], and not exclusively
a specific indicator for infection.
The observed prevalences for each month of the year

(Fig. 1) display the expected seasonality of the diseases.
Fig. 1 The observed prevalences of URI, LRI, GI and UTI for each
month of the year
Statistical analyses
We performed descriptive analyses to examine the charac-
teristics of the participants in terms of baseline character-
istics, prevalence of self-reported infections, and network
parameters.
First, we conducted bivariate correlation analyses to

rule out multicollinearity between the network variables.
With all correlation cut-off values below 0.7, none of the
variables were considered collinear.
Second, we conducted univariable logistic regression

analyses to assess the association between the exposure
variables, i.e. network parameters, and the outcomes of
URI, LRI, GI, and UTI. All network parameters were
continuous variables, except for density. For every net-
work parameter, odds ratios (ORs) and 95% confidence
intervals (95%CI) were calculated.
Network size as (unadjusted) determinant for the four

infections was visually presented using polynomials (cubic
function).
Third, we built two multivariable models to determine

the most important detrimental and beneficial network
parameters. We forced network size and total contact fre-
quency into the models as these variables are considered
essential for the assessment of detrimental and beneficial
social network effects, and have been shown to be related
to the transmission of infections as well as to decrease sus-
ceptibility to infections [9, 10, 13, 19, 21, 22, 28, 29, 33, 42].
In the detrimental exposure model, we further included all
variables that were positively associated with URI (odds
ratio > 1), regardless of their statistical significance. In the
beneficial exposure model, we further included all variables
that were negatively related with URI (odds ratio < 1), again
regardless of their statistical significance. Next to the social
network size and total contact frequency, we used several
social network parameters in percentages, to be able to
assess the effect of the composition of the social network
independent of the social network size and total contact
frequency. For those social network parameters that were
computed as percentages within the network, the associa-
tions were presented in steps of 10%. Based on an average
network size of 10 network members, a change in one
network member corresponds to 10%. For the detrimental
and beneficial models, we used the stepwise backward
method (p < 0.1) to obtain the final model, including
possible confounders, network size, and total contact fre-
quency. These analyses were repeated for LRI, GI and UTI.
We used the variance inflation factor (VIF) to measure col-
linearity in all regression models. Values for VIF and toler-
ance did not indicate multicollinearity problems with
cut-off values of VIF < 10 and tolerance (1/VIF) > 0.1.
We adjusted all associations for possible confounders,

i.e. diabetes status (type 2 diabetes oversampled by de-
sign), age, sex, BMI, smoking status, alcohol consump-
tion, educational level, and employment status. We also



Table 1 Characteristics of the participants and prevalences of
infections

Individual characteristics % (n = 3004) or
Mean (SD)

Sex

- Men 51.2 (n = 1537)

- Women 48.8 (n = 1467)

Age 60.0 (8.2)

Educational level

- Low 33.4 (n = 980)

- Medium 28.1 (n = 823)

- High 38.5 (n = 1129)

Employment status

- Employed 39.0 (n = 1172)

- Unemployed/ retired 51.0 (n = 1531)

- Not known 10.0 (n = 301)

Diabetes status

- No type 2 diabetes 71.3 (n = 2141)

- Type 2 diabetes 28.7 (n = 863)

Body Mass Index

- Normal (< 25 kg/m2) 35.6 (n = 1067)

- Overweight (25–30 kg/m2) 42.3 (n = 1268)

- Obese (≥30 kg/m2) 22.2 (n = 666)

Alcohol consumption

- Non-consumers (no alcohol use) 18.3 (n = 537)

- Low consumers ((≤7 glasses per week
for women; ≤ 14 glasses per week for men)

56.0 (n = 1645)

- High consumers (> 7 glasses per week
for women; > 14 glasses per week for men)

25.7 (n = 755)

Smoking status

- Never 34.6 (n = 1020)

- Former 52.0 (n = 1529)

- Current 13.4 (n = 394)

Infections (self-reported, past 2 months)

- Upper respiratory infection (URI) 31.1 (n = 921)

- Lower respiratory infection (LRI) 11.5 (n = 339)

- Urinary tract infection (UTI) 5.7 (n = 170)

- Gastrointestinal tract infection (GI) 12.5 (n = 370)

Month of assessment

- May–October 52.7 (n = 1584)

- November–April 47.3 (n = 1420)
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adjusted all associations for the season in which the
measurement took place to account for the likelihood of
encountering an infected source. In the multivariable
models, associations with p < 0.05 were considered sta-
tistically significant.
In addition, we tested statistical interaction (effect

modification) of the network parameters with sex and
age to check whether the associations between network
parameters and outcome differed by sex and age. How-
ever, none of the interactions of the network parameters
with sex and age were statistically significant (p > 0.1).
We performed sensitivity analyses to verify the model

building process; we replicated multivariable logistic re-
gression analyses by using the complete model instead
of backward elimination, and used degrees instead of
percentages. The findings were in line with the results
presented.
All analyses were conducted using IBM SPSS Statistics

version 21.0 (IBM Corp. Armonk, NY, USA).

Results
The overall study population consisted of 3004 partici-
pants with a mean age of 60.0 years. Participants were
mainly Caucasian (98.6%), slightly less than half were
women (49%), nearly one third had type 2 diabetes (by
design), two thirds were overweight (or obese), and one
in seven were current smokers (Table 1).
URI, LRI, UTI and GI in the past two months were re-

ported by 31.1, 11.5, 5.7 and 12.5% of the participants, re-
spectively (Table 1). The prevalences of URI, LRI, GI and
UTI for every month of the year were presented in Fig. 1.
On average, participants reported a network size of 10

alters, and 231 contacts per half year (Table 2). Only 15
(0.5%) participants reported a network size of 25 or
more alters, and only 10 (0.3%) participants reported
more than 750 contacts per half year.
Participants reported to have daily or weekly contact

with nearly half the number of their alters, 15% of the al-
ters were household members, and sex heterogeneity in
the network was high. About half of the alters were not
of the same sex and age (±5 years) as the participant.
The majority of participants reported to have a partner.
More than half of the alters were family members, one
third were friends and the remaining alters were ac-
quaintances such as neighbors, club mates and col-
leagues (Table 2). Fig 2 visualizes the average social
network of the participants, indicating the average net-
work size, with frequency of contacts, the type of rela-
tionship, and the proximity of alters. Further, the
unadjusted prevalences for URI. LRI, GI and UTI for
network size were presented in Fig. 3.
Nearly half of participants reported high density be-

tween friends (“my friends know each other”), whereas
one third reported a high density between friends and
family (“best friends know my family”). On average, par-
ticipants were a member of one club (Table 2).
The associations of demographic characteristics (sex,

age, type 2 diabetes, body mass index, season, educa-
tional level, smoking status, alcohol consumption, and
employment status) with URI, LRI, GI and UTI were
shown in an additional table (see Additional file 2).



Table 2 Means and prevalences of social network parameters

Mean (SD) or % (n)

Network size (number of alters) (mean, SD) 9.83 (5.17)

Contact frequency

Total contacts per half year (mean, SD) 231.18 (141.16)

Percentage of alters with daily-weekly
ego/alter contact (mean, SD)

48.96 (25.88)

Percentage of alters with monthly
ego/alter contact (mean, SD)

23.34 (19.49)

Percentage of alters with quarterly
ego/alter contact (mean, SD)

12.50 (15.15)

Percentage of alters with half-yearly
ego/alter contact (mean, SD)

15.17 (19.47)

Proximity

Percentage of alters who are household
members (mean, SD)

15.43 (15.08)

Percentage of alters living within walking
distance (mean, SD)

28.80 (22.58)

Percentage of alters living less than 1/2 h
away by car (mean, SD)

38.35 (24.06)

Percentage of alters living more than 1/2 h
away by car (mean, SD)

13.93 (17.80)

Percentage of alters living further
away (mean, SD)

3.50 (8.97)

Mixing

Percentage of same-sex alters (mean, SD) 58.15 (17.72)

Percentage of same-age alters (±5 years)
(mean, SD)

44.28 (21.20)

Percentage of younger alters
(> 15 years younger) (mean, SD)

6.50 (10.82)

Percentage of younger alters
(5 to 15 years younger) (mean, SD)

11.39 (14.29)

Percentage of older alters
(> 15 years older) (mean, SD)

26.73 (20.46)

Percentage of older alters
(5 to 15 years older) (mean, SD)

12.83 (15.56)

Heterogeneity

Sex heterogeneity (IQV, range 0–1)
(mean, SD)

0.85 (0.21)

Age heterogeneity (SD) (mean, SD) 14.44 (5.17)

Type of relationship

Participants who have a partner (%) 81.1 (n = 2436)

Percentage of alters who are family
members (mean, SD)

58.86 (24.03)

Percentage of alters who are friends
(mean, SD)

27.16 (21.23)

Percentage of alters who are acquaintances
(colleague, neighbor, club mate, other)
(mean, SD)

13.98 (16.91)

Proxy for superficial contacts

Number of club memberships (mean, SD) 1.07 (1.01)

Number of clubs with daily/weekly
participation (mean, SD)

0.77 (0.80)

Table 2 Means and prevalences of social network parameters
(Continued)

Mean (SD) or % (n)

Number of clubs with monthly
participation (mean, SD)

0.19 (0.45)

Number of clubs with less frequent
participation (mean, SD)

0.10 (0.34)

Network density

Density friends

- low density (1–3) (%) 17.3 (n = 514)

- medium density (4) (%) 42.9 (n = 1273)

- high density (5) (%) 39.8 (n = 1179)

Density friends and family

- low density (1–3) (%) 25.4 (n = 753)

- medium density (4) (%) 43.9 (n = 1302)

- high density (5) (%) 30.7 (n = 912)
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Social network related to URI
Table 3 presents the results of the adjusted univariable
analyses, all associations were adjusted for potential con-
founders. Each additional alter reported was associated
with a 2% higher odds of reporting URI. Every additional
10% of the network contacted infrequently (once per half
year) or living at larger distance was associated with a 6
and 5% higher odds of reporting URI, respectively. Every
additional 10% of the network contacted frequently
(daily or weekly), household members, and alters of the
same age were associated with a 4, 7, and 5% lower odds
of URI, respectively.
Table 4 presents the results of the multivariable analyses,

all associations were adjusted for potential confounders. In
the multivariable detrimental exposure model, network size
remained independently associated with URI; with each
additional alter reported, the odds of reporting an URI was
4% higher. In the multivariable beneficial exposure model,
it was further shown that every additional 10 contacts
within half a year and every additional 10% of the network
of the same age were associated with 1 and 6% lower odds
of reporting URI, respectively.

Social network related to LRI
In the adjusted univariable analyses, every additional
10% of the network living more distant, who were 5 to
15 years younger and friends were associated with a 7, 9
and 8% higher odds of reporting LRI, respectively. Every
additional 10% of the network of the same age or family
members were associated with a 8% lower odds of report-
ing LRI (Table 3).
In the multivariable detrimental exposure model, every

additional SD in age heterogeneity and every additional
10% of the network that were friends and who were 5 to
15 years older and 5 to 15 years younger were associated



Fig. 2 Visualization of the average social network of the study population with regard to composition of contact frequency, proximity, and type
of relationship
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with a 3, 12, 12 and 11% lower odds of reporting LRI,
respectively. In the multivariable beneficial exposure
model, every additional 10 contacts were associated with
a 1% lower odds of reporting LRI. Moreover, with every
additional 10% of the network that were alters of the
same age or family members the odds of reporting LRI
was 11 and 9% lower, respectively (Table 4).

Social network related to GI
In the adjusted univariable analyses, every additional
alter reported was associated with a 3% higher odds of
reporting GI. With every additional 10% of the network
that were alters with a moderate contact frequency
(quarterly), who lived further away, who were 5 o
15 years younger, or friends, the odds of reporting GI
was 10, 7, 9 and 12% higher, respectively. With every
10% increment of the network that were alters contacted
on a daily or weekly basis, household members, and
family members the odds of reporting GI was 5, 13, and
9% lower, respectively. Having a partner was associated
with a 26% lower odds of reporting GI (Table 3).
In the multivariable detrimental exposure model, the

part of the network that were friends remained inde-
pendently associated with GI. In the multivariable bene-
ficial exposure model, every additional 10% of the
network of alters of the same age, family members, and
acquaintances was associated with a 7, 11, and 9% lower
odds of reporting GI, respectively (Table 4).

Social network related to UTI
In the adjusted univariable analyses, no statistically signifi-
cant associations were found between network parameters
and UTI (Table 3). In the multivariable detrimental expos-
ure model, every additional 10 contacts were associated



Fig. 3 Unadjusted prevalences of URI, LRI, GI, and UTI for network size presented using polynomials (cubic function)
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with a 2% higher odds of reporting UTI. The multivariable
beneficial exposure model revealed no statistically signifi-
cant associations (Table 4).

Discussion
The current study is unique, as we were able to combine
sophisticated, real-time social network data with infection
prevalences in an epidemiological study on four different
infectious diseases: URI, LRI, GI and UTI. We identified
both detrimental and beneficial associations of social net-
work parameters with the prevalence of infections. We ob-
served that larger network size was associated with a higher
prevalence of URI and GI, while a high total number of
contacts was associated with less URI and LRI. In addition,
participants with networks mainly composed of friends pre-
sented a higher prevalence of LRI and GI, as opposed to
those with a higher family percentage, who presented lower
LRI and GI prevalences. Finally, a higher percentage of net-
work members of the same age was associated with lower
URI, LRI and GI prevalences. We found no clear associa-
tions with UTI, although a high total number of contacts
was associated with higher UTI prevalence.
In the present study, social network size was associated

with a higher prevalence of URI and GI. A likely explan-
ation for our findings is that a larger network indicates ex-
posure to a greater range of infectious agents, and therefore
leads to a greater incidence of symptomatic infections. In
addition, the likelihood of meeting an infected person is
higher in a large network. We observed no association
between network size and UTI. This is in line with infec-
tion spread theory, i.e. that infections that are transmitted
through the air or direct contact (URI, LRI and GI) are
spread through social networks, whereas UTIs, mainly
caused by commensal bacteria, are not. UTI however was
positively associated with the total number of contacts. The
underlying mechanism that explains how more contacts,
independent of social network size, is related to an in-
creased risk of UTI remains unclear in the present study,
and may be a subject of interest in future research.
A higher total number of contacts was associated with

lower URI and LRI prevalences. This association was in-
dependent of network size. This is in line with a previ-
ous study, which showed that susceptibility to URI was
lower among participants with more types of social ties
[9, 13]. Our results indicate that network size and total
number of contacts have an independent association in
opposite direction with infection prevalences. Hence in-
fection prevalence is reflected by both of these measures,
and not merely as a function of increased infection
spread in relation to the network, and therefore both
should be considered in studies on their association with
infections.
Independent of the number of alters and contacts, par-

ticipants with networks composed of a relatively large
percentage of friends presented a higher prevalence of
LRI and GI. Contacts with friends are assumed to be
intimate, including touching or kissing, and play an import-
ant role in the transmission of LRI and GI. This is in line
with previous research, which suggests that friends are a
group with a high potential for transmission [30], and in
line with a study that proposes monitoring the friends of
randomly selected individuals as a novel strategy for early
detection of influenza [51]. Note that when a person’s
network contained a relatively high percentage of acquain-
tances, the prevalence of GI was lower. A possible explan-
ation for the latter is that GI transmission requires surface
contamination or physically direct contact, and contacts
with acquaintances (neighbors or colleagues) tend to be less



Table 3 Associations between network parameters and infections, derived from logistic regression analysis, adjusted for
characteristics of the participant

Upper respiratory
tract infection

Lower respiratory
tract infection

Gastrointestinal
infection

Urinary tract
infection

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Network size (for every additional alter) (mean, SD) 1.02* 1.00–1.04 1.01 0.99–1.04 1.03* 1.01–1.05 0.99 0.96–1.03

Contact frequency

Total contacts per half year (for every 10 additional contacts)
(mean, SD)

1.00 0.99–1.01 1.00 0.99–1.00 1.00 0.99–1.01 1.01 1.00–1.02

Percentage of alters with daily-weekly ego/alter contact
(for every additional 10%) (mean, SD)

0.96* 0.93–0.99 0.97 0.92–1.01 0.95* 0.90–0.99 1.05 0.99–1.12

Percentage of alters with monthly ego/alter contact
(for every additional 10%) (mean, SD)

1.00 0.96–1.04 0.99 0.93–1.05 1.05 0.99–1.11 1.03 0.95–1.12

Percentage of alters with quarterly ego/alter contact
(for every additional 10%) (mean, SD)

1.02 0.96–1.07 1.08# 1.00–1.16 1.10** 1.02–1.18 0.93 0.82–1.04

Percentage of alters with half-yearly ego/alter contact
(for every additional 10%) (mean, SD)

1.06** 1.01–1.10 1.02 0.96–1.08 0.99 0.93–1.05 0.92 0.84–1.01

Proximity

Percentage of alters who are household members
(for every additional 10%) (mean, SD)

0.93* 0.88–0.99 0.98 0.90–1.07 0.87** 0.80–0.95 1.01 0.91–1.13

Percentage of alters living within walking distance
(for every additional 10%) (mean, SD)

0.99 0.96–1.03 1.01 0.96–1.07 0.99 0.94–1.04 0.99 0.92–1.06

Percentage of alters living less than 1/2 h away by car
(for every additional 10%) (mean, SD)

1.00 0.97–1.04 0.97 0.92–1.02 1.02 0.97–1.07 1.01 0.94–1.08

Percentage of alters living more than 1/2 h away by car
(for every additional 10%) (mean, SD)

1.05* 1.00–1.10 1.07* 1.00–1.14 1.07* 1.01–1.14 0.96 0.87–1.06

Percentage of alters living further away (for every
additional 10%) (mean, SD)

1.03 0.94–1.13 0.92 0.79–1.07 1.02 0.90–1.15 1.09 0.93–1.28

Mixing

Percentage of same-sex alters (for every additional 10%)
(mean, SD)

1.00 0.96–1.05 1.01 0.94–1.08 1.06# 0.99–1.14 0.93 0.85–1.02

Percentage of same-age alters (for every additional 10%)
(±5 years) (mean, SD)

0.95* 0.91–0.99 0.92** 0.86–0.97 0.96 0.91–1.01 0.99 0.92–1.07

Percentage of younger alters (for every additional 10%)
(> 15 years younger) (mean, SD)

1.00 0.91–1.09 0.97 0.85–1.10 0.97 0.86–1.10 1.03 0.86–1.22

Percentage of younger alters (for every additional 10%)
(5-15 years younger) (mean, SD)

1.03 0.97–1.09 1.09* 1.01–1.18 1.09* 1.01–1.17 0.94 0.84–1.06

Percentage of older alters (for every additional 10%)
(> 15 years older) (mean, SD)

1.04# 1.00–1.09 1.03 0.97–1.10 0.99 0.93–1.05 1.03 0.95–1.12

Percentage of older alters (for every additional 10%)
(5–15 years older) (mean, SD)

1.02 0.97–1.08 1.07# 0.99–1.15 1.05 0.97–1.12 1.02 0.92–1.14

Heterogeneity

Sex heterogeneity (IQV, range 0–1) (mean, SD) 1.38 0.91–2.10 1.20 0.65–2.22 0.92 0.53–1.58 1.20 0.54–2.68

Age heterogeneity (per SD increase) (SD) (mean, SD) 1.01 1.00–1.03 1.01 0.99–1.04 1.00 0.98–1.02 1.00 0.96–1.03

Type of relationship

Participants who have a partner (%) 0.99 0.80–1.23 0.75# 0.56–1.00 0.74* 0.56–0.97 1.35 0.87–2.08

Percentage of alters who are family members (for every
additional 10%) (mean, SD)

0.97# 0.94–1.00 0.92** 0.88–0.97 0.91*** 0.87–0.96 1.04 0.97–1.12

Percentage of alters who are friends (for every additional 10%)
(mean, SD)

1.01 0.97–1.05 1.08* 1.02–1.14 1.12*** 1.06–1.18 0.99 0.92–1.08

Percentage of alters who are acquaintances (colleague, neighbor,
club mate, other) (for every additional 10%) (mean, SD)

1.04# 1.00–1.10 1.04 0.97–1.12 1.00 0.93–1.07 0.93 0.83–1.03
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Table 3 Associations between network parameters and infections, derived from logistic regression analysis, adjusted for
characteristics of the participant (Continued)

Upper respiratory
tract infection

Lower respiratory
tract infection

Gastrointestinal
infection

Urinary tract
infection

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Proxy for superficial contacts

Number of club memberships (mean, SD) 1.02 0.93–1.11 1.03 0.91–1.16 1.04 0.93–1.17 0.99 0.84–1.16

Number of clubs with daily/weekly participation (mean, SD) 0.99 0.89–1.10 1.00 0.86–1.16 1.02 0.89–1.18 0.97 0.79–1.20

Number of clubs with monthly participation (mean, SD) 1.10 0.92–1.32 1.18 0.92–1.51 1.06 0.83–1.35 1.06 0.74–1.52

Number of clubs with less frequent participation (mean, SD) 1.01 0.80–1.28 0.97 0.68–1.38 1.15 0.85–1.55 0.95 0.58–1.55

Network density

Density between friends

- low density (1–3) (%) 1.00 1.00 1.00 1.00

- medium density (4) (%) 1.13 0.92–1.38 0.87 0.65–1.16 0.94 0.72–1.24 0.90 0.60–1.35

- high density (5) (%) 1.08 0.86–1.35 0.92 0.67–1.25 0.89 0.66–1.20 1.09 0.71–1.67

Density between friends and family

- low density (1–3) (%) 1.00 1.00 1.00 1.00

- medium density (4) (%) 1.16 0.92–1.47 0.93 0.67–1.29 1.01 0.74–1.39 1.13 0.70–1.81

- high density (5) (%) 1.27* 1.00–1.61 0.87 0.65–1.26 1.04 0.75–1.43 1.24 0.77–2.00

All analyses were adjusted for: sex, age, smoking status, diabetes status, BMI, alcohol consumption, educational level, employment status, and season
OR Odds Ratio, 95% CI; 95% Confidence Interval, # p < 0.1 *p < 0.05 **p < 0.01 ***p < 0.001
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close than contacts with friends. A large percentage of
family members within the network was associated with
fewer reported LRIs and GIs. Previous research has shown
that the family is an important source of social support
[52], and higher levels of social support have been shown to
enhance several aspects of immune function [11, 12]. The
ego’s family may act as a buffer for LRI and GI through
high levels of social support, indicating a positive impact on
lower susceptibility to these infections.
Notably, while some mathematical models consider the

number of household contacts to be highly relevant for
disease transmission [21, 22, 28, 30, 31, 33], we did not
find such association. On the contrary, the present results
show that a relatively large percentage of household mem-
bers is associated with lower URI and GI prevalences.
A high percentage of alters in the same age range

(± 5 years) was associated with lower URI, LRI and
GI, but not with lower UTI. Mathematical models usually
incorporate age-mixing patterns, which range from fully
assortative (individuals infect only those in the same age
group) to disassortative (those of one age group only infect
individuals in another age group) [16, 22, 28, 33]. Our
current study confirms that individuals tend to mix assorta-
tively (44% of participants had contacts with others within
the same age group) [22, 28, 33]. However, while mathem-
atical models usually assume that individuals infect those in
the same age group, we found the opposite effect: when
the network contains a relatively high percentage of al-
ters of the participant’s age, lower URI, LRI and GI
prevalence was observed. A high variability in ages of
alters (age heterogeneity), as well as a high percentage
in alters that were younger or older (5 to 15 years) was
associated with higher LRI prevalence, which may indicate
exposure to a wider range of infectious agents from people
in broader age ranges, and as transmission rates were
higher among children and the elderly [53], higher variabil-
ity in age and dissasortative mixing patterns may indicate
more contacts with high-transmission risk individuals. To
the best of our knowledge, this is the first study that
assessed the associations between mixing or heterogeneity
within the composition of a network and the prevalence of
symptomatic infections, revealing new insights into the
transmission potential of assortative and disassortative age
mixing patterns.
One strength of the present study is that it provides

new empirical data on the social network at the par-
ticipant level. This has given us the opportunity to
examine a set of questions that, to the best of our
knowledge, have not been addressed before. Recent re-
search on infection dynamics using mathematical
models shows the importance of contact patterns for
transmission dynamics and the use of parameters esti-
mated directly from contact data. Our study improves
the understanding of the epidemiology of infectious
disease, and can be used to complement mathematical
models of infection spread on the importance of net-
work composition for the estimation of transmission
parameters, as well as in further epidemiological re-
search on the association of specific network parame-
ters and the prevalence of several infections.



Table 4 Detrimental exposure model and beneficial exposure model derived from Bstep logistic regression analyses, adjusted for
characteristics of the participant

Upper respiratory
tract infection

Lower respiratory
tract infection

Gastrointestinal
infection

Urinary tract
infection

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Detrimental exposure model

Network size (for every additional alter) 1.04** 1.01–1.06 1.02 0.99–1.06 1.03# 1.00–1.06 0.96 0.92–1.01

Total contacts per half year (for every additional 10 contacts) 0.99* 0.98–1.00 0.99* 0.98–1.00 1.00 0.99–1.01 1.02* 1.00–1.03

Percentage of alters living more than 1/2 h away by car
(for every additional 10%)

N/A N/A 1.06# 1.00–1.13 N/A

Percentage of older alters (> 15 years older) (for every
additional 10%)

1.05# 0.98–1.09 1.08# 0.99–1.17 N/A N/A

Percentage of older alters (5–15 years older) (for every
additional 10%)

N/A 1.12* 1.02–1.22 N/A N/A

Percentage of younger alters (5–15 years younger)
(for every additional 10%)

N/A 1.11* 2.01–1.21 1.08# 0.99–1.16 N/A

Age heterogeneity (SD) N/A 1.03** 1.00–1.06 N/A N/A

Percentage of alters who are friends (for every additional 10%) N/A 1.12*** 1.04–1.20 1.11*** 1.05–1.16 N/A

Percentage of alters who are acquaintances (colleague,
neighbor, club mate, other) (for every additional 10%)

N/A 1.08# 0.99–1.17 N/A N/A

Beneficial exposure model

Network size (for every additional alter) 1.03** 1.01–1.06 1.02 0.99–1.06 1.03* 1.00–1.06 0.96 0.92–1.01

Total contacts per half year (for every additional 10 contacts) 0.99* 0.98–1.00 0.99* 0.98–1.00 0.99 0.98–1.00 1.02* 1.00–1.03

Percentage of same-age alters (± 5 years) (for every
additional 10%)

0.94** 0.90–0.98 0.89*** 0.84–0.95 0.93* 0.88–0.98 N/A

Percentage of alters who are family members (for every
additional 10%)

0.97# 0.93–1.01 0.91*** 0.87–0.96 0.89*** 0.84–0.94 N/A

Percentage of alters who are acquaintances (colleague,
neighbor, club mate, other) (for every additional 10%)

N/A N/A 0.91* 0.84–0.98 N/A

All analyses were adjusted for: sex, age, smoking status, diabetes status, BMI, alcohol consumption, educational level, employment status and season. OR Odds
Ratio, 95% CI; 95% Confidence Interval, # p < 0.1 *p < 0.05 **p < 0.01 ***p < 0.001
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Nevertheless, this study also has limitations. First, as the
data was cross-sectional, causal relationships could not be
examined. Second, self-reporting may be subject to bias.
Although the self-reporting of infections has been used
successfully in the past in relation to network assessment
[23, 28], symptoms may be under or over-reported. Third,
as contact networks are, by definition, hard to measure
[14] our assessment and computed network parameters
also have strengths and limitations. Social networks can
be measured by different methods, such as reviewed by
Read et al. [17], one of which is the egocentric approach
used in the present study. Egocentric networks are useful
for measuring likely proxies of the true underlying net-
work of potentially infectious contacts, yielding valid data
and insight in ego-network composition in relation to in-
fections [13, 22, 33, 54]. Fourth, the assumptions made to
calculate the total number of contacts may under- or over-
estimate the actual total number of contacts. For every
alter named, the highest contact frequency (e.g. monthly
contact) was used as an indicator of actual contact fre-
quency, and as participants report to meet one alter every
month on several questions, this alter is assumed to be
met on a monthly basis. It is possible however that the
participant met this alter once a month for one activity,
but also once a month for another activity. Moreover, the
“daily or weekly” answer category was assumed to refer to
two contacts per week. This assumption, too, may result
in an underestimation of the actual contact frequency.
Moreover, the questionnaire consisted of seven ques-

tions on different types of interactions, some of these
types require direct close proximity interactions (such as
visits for social purposes or offering practical help), and
other types of interactions may also have occurred by
telephone/internet conversations (such as provision of
emotional support or advise on problems). Therefore,
estimations of the total network size and total contact
frequency may over represent the actual number of close
proximity interactions, as a maximum of 13–14% of the
interactions may potentially not have occurred in close
proximity.
Another limitation of the questionnaire was missing

information on the duration of contacts between the ego
and the alters, which has been shown to be highly rele-
vant for disease modelling [25, 26]. Additionally, use of
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public transport has not been measured, which may have
impact on the number of contacts participants made in
the study period. However, previous research has shown
that the transmission rate in public transport is low [55].
Finally, The Maastricht Study has a population based

design and is enriched with type 2 diabetes participants
for reasons of efficiency; i.e. to increase the statistical
power to identify any potential contrasts between individ-
uals with and without type 2 diabetes. Subsequently, par-
ticipants were slightly more overweight/obese than the
general population [56]. To control for this design-related
oversampling, we adjusted all analyses for diabetes status
and BMI. Although higher prevalences of type 2 diabetes
and overweight may have slightly increased the preva-
lences of infections within the study population, odds ra-
tios are likely unbiased. Another limitation of the design is
that the study population consisted of adult participants
only and it is unknown whether results are representative
for people younger than 40 years of age. Further, the age
range of the participants probably leads to an underrepre-
sentation of children in the ego’s network, while it has
been shown that children and teenagers may have an im-
portant role in the spread of close-contact infections [33].
Moreover, the extensive phenotyping forces participants

to cover 4 half-day visits at the research center, which may
be difficult for people who work and travel a lot and have
many contacts. To enable participation for those more
“busy” people, visits were also offered in the evening hours
and on Saturday. The design of the present study may have
some limitations, but it is also unique in the examination of
the association between social network parameters and in-
fections, and may therefore lead to new insights in the un-
derstanding of the epidemiology of infectious diseases.

Conclusions
To conclude, social network size and total number of
contacts were important determinants for the prevalence
of URI, LRI and GI. Moreover, the composition of the
social network in terms of types of alters (friends, family,
age) appears to be related to the risk of infection. While
further studies are needed to examine underlying mech-
anisms and causality, our findings could have important
implications for the estimation of transmission parame-
ters to optimize current infectious disease control, and
can be used for the development of non-pharmaceutical
infection prevention strategies.
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