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Abstract 

 

Rhizobia are soil bacteria able to induce the formation of nodules in leguminous plants 

and convert atmospheric nitrogen into assimilable forms to these plants. Some 

Mesorhizobium species establish symbiosis with chickpea and can increase productivity 

of this culture. Rhizobia symbiosis genes, such as nod and nif, are involved in nodule 

development and nitrogen fixation. Nevertheless, genes involved in other molecular 

mechanisms, namely stress response may influence the symbiotic interaction plant-

rhizobia. The objective of this study was to evaluate the effects of overexpressing 

symbiotic and stress response genes in the symbiotic performance of chickpea 

Mesorhizobium. Mesorhizobium strains were transformed with pRKnifA, pRKnodD, 

pRKenvZ and pRKgroEL (expression vector pRK415 with nifA, nodD, envZ and groEL 

genes from M. mediterraneum UPM-Ca36T, respectively). From the four strains 

transformed with extra nifA copies, only V15-b was able to increase plant biomass, when 

compared to wild-type and empty vector strains. Among the four strains transformed with 

extra nodD copies, ST-2 and PMI-6 showed a higher symbiotic effectiveness compared 

to wild type and control strains. Additional copies of envZ led to in a higher symbiotic 

effectiveness when introduced in PMI-6 and EE-7. Evaluation of the symbiotic 

effectiveness of the four strains overexpressing groEL showed that only ST-2 improved, 

compared to wild-type and empty vector strains. For all these strains the rate of nodule 

formation was seen to be higher and further analysis of the infection process and nodule 

histological analysis were performed. Overall, this study shows that extra copies of a 

given gene may have different effects in the symbiotic effectiveness, depending on the 

modified strain. This study contributes to a better understanding of the nodulation and 

nitrogen fixation processes, namely regarding the contribution of non-symbiotic genes, 

especially envZ, which was to our knowledge for the first time reported to be involved in 

the rhizobia-legume symbiosis. 
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Resumo 

Melhoramento de rizóbios de grão-de-bico por transformação genética com genes 

simbióticos 

Rhizóbios são bactérias capazes de induzir a formação de nódulos em leguminosas e 

converter azoto atmosférico em formas assimiláveis por essas plantas. Algumas 

espécies de Mesorhizobium estabelecem simbioses com grão-de-bico e conseguem 

promover a produtividade desta cultura. Genes simbióticos, como nod e nif, estão 

envolvidos na formação dos nódulos e fixação de azoto. No entanto, genes envolvidos 

noutros mecanismos, nomeadamente a resposta ao stresse podem influenciar a 

interação simbiótica planta-rizóbio. O objetivo deste estudo foi avaliar a eficiência 

simbiótica de Mesorhizobium de grão-de-bico sobre-expressando genes simbióticos e 

de resposta ao stresse. Estirpes de Mesorhizobium foram transformadas com pRKnifA, 

pRKnodD, pRKenvZ e pRKgroEL (vetor de expressão pRK415 com nifA, nodD, envZ e 

groEL de M. mediterraneum UPM-Ca36T, respetivamente). Das quatro estirpes 

transformadas com cópias extras de nifA, apenas V15-b foi capaz de produzir um 

aumento na biomassa das plantas inoculadas, quando comparada às estirpes selvagem 

e com vetor vazio. Das quatro estirpes transformadas com cópias extras de nodD, ST-

2 e PMI-6 apresentaram maior eficiência simbiótica em comparação com as estirpes 

controlo. Cópias adicionais de envZ resultaram numa maior eficiência simbiótica quando 

introduzidas em PMI-6 e EE-7. A avaliação da eficiência simbiótica das quatro estirpes 

que sobre-expressam groEL mostrou que apenas a transformação de ST-2 levou a uma 

eficiência superior, em comparação com as estirpes selvagem e com vetor vazio. Para 

todas estas estirpes, a taxa de formação de nódulos também foi melhorada, pelo que 

análises do processo de infeção e da histologia dos nódulos foram efetuadas. Em geral, 

este estudo mostra que um gene introduzido pode ter efeitos diferentes na eficiência 

simbiótica, dependendo da estirpe modificada. Este estudo contribui para uma melhor 

compreensão dos processos de nodulação e fixação de azoto, nomeadamente a 

contribuição de genes não-simbióticos, especialmente envZ, que tanto quanto sabemos 

não foi previamente descrito como envolvido nestas simbioses. 
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Chapter 1 

 

State of the art 
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1.1. Biological Nitrogen Fixation 

 

It has estimated that by 2050 the world’s population will increase 34 %, reaching 9.1 billion 

of people. This increase will occur mainly in developing countries. Urbanization will continue 

at an accelerated pace, and about 70 % of the world’s population will be urban (compared to 

49 % today). Feeding this larger, more urban and richer population, requires an increase in 

food production of 70 %. Annual cereal production will need to rise to about 3 billion tonnes 

from 2.1 billion today and annual meat production will need to rise by over 200 million tonnes 

to reach 470 million tonnes. It means that there will be an increase in cultivated areas, leading 

to an increased demand of fertilizers and research aimed to improve varieties of plants to 

increase their yield (FAO 2009). 

After carbon (C) and hydrogen (H), nitrogen (N) is the most important element in the 

constitution of organic matter, representing 8-16 % (Vance 2001). Nitrogen participates in the 

formation of key molecules in many biological processes such as the production of nucleic 

acids and proteins. Despite its abundance in the atmosphere as N2 (79 %), N is along with 

water, the main limiting factor of global agricultural production, because no animal or plant is 

able to use it directly (Hoffman et al., 2014). The main supply sources of nitrogen used for plant 

growth are: 1) derived from the decomposition of organic matter and rocks, 2) provided by 

chemical nitrogen fertilizers, 3) nitrogen supplied by the process of biological nitrogen fixation 

(BNF). There is also a small contribution by the reaction of electrical discharges with N2, 

resulting in nitrate, which is added to the soil and represents about 4 % of positive entries in N 

balance on Earth (Hoffman et al. 2014). 

The synthesis of nitrogen fertilizers began in the first decade of the twentieth century when 

Fritz Haber and Carl Bosch discovered the process that converts atmospheric N2 into 

ammonia. The requirements for such chemical synthesis are: 1) hydrogen, 2) a catalyst 

containing iron, 3) high temperature (300° C to 600° C), 4) high pressure (200 atm to 800 atm) 

(Hoffman et al. 2014). Consequently, the economic cost for the chemical synthesis of nitrogen 

fertilizers is high, resulting mainly from the need of spending of fossil fuels, which are non-

renewable energy (Hydroworld 2009). Alternative ways of supplying N to agricultural crops that 

to reduce these costs are urgent (Biswas and Gresshoff 2014). 

Another aggravating factor in the use of nitrogen fertilizers is the low efficiency of its 

utilization by plants, rarely exceeding 50%. One should also consider that the indiscriminate 

use of nitrogenous fertilizers results in environmental pollution since the N leaching and runoff 

from the soil surface leads to accumulation of these compounds in the waters of rivers, lakes 

and groundwater, reaching toxic levels for fish and animal (Hungria et al. 2001; Jensen et al. 

2012; Philippot and Hallin 2011; Richardson et al. 2009).  

Some soil bacteria, designated rhizobia, can establish symbiotic associations with 
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legume plants, and fix atmospheric nitrogen, converting it into an assimilable form to the 

plant. In exchange, the legume plants provide carbohydrates from the photosynthesis 

process to rhizobia. This process, known as biological nitrogen fixation (BNF), can 

reduce the use of chemical N-fertilizers and thus decrease the environmental pollution 

(Oldroyd 2013) and contribute for more sustainable agricultural practices. 

Considering the low cost of the bacterial inoculants compared with nitrogen 

fertilizers, the cost to produce legume grain could reduce, representing a great economy, 

which could be directed to other aspects of productivity improvement in agriculture 

(Vitousek et al. 2013). 

The contribution of the biological nitrogen fixation to the total of produced nitrogen 

has been estimated to approximately 200 million tonnes annually and for every tonne of 

shoot dry matter produced by crop legumes, the symbiosis with rhizobia is responsible 

for fixing the equivalent of 30-40 kg of nitrogen (N) (Graham and Vance 2003; Peoples 

et al. 2009).  

 

1.2. Rhizobia 

 

Bacteria capable of fixing atmospheric nitrogen are called diazotrophs. These 

bacteria exist as free-living soil bacteria or associated with plant species, both in the 

rhizosphere, as endophyte or as symbionts of legume species. This latter group, more 

currently under study, is generically called rhizobia. 

These microorganisms are able to metabolize atmospheric nitrogen and convert it 

into nitrogen compounds that can be absorbed by the plant. This process takes place in 

specialized structures on plant roots called nodules. In return, the rhizobia benefit from 

carbon substrates derived from photosynthesis in the plant. Contrary to the supply of 

nitrogen fertilizer to a crop in the form of nitrate, which represents a significant cost to 

both farmer and the environment, the inoculation of plants with rhizobia has 

environmental and economic benefits, such as use of native soils bacteria instead N 

fertilizer that may cause eutrophication in lakes and rivers, low cost of acquisition of the 

inoculant and crops rotation that keep the N accumulated from one culture to the next 

one (Herridge et al. 2008).  

Rhizobia can live either in the soil as free-living bacteria or within the root nodules 

of host legumes. Within the nodules, rhizobia convert atmospheric dinitrogen (N2) into 

ammonia as a result of the nitrogenase enzyme complex activity, in an ATP-dependent 

manner. Ammonia can be assimilated by the host, resulting in improved plant growth 

and productivity (Perret et al. 2000). The pairing rhizobia-legume host occurs after a 

complex molecular crosstalk between both partners (Downie 1998; Oldroyd et al. 2011), 
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which often requires cell-to-cell communication. This means that the entry into root cells 

requires appropriate recognition of specific chemical signals by the host plant, namely 

the rhizobial Nod factor signaling molecule (Oldroyd 2013). The recognition of these 

molecules triggers the curling of root hairs, allowing the entry of rhizobia in the plant 

(Oldroyd 2013). Rhizobia then induce the formation of an infection thread, which is an 

invagination of the plant membrane at the infection focus of the root hair. Through the 

deformed root hair, these bacteria enter the host plant cells and grow down to the cortical 

cell layers into the nodule meristem (Sprent 2009). In some cases, these bacteria enter 

the root by crack entry , i.e. insert themselves in cracks on the root cells (Sprent 2009). 

Rhizobia can also enter the root through epidermal intercellular spaces. A successful 

infection process ends with the formation of an effective nodule (Oldroyd and Downie 

2008), which begins with the reinitiation of cell division in the root cortex, where rhizobial 

cells will be allocated and will initiate nitrogen fixation in exchange for carbon from the 

legume host (Oldroyd 2013).  

In 1932, bacteria able to nodulate legumes were classified in the genus Rhizobium 

and subdivided by a criterion based mainly on host plant range (Fred 1932). In terms of 

taxonomy, rhizobia are currently assigned to 14 different genera. Most of them, including 

the agriculturally important nitrogen-fixing genera, belong to the Alphaproteobacteria 

class. Only a few genera belong to the Betaproteobacteria class (Chen et al. 2003; 

Moulin et al. 2014; Peix et al. 2015) (http://www.rhizobia.co.nz/taxonomy/rhizobia). 

There are approx. 89 genomes completely sequenced and annotated, including different 

strains and symbiovars from the same species. The size of most rhizobial genomes ranges 

between 6.5 and 9 Mb, and may include plasmids larger than 2 Mb (Alexandre and Oliveira 

2016). 

 

1.3. Nodulation and nitrogen fixation genes  

 

Rhizobia genomes include two major components: the core genome (higher GC 

content) that comprises the housekeeping genes, which are responsible for the 

functioning of the cell, as well as other genes also involved in its essential maintenance 

(Crossman et al. 2008), and the accessory genome, which is located on plasmids or 

chromosomal islands (lower GC) and is composed of genes that confer special 

characteristics to these organisms, such as antibiotics resistance and symbiosis genes 

(MacLean et al. 2007; Young et al. 2006). 

There are two main groups of genes responsible for the symbiosis process in 

rhizobia, namely genes involved in the nodulation process and those responsible for 

nitrogen fixation (Downie 1998; Kaminski et al. 1998). Nodulation genes (e.g. nodABC) 
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encode enzymes responsible for the biosynthesis and secretion of Nod factors, which 

are lipochitooligosaccharides (LCOs) that interact with plant flavonoids, thus important 

for determining the rhizobium-legume pairing (Oldroyd 2013; Via et al. 2016). Different 

rhizobia species can have different nod genes, therefore producing LCOs with varied 

structures (Limpens et al. 2015). Genes involved in the nitrogen fixation process include 

those that encode the nitrogenase enzyme (nifHDK), responsible for the capture and 

conversion of atmospheric nitrogen into ammonia (Kaminski et al. 1998). In addition to 

these major groups of genes, there are many others with important functions, both in 

nodulation and nitrogen fixation. For example, nodPQ, nodX, nodEF and noe genes are 

involved in the synthesis of Nod factors substituents (D'Haeze and Holsters 2002; Geurts 

and Bisseling 2002), while nifA, fixLJ, fixK encode transcriptional regulators and fixABCX 

are involved in the electron transport chain to nitrogenase (Dixon and Kahn 2004). Table 

1 shows the most important genes involved in the symbiosis. 
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Table 1. Most common rhizobia genes involved in symbiosis (from Laranjo et al. 2014). 

Genes Function of gene product 

Nodulation genes  

nodA Acyltransferase 

nodB Chitooligosaccharide deacetylase 

nodC N-acetylglucosaminyltransferase 

nodD Transcriptional regulator of common nod genes 

nodIJ Nod factors transport 

nodPQ Synthesis of Nod factors substituents 

nodX Synthesis of Nod factors substituents 

nofEF Synthesis of Nod factors substituents 

other nod genes Several functions in synthesis of Nod factors 

nol genes Several functions in synthesis of Nod factors substituents and 

secretion 

NOE genes Synthesis of Nod factors substituents 

 

Nitrogen fixation  

genes nifHDK Nitrogenase 

nifA Transcriptional regulator 

nifBEN Biosynthesis of the Fe-Mo cofactor 

fixABCX Electron transport chain to nitrogenase 

fixNOPQ Cytochrome oxidase 

fixLJ Transcriptional regulators 

fixK Transcriptional regulator 

fixGHIS Copper uptake and metabolism 

fdxN Ferredoxin 

 

Other genes  

exo Exopolyssacharide production 

hup Hydrogen uptake 

gln Glutamine synthase 

dct Dicarboxylate transport 

nfe Nodulation efficiency and competitiveness 

ndv β-1,2 glucans synthesis 

lps Lipopolysaccharide production 

 

 

1.3.1. Nodulation process 

 

What distinguishes essentially symbiotic and associative bacterial infection is that 

the former occurs in the nodule. This is a remarkable feature since the endocellular 

colonization, including by pathogens is rare in bacteria associated with plants. The 

biological nitrogen fixation involves a series of processes that begin with the colonization 
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of the host plant by the bacterium and culminate in the fixation of atmospheric N2. 

(Oldroyd 2013). 

The legume-rhizobia interaction occurs when plants release signals, such as 

flavonoids or isoflavonoids, which are recognize by bacteria using a positively acting 

transcription factor, usually encoded by nodD (Downie 2010; Recourt et al. 1989) (Fig 

1). The type of secreted signals, as well as the NodD protein usually differ depending of 

the plant or bacteria, respectively (Downie 2010). Following NodD and flavonoids 

interaction, NodD binds to highly conserved bacterial promoters called nod boxes and 

induces the expression of several genes directly related with the nodulation process (as 

those involved in the synthesis of Nod factors) (Fig 1).  

The NodD regulator belongs to the LysR family of transcriptor regulators. 

Constitutively expressed, NodD is responsible for the transcription of other nodulation 

genes (e.g. nodABC) in the presence of compatible flavonoids released by legume 

plants, consequently initiating the nodulation process (Kondorosi et al. 1989; Oldroyd 

2013; Spaink 2000). In addition, NodD also regulates directly or indirectly several other 

symbiotic phenotypes in rhizobia, such as polysaccharide production, phytohormone 

synthesis, motility, quorum-sensing and the activation of the type-III secretion system 

(Krause et al. 2002; Lopez-Baena et al. 2008; Perez-Montano et al. 2011; Pérez-

Montaño et al. 2014; Theunis et al. 2004; Vinardell et al. 2004). The number of nodD 

copies can vary depending on the rhizobial species and accordingly it was found that 

species harboring only one copy have the nodulation completely aborted when this gene 

is mutated, while species with multiple nodD copies, a complex interaction between the 

nodD genes seems to occur and the nodulation is not totally suppressed (Broughton et 

al. 2000; Garcia et al. 1996). 
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Figure 1. Schematic overview of the nodulation process and biological nitrogen fixation 

(from Laranjo et al. 2014). 

 

Besides determining which legumes the bacteria is able to nodulate (Downie 

1998; Perret et al. 2000), the Nod factors are responsible for root hair curl, infection 

thread formation, induction of cell division and gene expression in the root cortex and 

pericycle, nodule development and the number of nodules (Garg and Geetanjali 2007; 

Laranjo et al. 2014; Oldroyd 2013; van Brussel et al. 2002). The Fig 2 shows the 

colonization on chickpea root hair tips by green fluorescent protein–tagged rhizobia. 
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Figure 2. Confocal laser scanning micrographs showing the colonization process on 

chickpea root hairs inoculated with green fluorescent protein–tagged rhizobia. Scale bar: 

25 μm. 

 

The mechanisms by which rhizobia and legumes choose their partners is not 

completely clear yet. Some authors suggest that the evolution of rhizobia-legumes 

associations may be host driven (Kiers et al. 2003; Sachs et al. 2011). However, legumes 

can be nodulated by rhizobia even if the association results in low symbiotic nitrogen 

fixation ((Den Herder and Parniske 2009). Most legumes are promiscuous meaning that 

they can be nodulated by different rhizobia species and particularly by broad host range 

rhizobia strains (Zhao et al. 2008). 

Upon contact of the plant cells with the released nodulation factors, curling of root 

hairs is initiated. The infection channel is formed within the root hair, while in the pericycle 

starts the microtubular cytoskeleton rearrangement. Cell activation subsequently occurs 

in the inner part of the cortex, which is divided forming a nodule primordium. Cell 

activation gradually extends to the middle and the outermost part of the cortex in 

accordance with two gradients of cellular differentiation resulting in the formation of a 

nodular primordium (Gerahty et al. 1992). 

To better understand how the growth and development of the nodule occurs 

Gerahty et al. (1992) proposed, chronologically, different stages, according to the 

anatomical changes in soybean roots after infection, when cell divisions are initiated in 
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and out of the root cortex generating meristematic nodules where successive mitotic 

divisions occur. These processes were explained chronologically through stages of 

growth and nodule development: stage 0 corresponds to uninfected root; stage I - early 

infection; stage II - external cortical cells begin to divide; stage III - the division is evident 

in some inner cortex and outer cortex cells; stage IV - the cells are more isodiametric 

and have some externally and internally oblique divisions in the cortex, forming a nodule 

meristem; stage-V the meristem is increased; and stage VI - nodule emergency. 

During the growth of the nodule, internalized bacteria are released in the 

cytoplasm, they begin to divide and the membrane that surrounds the cell surface 

increases to accommodate this growth by merging with smaller vesicles (Gerahty et al. 

1992). In the growth stage V, the expansion of the nodule is controlled, which is 

considered a mechanism of self-regulation, a situation that leads to maturation of the 

nodule. In this phase, bacteria stop dividing and begin to increase in size and differentiate 

into endosymbiotic organelles termed N-fixing bacteroids (Taíz and Zieger 2004). 

Depending on the site and depth of initial cortical cell division and the time of 

active meristem termination (nodule growth), nodules formed by legume may be either 

determinate (e.g., on soybean and L. japonicus) or indeterminate (e.g., on M. truncatula 

and chickpea) (Biswas and Gresshoff 2014). Determinate nodules are usually initiated 

sub-epidermally in the outer cortex, and nodular meristematic activity is early terminated, 

giving rise to spherical nodules. In indeterminate nodules, cell division initially occurs 

anticlinally in the inner cortex, followed by periclinal divisions in the pericycle; meristems 

are persistent for a longer time, resulting in cylindrical nodules (B G Rolfe and Gresshoff 

1988; Gresshoff and Delves 1986; Newcomb et al. 1979; Terpolilli et al. 2012). 

 

1.3.2. Mechanisms of Biological Nitrogen Fixation 

 

To convert atmospheric nitrogen (N2) to ammonia (NH3) by biological nitrogen 

fixation process, high amounts of energy  is spent by the plants (E. Newton 2007).  This 

process takes place inside the nodule by the bacteroids through the activity of the 

nitrogenase enzyme complex (Terpolilli et al. 2012). The biological nitrogen fixation can 

be represented by the following equation: 

 

N2 +8H+ +8e- + 16ATP = 2NH3 +H2 + 16ADP +16Pi 

 

The nitrogenase enzyme complex formed by two protein units (Fig. 3), the iron - 

protein (encoded by nifH) and the Molybdenum-Iron-protein (α-subunit encoded by nifD 

and β-subunit by nifK genes), is responsible for nitrogen fixation in the nodule (E. Newton 
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2007; Rubio and Ludden 2008): 

 

 

Figure 3. The structure of Nitrogenase (from Issa et al. 2014) 

 

For biological nitrogen fixation to occur it is necessary that the nitrogenase is in 

low oxygen conditions (Biswas and Gresshoff 2014; Kuzma et al. 1993). The nodules 

express a plant protein called leghemoglobin that binds oxygen when it is present in high 

concentrations (Minchin et al. 2008). Both leghemoglobin and the oxygen diffusion 

barrier in the nodule are important regulators of oxygen tension in the nodule, protecting 

the nitrogenase enzyme complex that is irreversibly inactivated by oxygen (Dixon and 

Kahn 2004). According to Deninson and Harter (1995), storing enough oxygen to 

maintain bacteroid respiration. 

In rhizobia, the most important regulator of N2 fixation is the NifA protein. Together 

with the sigma factor σ54, it activates the transcription of a series of nif and fix genes 

that are essential for N2 fixation (Dixon and Kahn 2004; Fischer 1994; Terpolilli et al. 

2012). 

Figure 4 shows a comparison of regulatory cascades that control the transcription 

of nif genes in free-living diazotrophic bacterium Klebsiella pneumoniae and symbiotic 

diazotrophs Sinorhizobium meliloti and Bradyrhizobium japonicum. 
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Figure 4. Scheme comparing the transcription regulation of nif genes in Klebsiella 

pneumoniae, Sinorhizobium meliloti and Bradyrhizobium japonicum (from Dixon and 

Kahn 2004). 

 

As mentioned above, the limitation of oxygen concentration is a key factor in the 

expression of nif and fix genes (Soupène et al. 1995). The fixL and fixJ genes encode a 

regulating system in which the two components-oxygen sensor FixL transfers phosphate 

to the response regulator FixJ. In Sinorhizobium meliloti the phosphorylated FixJ 

positively controls the transcription of nifA and fixK (de Philip et al. 1990; Gilles-Gonzalez 

et al. 1991; Hertig et al. 1989). FixK induces the expression of fixNOQP and negatively 

affects the expression of nifA (Batut et al. 1989). nifA is required for the transcription of 

fixABCX, and nifN nifB as well as for the transcription of the operon nifHDK, encoding 

the subunits of nitrogenase. The operon fixNOQP encode the cytochrome terminal 

oxidase cbb3 protein complex which is involved in the respiratory chain with a high 

affinity for O2 responsible for ATP production needed to symbiosis, while fixABCX is 

involved in the regulation of gene transcription under low oxygen concentrations  (Black 

et al. 2012; Lopez et al. 2001). Moreover, NifA in bacteria such as Sinorhizobium meliloti, 

also controls some other genes that are not directly involved in nitrogen fixation, such as 

those related to competitiveness in nodulation genes, the development of nodules and 

bacteroid persistence. In Rhizobium leguminosarum, nifA is autoregulated (Martinez et 

al. 2004). 

Regarding the number of copies of nifA, in species like Sinorhizobium meliloti, 

Rhizobium leguminosarum and Bradyrhizobium japonicum there is only one copy 

(Barnett et al. 2001; Fischer et al. 1986; Schetgens et al. 1985). In Mesorhizobium loti, 

on the other hand, it contains two copies, nifA1 and nifA2 genes, both encoded in the 

symbiotic island. The nifA1 gene is more similar to nifA from Rhizobium etli, R. 
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leguminosarum, Sinorhizobium fredii strain NGR234 and Sinorhizobium meliloti (Albright 

et al. 1989; Alvarez-Morales et al. 1986; Alvarez-Morales and Hennecke 1985). In 

contrast, nifA2 is more similar to nifA from Bradyrhizobium japonicum (Sullivan et al. 

2013). The two genes do not perform the same function, while mutant M. loti nifA2 forms 

Fix- nodules, nifA1 mutants are not affected symbiotically (Nukui et al. 2006; Sullivan et 

al. 2013; Sullivan et al. 2001). In M. japonicum MAFF303099 nifA2 also regulates the 

gene encoding the enzyme 1- aminocyclopropane -1 -carboxylic acid (ACC) deaminase, 

responsible for degradation of ACC, the precursor of the phytohormone ethylene (Nukui 

et al. 2006). 

Although there are few studies reporting the effects of overexpression of nifA in 

diazotrophic, it is known that multiple copies of this gene may increase the nodulation 

competitiveness (Sanjuan and Olivares 1991). Studies by Jieping et al. (Jieping et al. 

2002) showed that an extra nifA copies in Sinorhizobium fredii enhanced nodulation and 

nodulation competitiveness in soybean.  

 

1.4. Stress response genes 

 

Survival under non-optimal conditions requires, first of all, the ability to sense these 

fluctuations in the immediate surroundings and secondly, the ability to modulate gene 

expression in order to adjust bacterial physiology to new conditions. Sensing an 

extracellular change might involve periplasmic protein sensors, as for example sensing 

envelope stress including pH or salt (Tschauner et al. 2014), or cis-acting RNA elements, 

as in the case of temperature-sensing (Narberhaus 2010).  

The heat shock response is particularly well studied in many bacteria (Schumann 

2016), including rhizobia. The heat shock proteins (HSPs) are encoded by genes 

induced after a sudden increase of temperature. There are two major classes of HSPs 

involved in protecting cells from protein denaturation caused by temperature upshift: 

chaperones and proteases. Chaperones systems, such as GroESL and DnaKJ, have the 

important role of rescuing misfolded proteins and allowing their refolding into the native 

and functional conformation. Proteases, as for example FtsH and ClpXP, are involved in 

the degradation of protein aggregates (misfolded proteins that are no longer able to 

acquire their native conformation). It is noteworthy that these HSPs are often involved in 

the response to other stressors and moreover, chaperones and proteases are also 

important under normal conditions, namely for the correct folding of newly synthesized 

polypeptides.  
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1.4.1. Stress response genes in rhizobia 

 

Besides the symbiosis genes, which are crucial for the interaction with the legume 

host, rhizobia genomes harbor other genes important for the rhizobia lifestyle, such as 

stress response genes that allow these bacteria to survive in the soil challenging 

conditions as well as inside the root nodules. 

The study of the molecular bases of stress response in rhizobia is particular 

interesting since these bacteria are exposed not only to the soil conditions, but also to 

the endosymbiotic lifestyle, inside the host plant root or shoot nodules. On a more applied 

perspective, development of highly effective rhizobia strains to be used as field 

inoculants must not disregard the importance of stress tolerance. If the inoculant 

formulation is not able to survive to abiotic stresses, its successful performance in the 

field is greatly compromised. 

Functional studies that focus on a given stress response gene or operon also 

represent important contributions to our understanding of the molecular bases of stress 

response. Rhizobial genomes typically encode several copies of the major chaperone 

system GroESL and these genes were known to be essential for E. coli viability (Fayet 

et al. 1989) as well as determinant for the limit temperature for growth (Ferrer et al. 2003). 

Their study in rhizobia showed that there is some functional redundancy among different 

copies, although different regulatory mechanisms of these operons can be found in the 

same strain. The differential regulation of these operons allows a fine tune of the GroESL 

pool under different conditions, including inside the nodule, during symbiosis with the 

host plant (Alexandre and Oliveira 2013). For example, in S. meliloti and Bradyrhizobium 

japonicum, both with five groEL copies, all groEL single mutants are viable (Bittner et al. 

2007; Fischer et al. 1993). Contrary to this, one of the three groEL copies of R. 

leguminosarum is essential for growth (Rodriguez-Quinones et al. 2005). In terms of heat 

tolerance phenotype, a S. meliloti strain with mutations in groEL1 and groEL5 showed a 

slower growth compared to the wild-type, especially under higher temperatures (Bittner 

et al. 2007). 

Several studies showed that some genes may be involved in the tolerance to several 

stress conditions. For example, genes involved in trehalose biosynthesis (otsAB, treS 

and treZY genes) have been associated to rhizobial tolerance to desiccation, salinity and 

heat (Moussaid et al. 2015; Reina-Bueno et al. 2012). Besides its action as stress 

protectant, in free-living rhizobia, trehalose may be used as carbon and energy source. 

Trehalose has also been detected in bacteroids, however it seems that trehalose 

synthesis has different pathways under free-living or symbiotic conditions (Reina-Bueno 

et al. 2012). 
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1.4.2. The role of stress response genes in the symbiosis 

Since early events in the symbiosis process such as molecular signalling and 

rhizobial attachment, are particularly sensitive to high temperatures, salinity, acidity and 

other environmental stresses (Hungria and Stacey 1997; Hungria and Vargas 2000; 

Zhang and Smith 1996), rhizobia have to be able to physiologically adapt to 

environmental conditions, in order to ensure a successful symbiosis with its legume 

partner. These stresses that negatively affect the microsymbiont in free-living conditions 

as well as during the symbiotic relationship can lead to a delay in infection and nodule 

formation, development of non-fixing nodules or even to failure of the nodulation process 

(Zahran 1999). Moreover, during infection, rhizobia also have to deal with adverse 

conditions within the host cells and with the plant innate immunity that induces 

physiological stress responses, which may interfere with symbiosis (Soto et al. 2009). In 

fact, it was suggested that among the genes required for bacteroid formation, some are 

specific for symbiosis and others are involved in physiological adaptation to the 

environmental conditions within and outside the nodule (Oke and Long 1999).  

Transcriptomic and proteomic analyses of rhizobia in symbiosis with their host 

legumes suggest the involvement of stress response genes, mainly heat shock proteins 

such as ClpB and GroESL, in the symbiotic process. For example, overexpression of the 

ClpB and GroEL/ES proteins was detected in nodules formed by Bradyrhizobium 

japonicum and Sinorhizobium meliloti strains (Djordjevic 2004; Djordjevic et al. 2003b; 

Nomura et al. 2010b; Sarma and Emerich 2005; Sarma and Emerich 2006). These 

findings are reinforced through transcriptomic analyses where up-regulation of these 

genes was observed in root nodules (Karunakaran et al. 2009; Pessi et al. 2007a; 

Uchiumi et al. 2004). 

The most studied molecular chaperone in terms of its involvement in the symbiosis 

is GroEL. Particular copies of this chaperone gene, usually upregulated in the bacteroids, 

seem to play a fundamental role in the formation of functional NodD and nitrogenase 

complex (Fischer et al. 1999; Ogawa and Long 1995). For example, among the five 

groESL operons in the S. meliloti genome only one operon (groEL1) was found to be 

involved in symbiosis (Ogawa and Long 1995). Fischer et al. (Fischer et al. 1993) found 

a co-regulation between groESL3 and nitrogen fixation genes in B. japonicum, yet none 

of the B. japonicum mutants that individually lack one groEL gene were depleted in their 

symbiotic phenotype (Bittner et al. 2007; Fischer et al. 1999). However, double mutation 

on groEL3 and groEL4 genes in B. japonicum affects the symbiotic performance, since 

these copies are required for the formation of a functional nitrogenase (Fischer et al. 

1999). These two copies are the most abundant in the GroEL pool in bacteroids (Fischer 
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et al. 1993). Studies on the symbiotic performance of strains mutated in the dnaJ gene 

also revealed distinct results, using different rhizobia species. For example, a B. 

japonicum dnaJ mutant strain was able to establish fully effective symbiosis with 

soybeans (Minder et al. 1997). In contrast, Nogales et al. (2002) found that a dnaJ mutant 

of Rhizobium tropici was able to form nodules in Phaseolus vulgaris, however this mutant 

showed low nitrogenase activity, which was also evident in the reduced plant growth and 

in the reduction of the nitrogen content of the plant shoots. Similarly, dnaJ is required for 

effective symbiosis of R. leguminosarum bv. phaseoli (Labidi et al. 2000). On the other 

hand, the DnaK chaperone, another protein that constitutes the DnaK-DnaJ chaperone 

system, is required for optimum symbiotic function in S. meliloti (Summers et al. 1998). 

More recently, the involvement of the ClpB chaperone in the symbiotic process was 

evaluated. Although a Mesorhizobium clpB mutant strain was able to establish symbiosis 

with chickpea plants, the ClpB absence caused a delay in nodule formation and 

development (Brígido et al. 2012b), indicating its involvement in the symbiotic process. 

Other genes involved in stress response, namely major regulators of the heat shock 

response, have been implicated in the symbiosis. For instance, S. meliloti rpoH1 mutants 

have been shown to have defective symbiotic phenotypes, showing poor colonization 

and survival in bacteroids and do not fix nitrogen (Mitsui et al. 2004; Oke et al. 2001). In 

contrast, a rpoH2 mutant showed a symbiotic phenotype similar to the wild-type (Mitsui 

et al. 2004; Oke et al. 2001; Ono et al. 2001). Nevertheless, rpoH1 rpoH2 double mutants 

exhibited a more severe symbiotic phenotype than the rpoH1 mutant (Bittner and Oke 

2006). Similar results were obtained by Martinez-Salazar et al. (2009) where R. etli 

rpoH1 and rpoH2 rpoH1 mutants exhibited reduced nitrogenase activity and bacterial 

viability in early and late symbiosis, compared with nodules formed by the rpoH2 mutant 

and wild-type. 

Despite the fact that functional studies showed results that vary with the rhizobia 

species analysed, stress response genes seem to be implicated in rhizobial infection and 

nitrogen-fixation. The lower symbiotic performance obtained with most of the chaperone 

mutants, suggests that the role of chaperones is important for bacterial cells to achieve 

an efficient and effective symbiotic interaction with their legume hosts. The negative 

effects in their symbiotic phenotypes, due to the loss of specific chaperone genes, is 

most likely due to the role of these proteins in the folding of newly synthesized 

polypeptides, refolding of denatured proteins and disaggregation of proteins involved in 

the symbiosis. Altogether, the major chaperone genes seem to be involved in the 

symbiotic process between rhizobia and legume hosts, not only due to their role in the 

folding of important symbiosis proteins, but also due to their direct involvement in 

response to stressful conditions found in the rhizosphere and within the root cells. 
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However, further studies are required to elucidate in which step of the symbiotic 

interaction these and other stress response genes are particularly important. 

 

    1.4.3. The EnvZ/OmpR two-component regulatory systems  

 

The two-component regulatory systems (TCRS) histidine kinase (HK) and its 

cognate response regulator (RR) may mediate responses to environmental stresses in 

bacteria. They are essential in the adaptation of bacteria and fungi to changing 

environmental conditions (Foo et al. 2015; Wang et al. 2012). The environmental stress 

is detected by the HK that allows the autophosphorylation of the conserved histidine 

residue (Wang et al. 2012), and this phosphoryl group is then transferred by the 

conserved aspartic acid residue of the response regulator. When the response regulator 

is phosphorylated, it binds to DNA target sequences and stimulates the transcription of 

genes targets (Gao and Stock 2009; Yoshida et al. 2002). 

Among the TCRS, the EnvZ/OmpR system, present in E. coli, is one of the best-

characterized. It is activated in osmotic stress, regulating the expression of outer 

membrane porins OmpF and OmpC (Alphen and Lugtenberg 1977; Wang et al. 2012). 

At high osmolarity EnvZ is autophosphorylated and transfers the phosphoryl group to 

OmpR, which in turn binds to the promoter regions of outer membrane porin genes ompF 

and ompC (Yoshida et al. 2002; Yuan et al. 2011). The cellular OmpR-P levels control 

the transcription of ompF and ompC. Low medium osmolarity reduce the level of OmpR-

P and favors the transcription of ompF. At high medium osmolarity an elevated OmpR-

P level, resulting from the increased kinase/phosphatase ratio of EnvZ, allows the 

activation of ompC transcription. On the other hand, more OmpR-P molecules bind to 

the ompF promoter upstream region causing repression of ompF expression (Cai and 

Inouye 2002). Both porins act in the nutrient exchange allowing the passive diffusion of 

small hydrophilic molecules across the membrane. (Aiba et al. 1989; Nikaido 2003; 

Wang et al. 2012). EnvZ also acts as a phosphatase, which dephosphorylates the 

OmpR-P when the osmotic stress disappears (Aiba et al. 1989; Mattison and Kenney 

2002).  

EnvZ is an integral membrane protein that has all of the conserved motifs common 

to the histidine kinase family: H, N, G1, D/F, and G2 boxes (Parkinson and Kofoid 1992). 

Three enzymatic activities have been shown to be associated with the carboxy-terminal 

cytoplasmic domain of EnvZ: autokinase, OmpR kinase, and OmpR-phosphate (OmpR-

P) phosphatase (Hsing and Silhavy 1997).  

EnvZ, a protein with 450 amino acid residues, exists as a dimer located in the inner 

cytoplasmic membrane of E. coli. EnvZc, the cytoplasmic domain of EnvZ, also exists as 
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a dimer and consists of the linker region, domain A and domain B. It contains both kinase 

and phosphatase activities similar to the intact EnvZ (Dutta et al. 1999; Park et al. 1998). 

The linker region is responsible for transducing the signal from the periplasmic receptor 

domain to the cytoplasmic catalytic domain (Park and Inouye 1997). It was demonstrated 

that domain A by itself can serve as the OmpR-P phosphatase (Zhu et al. 2000). 

OmpR, the response regulator, consists of an N-terminal CheY-like receiver domain 

possessing the highly conserved Asp-55 phosphorylation site and a C-terminal DNA-

binding domain (Kato et al. 1989). The phosphorylation of OmpR at Asp-55 enhances its 

binding affinity for the regulatory sequences upstream of the ompF and ompC promoters 

(Aiba et al. 1989; Forst et al. 1989; Head et al. 1998; Huang and Igo 1996). OmpR-P 

binds to the -100 to -38 region of ompC and the -380 to -361 region as well as the -100 

to -39 region of ompF (Bergstrom et al. 1998; Huang and Igo 1996; Rampersaud et al. 

1994; Tsung et al. 1989). These OmpR binding sites consist of 20 base pairs each 

sharing a consensus sequence (Harlocker et al. 1995). It has been shown that two 

OmpR-P molecules bind to each site in a head-to-tail manner (Harlocker et al. 1995).  

ompR and envZ as part of the ompB operon of E. coli, are co-transcribed as a 

polycistronic mRNA from a promoter upstream the ompR gene (Hall and Silhavy 1981). 

In a cell, significantly fewer EnvZ molecules are produced compared with OmpR 

molecules. It has been estimated that there are about 1000 molecules of OmpR whereas 

there are only 10 molecules of EnvZ per cell (Dziejman and Mekalanos 1995). Cai and 

Inouye (2002) showed that the OmpR and EnvZ levels in E. coli cells are approximately 

3500 and 100 molecules per cell, respectively. 

It was reported that mutation in envZ/ompR of E. coli alter, directly or indirectly, the 

expression of more than 100 genes, including genes related to amino acid biosynthesis, 

such as isoleucine and cysteine, iron and maltose transport, and flagellar synthesis 

(Oshima et al. 2002). A single mutation in ompR of Yersinia pestis affected the 

expression of 224 genes, indicating a global regulatory role (Gao et al. 2011). In addition 

to its role as osmosensor, the EnvZ/OmpR system has also been associated with other 

functions, such as virulence in pathogens, fatty acid uptake, exopolysaccharide (EPS) 

production, peptide transport and flagella production (Bernardini et al. 1990; Feng et al. 

2003; Li et al. 2014; Mills et al. 1998; Pickard et al. 1994; Shin and Park 1995; Vidal et 

al. 1998; Yuan et al. 2011). Furthermore, EnvZ/OmpR was also seen to be involved in 

the regulation of the type III secretion system genes in pathogenic bacteria, such as 

Salmonella typhimurium, Yersinia enterocolitica, Erwinia amylovora and Pseudomonas 

syringae (Brzostek et al. 2007; Feng et al. 2003; Feng et al. 2004; Li and Zhao 2011). 
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    1.5. The chickpea-rhizobia symbiosis  

  

 The Mesorhizobium genus is one of the least studied among rhizobia, however this 

group represents an outstanding model to study the evolution of symbiosis due to its wide 

geographic spread, diverse organization of symbiotic genes and growing number of genomes 

available (Laranjo et al. 2014). Bacteria from this genus have a host range that can be very 

narrow, as appears to be the case of the type strains of M. mediterraneum and M. ciceri that 

are known to nodulate only Cicer species (Nour et al. 1995; Nour et al. 1994), or may be wider, 

for example M. plurifarium and M. tianshanense nodulating legumes of different genera (Chen 

et al. 1995; de Lajudie et al. 1998). Mesorhizobium species establish symbiotic relationships 

with legumes in temperate, tropical, subtropical clime and even in arctic areas (Chen et al. 

2005), and can also colonize the host plant as endophytes (Wei et al. 2007). 

Studies with diazotrophs typically have the goal of using knowledge generated in the 

production of inoculants for crops of agronomic interest. For example, Mesorhizobium species 

are able to associate symbiotically with chickpea (Cicer arietinum L.), an important grain used 

for feed or with biserrula (Biserrula pelecinus L.), a forage used for pasture (Laranjo et al. 

2014). 

There are currently 43 species of Mesorhizobium standing on the List of bacterial names 

standing in nomenclature (http://www.bacterio.net), however this number is increasing mostly 

due to the identification of microsymbionts from newly studied wild legumes  (Euzéby 1997). 

The main gene used for phylogenetic purposes is the 16S rRNA, but other genes have been 

also used for this purposes as dnaK (Stepkowski et al. 2003), recA and atpD (Vinuesa et al. 

2005) and the dnaJ gene (Alexandre et al. 2008). 

Chickpea (Cicer arietinum, L.) is an agronomically important crop belonging to the 

Fabaceae family cultivated for over 10,000 years (Albala 2007). It is the third most important 

grain legume cultivated in several areas, such as Asia, Mediterranean regions, Australia, 

Canada, the USA and Africa (Acharjee and Sarmah 2013). Worldwide cultivated in more than 

50 countries, the chickpea production covers an area of 14 million hectares and its production 

is approximately 13 million tonnes. Asia is largest producer of chickpeas in the world (76% of 

the total production) followed by Middle East and northern Africa. In Portugal the last 

production data vary from 500 to 600 tonnes, whereas  Europe as a whole produced 

approximately 164 000 tonnes (FAOSTAT 2014). 

The importance of this crop is mainly due its rich nutritional value, with a total protein 

content ranging from 17 to 30 % (Jukanti et al. 2012). Therefore, chickpea is a low-price 

alternative to replace the lack of other protein source in developing countries. On average the 

estimated amounts of N fixed by chickpeas under regular precipitation and drought stress 

conditions are 60 kg/ha (Unkovich and Pate 2000) and 19–24 kg/ha (Carranca et al. 1999), 
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respectively. 

Currently three species of the Mesorhizobium genus were described as chickpea 

microsymbiont, namely Mesorhizobium ciceri (Nour et al. 1994), Mesorhizobium 

mediterraneum (Nour et al. 1995) and more recently Mesorhizobium muleiense (Zhang et al. 

2012). However, several studies have shown that other Mesorhizobium species are able to 

nodulate and fix nitrogen in symbiosis with chickpea (Alexandre et al. 2009; Laranjo et al. 2004; 

Laranjo et al. 2012; Nandwani and Dudeja 2009; Rivas et al. 2007; Tena et al. 2017). 

 

The main aim of the present study is to improve the symbiotic performance of 

chickpea Mesorhizobium strains, through the overexpression of symbiotic and stress 

response genes. Two symbiosis genes encoding important regulator were selected, 

namely nifA, which is involved in the nitrogen fixation process, and nodD, which is 

involved in the nodulation process. In addition, two stress response genes were 

analysed, namely the groEL gene, which encodes an important chaperone and seems 

to be indirectly involved in the symbiosis, and the envZ gene, which encodes one protein 

of the two-component system EnvZ/OmpR, known as an osmosensor complex in E. coli.  
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2.1. Summary  

 

In diazotrophic bacteria, the nifA gene encodes a regulatory protein that controls the 

expression of the nitrogenase operon nifHDK, among other genes. The aim of this work 

was to investigate the effect of overexpressing the nifA gene in the symbiosis between 

mesorhizobia and chickpea (Cicer arietinum L.). The Mesorhizobium sp. ST-2, V-15b, 

PMI-6 and UPM-Ca36T strains were transformed with plasmid pRKnifA (pRK415 with the 

nifA gene from M. mediterraneum UPM-Ca36T) and pRK415. The free-living phenotypes 

and symbiotic performance of the transformed strains were evaluated. The strains 

ST2pRKnifA, PMI6pRKnifA and Ca36pRKnifA did not show any improvement in the 

symbiotic effectiveness. On the other hand, plants inoculated with V15bpRKnifA showed 

a significantly higher shoot dry weight and consequently an improvement in the symbiotic 

effectiveness (about four times higher than V15bpRK415). Nodules from plants 

inoculated with V15bpRKnifA were larger and had a larger fixation zone and hydroponic 

assay showed that extra nifA copies in V-15 improved its ability to form nodules. In 

addition, the swimming ability was also improved in the strain V15bpRKnifA. Analyzes of 

root hairs of plants inoculated with V-15b, V15bpRK415 and V15bpRKnifA did not reveal 

any difference regarding colonization, curling or infection thread formation.  
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2.2. Introduction 

 

Despite its abundance in the atmosphere, nitrogen is one of the main limiting 

factors of global agricultural production (Hoffman et al. 2014). Some bacteria, such as 

rhizobia, are able to promote plant growth by fixing atmospheric nitrogen, while in 

symbiosis with leguminous plants as bacteroids, in the root nodules (Haag et al. 2013).  

Bacterial species of the genus Mesorhizobium are reported to fix atmospheric 

nitrogen when in symbiosis with several legumes species, some with high agronomic 

importance such as chickpea (Cicer arietinum L.), which is used for food and forage 

(Laranjo et al. 2014). For the establishment of an effective symbiosis two main classes 

of bacterial symbiosis genes are needed: nodulation and nitrogen fixation genes. Despite 

the fact that many studies have addressed these genes, there are few reports on the role 

of genes related to nodulation and nitrogen fixation in chickpea mesorhizobia.  

In bacteroids, the NifA regulon includes the operon nifHDK, which encode the 

nitrogenase complex (Novichkov et al. 2013). NifA is also required for transcription of 

fixABCX, nifN and nifB. Moreover, in bacteria such as Sinorhizobium meliloti, NifA 

controls other genes that are not directly involved in nitrogen fixation, but are related to 

competitiveness, nodulation efficiency, development of nodules and bacteroid 

persistence, such as nfe (nodule formation efficiency) and mos (rhizopine synthesis) 

(Fischer 1994). Further characterization of the NifA-RpoN regulon in Mesorhizobium loti 

R7A has revealed other genes under the control of this regulator, such as a porin-

encoding gene required for an effective symbiosis (Sullivan et al. 2013). In Rhizobium 

leguminosarum symbiotic nifA expression is under positive autoregulation by NifA and 

originates from a promoter (PnifA1) located 4.7 kb upstream of nifA (Martinez et al. 2004).  

The nitrogenase enzyme complex, formed by two protein units, the Iron - protein 

(encoded by nifH) and the Molybdenum-Iron-protein (encoded by nifD and nifK genes), 

is responsible for nitrogen fixation in the nodule (Hoffman et al. 2014). The limitation of 

oxygen is a key factor in the expression of nif and fix genes (Soupène et al. 1995), since 

the nitrogenase complex is irreversebly inactivated by O2. The fixL and fixJ genes encode 

a regulatory system in which the oxygen sensor FixL transfers phosphate to the response 

regulator FixJ. The phosphorylated FixJ positively controls the transcription of nifA and 

fixK in Sinorhizobium meliloti (Gilles-Gonzalez et al. 1991). On the other hand, FixK 

induces the expression of fixNOQP and negatively affects the expression of nifA (Batut 

et al. 1989).  

nifA mutants of Bradyrhizobium japonicum inoculated in soybean induced the 

formation of numerous nodules, although with reduced size and unable to fix nitrogen 

(Fischer et al. 1986). Gong et al. (2006) showed that S. meliloti nifA mutants induced a 
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different gene expression profile from wild-type strain in alfalfa nodules. Some of these 

genes are involved in signal communication, protein degradation, nutrient metabolism, 

cell growth and development. 

Several reports describe the use of additional copies of nifA in rhizobia, 

nevertheless these studies are limited to the Sinorhizobium genus. Initial studies on the 

nifA gene from Klebsiella pneumoniae showed that its overexpression in S. meliloti 

increased competitiveness on alfalfa plants (Sanjuan and Olivares 1991). However, a 

later study by van Dillewijn and co-workers (1998) showed that the expression of nifA 

from K. pneumoniae does not affect the S. meliloti competitiveness. On the other hand, 

a similar study in Sinorhizobium fredii reported that extra copies of the nifA gene of K. 

pneumoniae accelerated the nodulation and increased competitiveness on soybean 

(Jieping et al. 2002). A more recent study described that extra copies of the nifA gene in 

S. meliloti 1021 improved the nitrogen-fixing efficiency in Medicago sativa root nodules 

to a greater extent than that observed upon transfer of the Enterobacter cloacae nifA 

gene (Chengtao et al. 2004). Furthermore, Bosworth et al. (1994) performed field trials 

with alfalfa using S. meliloti modified with extra nifA and dctABD copies obtaining an 

increased alfalfa biomass by 12.9% compared with the yield achieved with the wild-type 

strain. 

The objective of this study was to evaluate the effect of overexpressing the nifA 

gene in the nodulation and symbiotic effectiveness (SE) of Mesorhizobium strains, 

namely to evaluate if a higher expression of this regulator gene could lead to an 

improvement of the symbiotic performance. Four Mesorhizobium strains able to nodulate 

chickpea were transformed with additional copies of the nifA gene from M. 

mediterraneum UPM-Ca36T, cloned in the expression vector pRK415.  

 

2.3. Material and Methods 

 

Bacterial strains and Growth Conditions 

 

The bacterial strains and plasmids used in this study are listed in table 1. Three 

chickpea mesorhizobia, isolated from Portuguese soils and previously characterized, 

were selected: V-15b-Viseu, PMI-6-Portimão and ST-2-Setúbal (Alexandre et al. 2009; 

Brígido et al. 2012a; Laranjo et al. 2008). In addition, the type strain of Mesorhizobium 

mediterraneum (strain UPM-Ca36) was also used (Nour et al. 1995). 

The mesorhizobia strains were routinely grown at 28º C in tryptone-yeast (TY) 

medium (Beringer 1974b). The growth medium for pRK415-transformed mesorhizobia 

strains was supplemented with tetracycline (15 μg.ml-1). The Escherichia coli DH5α and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Bosworth%20AH%5BAuthor%5D&cauthor=true&cauthor_uid=7986051
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MT616 strains were grown in Luria-Bertani (LB) medium (Sambrook and Russell 2001) 

at 37º C. For the E. coli strains containing pRK415, 15 μg.ml-1 of tetracycline was used, 

while for the strain MT616 with pRK600, the medium was supplemented with 25 μg.ml-1 

of chloramphenicol. 
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Table 1 Bacterial strains and plasmids used in this work 

Plasmids/Strains Characteristics Reference 

pRK600 pRK2013 npt::Tn9. Cmr (Finan et al. 1986) 

pRK415 Broad-host-range vector; Tcr (Keen et al. 1988) 

pRKnifA Plasmid pRK415 containing the nifA gene 

from M. mediterraneum UPM-Ca36T; Tcr 

This work 

pMRGFP Plasmid containing the gfp gene; Kmr (García-Fraile et al. 2012) 

E. coli   

MT616 Strain containing the helper plasmid 

pRK600 

(Finan et al. 1986)Finan et al 

1986 

DH5α Competent cells NZYTech 

Mesorhizobium   

V-15b Mesorhizobium sp. V-15b-Viseu isolated 

from chickpea root nodules 

(Alexandre et al. 2009) 

ST-2 Mesorhizobium sp. ST-2-Setubal 

isolated from chickpea root nodules 

(Alexandre et al. 2009) 

PMI-6 Mesorhizobium sp. PMI-6-Portimão 

isolated from chickpea root nodules 

(Portugal) 

(Alexandre et al. 2009) 

UPM-Ca36T Mesorhizobium  mediterraneum UPM-

Ca36T isolated from chickpea root nodules 

from Spain 

(Nour et al. 1995) 

V15bpRKnifA V-15b strain harboring pRKnifA This work 

ST2pRKnifA ST-2 strain harboring pRKnifA This work 

PMI6pRKnifA PMI-6 strain harboring pRKnifA This work 

Ca36pRKnifA UPM-Ca36T strain harboring pRKnifA This work 

V15bpRK415 V-15b strain harboring pRK415 This work 

ST2pRK415 ST-2 strain harboring pRK415 This work 

PMI6pRK415 PMI-6 strain harboring pRK415 This work 

Ca36pRK415 UPM-Ca36T strain harboring pRK415 This work 

V15bGFP V-15b strain harboring pMRGFP This work 

V15bpRKnifAGFP V-15b strain harboring pRKnifA and 

pMRGFP 

This work 

V15bpRK415GFP V-15b strain harboring pRK415 and 

pMRGFP 

This work 

 

 

Transforming the strains with the nifA gene 

 

The nifA gene from Mesorhizobium mediterraneum UPM-Ca36T (accession 

number KT285486) was obtained by PCR amplification. Strain UPM-Ca36T is the M. 

mediterraneum type strain that nodulates chickpea (Nour et al. 1995). The PCR was 

performed in 50 μl using 1 μL of DNA, 1× Buffer for KOD Hot Start DNA Polymerase, 0.2 

mM of each dNTP, 1.5 mM MgCl2, 15 pmol of each primer and 0.02 U of KOD Hot Start 

DNA Polymerase (Novagen). The primers used were nifAi-F (5’-

AAGCTTAATGGGCTGCCAAATGGAACG-3’) and nifA-R (5’-
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AAGCTTTCAGAGACGCTTGATCTCGA-3’). The amplification program was: 2 min at 95 

°C, 30 cycles of 20 s at 95 ºC, 10 s at 62 °C, and 21 s at 70 ºC. The obtained nifA 

fragment of 1050 bp was cloned in pCR-BluntTM vector (ThermoFisher Scientific), 

sequenced and subcloned in the expression vector pRK415, previously digested with 

HindIII.  

The four chickpea mesorhizobia strains were transformed by triparental mating 

with the plasmid pRK415 containing the exogenous nifA gene under the control of the 

lac promoter (pRKnifA). E. coli DH5α cells containing the plasmid pRKnifA were used as 

the donor, mesorhizobia isolates were the recipient and E. coli MT616 cells, with pRK600 

acted as helper, as described by Nascimento et al. (2012b). The pRKnifA-transformed 

strains were named V15bpRKnifA, ST2pRKnifA, PMI6pRKnifA and Ca36pRKnifA. The 

mesorhizobia strains were also transformed with pRK415 and named V15bpRK415, ST-

2pRK415, PMI6pRK415 and Ca36pRK415.  

In order to confirm the transformation of mesorhizobia cells with pRKnifA, total 

DNA was extracted according to Rivas et al. (2001) and used to amplify the region of the 

expression vector that includes the nifA gene. A DNA fragment of 1181 bp is expected 

using the universal primers M13F and M13R-pUC. The PCR reaction was performed in 

a final volume of 50 μL, using 5 μL of DNA, 1× reaction Green GoTaq® Flexi buffer, 0.2 

mM of each dNTP, 1.5 mM MgCl2, 15 pmol of each primer and 0.625U of GoTaq® G2 

Flexi DNA Polymerase (Promega). The amplification program was: 2 min of initial 

denaturation at 95 °C, 30 cycles of 60 s at 95 ºC, 45 s at 56 °C, 71 s at 72 ºC, and a final 

extension of 5 min at 72 ºC. 

Once the transformations were confirmed, strains harboring pRKnifA or pRK415 

were transformed with pMRGFP (containing the gfp gene) by triparental mating, as 

described above. These transformations were confirmed by fluorescence microscopy 

observations. 

 

 

Confirmation of exogenous nifA gene expression and analysis of nifH expression 

by semiquantitative RT-PCR 

 

In order to confirm the expression of the nifA gene cloned in pRK415 and to 

evaluate changes in the nifH expression, semiquantitative RT-PCR analyses were 

performed (Moscatiello et al. 2009). Total RNA of V-15b transformed strains 

(V15bpRKnifA and V15bpRK415) was extracted using the GeneJET™ RNA Purification 

Kit (ThermoFisher Scientific), from bacteria grown in TY at 28 ºC for 18 hours, with a final 

OD540 of 0.4 and from nodules of Cicer arietinum plants 21 days after inoculation. DNase 
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I (Roche Diagnostics) was used to eliminate DNA contamination, followed by RNA 

cleanup using GeneJET™ RNA Purification Kit. Approximately 500 ng of total RNA were 

subjected to reverse transcription for cDNA synthesis, using the Reverted first strand 

cDNA synthesis kit (ThermoFisher Scientific). The cDNA obtained was used for PCR 

amplification of nifA gene (primers nifA-F 5’- CGCTTTGAGGCTGCCGACAA-3’ and nifA-

R 5’- AAGCTTTCAGAGACGCTTGATCTCGA-3’), which generates a fragment of 759 

bp. The PCR reaction was performed in a final volume of 25 μL, using 4 μL of cDNA, 1× 

reaction Green GoTaq® Flexi buffer, 0.2 mM of each dNTP, 1.5 mM MgCl2, 15 pmol of 

each primer and 0.125U of GoTaq® G2 Flexi DNA Polymerase (Promega). The 

amplification program was: 2 min of initial denaturation at 95 °C, 30 cycles of 60 s at 95 

ºC, 45 s at 55 °C, 46 s at 72 ºC, and a final extension of 5 min at 72 ºC.  

For amplification of the nifH, PCR was performed in a final volume of 25 μL as 

described for nifA amplification. The primers used were NifHintFW (5’-

TCCACCACGTCCCAAAATAC-3’) and NifHintRv (5’-CTCTGTAGCCCACCTTGAGC-

3’). The amplification program was: 2 min of initial denaturation at 95 °C, 30 cycles of 60 

s at 95 ºC, 60 s at 56 °C, 12 s at 72 ºC, and a final extension of 5 min at 72 ºC. The 

reaction generates a fragment of 200 bp. 

The 16S rRNA gene amplification was used to normalize the relative nifA and 

nifH transcript abundance. The primers IntF and IntR (Laranjo et al 2004), were used to 

generate a fragment of 199 bp. The PCR reaction was performed in a volume of 25 μL, 

using 1 μL of cDNA, 1× reaction Green GoTaq® Flexi buffer, 0.2 mM of each dNTP, 1.5 

mM MgCl2, 15 pmol of each primer and 0.125U of GoTaq® G2 Flexi DNA Polymerase 

(Promega). The amplification program was: 2 min of initial denaturation at 95 °C, 20 

cycles of 60 s at 95 ºC, 60 s at 56 °C, 12 s at 72 ºC, and a final extension of 5 min at 72 

ºC.  

Positive controls using total DNA of V-15b strain as template and negative 

controls without reverse transcriptase enzyme were performed. Densitometric analysis 

of ethidium bromide–stained agarose gels was performed using Kodak Digital Science 

1D version 2.0.3 (Eastman Kodak Company).  
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Evaluation of symbiotic performance 

 

In order to evaluate if the presence of the additional nifA gene improved the 

symbiotic performance of the mesorhizobia strains, a plant growth trial under controlled 

conditions was performed using chickpea plants grown in pots and inoculated with both 

the wild-type and the transformed strains. Chickpea seeds were surface-sterilized and 

pre-germinated as previously described. After germination, the seedlings were 

transferred to plastic pots filled with sterile vermiculite and inoculated (Alexandre et al. 

2009). 

The rhizobia strains were grown in TY liquid medium at 28° C for 72 h. Cell culture 

was centrifuged at 10.000 × g, resuspended in fresh TY liquid medium to an OD540 of 1.0 

and 1 ml of this bacterial suspension was used to inoculate each seedling. Five replicates 

were used for each treatment. A nitrogen-free nutrient solution (Broughton and Dilworth 

1971) was applied three times a week. Uninoculated plants were used as negative 

control and plants watered with N-supplemented nutrient solution were used as positive 

control. Plants were grown in a growth chamber under a 16 h-light and 8 h-dark cycle 

and 24° C-day and 18° C-night temperature at a relative humidity of 65%. After 8 weeks 

the plants were harvested and several parameters were measured, namely shoot dry 

weight (SDW), root dry weight (RDW), number of nodules (NN), average weight per 

nodule (AWN). Symbiotic effectiveness (SE) was calculated using the following formula 

(Gibson 1987): 

SE = (SDW inoculated plants - SDW negative control plants) / (SDW positive 

control plants - SDW negative control plants). 

Statistical analysis included analysis of variance and the data were compared by 

one-way ANOVA and the Duncan's Multiple Range Test (P < 0,05), using SPSS statistics 

V.21 (SPSS Inc). 

Based on the results obtained in the symbiotic performance evaluation, 

mesorhizobia strain V-15b and its derivates were selected to be used for further 

analyses. 

 

Growth curves 

 

 Triplicates of wild-type strain V-15b as well as its corresponding transformed 

strains with pRK415 and pRKnifA were cultured in 5 mL of TY medium (supplemented 

with 15 μg.ml-1 tetracycline in the case of strains carrying plasmids pRK415 and pRKnifA) 

during 142 h. The optical densities at 540 nm (O.D. 540) were measured every 24 hours, 

in order to generate the corresponding growth curves.  
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Motility assay 

 

 To compare the swimming ability between the wild-type (V-15b) and transformed 

strains (V15bpRK415, V15bpRKnifA), a motility assay was performed in TY plates 

containing 0.25% agar (Rouws et al. 2008). An aliquot of 10 μl of cell suspension (O.D. 

540 of 0.1) was inoculated in the center of the Petri dishes and after 20 days of incubation 

at 28º C the diameter of the halo formed was measured. 

 

Evaluation of Nodulation Kinetics  

 

The nodulation kinetics were evaluated through a hydroponic assay using 

chickpea plants inoculated with V15bpRK415 and V15bpRKnifA (OD 540 nm of 0.6). The 

procedures were conducted as previously described in Brígido et al.  (2012b). Eight 

seeds per treatment were used and the number of nodules was evaluated every three 

days during 33 days. Plants were kept on a growth chamber under the same conditions 

describe above for the evaluation of symbiotic performance. 

 

Histological analysis of nodules  

 

Nodules were excised from 7-week-old chickpea plants and processed for 

sectioning and histological observation by bright field microscopy. Briefly, nodules were 

fixed in a 4% formaldehyde solution, dehydrated in an increasing ethanol series and 

embedded in paraffin. Cross-sections of embedded nodules (2 μm) were stained with 

0.1% Toluidine Blue solution. Histological sections of nodules were examined under a 

Nikon SMZ800 stereomicroscope and Nikon Eclipse 80i microscope. 

 

Analysis of rhizobia infection process  

 

Pre-germinated chickpea seeds were inoculated with GFP-tagged (single 

infection) mesorhizobia strains, as described by Robledo et al. (2011). Chickpea roots 

and root hairs were stained with 10 μM propidium iodide (Sigma-Aldrich) (Flores-Félix et 

al. 2015). Projections were made from adjusted individual channels and accumulating 

stacks using Leica software. The analysis of root hairs 3 to 7 days after inoculation were 

performed using a Confocal Laser Scanning Microscope (Leica TCS SPE) equipped with 

solid-state laser, allowing visualization of GFP (488 nm), RFP and propidium iodide (532 

nm) fluorescence. 
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2.4. Results  

Confirmation of nifA overexpression and evaluation of nifH expression 

NifA is a positive regulator of genes involved in nitrogen fixation, namely genes 

encoding the nitrogenase complex, the nifHDK operon. In order to confirm that the nifA 

transcript was more abundant in the V15bpRKnifA than in theV15bpRK415 strain as well 

as to evaluate if the expression of the gene nifH was higher in the former strain due to 

the higher NifA amounts, a semiquantitative analysis of these genes expression was 

performed by RT-PCR. The results presented in Fig. 1A show that the nifA expression 

levels in free-living V15bpRKnifA cells are approximately four fold higher than in the 

V15bpRK415 cells. The expression of the same gene was also evaluated in bacteroids 

(21 days after inoculation) and the transcript levels in V15bpRKnifA were approximately 

three fold higher than in V15bpRK415 bacteroids (Fig. 1B). 

To evaluate if higher levels of nifA transcript lead to higher NifA amounts and 

consequently to higher transcript levels of the NifA regulon genes, the expression levels 

of the nifH gene were evaluated in bacteroids. The results show that in V15bpRKnifA 

bacteroids the expression of nifH is approximately two fold higher than in V15bpRK415 

bacteroids (Fig. 1B). 

 

Figure 1. Analysis of nifA and nifH expression by semiquantitative RT-PCR in 

V15bpRK415 and V15bpRnifA strains. A - nifA gene expression in free-living cells and 

B - nifA and nifH genes expression in bacteroids. 1 - V15bpRK415 and 2 - V15bpRKnifA 

strains.  

 

 

Evaluation of the symbiotic performance 

 

 In order to evaluate the effect of the extra nifA copies in the symbiotic 

performance of the transformed strains, several plant parameters were evaluated in a 
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plant growth assay. The Number of Nodules (NN), Root Dry Weight (RDW), Shoot Dry 

Weight (SDW) as well as Symbiotic Effectiveness (SE) were determined using inoculated 

chickpea plants grown in pots under controlled conditions. 

No nodules were found in the roots of plants used as positive control (non-

inoculated plants supplemented with nitrogen) and negative control (non-inoculated 

plants with no nitrogen source). 

Although there were no significant differences in the number of nodules obtained 

with the three V-15b strains (Table 2), the AWN from plants inoculated with V15bpRKnifA 

was about three times higher than those inoculated with V15b or V15bpRK415.  

In terms of plant growth, the results show that chickpea plants inoculated with 

V15bpRKnifA have a higher shoot dry weight compared to plants inoculated with 

V15bpRK415 (Table 2). The SDW data were used to calculate the SE, which was 

significantly increased by the overexpression of the nifA gene (Table 2). Although the 

increase in SDW, and consequently in SE, of the strain V15bpRKnifA is not statistically 

significant when compared to the wild type strain, the SE of strain V15bpRKnifA is about 

4 times higher than the SE of strain V15bpRK415. No significant differences were 

obtained between the root dry weight of the plants inoculated with the three strains (Table 

2).  

With the exception of the number of nodules that was higher in plants inoculated 

with PMI6pRKnifA, none of the other parameters were improved when plants were 

inoculated with PMI6pRKnifA, ST2pRKnifA and Ca36pRKnifA compared with their 

respective strains harboring the pRK415 (Table 2). Therefore, only V-15b and its 

transformed strains were used for the following assays. 
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Table 2. Results obtained from pot assays of chickpea plants inoculated with wild type 

or transformed strains. 

Strain SDW (g) RDW (g) NN AWN (mg) SE (%) 

V-15b 0,507 + 0,269 ab 0,306 + 0,169 a 101 + 56 a 0,659 + 0,291 b  15,98 + 18,5 ab 

V15bpRK415 0,385 + 0,151 b 0,274 + 0,143 a 117 + 51 a 0,576 + 0,732 b 7,60 + 10,3 b 

V15bpRKnifA 0,716 + 0,214 a 0,362 + 0,134 a 76 + 22 a 1,684 + 0,052 a 30,33 + 14,7 a 

PMI-6 1,349 + 0,389 a 0,636 + 0,232 a 42 + 21 b 4,470 + 1,647 ab 40,87 + 14,3 a 

PMI6pRK415 1,511 + 0,279 a 0,608 + 0,080 a 33 + 5 b 6,459 + 1,435 a 46,84 + 10,3 a 

PMI6pRKnifA 1,675 + 0,281 a 0,730 + 0,260 a 72 + 15 a 2,912 + 1,664 b 52,88 + 10,4 a 

UPM-Ca36T 1,592 + 0,266 a 0,784 + 0,113 a 52 + 16 a 4,335 + 1,060 a 49,84 + 9,8 a 

Ca36pRK415 1,514 + 0,200 a 0,766 + 0,174 a 47 + 18 a 6,855 + 2,398 a 46,94 + 7,4 a 

Ca36pRKnifA 1,571 + 0,391 a 0,703 + 0,201 a 60 + 22 a 5,659 + 3,339 a 49,03 + 14,4 a 

ST-2 1,427 + 0,442 a 0,833 + 0,191 a 48 + 14 a 3,799 + 1,355 a 43,73 + 16,2 a 

ST2pRK415 1,336 + 0,211 a 0,850 + 0,162 a 41 + 8 a 3,591 + 1,175 a 40,38 + 7,8 a 

ST2pRKnifA 1,641 + 0,261 a 0,912 + 0,243 a 57 + 13 a 4,253 + 0,302 a 51,61 + 9,6 a 

Different letters in the same group of strains indicate statistically significant differences (P<0,05). SDW - 

Shoot Dry Weight; RDW - Root Dry Weight; NN - Number of Nodules; AWN - Average Weight per Nodule; 

SE - Symbiotic Effectiveness 

 

 

Growth curves 

 

In order to characterize the growth kinetics, V15b, V15bpRK415 and 

V15bpRKnifA strains were grown in TY medium. A higher growth rate of the wild-type 

was obtained particularly in the exponential phase, compared to the transformed strains 

(Fig. 2A). This is probably due to the energy required for the replication of plasmids 

pRK415 and pRKnifA. The growth curves of the three V-15b strains are different, with 

the wild-type growing faster and the V15bpRKnifA growing slower. 
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Figure 2. Growth curves in TY of V-15b, V15bpRK415 and V15bpRKnifA strains. Bars 

represent standard deviation. 

 

 

Motility assay 

 

The motility can affect the infection ability of rhizobia (Caetano-Anollés et al 1988; 

Gay-Fraret et al 2012). In order to test the influence of extra copies of nifA in the 

swimming ability, motility assays were performed using the wild-type and transformed 

strains of V-15b. 

The strain V15bpRKnifA displayed a halo with a radius slightly larger than the 

wild type and larger than V15bpRK415 at 20 days after inoculation, indicating a faster 

swimming ability of the strain with extra nifA copies. These results suggest that the 

expression vector alone affects the swimming ability (Fig. 3). 

 

 

Figure 3. Swimming ability of A - V-15b, B - V15bpRK415 and C - V15bpRKnifA strains 

in TY culture medium containing 0.25% agar. The strains were grown at 28 ºC for 20 

days.      

 

 

Kinetics of nodulation 

In order to evaluate the effect of additional nifA copies in the kinetics of nodulation 

of chickpea plants, a hydroponic assay was conducted and the number of nodules was 

monitored for 35 days post inoculation (dpi).  

An initial delay of, at least, two days was observed in the formation of the first 

nodules by V15bpRK415 compared to V15bpRKnifA inoculation (Fig. 4). In addition, the 

plants inoculated with V15bpRKnifA showed a higher number of nodules throughout the 
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hydroponic trial. At 34 dpi the highest difference was observed in the number of nodules 

between plants inoculated with the V15bpRKnifA strain and those inoculated with 

V15bpRK415. These results suggest that the presence of extra copies of the nifA gene 

improve the nodulation efficiency of strain V-15b and that this gene is involved in the 

chickpea nodulation process.  

 

Figure 4. Nodulation kinetics of chickpea plants. Average number of nodules for plants 

inoculated with V15bpRK415 and V15bpRKnifA strains. Bars represent standard error. 

 

Histological analysis of nodules 

 

Although nodule number was not significantly different among the three 

treatments in the pot trial performed to evaluate the symbiotic effectiveness, the average 

weight per nodule from V15bpRKnifA inoculated plants is higher than in the V-15b and 

V15bpRK415 inoculated plants. In order to determine if there is an alteration of the inner 

nodule morphology, a histological analysis of the nodules cross-sections was performed. 

Histological sections of nodules collected seven weeks after inoculation (Fig. 5) 

showed that V-15b, V15bpRK415 and V15bpRKnifA formed indeterminate nodules in 

which nodule zones I, II, III and IV (Vasse et al. 1990) were well-defined (Fig. 5A, E, I). 

Nodules from V15bpRKnifA treatment showed a more developed fixation zone (Fig. 5I) 

than V-15b and V15bpRK415 nodules (Fig. 5A, E). Higher magnification of infection (Fig. 

5C, G, K) and fixation (Fig. 5D, H, L) zones confirms that there are no structural 

differences in these zones, showing typical infection threads (IT) ends and cells 

containing bacteroids, respectively. However, it is noticeable that the fixation zone in 

V15bpRKnifA nodules occupies a larger area of the nodule than in V-15b and 

V15bpRK415 nodules. It is remarkable the presence of an extra zone in nodules from 
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V15bpRK415 and V15bpRKnifA treatments, which harbour some similarities with the 

infection zones (Fig. 5F, J). This extra zone is not present in the V-15b induced nodules 

(Fig 5B).  

 

 

Figure 5. Histological sections of nodules from chickpea plants inoculated with chickpea 

mesorhizobia V-15b and its derivatives (V15bpRK415 and V15bpRKnifA). Structures of 

whole nodules induced by A - V-15b, E - V15bpRK415 and I - V15bpRKnifA strains. 

Panels B, F and J showed the area marked with squares in the panels A, E and I, 

respectively, showing the fixation zone on a higher magnification. Infection zone are 

showed in panels C, G, K and the fixation zone in panels D, H, L with a higher 

magnification. Scale bars are 1mm (A, E and I); 500 μm (B, F and J); 16 μm (C, G, K, D, 

H and L).  
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Colonization and infection thread   

 

In order to determine if the overexpression of the nifA gene may be inducing 

changes in the mesorhizobia-chickpea infection process, in vitro infection assays were 

performed.  

Mesorhizobial infection process was analysed on roots of chickpea seedlings 

during the early steps of the interaction (4-7 dpi). V15bGFP, V15bpRK415GFP and 

V15bpRKnifAGFP were able to effectively colonize and infect chickpea roots and root 

hairs, showing typical caps, curlings and infection threads.  

No clear differences in the structures or levels of infection threads formation were 

found among V15bGFP, V15bpRK415GFP and V15bpRKnifAGFP inoculated plants. As 

an example, Fig. 6 shows chickpea root hairs colonized by V15bpRKnifAGFP. 

 

 

Figure 6. Confocal laser scanning micrograph showing the colonization of chickpea root 

hairs inoculated with green fluorescent protein–tagged strain V15pRKnifAGFP. Scale 

bar: 25 µm 

 

2.5. Discussion 

 

In the present work, four Mesorhizobium strains able to nodulate chickpea were 

transformed with the nifA gene from M. mediterraneum UPM-Ca36T, cloned in the 

expression vector pRK415. The aim was to evaluate the effects of extra nifA copies in 

the symbiotic performance of these strains, namely a potential improvement of their SE.  
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The strains UPM-Ca36T, PMI-6 and ST-2 transformed with extra nifA copies did 

not show any improvement in the SE. On the other hand, V15bpRKnifA showed a 

significant increase of SE, compared to the V15bpRK415 strain. In addition, the pot 

assay revealed a higher AWN with V15bpRKnifA inoculation, indicating that the extra 

nifA copies contributed to the development of larger nodules. Thus, the NifA protein 

appears to influence the size and weight of nodules, probably acting as a regulator of 

genes involved in nodule development. Larger functional nodules probably contributed 

to the increase of the symbiotic effectiveness. These results agree with other studies 

suggesting that NifA influences the number and size of the nodules. For example, 

nodulation assays with Bradyrhizobium japonicum showing that nifA mutant strains 

induce about two times more nodules than the wild-type strain, but the dry weight per 

nodule was about four times smaller and these nodules were Fix- (Fischer et al. 1986). 

Similarly, Sanjuan et al. (1989) reported that S. meliloti nifA mutants can produce 

numerous, but small and white root nodules. It was reported that in a S. meliloti nifA 

mutant four nodulation-specific genes (nodH, nodL, nolF and noeB) were down-

regulated in 30-day nodules (Gong et al. 2006). 

Histological analysis of nodules collected seven weeks after inoculation showed 

that V-15b, V15bpRK415 and V15bpRKnifA formed indeterminate nodules with the 

expected zones, however the fixation zone observed in nodules from plants inoculated 

with V15bpRKnifA was larger than that observed in nodules from plants inoculated with 

V-15b and V15bpRK415. These results confirm that, in addition to the contribution of nifA 

to the AWN increase, it also contributed to increase of the fixation zone of these nodules, 

which is directly related with the amount of N fixed. 

The pot assay showed that the NN was not significantly different between the two 

transformed strains. Nevertheless, a hydroponic assay was conducted to evaluate the 

nodulation kinetics. Overall, the results from this assay suggest that the presence of the 

extra copies of nifA in V-15b increases the rate of nodules formation. Particularly at the 

end of the assay, V15bpRKnifA showed a significantly higher number of nodules 

compared to both wild-type and V15bpRK415 strains. Similar results were previously 

obtained with S. fredii using extra-copies of nifA from K. pneumoniae that resulted in an 

increase in the nodulation activity and nodulation competitiveness on soybean plants 

(Jieping et al. 2002). Furthermore, Sanjuan and Olivares (1991) reported that multicopy 

plasmids carrying the K. pneumoniae nifA gene enhanced S. meliloti nodulation 

competitiveness on alfalfa. The distinct results obtained in the number of nodules, when 

the pot trial is compared to the hydroponic assay, is probably due to the different duration 

of the two trials. The higher number of nodules induced by the inoculation of the 
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V15bpRKnifA is probably transient and since in the pot trial the number of nodules is 

only evaluated 7 weeks after inoculation, this difference no longer exists. 

The RT-PCR analyses indicate that the introduced nifA gene is transcribed. The 

extra nifA copies were confirmed to be expressed in both free-living and in the bacteroids 

of V15bpRKnifA. Thus, a higher amount of functional NifA protein is expected to be 

produced and consequently an upregulation of the nif, fix and other genes from the NifA 

regulon are likely to occur in this strain (Novichkov et al. 2013). Indeed, two fold higher 

expression levels of nifH were detected by RT-PCR in the bacteroids produced by 

V15bpRKnifA strain, compared with those found in V15bPRK415 bacteroids. The higher 

expression of nif as well as fix genes most probably contributed to the higher SE obtained 

with strain V15bpRKnifA. On the other hand, the nodulation kinetic assays suggest that 

additional nifA copies can increase the nodulation ability of chickpea rhizobia. It is likely 

that the higher amount of NifA regulator also induces higher expression of other genes 

involved in nodule development, bacteroids persistence or competitiveness, such as nfe 

(nodule formation efficiency) and mos (rhizopine synthesis) described in S.meliloti and 

groESL3 reported in B. japonicum (Fischer 1994). 

Since the extra nifA copies are constitutively expressed from the Plac promoter, 

we could expect that the difference between the expression levels in V15bpRKnifA and 

V15bpRK415 is higher in the free-living conditions than in the bacteroids. This is due to 

the endogenous nifA gene whose expression is higher in the microaerobic conditions 

found in the nodules than in free-living cells (Terpolilli et al. 2012). Indeed, in 

V15bpRKnifA free-living cells, the nifA transcript levels were four fold higher than those 

detected in V15bpRK415 cells, while in V15bpRKnifA bacteroids the expression levels 

were three fold the levels detected in V15bpRK415 bacteroids.  

Growth curves were performed to characterize the growth kinetics of V-15b and 

its transformed strains. The strain V15bpRKnifA and V15bpRK415 show a slower growth 

than the wild type strain, probably due to the presence of the large plasmids pRKnifA 

and pRK415, respectively.  

The ability to move in semi-solid culture media can be an indication of the 

infection efficiency of plant-interacting bacteria (Rouws et al. 2008). Motility assays with 

S. meliloti nifA mutants showed that disruption of the gene affected the swimming ability 

(Gong et al. 2007). Based on this study, we could expect that extra nifA copies could 

improve the motility of rhizobia. Indeed, V-15b strain transformed with pRKnifA had an 

improvement in its mobility compared with the wild type and V15bpRK415 strains. This 

higher motility could have contributed to improve the ability of this strain to colonize the 

roots and infect the root hair of inoculated plants, contributing to improve the rate of 

nodules formation. 
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In order to investigate in more detail the early steps of the infection process, the 

modified strains, as well as the wild type V-15b were transformed with fluorescent 

proteins (gfp) genes, inoculated in pre-germinated chickpea seeds and observed under 

confocal microscopy (4-7 dpi). V-15b, V15bpRK415 and V15bpRKnifA were able to 

effectively colonize and infect chickpea roots and root hairs and show typical caps, 

curlings and infection threads and no clear differences among these strains were 

observed in the early infection process.  

In spite of the negative effects due to the presence of the plasmid pRK415 per se 

in the mesorhizobia strains (lower growth rate), the overall effects of plasmid pRKnifA in 

the symbiosis phenotype indicate that the extra nifA copies are able to overcome those 

negative effects, since the strain V15bPRKnifA has a higher symbiotic performance 

compared to the V15bpRK415 strain.  

Future assays in field conditions can provide further information on the benefits 

of extra nifA copies in rhizobia inoculants. Previous field studies with a S. meliloti 

recombinant strain, which had an additional copy of both nifA and dctABD, showed an 

increase in alfalfa biomass by 12.9% compared with the yield obtained with the wild-type 

strain (lBosworth et al. 1994). 

Additional studies are required to understand the NifA precise role in the 

regulation of other genes involved in nitrogen fixation and nodulation. Nevertheless, the 

present study clearly indicates that the nifA overexpression in Mesorhizobium is able to 

benefit the host plant, significantly contributing to improve the symbiotic effectiveness. 

Therefore, the development of rhizobia strains with increased production of the NifA 

regulator seems a promising strategy to production of inocula for agronomic purposes. 

Future studies may involve the integration of an extra nifA copy in the genome of a 

chickpea Mesorhizobium strain to avoid the above mentioned negative effects of the 

expression vector. 
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symbiotic effectiveness and the rate of 
nodulation of mesorhizobia strains 
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3.1. Summary  

 

In rhizobia, NodD protein plays an important role in the regulation of genes directly 

involved in the nodules formation. This protein interacts with flavonoids released by 

legume plants and this complex triggers the Nod factors synthesis. Nod factors are 

responsible for many changes of the symbiosis process such as, root hair curl, infection 

thread formation, induction of cell division and gene expression in the root cortex and 

pericycle, nodule development and the number of nodules. This study evaluates the 

effects in the symbiotic performance of three mesorhizobia strains (V-15b, PMI-6 and 

ST-2) overexpressing extra nodD copies. Plants inoculated with V15bpRKnodD showed 

a higher number of nodules compared with those inoculated with V15bpRK415. Plants 

inoculated with PMI6pRKnodD and ST2pRKnodD showed an improvement in the shoot 

dry weight and symbiotic effectiveness. Besides that, extra nodD copies seem to have 

caused an increase in the average weight per nodule in plants inoculated with 

ST2pRKnodD. A hydroponic assay was performed to evaluate the nodulation kinetics of 

plants inoculated with PMI6pRKnodD and ST2pRKnodD, compared to the 

corresponding strains harboring the pRK415. Both strains overexpressing nodD were 

highly efficient in nodules formation showing more nodules during the whole time of the 

assay. Moreover, PMI6pRKnodD induced the first nodules three days sooner than 

PMI6pRK415. To evaluate nodule histology, stained sections of several nodules were 

observed by microscopy. This analysis showed no differences between nodules formed 

by plants inoculated with ST2pRKnodD and those inoculated with ST2pRK415. Nodules 

formed by plants inoculated with PMI6pRKnodD, did not show the senescent zone than 

those inoculated with PMI6pRK415. Colonization and infection assays showed that the 

number of infection threads and bacteria on the root surface were higher in plants 

inoculated with strains harboring extra nodD copies. These results indicate that 

overexpressing nodD may be a powerful tool to achieve the improvement of 

mesorhizobia that may be used as inoculant in the future.  
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3.2. Introduction  

 Rhizobia can form endosymbiotic associations with legume plants. In this 

process, rhizobia reduce atmospheric dinitrogen into ammonium that becomes available 

to host plants. In exchange, legumes release photosynthesis products that are used as 

a source of energy by the microsymbionts (Oldroyd 2013). Biological nitrogen fixation is 

a very important process because it allows the reduction of the use of nitrogen fertilizers 

that have a high financial cost and may pollute the environment (Garg and Geetanjali 

2007; Glick 2015; Laranjo et al. 2014).  

The symbiosis between rhizobial bacteria and host plants is basically divided into 

two important steps: nodulation and nitrogen fixation. Before nodulation, a complex 

molecular “dialog” between legume and rhizobium takes place in the rhizosphere 

allowing the symbionts to recognize each other (Janczarek et al. 2015; Oldroyd 2013). 

Many compounds are exudated by legumes during the interaction with the 

microorganism, among them flavonoids are the most important, acting as 

chemoattractants to rhizobia (Cooper 2004; Cooper 2007b; Garg and Geetanjali 2007; 

Janczarek et al. 2015). An important aspect regarding  flavonoids is their interactions 

with the constitutively expressed NodD, a regulator of other rhizobial nodulation genes 

(e.g. nodABC) (Cooper 2004). The combination of these two compounds triggers the 

synthesis of specific reverse signal molecules by rhizobia called 

lipochitooligosaccharides (LCOs) or Nod factors. Nod factors are responsible for many 

advances of the symbiosis process such as, root hair curling, infection thread formation, 

induction of cell division and gene expression in the root cortex and pericycle and nodule 

development (Garg and Geetanjali 2007; Laranjo et al. 2014; Oldroyd 2013; van Brussel 

et al. 2002). In addition, it was reported that an extract containing rhizobial Nod factors 

increased the number of nodules in plants (Kidaj et al. 2012; Macchiavelli and Brelles-

Marino 2004; Maj et al. 2009; Podleśny et al. 2014) 

 NodD, encoded by the nodD gene, is associated to the membrane in several 

species (Schell 1993). This protein belongs to the LysR family transcriptor regulators and 

beyond being responsible for the activation of the main nodulation genes, it also may 

regulate, directly or indirectly, additional important symbiotic features such as 

polysaccharide production, phytohormone synthesis, motility, quorum-sensing, 

activation of the type III and IV secretion systems (del Cerro et al. 2015; Hubber et al. 

2007; Krause et al. 2002; Lopez-Baena et al. 2008; Pérez-Montaño et al. 2014; Theunis 

et al. 2004). 

 It was found through genomic studies that the number of copies of nodD in 

rhizobia may differ among species, varying between one to five copies, and moreover, 
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the properties of different NodD and their flavonoid preferences in the same strain may 

also vary (Broughton et al. 2000; del Cerro et al. 2015; Schlaman et al. 1998). nodD 

mutation in strains with only one copy frequently suppresses the nodulation (Nod-) (e.g. 

Rhizobium leguminosarum bv. trifolli) (Broughton et al. 2000). On the other hand, when 

nodD gene is mutated in strains carrying more than one copy, the nodulation suppression 

may or may not happen. For example, in Sinorhizobium freddi NGR234 the inactivation 

of nodD1 is sufficient to abolish nodulation, whereas in Sinorhizobium meliloti the 

mutation in three copies is needed to cause Nod- (Broughton et al. 2000; Honma and 

Ausubel 1987; Hungria et al. 1992). In Rhizobium tropici CIAT 899 the two nodD copies 

are needed to full nodulation of common bean (del Cerro et al. 2015). Machado and 

Krishnan (2003) showed that a nodD1 mutant of Sinorhizobium freddi USDA 191 was 

unable to nodulate soybean and the inactivation of nodD2 or addition of extra copies of 

nodD1 or nodD2 caused delayed nodulation and reduced the number of nodules.  

 The genus Mesorhizobium includes rhizobacteria that can associate with 

important legumes, such as chickpea (Cicer arietinum L.) and biserrula (Biserrula 

pelecinus L.) (Laranjo et al. 2014). Several studies have shown that Mesorhizobium 

strains associated with chickpea plants are diverse in symbiotic effectiveness (Alexandre 

et al. 2009; Laranjo et al. 2008; Laranjo et al. 2004; Rivas et al. 2007) and stress 

tolerance (Alexandre and Oliveira 2011; Brígido et al. 2012a; Brígido and Oliveira 2013). 

As in other rhizobia, the nodulation in mesorhizobia strains is controlled by NodD and 

some studies show that mutations in nod genes regulated by this protein caused diverse 

phenotypes in the host plant (Rodpothong et al. 2009). For example, nodZ and nolL 

mutants in Mesorhizobium loti R7A formed uninfected nodule primordia on Lotus filicaulis 

and Lotus corniculatus and effective nodules with a delayed nodulation on Lotus 

japonicus, and showed a reduction in infection threads formation, while double mutation 

of nodS and nolO did not affect the nodulation. Regarding nodD genes, nodD2 mutants 

did not affect the nodulation on the host plants tested, however nodD1 delayed the 

formation of nodules on Lotus japonicus and Lotus corniculatus and was unable to 

nodulate Leucaena leucocephala (Hubber et al. 2007; Rodpothong et al. 2009). Double 

mutant on nodD1 and nodD2 completely abolished nodulation, indicating that they are 

complementary in M. loti (Rodpothong et al. 2009).  

Previous studies performed with modified Mesorhizobium strains overexpressing 

varied genes could improve the number of nodules or accelerate de nodulation process 

in chickpea (Brigido et al. 2013; da-Silva 2017; Nascimento et al. 2012b; Nascimento et 

al. 2012a; Paço et al. 2016). However, the effects of overexpression of the nodD gene 

in mesorhizobia were never analyzed. Therefore, the aim of this study is to evaluate the 
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symbiotic performance of chickpea Mesorhizobium strains transformed with extra nodD 

copies. 

  

3.3. Material and Methods 

 

Bacterial strains and growth conditions 

 

Bacterial strains and plasmids used are listed in Table 1. Three previously 

characterized chickpea mesorhizobia strains isolated form Portuguese soils were used: 

V-15b-Viseu, ST-2-Setúbal, PMI-6-Portimão (Alexandre et al. 2009; Brígido et al. 2012a; 

Laranjo et al. 2008). These strains have only one copy of the gene nodD (Eliziário 2015). 

The mesorhizobia strains were grown in Tryptone-yeast (TY) medium at 28°C 

(Beringer 1974b) and tetracycline (15 μg.ml-1) was added into the medium for pRK415-

transformed strains. Kanamycin (50 μg.ml-1) and gentamycin (15 μg.ml-1) were added to 

TY medium for bacteria transformed with pMRGFP and pMP4661, respectively. 

Escherichia coli DH5α harboring pRK415 and MT616 (harboring pRK600) strains were 

grown in Luria-Bertani (LB) medium (Sambrook and Russell 2001) supplemented with 

15 μg.ml-1 of tetracycline and 25 μg.ml-1 of chloramphenicol, respectively.  
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Table 1 Bacterial strains and plasmids used in this work. 
Plasmids/Strains Characteristics Reference 

pRK600 pRK2013 npt::Tn9. Cmr (Finan et al. 1986) 

pRK415 Broad host-range vector; Tcr (Keen et al. 1988) 

pRKnodD Plasmid pRK415 containing the nodD gene 

from M. mediterraneum UPM-Ca36T; Tcr 

(Eliziário 2015) 

pMRGFP Plasmid containing the gfp gene; Kmr (García-Fraile et al. 

2012) 

pMP4661 Plasmid containing the rfp gene; Gmr (Bloemberg et al. 

2000) 

E. coli   

MT616 Strain harboring the helper plasmid pRK600 (Finan et al. 1986) 

DH5α Competent cells NZYTech 

Mesorhizobium   

V-15b Mesorhizobium sp. V-15b-Viseu isolated from 

chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

ST-2 Mesorhizobium sp. ST-2-Setubal 

isolated from chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

PMI-6 Mesorhizobium sp. PMI-6-Portimão isolated 

from chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

UPM-Ca36T Mesorhizobium  mediterraneum UPM-Ca36T 

isolated from chickpea root nodules from Spain 

(Nour et al. 1995) 

V15bpRKnodD V-15b strain harboring pRKnodD (Eliziário 2015) 

ST2 pRKnodD ST-2 strain harboring pRKnodD (Eliziário 2015) 

PMI6pRKnodD PMI-6 strain harboring pRKnodD (Eliziário 2015) 

PMI6pRKnodDGFP PMI-6 strain harboring pRKnodD and 

pMRGFP 

This work 

ST2pRKnodDGFP ST-2 strain harboring pRKnodD and pMRGFP This work 

V15bpRK415 V-15b strain harboring pRK415 This work 

ST2pRK415 ST-2 strain harboring pRK415 This work 

PMI6pRK415 PMI-6 strain harboring pRK415 This work 

PMI6pRK415GFP PMI-6 strain harboring pRK415 and pMRGFP This work 

PMI6pRK415RFP PMI-6 strain harboring pRK415 and pMP4661 This work 

ST2pRK415GFP ST-2 strain harboring pRK415 and pMRGFP This work 

ST2pRK415RFP ST-2 strain harboring pRK415 and pMP4661 This work 

 

Transforming the strains with the nodD gene 

 

As mentioned in Table 1, strains V15bpRKnodD, ST2pRKnodD and 

PMI6pRKnodD strains were constructed in a previous work (Eliziário, 2015), according 

to the following procedures. The nodD gene sequence used in this study was amplified 

from Mesorhizobium mediterraneum UPM-Ca36T strain. The PCR reaction was prepared 

in 50 μl, with 1 μl of template DNA, 1 U of Taq polymerase (Fermentas), 1X buffer, 5 mM 

MgCl2, 0.2 mM dNTP's and 30 pmol of each primer: nodD-CMG6-F-PstI (5’ - 

CTGCAGTAT GCGTTTCAAAGGACTTG - 3’) and nod-CMG6-R (5’ - 

GCATGCTCACAGCGG GGCAGCCAT CC - 3’). The amplification program used was as 

follows: 2 minutes at 95°C in the initial denaturation stage, followed by 30 cycles of 20 
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sec denaturation at 95°C, 10 sec hybridization at 58°C and 1 min extension at 70 ° C, 

ending with a 5 min final extension at 70 ° C. 

V15bpRKnodD, ST2pRKnodD and PMI6pRKnodD strains (Eliziário 2015) were 

generated by triparental mating with their respective wild type, E. coli DH5α cells 

containing the pRKnodD plasmid and E. coli MT616 cells with pRK600 acting as helper, 

as described by Nascimento et al. (2012a). The exogenous nodD gene is under the 

control of the lac promoter. The wild type mesorhizobia strains were also transformed 

with pRK415.  

Previous work shows that the expression vector pRK415 allows the expression 

of the cloned gene under both free-living and symbiosis conditions (chapter 2). 

In order to evaluate the infection process, transformed strains harboring 

pRKnodD plasmid were transformed with pMRGFP (containing the gfp gene) and strains 

harboring pRK415 were transformed with pMRGFP or pMP4661 (containing the rfp 

gene) by triparental mating, as described above. These transformations were confirmed 

by observing the cells on a fluorescence microscope. 

 

Evaluation of the symbiotic performance 

 

The three mesorhizobia wild types as well as the corresponding transformed 

strains were inoculated on chickpea plants in order to evaluate whether additional nodD 

copies improved the symbiotic effectiveness of these mesorhizobia strains. Chickpea 

seeds were first surface-sterilized and germinated in plates containing water agar 

medium (Alexandre et al. 2009). Once transferred to plastic pots filled with sterile 

vermiculite, 1 ml of bacterial suspension in TY liquid medium (OD540 of 1.0) was 

inoculated in each seedling.  

Plants were watered with a nitrogen-free nutrient solution (Broughton and 

Dilworth 1971) three times a week. Uninoculated plants and plants watered with N-

supplemented nutrient solution were used as negative and positive control, respectively. 

Five replicates were performed per treatment. The conditions in the plant growth 

chamber were set to 16 h-light and 8 h-dark cycle and 24°C-day and 18°C-night 

temperature at a relative humidity of 65%. Plants were harvested after 7 weeks and 

several parameters were measured, such as shoot dry weight (SDW), root dry weight 

(RDW), number of nodules (NN) and average weight per nodule (AWN). Symbiotic 

effectiveness (SE) was obtained using the shoot dry weight values, including those from 

the positive and negative controls (Gibson 1987). Statistical analysis was performed 

using SPSS statistics V.21 (SPSS Inc; IBM New York, USA) and included analysis of 

variance, namely one-way ANOVA, and the Tukey's Multiple Range Test (P < 0,05). 



 

64 
 

Only PMI-6 and ST-2 transformed strains were selected to be used for the 

following analyses based on the results obtained in the symbiotic performance 

evaluation. 

 

Bacterial growth 

 

To evaluate the growth of ST-2, PMI-6 and their respective transformed strains, 

bacterial cultures were grown in TY medium at 28° C with orbital shaking. In the case of 

the transformed strains, 15 μg.ml-1 of tetracycline was added to the medium. The initial 

OD540nm was 0,1 for each strain. Triplicates were used for each strain and the growth was 

monitored by measuring the optical density at 540 nm every 24 hours.  

 

Evaluation of nodulation kinetics 

 

In order to evaluate the nodulation kinetics, a hydroponic assay, as described by 

Brígido et al.  (2012b), was performed using chickpea plants inoculated with suspensions 

of PMI6pRK415, PMI6pRKnodD, ST2pRK415 and ST2pRKnodD strains (OD 540 nm of 

0.6). Eight seeds per treatment were used and the number of nodules was evaluated 

every three days during 33 days. The same controlled conditions describe above for the 

evaluation of symbiotic performance were used in this experiment. 

 

Histological analysis of nodules  

 

After 35 days of inoculation in hydroponic assay, nodules were excised and 

processed for light microscopy. Nodules were fixed in 4% formaldehyde, dehydrated in 

an increasing ethanol series and finally embedded in paraffin (Brígido et al. 2012b). 

Toluidine blue-stained sections (6 μm) of embedded nodules were observed by bright-

field microscopy. 

 

Analysis of rhizobia infection process  

 

GFP-tagged (single infection) or RFP+GFP-tagged (co-infection) mesorhizobia 

strains were inoculated in pre-germinated chickpea seeds, as described by Robledo et 

al. (2011) in order to evaluate if extra nodD copies increased the ability of those strains 

to colonize and infect root hairs. The analysis of root hairs after 4 or 6 days of inoculation 

were performed using a Confocal Laser Scanning Microscope (Leica TCS SPE) 

equipped with solid-state laser, allowing visualization of GFP (488 nm), RFP and 



 

65 
 

propidium iodide (532 nm) fluorescence. Propidium iodide at 10 μM (Sigma-Aldrich) was 

used to stain chickpea roots and root hairs. Projections were made from adjusted 

individual channels and accumulating stacks using Leica software. 

 

3.4. Results  

 Most Mesorhizobium species seem to encode only one copy of nodD and 

phylogenetic analysis of this gene showed that Mesorhizobium species group according 

to the host plant and not to their species affiliation (Eliziário 2015). In addition, only one 

copy of nodD was found in the genome of UPM-Ca36T, the strain used to amplify the 

cloned gene (data not shown), however this genome is still in the draft stage. Although 

the nodD sequence similarity is very high among chickpea mesorhizobia, the three 

isolates used in this study have different nodD sequences and also different from the 

one clone in the expression vector, which was obtained from M. mediterraneum UPM-

Ca36T (Eliziário 2015). 

 

Symbiotic effectiveness assays 

 

 Several mesorhizobia strains were transformed with extra nodD copies, in order 

to analyze their effect in the symbiotic effectiveness (SE) and nodulation process in 

chickpea plants. Although plants inoculated with V15bpRKnodD strain showed a number 

of nodules higher than those inoculated with the strain harboring the empty vector, there 

were no significant differences in other parameters, such as the SDW, RDW, AWN and 

SE (Table 2). On the other hand, plants inoculated with PMI-6 strain harboring extra 

nodD copies did not show any significant difference in the NN, AWN and RDW when 

compared with plants inoculated wild type and PMI6pRK415, however the SDW and SE 

were significantly higher (Table 2).  

Chickpea plants were also inoculated with ST-2 strain harboring pRKnodD 

plasmid and the results show that extra nodD copies in this strain seem to contribute to 

the improvement of AWN, SDW and, consequently the SE when compared with ST-2 

wild type. As observed in plants inoculated with PMI6pRKnodD, those inoculated with 

ST2pRKnodD also did not show any improvement in the NN and RDW. None of the 

transformed strains improved the root dry weight of inoculated plants (Table 2). Based 

on the results obtained in the symbiotic performance evaluation, mesorhizobia strains 

PMI-6 and ST-2 and their derivates were selected to be used for further analyses, even 

ST2pRKnodD did not showing a significant improvement in the SE compared with 

ST2pRK415. 
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Table 2 Results obtained from pots assays of chickpea plants inoculated with wild type 

or transformed strains. 

Strain SDW (g) RDW (g) NN AWN (mg) SE (%) 

V-15b 1.267 + 0.183 a 0.641 + 0.213 a 92 + 15.7 ab 1.971 + 0.241 a 40.95 + 8.63 a 

V15bpRK415 1.406 + 0.232 a 0.472 + 0.115 a 71 + 16.3 b 1.650 + 0.224 a 47.44 + 10.94 a 

V15bpRKnodD 1.529 + 0.069 a 0.604 + 0.084 a 138 + 46.9 a 2.042 + 1.717 a 53.25 + 3.27 a 

ST-2 1.104 + 0.330 b 0.524 + 0.138 a 61 + 18.2 a 1.749 + 0.314 b 33.28 + 15.15 b 

ST2pRK415 1.227 + 0.225 ab 0.539 + 0,077 a 51 + 21.5 a 2.114 + 0.737 ab 39.06 + 10.59 ab 

ST2pRKnodD 1.556 + 0.311 a 0.633 + 0.089 a 62 + 15.5 a 2.544 + 0.579 a 54.51 + 14.61 a 

PMI-6 1.139 + 0.138 ab 0.467 + 0.116 a 38 + 14.3 a 4.534 + 2.023 a 31.37 + 9.08 ab 

PMI6pRK415 1.008 + 0.227 b 0.317 + 0.104 a 28 + 12.6 a 4.737 + 3.111 a 22.83 + 14.86 b 

PMI6pRKnodD 1.337 + 0.060 a 0.461 + 0.157 a 39 + 20.7 a 4.235 + 1.288 a 44.29 + 3.98 a 

Different letters in the same group of strains indicate statistically significant differences (P<0,05). SDW - 

Shoot Dry Weight; RDW - Root Dry Weight; NN - Number of Nodules; AWN - Average Weight per Nodule; 

SE - Symbiotic Effectiveness 

         

 

Growth curves 

Rhizobial growth rate may be related with their ability to colonize and infect root 

hairs. The strains that showed an improvement in the symbiotic effectiveness at pot 

assay were used to evaluate the growth kinetics. PMI-6 wild type strain showed faster 

growth at exponential phase than the modified strains, most likely due the energetic cost 

of carrying the introduced expression vector (Fig 1A). The ST-2 wild type strain also grew 

faster during exponential phase, however at the stationary phase the strain harboring 

pRK415 plasmid reached very similarly OD values to those of the wild type. Both strains 

showed OD values close to 3.5 at stationary phase, whereas ST2pRKnodD grew at a 

slower rate and reached the stationary phases with an OD of approximately 2 (Fig 1B). 

 

 

 

 

 



 

67 
 

   

Figure 1. Growth curves of A - PMI-6, PMI6pRK415 and PMI6pRKnodD. B - ST-2, 

ST2pRK415 and ST2pRKnodD during about 170 hours of growth in TY medium. Bars 

represent standard deviation. 

 

Nodulation Kinetics 

 A hydroponic assay was conducted in order to evaluate the nodulation kinetics of 

plants inoculated with PMI6pRKnodD and ST2pRKnodD, compared to plants inoculated 

with the corresponding strains harboring the empty vector pRK415. At 11 days after 

inoculation the first nodules were observed in plants inoculated with PMI6pRKnodD, 

whereas plants inoculated with PMI6pRK415 showed a delay of three days, showing the 

first nodules only at 14 days after inoculation (Fig 2A). Plants inoculated with 

PMI6pRKnodD continuously showed a significantly higher number of nodules until the 

end of the experiment with about 4-fold more nodules than plants inoculated with 

PMI6pRK415 (Fig 2A). All the nodules had a reddish interior, which indicates 

accumulation of active leghemoglobin (Fig 3E2 and F2). Although the hydroponic 

conditions are clearly not favorable to the shoot development of chickpea plants, the 

shoot of plants inoculated with PMI6pRKnodD seemed to be more developed (Fig 3 A 

and B). 

 ST2pRKnodD strain also improved the NN of chickpea plants, compared to 

ST2pRK415. Even though the difference between NN of plants inoculated with both ST-

2 modified strains is smaller than the one observed for PMI-6 modified strains, 

ST2pRKnodD also induced a significant higher number of nodules throughout the assay 

(Fig 2B). The largest difference was detected at 21 days after inoculation, when the NN 

of plants inoculated with ST2pRKnodD were about 3-fold that of plants inoculated with 

ST2pRK415. The development of the shoots and root nodules showed in fig 4A to D 

indicates that extra nodD copies contributed to the improvement of these parameters. 
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Figure 2. Nodulation kinetics of chickpea plants inoculated with PMI-6 and ST-2 modified 

strains. Average Number of nodules for plants inoculated with A-PMI6pRK415 and 

PMI6pRKnodD. B - ST2pRK415 and ST2pRKnodD. Bars represent standard error.  

 

Histological analysis of nodules 

  

 In order to perform a histological analysis of nodules from plants inoculated with 

PMI-6 and ST-2 transformed strains, nodule sections were stained and observed under 

bright-field microscopy.  

 The large senescent zone observed in nodules from plants inoculated with 

PMI6pRK415 was absent in those from plants inoculated with PMI6pRKnodD (fig 3G 

and H). The other zones showed the typical organization of indeterminate nodules, 

although the fixation zone from nodules inoculated with PMI6pRK415 seems to show a 

higher number of non-invaded plant cells (Fig 3I-L). 

 There was no difference at the histological level between nodules from plants 

inoculated with ST2pRK415 and ST2pRKnodD (Fig 4E-J). 
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Figure 3. Chickpea Plants grown in hydroponic conditions and the corresponding 

nodules.  Plants at 35 days after inoculation inoculated with A – PMI6pRK415 and B - 

PMI6pRKnodD. Roots showing nodules formed at 35 days after inoculation of C – 

PMI6pRK415 and D - PMI6pRKnodD. E1 - Nodules from plants inoculated with 

PMI6pRK415; E2 - Nodule section from plants inoculated with PMI6pRK415; F1 - 

Nodules from plants inoculated with PMI6pRKnodD; F2 - Nodule section from plants 

inoculated with PMI6pRKnodD; G, I and K - Nodules sectioned and stained with toluidine 

blue from plants inoculated with PMI6pRK415; H, J and L - Nodules sectioned and 

stained with toluidine blue form plants inoculated with PMI6pRKnodD; G - Asterisks 

indicate senescent zones; I and J -  Square indicates meristematic zones. Scale bars: 5 

cm (C and D); 1 cm (E1 and F1); 1 mm (G and H); 400μm (I and J); 200 μm (K and L). 
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Figure 4. Chickpea Plants grown in hydroponic conditions and the corresponding 

nodules.  Plants at 35 days after inoculation inoculated with A – ST2pRK415 and B - 

ST2pRKnodD. Roots showing nodules formed at 35 days after inoculation of C –

ST2pRK415 and D ST2pRKnodD. E, G and I - Nodules sectioned and stained with 

toluidine blue from plants inoculated with ST2pRK415; F, H and J - Nodules sectioned 

and stained with toluidine blue form plants inoculated with ST2pRKnodD; I and J -  

Square indicates meristematic zones. Scale bars: 5 cm (C and D); 1 mm (E and F); 

400μm (G and H); 200 μm (I and J). 

 

Colonization and infection thread   

 

 The high number of nodules observed in hydroponic assay may be related with 

a more efficient colonization and infection processes; therefore, these first stages of 

symbiosis were observed by confocal microscopy in plants inoculated with the 

transformed strains harboring a fluorescent protein. 

 Both ST2pRKnodDGFP and PMI6pRKnodDGFP strains are more efficient in 

colonizing the surface of the roots than those harboring the empty pRK415 plasmid (Fig 

5A, B, D and E). In addition, the number of infection threads was higher in plants 

inoculated with ST2pRKnodDGFP than in plants inoculated with ST2pRK415GFP (Fig 
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5A and B). The root hairs from plants inoculated with PMI6pRKnodDGFP displayed more 

curling than those inoculated with the empty vector strain (Fig 5D and E). 

 The strains with extra nodD copies and tagged with GFP protein were co-

inoculated with the strains harboring the empty vector tagged with RFP (red fluorescent 

protein) and then observed in confocal microscopy. These co-inoculation experiments 

confirmed the previous observations made by single inoculation, i. e., both 

ST2pRKnodDGFP and PMI6pRKnodDGFP showed a higher colonization of the root 

surface and induced the formation of a higher number of infection threads than 

ST2pRK415RFP and PMI6pRK415RFP, respectively (Fig 5C and F).  
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Figure 5. Confocal laser scanning micrographs of chickpea roots inoculated with green 

and red fluorescent protein–tagged rhizobia. A – ST2pRK415, B – ST2pRKnodD, D - 

PMI6pRK415 and E - PMI6pRKnodD strains tagged with green fluorescent protein, 

showing the initial infection process in chickpea roots (stained with propidium iodide), at 

5 (ST-2 transformed strains) and 4 (PMI-6 transformed strains) days after inoculation; C 

– ST2pRK415RFP (red) and ST2pRKnodDGFP (green) strains co-inoculated in 
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chickpea roots at 6 days after inoculation; F - PMI6pRK415RFP (red) and 

PMI6pRKnodDGFP (green) co-inoculated in chickpea roots at 3 days after inoculation. 

Root hair curling (white arrows); infection threads on root hairs (gray arrows); cap on root 

hair tip (blue arrow), rhizobial attachment on roots (square) and empty vector strains as 

well as those harboring extra nodD copies sharing the same intercellular space (asterisk) 

are shown. Scale bars: 50 μm (A); 75 μm (B, C and D); 100 μm (E); 25 μm (F). 

 

3.5. Discussion 

NodD is a regulator of other rhizobial nodulation genes (e.g. nodABC) (Oldroyd 

2013). When this protein interacts with flavonoids released by legume plants, it forms a 

protein-phenolic complex that triggers the Nod factors (Cooper 2004). Among the several 

functions in the symbiosis process, the Nod factors act mainly at root hair curling, 

infection thread formation, induction of cell division and gene expression in the root 

cortex and pericycle, nodule development and the number of nodules (Garg and 

Geetanjali 2007; Laranjo et al. 2014; Oldroyd 2013; van Brussel et al. 2002).  

To evaluate whether extra nodD copies improve the symbiotic parameters in 

mesorhizobia strains, a chickpea pot assay with sterile vermiculite as substrate was 

performed under controlled conditions. Although the number of nodules from plants 

inoculated with V-15b harboring the pRKnodD plasmid was approximately two-fold more 

than those inoculated with V15bpRK415, it did not improve the symbiotic effectiveness, 

probably due the high demand of energy required to form the large number of nodules. 

Terpolilli et al. (2008) reported the inoculation of Sinorhizobium meliloti 1021 in Medicago 

truncatula formed several nodules, however they were small, pale, more widely 

distributed on the root system and with fewer infected cells. Regarding the number of 

nodules and its relationship with NodD, some studies have been shown distinct effects 

when different copies of nodD gene are deleted or overexpressed. For example, a 

mutation in nodD1 of Sinorhizobium fredii USDA191 blocked nodulation in soybean 

cultivars Peking and McCall, whereas the nodD2 mutant delayed nodulation on Peking 

and reduced the number of nodules on McCall. The overexpression of the two copies 

caused the same effects observed when the nodD2 was deleted (Machado and Krishnan 

2003). Bacteria harboring only one copy of NodD often are Nod- when nodD is deleted 

(Broughton et al. 2000). It has been shown that Nod factors, regulated by NodD, control 

the number of nodules formed on a root system by inducing an autoregulation response 

in the host plant (van Brussel et al. 2002).  Contrary to what was observed in plants 

inoculated with V-15b, the ST-2 and PMI-6 strains harboring extra nodD copies did not 

show any increase in the number of nodules on inoculated chickpea plants, however the 
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shoot dry weight as well as the symbiotic effectiveness was statistically higher than those 

harboring the empty pRK415.  

PMI-6 and ST-2 strains transformed with extra nodD copies were characterized 

in terms of their growth kinetics. Both PMI6pRKnodD and ST2pRKnodD strains showed 

a slower growth in the exponential phase compared to the wild type strain. This was 

expected because the size and copy number of the plasmid could slow down the 

replication process.  Nevertheless, PMI6pRKnodD showed a very similar growth to that 

of the strain harboring the empty vector (PMI6pRK415), while ST2pRKnodD showed a 

much slower growth rate in the exponential phase than the strain harboring the empty 

vector (ST2pRK415) and reached stationary phase at a much lower OD.  

To evaluate the kinetics of nodules formation, a hydroponic assay was performed. 

Both PMI-6 and ST-2 transformed strains with extra nodD copies showed a remarkable 

increase in the number of nodules. In addition, the PMI6pRKnodD strain developed the 

first nodules earlier. This apparent discrepancy between the results of two different plant 

assays is most likely due the shorter duration of the hydroponic assay (5 weeks), 

compared with the pot assay (8 weeks). These results suggest that there might be a 

transient higher number of nodules in plants inoculated with PMI6pRKnodD and 

ST2pRKnodD, which may benefit the plant in terms of N-fixation, yet in a later stage of 

the symbiosis that difference is not detected any longer. Specific Nod factors application 

induces the nodule primordial formation and in most rhizobia Nod factors are required to 

induce nodules in host plants (Broughton et al. 2000; D'Haeze and Holsters 2002; 

Oldroyd 2013; Perret et al. 2000; Spaink 2000; Spaink et al. 1991), therefore the extra 

nodD copies expressed constitutively may increase the Nod factor production that, in 

turn may account for the higher number of nodules observed.  

Unlike previously described situations where a high number of nodules was 

actually seen to be harmful to the host plant (Terpolilli et al. 2008), in this case the 

presence of more nodules seems to contribute to development of the plants, as shown 

in fig. 3B and 4B, since the higher number of active nodules probably contributed to the 

shoot dry weight improvement observed in pots assay. To further analyses the structures 

of these nodules, nodules sections were stained and analyzed by microscopy. Nodules 

from plants inoculated with ST2pRKnodD showed no difference when compared with 

those from plants inoculated with ST2pRK415. On the other hand, extra nodD copies in 

PMI-6 seems to have contributed to maintain the infection zone without the premature 

senescence zone observed in nodules from plants inoculated with PMI6pRK415. Nod 

factors are responsible for the induction the early nodulin genes (Limpens and Bisseling 

2009; Vijn et al. 1995). Nodulins are proteins specific to nodule development and 

nitrogen fixation and the best known among these proteins is leghemoglobin, which is 
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found in all legumes and regulates oxygen tension in nodules (Manen et al. 1991; 

Wittenberg 1974). In plants inoculated with PMI6pRKnodD the nodules were pink with a 

reddish interior, a typical coloration of active leghemoglobin. This finding suggests that 

extra nodD copies may affect the regulation of nodulin genes and consequently improve 

the concentration of leghemoglobins.  

 Among the several roles of Nod factors in the symbiosis process, deformation of 

root hair and pre-infection threads are probably the most important (Lerouge et al. 1990; 

Oldroyd 2013; van Brussel et al. 1992). Mutants defective in Nod factor production can 

no longer associate with the host legume (Dénarié et al. 1996; Oldroyd and Downie 2004; 

Oldroyd 2013). In order to investigate whether the improvement of the symbiotic 

effectiveness of plants inoculated with ST2pRKnodD and PMI6pRKnodD could be 

related with colonization and infection threads formation, these strains and their 

respective controls (ST2pRK415 and PMI6pRK415) were tagged with the gfp or rfp 

protein and analyzed by confocal microscopy. Extra nodD copies may indeed have 

contributed to enhance the colonization and infection of the transformed bacteria, since 

the number of infection threads and bacteria on the root surface was higher in root plants 

inoculated with these strains. Moreover, the number of curling on root hairs observed in 

plants inoculated with PMI6pRKnodD were higher than those observed in PMI6pRK415. 

Co-infection assays were performed with the strains harboring extra nodD copies 

transformed with gfp with those harboring pRK415 transformed with rfp and the results 

were similar, with a higher density of PMI6pRKnodDGFP and ST2pRKnodDGFP than 

PMI6pRK415RFP and ST2pRK415GFP.  

 Despite the importance of mesorhizobia and their contribution to the amount of 

fixed nitrogen in legumes, little is still known about regulation of nodulation and fixation 

genes in this genus. Therefore, this study aimed to investigate the first levels of the 

regulation of nodules formation in three mesorhizobia strains overexpressing the nodD 

gene. The study demonstrated that indeed the NodD regulator plays an important role in 

the strains tested increasing the shoot dry weight and improving the symbiotic 

effectiveness, as well as contributing to nodules formation. 
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4.1. Summary  

Successful colonization of the host root by free-living rhizobia requires that these bacteria 

are able to deal with adverse conditions in the soil. In addition, rhizobia have to be able 

to endure stresses that may occur during their endosymbiotic life inside the root nodules. 

Stress response genes, such as otsAB, groEL, clpB, rpoH play an important role in 

tolerance of free-living rhizobia to different environmental conditions and some of these 

genes have been shown to be involved in the symbiosis. The aim of this study was to 

evaluate whether extra groEL copies could improve the symbiotic effectiveness as well 

as other parameter related with the chickpea-mesorhizobia symbiosis. Chickpea plants 

inoculated with ST2pRKgroEL showed a symbiotic effectiveness approximately 1.5 fold 

higher than plants inoculated with the wild-type. On the other hand, Ca36pRKgroEL, 

V15bpRKgroEL and PMI6pRKgroEL did not show improvement of the symbiotic 

effectiveness. Nodulation kinetics was also evaluated and showed that after 35 days 

plants inoculated with ST2pRKgroEL had 78 % more nodules than those inoculated with 

ST2pRK415. Section of nodules analyzed by microscopy revealed no histological 

difference between nodules from plants inoculated with ST2pRKgroEL and ST2pRK415. 

Colonization and infection tests were performed and showed that ST2pRKgroEL and 

ST2pRK415 seem to colonize and infect the root hairs similarly.  The growth of the 

transformed ST-2 strains was evaluated under different stress conditions and after a heat 

shock at 48º C for 15 min, ST2pRKgroEL showed slightly higher growth rate, when 

compared with the strain harboring the empty vector (ST2pRK415). Despite the 

promising increase in the SE obtained by transforming ST-2 with additional copies of 

groEL, three other mesorhizobia strains also overexpressing groEL did not show a 

significant improvement of their symbiotic effectiveness. This indicates that the effects of 

higher levels of GroEL on the symbiosis might be strain specific. 
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4.2. Introduction  

Bacteria are not only able of colonizing extreme environments, but also of living 

inside a wide diversity of hosts. Regardless the particular natural environment where 

each species can be found, bacteria are often subjected to adverse conditions. The main 

factors studied as bacterial stressors are temperature, salt, pH and nutrient starvation. 

Many of the genes involved in stress response are conserved across bacterial species, 

which is remarkable, taking into account the range of different environmental niches 

where bacteria can live. 

The symbiotic process between rhizobia and the host legume is mainly divided into 

two major events: bacterial infection and nodule organogenesis (Oldroyd and Downie 

2008). For a successful symbiotic association, it is essential that these two phenomena 

are coordinated in both spatial and temporal manner, to ensure nodule formation at the 

site of bacterial infection (for review see (Oldroyd and Downie 2008)). When compatible 

molecular signals are recognized by the host legumes, a series of events, such as growth 

of polarized root hair tip and invagination associated with bacterial infection, are initiated 

in the host plant leading to the development of specialized structures, called nodules 

(Fournier et al. 2008; Gage 2004).  

Since early events in the symbiosis process such as molecular signalling and 

rhizobial attachment, are particularly sensitive to high temperatures, salinity, acidity and 

other environmental stresses (Hungria and Stacey 1997; Hungria and Vargas 2000; 

Zhang and Smith 1996), rhizobia have to be able to physiologically adapt to 

environmental conditions, in order to ensure a successful symbiosis with its legume 

partner. These stresses that negatively affect the microsymbiont in free-living conditions 

as well as during the symbiotic relationship can lead to a delay in infection and nodule 

formation, development of non-fixing nodules or even to failure of the nodulation process 

(Zahran 1999). Therefore, rhizobia must be able to overcome stress conditions both 

outside and within the nodule, to achieve a complete and effective nitrogen-fixing 

symbiosis. Therefore, the role of stress response genes must be an important or even 

fundamental part of the symbiotic process. In fact, it was suggested that among the 

genes required for bacteroid formation, some are specific for symbiosis and others are 

involved in physiological adaptation to the environmental conditions within and outside 

the nodule (Oke and Long 1999).  

Transcriptomic and proteomic analyses of rhizobia in symbiosis with their host 

legumes also suggest the involvement of stress response genes, mainly heat shock 

proteins such as ClpB and GroESL, in the symbiotic process. For example, overexpression 

of the ClpB and GroEL/ES proteins was detected in nodules formed by Bradyrhizobium 



 

84 
 

japonicum and Sinorhizobium meliloti strains (Djordjevic 2004; Djordjevic et al. 2003a; 

Nomura et al. 2010a; Sarma and Emerich 2005; Sarma and Emerich 2006). These 

findings are reinforced through transcriptomic analyses where up-regulation of these 

genes was observed in root nodules (Karunakaran et al. 2009; Pessi et al. 2007b; 

Uchiumi et al. 2004). 

The most studied molecular chaperone in terms of its involvement in the symbiosis 

is GroEL. Particular copies of this chaperone gene, usually upregulated in the bacteroids, 

seem to play a fundamental role in the formation of functional NodD and nitrogenase 

complex (Fischer et al. 1999; Ogawa and Long 1995). For example, among the five 

groESL operons in the S. meliloti genome only one operon (groEL1) was found to be 

involved in symbiosis (Ogawa and Long 1995). Fischer et al. (1993) found a co-

regulation between groESL3 and nitrogen fixation genes in B. japonicum, yet none of the 

B. japonicum mutants that individually lack one groEL gene were depleted in their 

symbiotic phenotype (Bittner et al. 2007; Fischer et al. 1999). However, double mutation 

on groEL3 and groEL4 genes in B. japonicum affects the symbiotic performance, since 

these copies are required for the formation of a functional nitrogenase (Fischer et al. 

1999). These two copies are the most abundant in the GroEL pool in bacteroids (Fischer 

et al. 1993). Studies on the symbiotic performance of strains mutated in the dnaJ gene, 

encoding the co-chaperone DnaJ, also revealed distinct results using different rhizobia 

species. For example, a B. japonicum dnaJ mutant strain was able to establish fully 

effective symbiosis with soybeans (Minder et al. 1997). More recently, the involvement 

of the ClpB chaperone in the symbiotic process was evaluated. Although a 

Mesorhizobium clpB mutant strain was able to establish symbiosis with chickpea plants, 

the ClpB absence caused a delay in nodule formation and development (Brígido et al. 

2012b), indicating its involvement in the symbiotic process. 

Several genes involved in stress response have been overexpressed in rhizobia as 

an attempt to improve their symbiotic performance, particularly under stress conditions 

such as salt, oxidative, drought, heat or biotic stress. Overexpression of genes related 

to protection of bacteria from salt stress has contributed to the improvement of rhizobia 

strains under stressful conditions. A S. meliloti strain overexpressing the betS gene, 

involved in the rapid acquisition of betaines by cells subjected to osmotic shock, showed 

a better maintenance of nitrogen fixation activity in salinised alfalfa plants than the wild-

type strain (Boscari et al. 2006). The otsA gene encodes the enzyme trehalose-6-

phosphate synthase involved in the biosynthesis of trehalose (Elbein et al. 2003). 

Moussaid et al. (2015) overexpressed otsA from S. meliloti in Mesorhizobium ciceri and 

found an increase of the otsA-overexpressing strain growth in saline media. Chickpea 

plants inoculated with M. ciceri carrying extra otsA copies formed more nodules and 
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accumulated more shoot biomass than the wild-type inoculated plants, when grown in 

the presence of NaCl. Also, P. vulgaris inoculated with R. etli overexpressing otsA 

showed more nodules with increased nitrogenase activity and higher biomass compared 

with plants inoculated with the wild-type strain. Only plants inoculated with the otsA-

overexpressing strain fully recovered from drought stress (Suarez et al. 2008).  

The first successful improvement of a rhizobium with a chaperone gene was 

achieved using the chickpea nodulating strain M. mediterraneum UPM-Ca36T modified 

with extra-copies of the clpB gene (Paço et al. 2016). The nodulation kinetics analysis 

showed a higher rate of nodule development as well as a higher number of nodules in 

plants inoculated with the clpB-transformed strain. More interestingly the symbiotic 

effectiveness of the clpB-overproducing strain increased ~60% at pH 5 and ~83% at pH 

7, compared to the wild-type strain. This improved symbiotic phenotype may be related 

to an increased expression of symbiosis genes, as detected for the nodulation genes 

nodA and nodC (Paço et al. 2016).  

In this study the potential of the chaperone gene groEL in the improvement of 

chickpea Mesorhizobium symbiotic performance was investigated as well as its effect on 

the tolerance to several stresses.  

 

4.3. Material and Methods 

 

Bacterial strains and Growth Conditions 

 

Bacterial strains and plasmids are listed in Table 1. Three chickpea mesorhizobia 

isolates from Portuguese soils were selected (Alexandre et al. 2009; Brígido et al. 2012a; 

Laranjo et al. 2008), in addition to the type strain Mesorhizobium mediterraneum UPM-

Ca36T (Nour et al. 1995) 

The mesorhizobia strains were routinely grown at 28ºC in tryptone-yeast (TY) 

medium (Beringer 1974a). The growth medium for pRK415-transformed mesorhizobia 

strains was supplemented with tetracycline (15 μg.ml-1). For bacteria transformed with 

gfp and rfp genes, kanamycin (50 μg.ml-1) and gentamycin (15 μg.ml-1) were added to 

TY medium, respectively. Escherichia coli DH5α and MT616 strains were grown in Luria-

Bertani (LB) medium (Sambrook and Russell 2001) at 37ºC. For E. coli strains containing 

pRK415, 15 μg.ml-1 of tetracycline was used, while for MT616 with pRK600, the medium 

was supplemented with 25 μg.ml-1 of chloramphenicol. 
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Table 1 Bacterial strains and plasmids used in this work. 

Plasmids/Strains Characteristics Reference 

pRK600 pRK2013 npt::Tn9. Cmr (Finan et al. 1986) 

pRK415 Broad host-range vector; Tcr (Keen et al. 1988) 

pRKgroEL Plasmid pRK415 containing the groEL gene 

from M. mediterraneum UPM-Ca36T; Tcr 

This work 

pMRGFP Plasmid containing the gfp gene; Kmr (García-Fraile et al. 

2012) 

pMP4661 Plasmid containing the rfp gene; Gmr (Bloemberg et al. 

2000) 

E. coli   

MT616 Strain harboring the helper plasmid pRK600 (Finan et al. 1986) 

DH5α Competent cells NZYTech 

Mesorhizobium   

V-15b Mesorhizobium sp. V-15b-Viseu isolated from 

chickpea root nodules 

(Alexandre et al. 2009) 

ST-2 Mesorhizobium sp. ST-2-Setubal 

isolated from chickpea root nodules 

(Alexandre et al. 2009) 

PMI-6 Mesorhizobium sp. PMI-6-Portimão isolated 

from chickpea root nodules 

(Alexandre et al. 2009) 

UPM-Ca36T Mesorhizobium  mediterraneum UPM-Ca36T 

isolated from chickpea root nodules 

(Nour et al. 1995) 

V15bpRKgroEL V-15b strain harboring pRKgroEL This work 

ST2pRKgroEL ST-2 strain harboring pRKgroEL This work 

PMI6pRKgroEL PMI-6 strain harboring pRKgroEL This work 

Ca36pRKgroEL UPM-Ca36T strain harboring pRKgroEL This work 

ST2pRKgroELGFP ST-2 strain harboring pRKgroEL and pMRGFP This work 

ST2pRK415GFP ST-2 strain harboring pRK415 and pMRGFP This work 

V15bpRK415 V-15b strain harboring pRK415 This work 

ST2pRK415 ST-2 strain harboring pRK415 This work 

PMI6pRK415 PMI-6 strain harboring pRK415 This work 

Ca36pRK415 UPM-Ca36T strain harboring pRK415 This work 

ST2pRK415RFP ST-2 strain harboring pRK415 and pMP4661 This work 

 

 

Transforming the strains with groEL gene 

 

A PCR amplification was performed in order to obtain the full sequence of a 

particular copy of the groEL gene from Mesorhizobium mediterraneum UPM-Ca36T, a 

type strain that nodulates chickpea (Nour et al. 1995). The amplified groEL copy is the 

one that shares the highest similarity with the copy overexpressed in M. japonicum 

MAFF303099 bacteroids (Uchiumi et al. 2004). Performed in 50 μl, the PCR was made 

using 0.5 μL of DNA, 1× Buffer for Phusion GC Buffer, 0.2 mM of each dNTP, 15 pmol 

of each primer and 0.4 U of Phusion DNA Polymerase (Thermo Fisher Scientific). The 

primers used were groEL-F (5’- GAATTCAATGGCTGCCAAAGACGTAAA -3’) and 

groEL-R (5’- GAATTCTTAGAAATCCATACCGCCCA -3’). The amplification program 

was: 30 s at 98°C, 30 cycles of 10 s at 98ºC, 20 s at 53°C, 33 s at 72 ºC and a final 

extension of 5 min at 72 ºC. The obtained groEL fragment of 1659 bp was cloned in pCR-
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BluntTM vector (ThermoFisher Scientific), sequenced and subcloned in the expression 

vector pRK415, previously digested with EcoRI.  

The exogenous groEL gene is under the control of the lac promoter. The chickpea 

mesorhizobia strains were modified by triparental mating with the pRKgroEL plasmid. E. 

coli DH5α cells containing the plasmid pRKgroEL were used as the donor, mesorhizobia 

isolates were the recipient and E. coli MT616 cells, with pRK600 acted as helper, as 

described by Nascimento et al. (2012a). The pRKgroEL-modified strains were named 

V15bpRKgroEL, ST2pRKgroEL, PMI6pRKgroEL and Ca36pRKgroEL. The empty 

plasmid pRK415 also was used to transform the same mesorhizobia strains.  

In order to confirm the transformation of mesorhizobia cells with pRKgroEL and 

pRK415, total DNA was extracted according to (Rivas et al. 2001) and used to amplify 

the region of the expression vector that includes the groEL gene. A DNA fragment of 

1781 bp was expected using the universal primers M13F and M13R-pUC to the fragment 

with the insert and and 122 pb to the region without it. The PCR reaction was performed 

in a final volume of 50 μL, using 5 μL of DNA, 1× reaction Green GoTaq® Flexi buffer, 

0.2 mM of each dNTP, 1.5 mM MgCl2, 15 pmol of each primer and 0.625U of GoTaq® 

G2 Flexi DNA Polymerase (Promega). The amplification program was: 2 min of initial 

denaturation at 95 °C, 30 cycles of 60 s at 95 ºC, 45 s at 56 °C, 85 s at 72 ºC, and a final 

extension of 5 min at 72 ºC. 

 In addition, strain ST2pRKgroEL was transformed with pMRGFP (containing the 

gfp gene) and strain ST2pRK415 was transformed with pMRGFP or pMP4661 

(containing the gfp or rfp gene) by triparental mating, as described above. 

 

Evaluation of the symbiotic performance 

 

 A plant growth trial under controlled conditions was performed using both the wild 

type and the transformed strains to evaluate whether additional groEL copies improved 

the symbiotic effectiveness of chickpea mesorhizobia strains. After surface-sterilization 

and germination (Alexandre et al. 2009), chickpea seeds were transferred to plastic pots 

filled with sterile vermiculite and inoculated.  

Mesorhizobia strains were grown in TY liquid medium at 28°C for 72 h. Cell 

culture was centrifuged at 10000 × g, resuspended in fresh TY liquid medium to an 

OD540nm of 1.0 and 1 ml of this bacterial suspension was used to inoculate each seedling. 

Five replicates were performed per treatment. A nitrogen-free nutrient solution 

(Broughton and Dilworth 1971) was applied three times a week. Uninoculated plants 

were used as negative control and plants watered with N-supplemented nutrient solution 

were used as positive control. Plants were grown in a growth chamber under a 16 h-light 
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and 8 h-dark cycle and 24°C-day and 18°C-night temperature, at a relative humidity of 

65%. After 7 weeks, plants were harvested and several parameters were measured, 

such as shoot dry weight (SDW), root dry weight (RDW), number of nodules (NN) and 

average weight per nodule (AWN). Symbiotic effectiveness (SE) was calculated using 

the shoot dry weight values, including those from the positive and negative controls 

(Gibson 1987). Statistical analysis was performed using SPSS statistics V.21 (SPSS Inc; 

IBM New York, USA) and included analysis of variance, one-way ANOVA and the 

Tukey's Multiple Range Test (P < 0,05). 

Mesorhizobia strain ST-2, ST2pRK415 and ST2pRKgroEL were selected to be 

used for further analyses, based on the results obtained in the symbiotic performance 

evaluation. 

 

Evaluation of nodulation kinetics 

 

Chickpea plants inoculated with cell suspensions of ST2pRK415 and 

ST2pRKgroEL strains at an OD540 nm of 0.6 were used to evaluate the nodulation kinetics 

through a hydroponic assay. The procedures were conducted as described in Brígido et 

al. (2012b). Eight seeds per treatment were used and the number of nodules was 

evaluated every three days during 33 days. 

 

Histological analysis of nodules 

 

Nodules were excised from hydroponic plants 35 days after inoculation and 

processed for light microscopy. Nodules were fixed in 4% formaldehyde, dehydrated in 

an increasing ethanol series and embedded in paraffin. Toluidine blue-stained sections 

(6 μm) of embedded nodules were examined by bright-field microscopy. 

 

 

Analysis of rhizobia infection process  

 

Pre-germinated chickpea seeds were inoculated with the mesorhizobia strains 

ST2pRKgroELGFP (GFP-tagged) or ST2pRK415RFP (RFP -tagged), as described by 

Robledo et al. (2011). Inoculation of both strains simultaneously (1:1 ratio) was done in 

order to analyze competition in co-infection conditions. Analysis of roots and root hairs 

stained with 10 μM propidium iodide (Sigma-Aldrich) or with 50mg/l calcofluor white 

(Sigma- Aldrich) and 10% potassium hydroxide solution (Flores-Félix et al. 2015) 5 or 6 

days after of inoculation was performed using a Confocal Laser Scanning Microscope 
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(Leica TCS SPE) equipped with solid-state laser, allowing visualization of GFP (488 nm), 

RFP and propidium iodide (532 nm) and calcofluor white (405 nm) fluorescence. 

Projections were made from adjusted individual channels and accumulation in the image 

stacks using Leica software.  

 

Bacterial growth curves under controlled and abiotic stress conditions 

 

In order to evaluate free-living growth of wild type ST-2, as well as its derivates 

harboring pRK415 and pRKgroEL, strains were grown under control conditions at 28°C 

in 5 mL of TY medium (supplemented with 15 μg.ml-1 tetracycline in the case of 

transformed strains) during 144 h. The same strains were submitted to the following 

stress conditions: acidity (TY adjusted to pH 5); high temperature (34°C), and a heat 

shock (48°C during 15 min). The optical densities at 540 nm were measured every 24 

hours and triplicates were used for each strain.  

 

4.4. Results  

 

The groEL gene is found in multiple copies in many genomes of 

Alphaproteobacteria (Lund 2009). This is also the case in rhizobia, where different copies 

are known to have distinct regulation mechanisms (Bittner et al. 2007; Bittner and Oke 

2006; Rodriguez-Quinones et al. 2005). Previous studies indicated the involvement of 

particular groEL copies in the symbiosis (Fischer et al. 1993; Ogawa and Long 1995). 

To investigate the potential of the chaperone gene groEL in the improvement of rhizobia 

symbiotic performance, four chickpea mesorhizobia strains were modified by the addition 

of extra groEL copies (Table 2). The M. mediterraneum UPM-Ca36T groEL copy that 

shares the highest similarity with the copy overexpressed in M. japonicum MAFF303099 

bacteroids (Uchiumi et al. 2004), was cloned in the expression vector pRK415, allowing 

constitutive expression of these gene in the transformed strains. 
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Evaluation of the symbiotic performance 

 

 To evaluate the effects of extra groEL copies in the symbiotic performance, a 

plant growth trial using the transformed strains was carried out for seven weeks under 

controlled conditions and the symbiotic effectiveness as well as other parameters were 

evaluated.  

 From the four strains overexpressing groEL, only plants inoculated with 

ST2pRKgroEL showed a significant increase in the shoot dry weight, and consequently 

in the symbiotic effectiveness, compared with those inoculated with the corresponding 

ST2pRK415 and wild type. The SDW and SE of plants inoculated with ST2pRKgroEL 

were 43 % and 64 % higher than those showed in plants inoculated with ST2pRK415, 

respectively (Fig 2).  This improvement of symbiotic effectiveness was not associated to 

significant differences in the number of nodules or in the average weight per nodule. 

 Although there was no significant improvement in the SE of strains V-15b and 

PMI-6 transformed with pRKgroEL, these strains induced the development of a higher 

number of nodules than the corresponding strains harboring the pRK415 plasmid. In the 

case of the homologous overexpression, the plant assay showed no significant 

improvement in the symbiotic performance of Ca36pRKgroEL. Nevertheless, a lower 

average weight per nodule was detected for both Ca36pRKgroEL and Ca36pRK415 

when compared with the wild type strain. This was the only difference detected in the 

symbiotic parameters between plants inoculated with the wild type and those inoculated 

with the strain carrying the expression vector pRK415. The presence of this vector alone 

does not seem to affect the symbiotic performance of the tested strains (chapter 2). 

Considering the results from the evaluation of the symbiotic performance of 

mesorhizobia strains overexpressing groEL, strain ST-2 and its transformed derivatives 

were selected for further studies, since ST2pRKgroEL was the only strain leading to an 

improvement in the shoot dry weight of chickpea plants, and consequently an increase 

of approx. 64% in the symbiotic effectiveness. 

 

 

 

 

 

 

 

 

 



 

91 
 

 

Table 2. Results obtained from pots assays of chickpea plants inoculated with wild type 

or transformed strains. 
Strain SDW (g) RDW (g) NN AWN (mg) SE (%) 

V-15b 1.267 + 0.183 a 0.641 + 0.213 a 92 + 16 ab 1.971 + 0.241 a  40.95 + 8.6 a 

V15bpRK415 1.406 + 0.232 a 0.472 + 0.115 a 71 + 16 b 1.650 + 0.224 a 47.44 + 10.9 a 

V15bpRKgroEL 1.509 + 0.369 a 0.591 + 0.089 a 120 + 24 a 1.431 + 0.493 a 52.30 + 17.3 a 

PMI6pRK415 1.602 + 0.460 a 0.698 + 0.059 a 67 + 17.3 b 2.334 + 0.650 a 56.69 + 21.6 a 

PMI6pRKgroEL 1.683 + 0.219 a 0.677 + 0.279 a 99 + 16.5 a 2.318 + 0.650 a 60.50 + 10.3 a 

 

UPM-Ca36T 1.120+ 0.234 a 0.471 + 0.066 a 61 + 27 a 4.659 + 1.027 a 34.00 + 10.53 a 

Ca36pRK415 1.289+ 0.294 a 0.562 + 0.115 a 66 + 7.2 a 2.536 + 0.775 b 41.98 + 13.82 a 

Ca36pRKgroEL 1.489+ 0.224 a 0.554 + 0.139 a 77 + 9.9 a 

 

2.108 + 0.613 b 51.35 + 11.84 a 

ST-2 1.104 + 0.330 b 0.524 + 0.138 a 61 + 18.2 a 1.749 + 0.314 a 36.10 + 15.55 b 

ST2pRK415 1.227 + 0.225 b 0.539 + 0.077 a 54 + 14.1 a 2.222 + 0.609 a 39.06 + 10.59 b 

ST2pRKgroEL 1.765 + 0.318 a 

 

0.638 + 0.173a 77 + 44.2 a 2.019 + 0.785 a 64.35 + 14.98 a 

Data correspond to the mean and standard deviation of five replicates per treatment. Different letters in the 

same group of strains are statistically significant (P<0.05). SDW - Shoot Dry Weight; RDW - Root Dry Weight; 

NN - Number of Nodules; AWN - Average Weight per Nodule; SE - Symbiotic Effectiveness  

 

 

Bacterial growth curves under different stresses  

 Considering the well-established role of GroEL in stress tolerance, the growth of 

ST-2 and its respective transformed strains was evaluated under different stress 

conditions. For all the conditions tested, which included heat, salinity and acidic stresses, 

the wild type strains showed a higher growth rate (Fig 1). This is probably due to the 

energy required to replicate the expression vector and to express the corresponding 

antibiotic resistance genes, which hampers the growth of the transformed strains (Fig 

1A-D). This effect is particularly striking in the case of salinity stress (1,5 % NaCl), since 

the wild type grows slightly slower that in control conditions, while both transformed 

strains are unable to grow (data not shown). Fig 1B shows the growth curve after a heat 

shock at 48°C during 15 min followed by control condition (28°C). Only in this condition, 

the ST-2 strain with extra groEL copies shows a slight acceleration in the growth from 

133 hours onwards, when compared with ST2pRK415. Extra groEL copies did not 

increase the growth of ST-2 under other stresses, namely at 34°C and pH 5 (Fig 1C-D). 
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Figure 1. Growth curves of ST-2, ST2RK415 and ST2pRKgroEL in TY medium. A - 

Control condition (28°C); B - Heat shock at 48°C during 15 min followed by control 

condition; C – Continuous heat stress at 34°C; D - Continuous acidity stress (pH 5). Wild 

type strain statistically differs to transformed strains in all conditions. ST2RK415 and 

ST2pRKgroEL statistically differ in B (heat shock) from 133 hours onwards (P < 0.05), 

detected using T-test, implemented in SPSS V.21 software (SPP Inc., Chicago, U.S.A).  

Bars represent standard deviation. 

 

Nodulation kinetics 

 

 In order to evaluate the dynamics of nodule development, nodulation on chickpea 

plants inoculated with ST-2 transformed strains were analyzed under hydroponic 

conditions during 35 days (Fig 2). Both strains induced the formation of the first nodules 

at 12 days after inoculation. Although in an early time point, plants inoculated with 

ST2pRK415 show a higher number of nodules, at 17 days after inoculation a similar 

number of nodules was detected in plants inoculated with ST2pRK415 and with 

ST2pRKgroEL. From this point onwards, the strain with extra groEL copies shows a 

higher number of nodules in the final time points of the nodulation kinetics evaluation, 

plants inoculated with ST2pRKgroEL showed approx. 78% more nodules than 

ST2pRK415 (Fig 2).  
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Figure 2. Nodulation kinetics of chickpea plants inoculated with ST2pRK415 and 

ST2pRKgroEL. Asterisks indicate statistical differences between the  two strains (P < 

0.05), using T-test, implemented in SPSS V.21 software (SPP Inc., Chicago, U.S.A).  

Bars represent standard deviation. 

 

Histological analysis of nodules 

 

 Nodules from the hydroponic assay were embedded in paraffin and sectioned for 

analysis using light microscopy, in order to verify possible differences in their histology. 

Nodules from plants inoculated with both ST2pRK415 and ST2pRKgroEL showed the 

typical zones of an indeterminate nodule with meristematic, infection and fixation zones 

(Fig 3A and B). These nodules did not show a senescent zone probably due the short 

duration of the hydroponic trial. Overall, no differences were detected between nodules 

from plants inoculated with each of the transformed strains.  
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Figure 3. Nodule sections from chickpea plants grown in hydroponic conditions. Sections 

were stained with Toluidine Blue. A and C - ST2pRK415; B and D - ST2pRKgroEL; C 

and D - squares indicate infection zones. Scale bars: 1 mm (A and B); 400 μm (C and 

D). 

 

 

Colonization and infection thread development 

 

 In order to investigate whether extra groEL copies could affect the first steps of 

the symbiosis process, both colonization and infection of root hairs by ST2pRK415 and 

ST2pRKgroEL were analysed by confocal microscopy. For this purpose, strains were 

transformed with an additional plasmid carrying gfp or rfp genes (Table 1). At seven days 

after inoculation both strains showed curling and infection threads on chickpea root hairs 

(Fig 4A and B). No difference in the infection process was detected between the two 

strains. Co-infection analysis at six days after inoculation confirmed that both strains 

seem to colonize equally the roots surface and form infection threads with a similar rate 

(Fig 4C).  
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Figure 4. Confocal laser scanning micrographs showing the initial infection process of 

chickpea roots inoculated with green and red fluorescent protein–tagged rhizobia. Single 

inoculation: A - ST2pRK415 and B - ST2pRKgroEL strains tagged with green fluorescent 

protein and chickpea roots stained with propidium iodide, at 7 days after inoculation; Co-

inoculation: C - ST2pRK415 (red) and ST2pRKgroEL (green) strains co-inoculated in 

chickpea roots stained with calcofluor white, at 6 days after co-inoculation. Root hair 

curling (white arrows); infection threads inside root hairs (yellow arrows); both strains 

sharing the same intercellular space (ellipse). Scale bars: 75 μm (A and B) and 50 μm 

(C).  

 

4.5. Discussion  

 

 The role of chaperone system GroESL in protein folding and its importance for 

stress tolerance has been widely studied (Guisbert et al. 2004; Weiss et al. 2016). 

Alexandre and Oliveira (2013) review the role of different number of GroEL copies with 

different regulation in rhizobia. For example, in B. japonicum five groESL were 

annotated, however only three of them seemed to be heat induced (Babst et al. 1996). 

S. meliloti also has five groEL copies, while R. leguminosarum has three (Bittner et al. 

2007; Rodriguez-Quinones et al. 2005). In Mesorhizobium sp. MAFF303099 only one of 

the five copies of groEL is highly expressed after a heat shock (Alexandre et al. 2014). 

Some studies have shown that GroEL is involved in the regulation of genes related with 

the nodulation process. It was reported that this chaperone is required for early regulation 

of nod genes in S. meliloti and that its mutation delayed nodules formation and caused 

a Fix- phenotype (Ogawa and Long 1995). In Bradyrhizobium japonicum GroEL is 

required for the formation of a functional nitrogenase (Fischer et al. 1999) and the levels 

of GroEL in soybean nodules were seen to be seven times higher than in free-living 

conditions (Choi et al. 1991).  In S. meliloti was found that NodD proteins are in vitro 

substrates of the GroESL system and that these chaperones also modulate the NodD 

binding to nod box sequence (Peck et al. 2013; Yeh et al. 2002). Farkas et al (2014) 
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reported that in S. meliloti GroEL1 is required for efficient infection, differentiation of 

bacteroids and nitrogen fixation in alfalfa. In the present study, four Mesorhizobium 

strains were transformed with extra groEL copies and its effect on the symbiotic 

performance was evaluated using different assays. From the five groEL copies found in 

the UPM-Ca36T strain the copy selected for overexpression was that one which shares 

the highest similarity with the copy previously reported to be overexpressed in M. 

japonicum MAFF303099 bacteroids (Uchiumi et al. 2004). Only the ST-2 strain was able 

to improve the SDW of plants as well as its SE when modified with extra groEL copies. 

This suggests the involvement of the groEL gene in the symbiosis process in 

Mesorhizobium which was already suggested by its up regulation in bacteroids (Uchiumi 

et al. 2004). Others stress response genes related to saline, oxidative, drought, heat or 

biotic conditions were associated with symbiotic performance improvement when 

overexpressed (Boscari et al. 2006; Moussaid et al. 2015; Paço et al. 2016; Shvaleva et 

al. 2010; Talbi et al. 2012). For example, the Mesorhizobium strain UPM-Ca36T modified 

with extra copies of the chaperone gene clpB (Paço et al. 2016) showed a higher rate of 

nodule development as well as a higher number of nodules. More interestingly, the 

symbiotic effectiveness of the clpB-overproducing strain increased ~60% at pH 5 and 

~83% at pH 7, compared to the wild-type strain (Paço et al. 2016). Previously, Brígido et 

al (2012b) also showed that the chaperone ClpB was involved in chickpea root 

nodulation by Mesorhizobium. clpB mutants showed a 6- to 8-day delay in nodule 

appearance and analysis of nodC expression showed lower levels of this transcript on 

the mutant strain. 

In the present study, the UPM-Ca36T as well as PMI-6 and V-15b strains were 

also transformed with extra groEL copies, however there was no improvement in any of 

the plant parameters evaluated in chickpea plants inoculated with these strains. 

Nevertheless, the NN resulting from PMI6pRKgroEL and V15bpRKgroEL inoculation 

was higher than that of the corresponding strains transformed with the pRK415 plasmid. 

Nelson and Sadowsky (2015) reported that a large amount of nodules without any 

improvement or with negative effects in the host plants may indicate that bacteria are 

causing a pathogenic result. Nevertheless, no significant decrease in the plant 

parameters analyzed was observed for chickpea plants inoculated with the transformed 

strains that induced a higher number of nodules.  

Although the SE was higher in plants inoculated with ST2pRKgroEL, the NN was 

not statistically different. As the role of GroEL in the symbiosis process seems to be 

related with the early nod genes regulation (Ogawa and Long 1995), it was expected that 

extra groEL copies would improve the NN, since one of the nod genes function is to 

regulate the NN on root hair (Limpens and Bisseling 2009). In order to observe the 
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continuous formation of nodules, a hydroponic assay was performed and plants 

inoculated with the strain with extra groEL copies indeed showed a higher number of 

nodules during 35 days, suggesting that groEL may influence indirectly the nodulation 

process. This difference in the number of nodules was not detected in the pot assay 

probably due to the larger duration of this experiment (seven weeks). It is likely that the 

higher number of nodules induced by the inoculation of ST2pRKgroEL, compared to 

ST2pRK415, is transient and that later on the number of nodules on plants inoculated 

with both strains reaches similar values as reported for the pot assay.  

Analysis of histological sections of nodules from plants inoculated with 

ST2pRKgroEL showed similar zones compared to nodules resulting from ST2pRK415 

inoculation. In addition, no differences were detected in root attachment or the infection. 

These results suggest that probably the GroEL relationship with the symbiosis is not 

related with the colonization or infection, besides it does not seem to have any 

evolvement with the infection of the nodules. Therefore, the higher SE observed in the 

ST2pRKgroEL is justified by the increase of the NN.  

Since GroEL is known to be involved in temperature stress tolerance in several 

bacteria including in rhizobia (Alexandre and Oliveira 2011; Ogawa and Long 1995), the 

growth of ST2pRKgroEL was evaluated under different stress conditions. ST2pRKgroEL 

showed faster growth than ST2pRK415 after a heat shock at 48 °C for 15 minutes, 

however the modified strains were indistinguible under the other stress conditions 

evaluated. This suggests that the extra copies of groEL most likely helped bacteria to 

recover after the heat shock. In chickpea rhizobia GroEL was found to be consistently 

overproduced when isolates were submitted to heat stress (Laranjo and Oliveira 2011; 

Rodrigues et al. 2006). Moreover, higher levels of groEL transcript were previously 

suggested to be associated to higher tolerance to heat shock in mesorhizobia (Alexandre 

and Oliveira 2011). 

Despite the promising results obtained in the improvement of rhizobial symbiotic 

performance with the overexpression of stress response genes, further studies with more 

bacterial species are required to validate this approach as a strategy to engineer rhizobial 

strains that can be useful as crop inoculants, particularly under challenging soil and 

climatic conditions. 

In addition to its main role as heat shock protein, GroEL is known to be involved in 

the nitrogen fixation process (Ogawa and Long 1995), thus this study showed that 

increasing the groEL expression may be enough to improve the symbiotic effectiveness. 
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The osmolarity sensor protein EnvZ improves 

the symbiotic effectiveness of mesorhizobia 

strains 
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5.1. Summary  

 

Bacteria are able to sense oscillation on the environment and adapt themselves to 

survive under different stress conditions. The two-component signal transduction system 

EnvZ/OmpR present in Escherichia coli mediates responses when bacteria are under 

osmotic stress. In addition, EnvZ/OmpR has been shown to also regulate genes involved 

in virulence, fatty acid uptake, exopolysaccharide (EPS) production, peptide 

transportation and flagella production. Some of these mechanisms are known to be 

important for a successful symbiosis. Therefore, the aim of this study is to evaluate the 

effects of extra envZ copies in chickpea Mesorhizobium strains. The Mesorhizobium sp. 

V-15b, PMI-6, ST-2, EE-7 and UPM-Ca36T were transformed with pRKenvZ (pRK415 

harboring envZ gene from M. mediterraneum UPM-Ca36T). The symbiotic performance 

was evaluated in a pot trial, which showed that the symbiotic effectiveness (SE) of plants 

inoculated with PMI6pRKenvZ and EE7pRKenvZ was 64 % and 96% higher than that of 

those inoculated with PMI6pRK415 and EE7pRK415, respectively. Overexpressing envZ 

on UPM-Ca36T, ST-2 and V-15b strains did not improved the SE, and for that reason 

further analyses were performed using only EE-7 and PMI-6 strains. Under hydroponic 

conditions, plants inoculated with the PMI6pRKenvZ strain showed the first nodules 4 

days before those inoculated with the empty vector strain (PMI6pRK415). Furthermore, 

PMI6pRKenvZ started to show a significantly higher nodule number at 28 days after 

inoculation. Despite the fact that both strains were Fix+, the interior of the nodules 

resulting from PMI6pRKenvZ inoculation showed a more intense red coloration than 

those from PMI6pRK415, which presented large senescence zones and a lower number 

of bacteroid-occupied cells, as revealed by histological analyzes. Moreover, chickpea 

seedlings inoculated with PMI6pRKenvZ showed a higher number of infection threads 

than those inoculated with PMI6pRK415. In addition, plants inoculated with 

PMI6pRKenvZ showed a higher number of secondary roots and an increase in the 

density of root hairs. On the other hand, plants inoculated with EE7pRKenvZ did not 

show statistical differences in the number of nodules under hydroponic conditions when 

compared to EE7pRK415. No differences were also observed in root hairs infection, 

nodule histology, number of root hairs, secondary roots or changes in the production of 

exopolysaccharides. The present study suggests EnvZ/OmpR involvement in the 

symbiosis process and represents an important starting point to evaluate the role of this 

system in the rhizobia-legume symbiosis. 
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5.2. Introduction 

 

Interaction with the external environment is vital to bacterial survival (Hubber et 

al. 2004; Sugawara et al. 2013; Tseng et al. 2009). However, changes in the 

surroundings can lead these microorganisms to stress conditions, limiting their survival, 

development and interactions with other prokaryotic or eukaryotic organisms. To handle 

these fluctuations, bacteria have developed versatile response systems that allow them 

to detect information about their environment  (Boor 2006), as temperature, osmotic 

pressure, pH and nutrient availability.  

Bacteria can mediate responses to environmental stress through two-component 

regulatory systems (TCRS), namely a histidine kinase (HK) and a cognate response 

regulator (RR) (Foo et al. 2015; Wang et al. 2012). In a general way, the sense of an 

environmental stress by the HK allows the autophosphorylation of the conserved 

histidine residue (Wang et al. 2012), and this phosphoryl group is then transferred by the 

conserved aspartic acid residue of the RR. Once phosphorylated, the RR usually binds 

to DNA target sequences stimulating the transcription of appropriate gene targets 

(Yoshida et al. 2002). 

The EnvZ/OmpR system, one of the best-characterized TCRS, is activated in 

response to osmotic stress and is responsible for the regulation of the expression of 

outer membrane porins OmpF and OmpC (Alphen and Lugtenberg 1977; Wang et al. 

2012). At high osmolarity EnvZ is autophosphorylated and transfers the phosphoryl 

group to OmpR, which in turn binds to the promoter regions of outer membrane porin 

genes ompF and ompC (Yoshida et al. 2002; Yuan et al. 2011). Both porins act in the 

nutrient exchange, but at high osmolarity OmpC has a slower flow rate and becomes the 

major porin in the outer membrane, while at low osmolity ompC is repressed and OmpF 

becomes the major porin (Nikaido 2003; Wang et al. 2012). EnvZ also acts as a 

phosphatase, which dephosphorylates the OmpR-P when the osmotic stress disappears 

(Mattison and Kenney 2002). 

Mutation in envZ/ompR of E. coli affects directly or indirectly the expression of 

more than 100 genes, including genes related to amino acid biosynthesis, such as 

isoleucine and cysteine, iron and maltose transport, and flagellar synthesis (Oshima et 

al. 2002). ompR mutation in Yersinia pestis affected the expression of 224 genes, 

indicating a global regulatory role (Gao et al. 2011). Besides its relation to 

osmotolerance, EnvZ/OmpR system has also been associated with other functions, such 

as virulence in pathogens, fatty acid uptake, exopolysaccharide (EPS) production, 

peptide transport and flagella production (Bernardini et al. 1990; Feng et al. 2003; Li et 

al. 2014; Mills et al. 1998; Pickard et al. 1994; Shin and Park 1995; Vidal et al. 1998; 
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Yuan et al. 2011). In addition, EnvZ/OmpR regulates the type III secretion system genes 

in pathogenic bacteria, such as Salmonella typhimurium, Yersinia enterocolitica, Erwinia 

amylovora and Pseudomonas syringae (Brzostek et al. 2007; Feng et al. 2003; Feng et 

al. 2004; Li and Zhao 2011). 

As shown above, several studies have been aiming to understand the function of 

EnvZ/OmpR in numerous pathogenic bacteria. Nevertheless, there are no reports on the 

function of this two-component system in symbiotic bacteria. The aim of this study was 

to evaluate the effects of overexpressing envZ in the rhizobia-host interaction, namely to 

evaluate whether a higher expression of this gene could lead to an improvement of the 

symbiotic performance in chickpea mesorhizobia strains. 

 

 

5.3. Material and Methods 

 

Bacterial strains and growth conditions 

All bacterial strains and plasmids used in this study are listed in Table 1. A group 

of four chickpea mesorhizobia strains isolated form Portuguese soils and previously 

characterized were used: V-15b-Viseu, ST-2-Setúbal, EE-7-Elvas, PMI-6-Portimão 

(Alexandre et al. 2009; Brígido et al. 2012a; Laranjo et al. 2008). In addition, the strain 

M. mediterraneum  UPM-Ca36T was also used (Nour et al. 1995).  

Tryptone-yeast (TY) medium at 28°C was used to grow mesorhizobia strains 

(Beringer 1974b) and tetracycline (15 μg.ml-1) was added into the medium for pRK415-

transformed mesorhizobia strains. For bacteria transformed with gfp and rfp genes, 

kanamycin (50 μg.ml-1) and gentamycin (15 μg.ml-1) were added to TY medium, 

respectively. Escherichia coli DH5α and MT616 strains were grown in Luria-Bertani (LB) 

medium (Sambrook and Russell 2001) at 37º C. For E. coli strains containing pRK415, 

15 μg.ml-1 of tetracycline was used, while for MT616 with pRK600, the medium was 

supplemented with 25 μg.ml-1 of chloramphenicol.  
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Table 1 Bacterial strains and plasmids used in this work. 

Plasmids/Strains Characteristics Reference 

pRK600 pRK2013 npt::Tn9. Cmr (Finan et al. 1986) 

pRK415 Broad host-range vector; Tcr (Keen et al. 1988) 

pRKenvZ Plasmid pRK415 containing the envZ gene 

from M. mediterraneum UPM-Ca36T; Tcr 

This work 

pMRGFP Plasmid containing the gfp gene; Kmr (García-Fraile et al. 

2012) 

pMP4661 Plasmid containing the rfp gene; Gmr (Bloemberg et al. 

2000) 

E. coli   

MT616 Strain harboring the helper plasmid pRK600 (Finan et al. 1986) 

DH5α Competent cells NZYTech 

Mesorhizobium   

V-15b Mesorhizobium sp. V-15b-Viseu isolated from 

chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

ST-2 Mesorhizobium sp. ST-2-Setubal 

isolated from chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

PMI-6 Mesorhizobium sp. PMI-6-Portimão isolated 

from chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

EE-7 Mesorhizobium sp. EE-7-Elvas isolated from 

chickpea root nodules (Portugal) 

(Alexandre et al. 2009) 

UPM-Ca36T Mesorhizobium  mediterraneum UPM-Ca36T 

isolated from chickpea root nodules from Spain 

(Nour et al. 1995) 

V15bpRKenvZ V-15b strain harboring pRKenvZ This work 

ST2pRKenvZ ST-2 strain harboring pRKenvZ This work 

PMI6pRKenvZ PMI-6 strain harboring pRKenvZ This work 

PMI6pRKenvZGFP PMI-6 strain harboring pRKenvZ and 

pMRGFP 

This work 

EE7pRKenvZ EE-7 strain harboring pRKenvZ This work 

EE7pRKenvZGFP EE-7 strain harboring pRKenvZ and pMRGFP This work 

Ca36pRKenvZ UPM-Ca36T strain harboring pRKenvZ This work 

V15bpRK415 V-15b strain harboring pRK415 This work 

ST2pRK415 ST-2 strain harboring pRK415 This work 

PMI6pRK415 PMI-6 strain harboring pRK415 This work 

PMI6pRK415GFP PMI-6 strain harboring pRK415 and pMRGFP This work 

PMI6pRK415RFP PMI-6 strain harboring pRK415 and pMP4661 This work 

EE7pRK415 EE-7 strain harboring pRK415 This work 

EE7pRK415GFP EE-7 strain harboring pRK415 and pMRGFP This work 

EE7pRK415RFP EE-7 strain harboring pRK415 and pMP4661 This work 

Ca36pRK415 UPM-Ca36T strain harboring pRK415 This work 

 

 

Transforming the strains with the envZ gene 

 

The full sequence of the envZ gene from Mesorhizobium mediterraneum UPM-

Ca36T was amplified by PCR. The PCR was performed in 25 μl using 0,5 μL of DNA, 1× 

Buffer for Phusion GC Buffer, 0,2 mM of each dNTP, 7.5 pmol of each primer and 0,4 U 

of Phusion DNA Polymerase (Thermo Fisher Scientific). The primers used were envZ-

HindIII-F (5’-AAGCTTAATGAGACGTTTCCTGCCGCA-3’) and envZ-BamHI-R (5’-

GGATCCCTACGTTGCCAGCGGCAAGC-3’). The amplification program was: 30 s at 

98°C, 30 cycles of 10 s at 98ºC, 20 s at 56°C, 28 s at 72 ºC and a final extension of 5 
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min at 72 ºC. The obtained envZ fragment of 1407 bp was cloned in pCR-BluntTM vector 

(Thermo Fisher Scientific), sequenced and subcloned in the expression vector pRK415, 

previously digested with HindIII and BamHI.  

Five chickpea mesorhizobia strains were transformed by triparental mating with 

the pRKenvZ plasmid, containing the exogenous envZ gene under the control of the lac 

promoter. Based on previous work, it is already known that pRK415 allows the 

expression of the cloned gene both under free-living and symbiotic conditions (chapter 

2). E. coli DH5α cells harboring the plasmid pRKenvZ or pRK415 were used as donor 

and E. coli MT616 cells with pRK600 acted as helper, as described by Nascimento et al. 

(2012a). The pRKenvZ-transformed strains were named V15bpRKenvZ, ST2pRKenvZ, 

PMI6pRKenvZ, EE7pRKenvZ and Ca36pRKenvZ. The same mesorhizobia strains were 

transformed with pRK415, and named V15bpRK415, ST2pRK415, PMI6pRK415, 

EE7pRK415 and Ca36pRK415.  

To confirm the transformation of mesorhizobia cells with pRKenvZ and pRK415, 

total DNA was extracted according to Rivas et al (2001) and used to amplify the region 

of the expression vector that includes the envZ gene. Using the universal primers M13F 

and M13R-pUC, a DNA fragment of 1529 bp will be amplified from pRKenvZ and 122 pb 

will be amplified from pRK415. The PCR reaction was performed in a final volume of 50 

μL, using 5 μL of DNA, 1× reaction Green GoTaq® Flexi buffer, 0.2 mM of each dNTP, 

1.5 mM MgCl2, 15 pmol of each primer and 0.625U of GoTaq® G2 Flexi DNA 

Polymerase (Promega). The amplification program was: 2 min of initial denaturation at 

95 °C, 30 cycles of 60 s at 95 ºC, 45 s at 56 °C, 85 s at 72 ºC, and a final extension of 5 

min at 72 ºC. 

 Once the transformations were confirmed, strains harboring pRKenvZ were 

transformed with pMRGFP (containing the gfp gene) and strains harboring pRK415 were 

transformed with pMRGFP or pMP4661 (containing the rfp gene) by triparental mating, 

as described above. These transformations were confirmed by fluorescence microscopy 

observations. 

 

Evaluation of the symbiotic performance 

 

 In order to evaluate whether additional envZ copies improved the symbiotic 

effectiveness of chickpea mesorhizobia strains, a plant growth trial under controlled 

conditions was performed using both the wild-type and the transformed strains. After 

surface-sterilization and germination, chickpea seeds were transferred to plastic pots 

filled with sterile vermiculite and inoculated (Alexandre et al. 2009).  
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For inocula preparation, rhizobia strains were grown in TY liquid medium at 28°C 

for 72 h. Cell culture was centrifuged at 10.000 × g, resuspended in fresh TY liquid 

medium to an OD540nm of 1.0 and 1 ml of this bacterial suspension was used to inoculate 

each seedling. Five replicates per treatment were performed. A nitrogen-free nutrient 

solution (Broughton and Dilworth 1971) was applied three times a week. Uninoculated 

plants were used as negative control and plants watered with N-supplemented nutrient 

solution were used as positive control. Plants were grown in a growth chamber under a 

16 h-light and 8 h-dark cycle with 24°C-day and 18°C-night temperature at a relative 

humidity of 65%. After 7 weeks, plants were harvested and several parameters were 

measured, such as shoot dry weight (SDW), root dry weight (RDW), number of nodules 

(NN) and average weight per nodule (AWN). Symbiotic effectiveness (SE) was 

calculated using the shoot dry weight values, including those from the positive and 

negative controls (Gibson 1987). Statistical analysis was performed using SPSS 

statistics V.21 (SPSS Inc; IBM New York, USA) and included analysis of variance, 

namely one-way ANOVA, and the Tukey's Multiple Range Test (P < 0,05). 

Based on the results obtained in the symbiotic performance evaluation, 

mesorhizobia strains PMI-6 and EE-7 and their derivates were selected to be used for 

further analyses. 

 

Bacterial growth 

 

In order to evaluate free-living growth of wild type PMI-6 and EE-7 as well as their 

derivatives harboring pRK415 and pRKenvZ, strains were grow in 5 mL of TY medium 

(supplemented with 15 μg.ml-1 tetracycline in the case of the transformed strains) during 

144 h. The optical densities at 540 nm were measured every 24 hours and triplicates 

were used for each strain.  

In order to evaluate differences in the mucoid phenotype between the strains 

harboring pRK415 or pRKenvZ plasmids, bacterial growth was observed in yeast manitol 

agar (YMA). 

 

Evaluation of nodulation kinetics 

 

The nodulation kinetics were evaluated through a hydroponic assay using 

chickpea plants inoculated with PMI6pRK415, PMI6pRKenvZ, EE7pRK415 and 

EE7pRKenvZ strains (OD 540 nm of 0.6). The procedures were conducted as previously 

described in Brígido et al.  (2012b). Eight seeds per treatment were used and the number 

of nodules was evaluated every three days during 33 days. Plants were kept on a growth 
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chamber under the same conditions describe above for the evaluation of symbiotic 

performance. 

 

Histological analysis of nodules  

 

Nodules were excised from hydroponic plants 35 days after inoculation and 

processed for light microscopy. Nodules were fixed in 4% formaldehyde, dehydrated in 

an increasing ethanol series, and embedded in paraffin (Brígido et al. 2012b). Toluidine 

blue-stained sections (6 μm) of embedded nodules were examined by bright-field 

microscopy. 

 

Induction of root hairs formation 

 

To evaluate the effects of extra envZ copies on the initial root development of 

chickpea plants, pre-germinated seedlings were inoculated with strains harboring 

pRK415 or pRKenvZ plasmids in water-agar plates and the number of secondary roots 

and the density of root hairs were evaluated seven days after inoculation. 

 

Analysis of rhizobia infection process  

 

Pre-germinated chickpea seeds were inoculated with GFP-tagged (single 

infection) or RFP+GFP-tagged (co-infection) mesorhizobia strains, as described by 

Robledo et al. (2011). Chickpea roots and root hairs were stained with 10 μM propidium 

iodide (Sigma-Aldrich) or with 50mg/l calcofluor white (Sigma- Aldrich) and 10% 

potassium hydroxide solution (Flores-Félix et al. 2015). Projections were made from 

adjusted individual channels and accumulating stacks using Leica software. The analysis 

of root hairs 4 or 6 days after of inoculation were performed using a Confocal Laser 

Scanning Microscope (Leica TCS SPE) equipped with solid-state laser, allowing 

visualization of GFP (488 nm), RFP and propidium iodide (532 nm) and calcofluor white 

(405 nm) fluorescence.  

 

5.4. Results  

 The mesorhizobia strains V-15b, ST-2, EE-7, PMI-6 and UMP-Ca36T were 

transformed with the pRK415 plasmid containing the gene envZ (pRKenvZ) or with the 

empty vector (prK415) as control. The cloned envZ gene was amplified from 

Mesorhizobium mediterraneum UPM-Ca36T. Despite the presence of genes encoding 
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the EnvZ/OmpR two-component system in the genome of UPM-Ca36T, the two genes 

usually regulated by this system sensor (omprF and ompC) were not identified (data not 

shown). This genome is still in the draft stage, so the presence of ompF and ompR 

cannot be completely ruled out. In addition, the identity of the cloned sequence was 99 

% with a osmolarity sensor protein EnvZ in Mesorhizobium mediterraneum (accession 

number (WP_095484204) and 94 % with Mesorhizobium ciceri (accession number 

WP_029349880). 

 

Evaluation of the symbiotic performance 

 

To evaluate whether extra envZ copies could increase the symbiotic 

effectiveness of mesorhizobia strains, a chickpea pot assay was performed (Table 2). 

Despite the fact that envZ overexpression did not change the number of nodules develop 

on chickpea plants for any of the five strains tested, the symbiotic effectiveness (SE) was 

improved for PMI6pRKenvZ and EE7pRKenvZ with an increase of 64 % and 96 %, 

respectvely. SDW, which is used to calculate the SE, was significantly higher in plants 

inoculated with PMI6pRKenvZ and EE7pRKenvZ, than in those inoculated with 

PMI6pRK415 and EE7pRK415 or the corresponding wild type strains. From these two 

strains, only EE7pRKenvZ showed statistical differences in the average weight per 

nodule (AWN), which was higher in plants inoculated with EE7pRKenvZ, when compared 

to plants inoculated with the corresponding strain harboring pRK415. Nodules from 

plants inoculated with ST2pRKenvZ also showed a significant increase on AWN, yet in 

this case, no differences on SE or shoot dry weight (SDW) were detected. The results 

obtained for ST-2 and its transformed derivatives showed that an increase on AWN is 

not directly associated to an improvement of SE, since plants inoculated with 

ST2pRKenvZ showed the highest increase in the AWN and yet its SE was not 

significantly higher. In terms of root dry weight, significantly higher values were obtained 

in plant inoculated with EE-7, PMI-6 and ST-2 strains overexpressing envZ, when 

compared to the corresponding strains harboring pRK415.  

In addition, overexpressing envZ on UPM-Ca36T and V-15b strains did not 

improved any of the parameters analyzed on chickpea pot assay. Taking these results 

in account, further analyses were performed using only EE-7 and PMI-6 strains and their 

respective transformed strains. 
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Table 2 Results obtained from pot assays of chickpea plants inoculated with wild type or 

transformed strains. 

Strain SDW (g) RDW (g) NN AWN (mg) SE (%) 

V-15b 0.675 + 0.057 a 0.369 + 0.037 a 94 + 17 a 0.949 + 0.232 a 29.78 + 5.57 a 

V15bpRK415 0.699 + 0.126 a 0.335 + 0.078 a 67 + 35 a 1.567 + 0.493 a 32.22 + 12.4 a 

V15bpRKenvZ 0.756 + 0.099 a 0.432 + 0.062 a 73 + 25 a 1.332 + 0.277 a 37.78 + 9.71 a 

UPM-Ca36T 0.801 + 0.0960 a 0.356 + 0.023 a 55 + 21 a 2.036+ 0.797 a  42.19 + 9.5 a 

Ca36pRK415 0.789 + 0.191 a 0.342 + 0.080 a 57 + 17 a 1.994+ 0.574 a 41.07 + 18.8 a 

Ca36pRKenvZ 0.848 + 0.081 a 0.296 + 0.048 a 77 + 8 a 1.333+ 0.122 a 46.78 + 8 a 

ST-2 1.537 + 0.207 a 0.512 + 0.058 ab 57+ 6 a 2.495 + 0.583 b 42.06 + 10.1 a 

ST2pRK415 1.469 + 0.215 a 0.478 + 0.075 b 52 + 13 a 2.546 + 0.704 b 38.76 + 10.5 a 

ST2pRKenvZ 1.724 + 0.265 a 0.603 + 0.047 a 47 + 9 a 3.754 + 0.514 a 51.15 + 12.9 a 

PMI-6 1.174 + 0.080 b 0.490 + 0.057 ab 69 + 10 a 2.305 + 0.262 a 24.29 + 3.9 b 

PMI6pRK415 1.325 + 0.254 b 0.436 + 0.071 b 66 + 29 a 2.411 + 0.983 a 31.78 + 12.3 b 

PMI6pRKenvZ 1.728 + 0.178 a 0.527 + 0.044 a 55 + 19 a 3.405 + 1.643 a 51.40 + 8.6 a    

EE-7 0.629 + 0.131 b 0.321 + 0.036 b 53 + 9 a 1.293 + 0.340 ab 25.3 + 12.9 b 

EE7pRK415 0.680 + 0.083 b 0.319 + 0.022 b 65 + 17 a 1.099 + 0.324 b 30.3 + 8.2 b 

EE7pRKenvZ 0.973 + 0.055 a 0.556 + 0.069 a 63 + 12 a 1.707 + 0.294 a 59.1 + 5.4 a 

Different letters in the same group of strains indicate statistically significant differences (P<0,05). SDW - 

Shoot Dry Weight; RDW - Root Dry Weight; NN - Number of Nodules; AWN - Average Weight per Nodule; 

SE - Symbiotic Effectiveness 

 

Bacterial growth curves 

To characterize the growth kinetics of the transformed strains, bacterial growth 

was evaluated on liquid media (Fig. 1). On the first 48 hours, wild type and PMI6pRKenvZ 

strains growth is indistinguible, whereas the strain harboring the pRK415 plasmid already 

shows a slower growth (Fig 1A). From this point onwards, the strain with extra envZ 

copies begins to outgrow the growth of the other two strains, reaching the stationary 

phase at approx. the same time as the other strains (72 hours), yet with a much higher 

OD value.  

 In the case of EE-7 and its derivatives, the three growth curves were very similar, 

with the stationary phase also starting at approx. 72 h of growth (Fig 1B). 
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Figure 1. Growth curves in TY medium of A – PMI-6, PMI6pRK415 and PMI6pRKenvZ 

and B – EE-7, EE7pRK415 and EE7pRKenvZ. Significant differences were found 

between the growth of PMI6pRK415 and PMI6pRKenvZ strains from 24 hours onwards 

(P <0.05), using T-test. Bars represent standard deviation. 

 

  

Evaluation of nodulation kinetics 

  

In order to evaluate the effects of extra-envZ copies in the rate of nodules 

formation, the Mesorhizobium strains for which a SE improvement was detected 

previously were used in an assay with chickpea plants conducted in hydroponic 

conditions (Fig 2). Seedlings were inoculated with PMI6pRK415 or PMI6pRKenvZ and 

EE7pRK415 or EE7pRKenvZ. Plants inoculated with PMI6pRKenvZ showed the first 

nodules at 10 days after inoculation (DAI), while chickpea plants inoculated with 

PMI6pRK415 showed the first nodules only at 14 DAI. Although there is a significantly 

higher number of nodules in plants inoculated with PMI6pRK415 in an early phase 

(namely 17 and 19 DAI), at 28 DAI the strain harboring extra envZ copies began to show 

a significantly higher number of nodules and the values are kept higher until the end of 

the experiment (Fig 2A). Through visual inspection of nodules formed by both strains, it 

can be observed that many nodules from plants inoculated with PMI6pRK451 were 

greenish, which is a typical coloration of senescence nodules, inactive in terms of 

nitrogen fixation (Fig 3A1 and A2). On the other hand, most of the nodules in plants 

inoculated with PMI6pRKenvZ showed a reddish interior, which results from the 

accumulation of active leghemoglobin, and many of them were larger than those from 

plants inoculated with empty vector strain (Fig 3E1 and E2).  

 The time-course of nodule formation was also evaluated in plants inoculated with 

EE7pRK415 and EE7pRKenvZ, in order to verify whether the heterologous envZ gene 

could improve nodule number or nodule development rate. Although as a trend, plants 

inoculated with EE7pRKenvZ strain showed more nodules than plants inoculated with 

EE7pRK451, this difference is not statistically significant (Fig 2 B). Based on visual 

inspection, nodules resulting from both strains inoculation seemed very similar (data not 

shown).  
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Figure 2. Nodulation kinetics of chickpea plants. Average Number of nodules for plants 

inoculated with A - PMI6pRK415 and PMI6pRKenvZ strains. B - EE7pRK415 and 

EE7pRKenvZ strains. Bars represent standard error. 

 

Histological analysis of nodules 

  

 In order to verify possible differences in the histology of nodules resulting from 

the inoculation of chickpea plants with PMI6pRK415 and PMI6pRKenvZ, sections of 

nodules embedded in paraffin were stained and observed under bright-field microscopy. 

All nodules analyzed presented the expected zones of effective indeterminate nodule 

with meristematic, infection and fixation zones (Fig 3B and F). However, PMI6pRK415-

induced nodules had a larger senescence zone (black arrow in Fig 3B and D) than those 

induced by PMI6pRKenvZ (Fig. 3F). In addition, nodules harboring the strain with extra 

envZ copies showed a higher number of bacteroid-occupied cells and each invaded plant 

cell shows a larger area occupied by differentiated bacteria than in nodules induced by 

the PMI6pRK415 strain (Fig 3 C and G). 
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Figure 3. Nodules from chickpea plants 35 DAI. A1 - Nodules from plants inoculated with 

PMI6pRK415; A2 - Nodule section from plants inoculated with PMI6pRK415; B, C and 

D - Nodules sectioned and stained with toluidine blue from plants inoculated with 

PMI6pRK415; E1 - Nodules from plants inoculated with PMI6pRKenvZ; E2 - Nodule 

section from plants inoculated with PMI6pRKenvZ; F, G and H - Nodules sectioned and 

stained with toluidine blue form plants inoculated with PMI6pRKenvZ; B and D - Black 

arrows indicate senescent zone; C - Red arrow indicates uninfected cells. Scale bars: 1 

cm (A1 and E1); 800 μm (B and F); 400 μm (C and G); 200 μm (D and H). 

 

Colonization and infection thread   

 

 In order to verify whether the higher number of nodules observed in the 

hydroponic trial in plants inoculated with PMI6pRKenvZ and EE7pRKenvZ strains relied 

on a higher efficiency of these strains in the first stages of the interaction with plants 

roots, their infection processes were compared with those of the respective strains 

harboring the empty vector (PMI6pRK415 and EE7pRK415). All strains were 

transformed with an additional plasmid encoding the green fluorescent protein gene (gfp) 

and analyzed using confocal microscopy. At four days after inoculation, no differences 

were detected between chickpea seedlings inoculated with EE7pRK415GFP and 

EE7pRKenvZGFP strains, regarding important infection parameters such as curling, 

formation of infection threads and formation of caps in the presence of curling and 

infection threads (Fig 4A and B). On the other hand, also at four days after inoculation, 

chickpea seedlings inoculated with the PMI6pRKenvZGFP strain showed a higher 

number of infection threads than roots inoculated with PMI6pRK415GFP (Fig 4D and E). 

In addition, colonization of the surface of the roots seemed more efficient for the strain 

with extra envZ copies than for PMI6pRK415GFP. 

 In order to performed confocal microscopy analysis of chickpea roots 

simultaneously inoculated with the strain overexpressing envZ and the corresponding 

strain harboring the empty vector, strains PMI6pRK415 and EE7pRK415 were 

transformed with an additional plasmid carrying the rfp gene (red fluorescent protein). 

Although no differences were detected in the infection process when EE-7 derivative 

strains were compared separately (Fig 4A and B), upon co-inoculation, a higher amount 

of green-tagged bacteria (EE7pRKenvZGFP) was observed in intracellular zones and in 

infection threads, suggesting a higher efficiency on these early symbiosis processes of 

the strain with extra envZ copies (Fig 4C). Similar observations resulted from the analysis 

of co-inoculation of PMI6pRKenvZGFP and PMI6pRKK415RFP strains (Fig 4F), in 

agreement with the results obtained by the single inoculation analysis. Since strains were 
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inoculated in a 1:1 mixture, this analysis seems to indicate that competitiveness at root-

hair infection stage is higher in the strains overexpressing envZ. 

 

 

 

Figure 4. Confocal laser scanning micrographs showing the initial infection process of 

chickpea roots inoculated with green and red fluorescent protein–tagged rhizobia. Single 

inoculation: A - EE7pRK415, B - EE7pRKenvZ, D - PMI6pRK415 and E - PMI6pRKenvZ 
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strains tagged with green fluorescent protein and chickpea roots stained with propidium 

iodide, at 4 days after inoculation. Co-inoculation: C - EE7pRK415 (red) and 

EE7pRKenvZ (green) and F - PMI6pRK415 (red) and PMI6pRKenvZ (green) strains co-

inoculated in chickpea roots stained with calcofluor white, at 6 days after inoculation. 

Root hair curling (white arrows); infection threads (gray arrows); caps on root hairs tips 

(blue arrows), rhizobial attachment on roots (square) and empty vector strains sharing 

the same intercellular space with those harboring pRKenvZ (ellipses) are shown. Scale 

bars: 75 μm (A, B, D and E); 50 μm (C and F). 

 

  

Exopolysaccharides and induction of root hairs formation 

 

 A plate assay was performed in order to verify whether envZ overexpression 

influences the mucoid phenotype, which is typical of most rhizobia. When growing in 

yeast mannitol agar (YMA), strain PMI6pRKenvZ showed a stronger mucoid phenotype 

than strain PMI6pRK415 (Fig 5A1 and A2) or the wild type strain (data not shown). 

Despite the fact that the EE-7 strain is naturally very mucoid, the strain transformed with 

extra copies of envZ showed a more accentuated mucoid phenotype than the empty 

vector strain (data not shown), although this change is not as evident as in the case of 

PMI-6. 

In order to evaluate if the envZ-extra copies affected the initial root development 

of chickpea plants, pre-germinated seedlings were inoculated in water-agar plates. 

Interestingly, plants inoculated with PMI6pRKenvZ showed a much higher density of root 

hairs than plants inoculated with PMI6pRK415 (Fig 5B1 and B2). In addition, the number 

of lateral roots was also higher in plants inoculated with PMI6pRKenvZ (Fig 5C1 and 

C2). These differences were not detected for the same analysis performed with the 

modified EE-7 strains (data not shown). 
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Figure 5. A – Mucoid phenotype by modified strains in YMA plates. A1 -  PMI6pRK415 

and A2 - PMI6pRKenvZ; B - Root hair development in chickpea plants grown in water 

agar medium for seven days after inoculation with B1 - PMI6pRK415 and B2 - 

PMI6pRKenvZ; C - Secondary roots development after inoculation with C1 -   

PMI6pRK415 and C2 - PMI6pRKenvZ. 

 

5.5. Discussion 

 

The EnvZ/OmpR two-component regulatory system regulates expression of outer 

membrane proteins (porins) in response to osmotic stress (Alphen and Lugtenberg 1977; 

Wang et al. 2012). In addition, it has been shown that mutations in envZ or ompR alter 

the expression levels of several other genes related with a large range of functions, as 

for example genes related to virulence in pathogens, fatty acid uptake, 

exopolysaccharide (EPS) production, peptide transportation and flagella production 

(Bernardini et al. 1990; Li et al. 2014; Yuan et al. 2011).  

With the aim of evaluating the effects on the symbiotic performance of extra envZ 

copies, several chickpea mesorhizobia strains were modified in order to overexpress the 

envZ gene from M. mediterraneum UPM-Ca36T. 

As a first approach, to evaluate if the symbiotic parameters were improved, a pot 

assay was performed using chickpea plants inoculated with five mesorhizobia wild types 

and the corresponding modified strains. Only two strains, PMI6pRKenvZ and 

EE7pRKenvZ, showed a significant improvement in the symbiotic effectiveness, 

compared to the respective wild type and strain harboring the pRK415 plasmid. Plants 

inoculated with these two strains showed a higher shoot and root dry weights. 

Furthermore, EE7pRKenvZ induced the development of nodules with a higher average 

weight per nodule, compared to EE7pRK415. Previous studies revealed that 
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EnvZ/OmpR may regulate secretion system (SS) genes in pathogenic bacteria, such as 

Salmonella typhimurium, Yersinia enterocolitica, Erwinia amylovora and Pseudomonas 

syringae (Brzostek et al. 2007; Feng et al. 2003; Feng et al. 2004; Li and Zhao 2011). 

Although there is no report showing the EnvZ/OmpR relation with secretion system in 

rhizobia, it is known that different types of SS are present in this group of bacteria and 

their importance in the symbiosis has been previously shown (Hubber et al. 2007; 

Okazaki et al. 2013; Viprey et al. 1998). For example, mutation of several T4SS genes 

in M. loti delayed nodulation on Lotus corniculatus (Hubber et al. 2004). vir mutants in 

M. loti inoculated in Leucaena leucocephala formed effective nodules, whereas wild type 

strain formed empty and small nodules. It may suggest that the SE improvement of the 

strains overexpression envZ could be due the possible regulation of the SS by 

EnvZ/OmpR in rhizobia. 

Despite the general trend of a higher shoot dry weight for plants inoculated with 

the mesorhizobia strains overexpressing envZ, no significant differences were detected 

for three of the tested strains, when compared to the corresponding strains harboring the 

empty vector, namely V-15b, ST-2 and UPM-Ca36T. It is noteworthy that the homologous 

overexpression of envZ in M. mediterraneum UPM-Ca36T did not significantly affect the 

plant and nodule parameters evaluated.  

In order to investigate other aspects of the symbiosis that might be affected by 

the presence of envZ extra copies, further studies were performed with EE-7 and PMI-6 

strains and its transformed derivatives.   

Growth curves were performed to characterize the growth kinetics of PMI-6 and 

EE-7 transformed strains. PMI6pRK415 strain showed a similar growth curve to the wild 

type strain, although with slightly lower optical density values. This was expected 

because the size and copy number of the plasmid could slow down the DNA replication 

process. Interestingly, even with the expression plasmid, the PMI6pRKenvZ strain 

showed a more accelerated growth than wild type and PMI6pRK415 strains. In addition, 

PMI-6 strain harboring pRKenvZ reached late exponential and stationary phases with 

higher OD values than those of the wild type and empty vector strains. These higher OD 

values are probably a consequence of the stronger mucoid phenotype observed for 

PMI6pRKenvZ. According the differences in the growth curves among the EE-7 strains 

were not as marked as those observed in the PMI-6 strains and the alteration on the 

mucoid phenotype on EE-7 strains was much less pronounced.  

A successful rhizobia penetration through the infection thread requires both the 

continued biosynthesis of Nod factors and the synthesis of symbiotic exopolysaccharides 

(EPS) (Jones et al. 2007; Klein et al. 1988). EPS may be important in lowering the 

legume immune response during rhizobia invasion (Jones 2012; Jones et al. 2008; 
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Pellock et al. 2000). Since the mucoid phenotype indicates the ability of rhizobia to 

produce EPS (Milner et al. 1992; Sayyed et al. 2011; Staehelin et al. 2006), the highest 

mucoid phenotype observed in bacteria transformed with extra envZ copies may have 

improved the ability of these bacteria to infect the root hairs. A higher EPS production 

might be a particularly important factor accounting for the symbiotic effectiveness 

improvement detected for PMI6pRKenvZ, since the difference in the EPS production 

observed between EE-7 transformed strains was not as expressive as those observed 

for the PMI-6 transformed ones. Geddes et al. (2014) showed that the EPS production 

in response to medium acidification in S. meliloti is correlated with an increase in 

competition for nodule occupancy. S. meliloti 1021 overexpressing exoR, which encodes 

the enzyme responsible for the first step in succinoglycan biosynthesis, enhanced the 

symbiosis with Medicago truncatula (Jones 2012). In addition R. leguminosarum bv, 

trifolii strains overproducing EPS increased the shoot fresh and dry weight, the number 

of nodules on clovers roots and nodule occupancy (Janczarek et al. 2009). In S. meliloti, 

ExoS is a sensor kinase that together with the response regulator ChvI, functions as the 

positive regulator for synthesis of succinoglycan, an exopolysaccharide involved in the 

infection process (Wells et al. 2007) and this ExoS-ChvI two-component regulatory 

system is a member of the EnvZ-OmpR family (Cheng and Walker 1998). Previous 

studies have reported that the EnvZ/OmpR tow-component system is related with EPS 

production (Li et al. 2014; Pickard et al. 1994), therefore probably this system is involved 

in the EPS production in rhizobia, as well. 

Root hair density is known to be influenced by redox conditions and 

phytohormones (Considine and Foyer 2014; Zhang et al. 2016) In addition, Laus et al. 

(2005) showed that Rhizobium leguminosarum EPS-deficient elicited small root hair in 

Vicia sativa plants. Therefore, the higher EPS production detected for PMI6pRKenvZ is 

likely to account for the higher density of root hair and secondary roots observed in plants 

inoculated with this strain. 

With the aim of evaluating nodule development in a time-course approach, 

chickpea plants were inoculated and grown in hydroponic conditions. Although the 

previous pot assay showed no difference between the number of nodules in chickpea 

plants inoculated with PMI6pRKenvZ compared to plants inoculated with PMI6pRK415, 

the hydroponic conditions showed that the number of nodules is significantly higher in 

plants inoculated with the strain overexpressing envZ in the later period of the 

experiment. This apparent discrepancy between the results of two different plant assays 

is most likely due the shorter duration of the hydroponic assay (5 weeks), compared with 

the pot assay (8 weeks). These results suggest that there might be a transient higher 

number of nodules in plants inoculated with PMI6pRKenvZ, which may benefit the plant 
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in terms of N-fixation, yet in a later stage of the symbiosis that difference is not detected 

any longer. Besides nodule number, nodule coloration both outside and inside was 

inspected in nodules belonging to the several treatments. Plants inoculated with 

PMI6pRKenvZ showed nodules with a reddish interior, which results from the 

accumulation of active leghemoglobin (Downie 2005), and many of them were larger 

than those from plants inoculated with empty vector strain. On the other hand, most of 

the nodules observed in plants inoculated with the strain PMI6pRK451 were greenish, 

which is a typical coloration of senescent and Fix- nodules (Roponen 1970; Van de Velde 

et al. 2006). Histological analysis of theses nodules confirmed a larger senescent zone 

and more empty cells in the nodules from plants inoculated with PMI6pRK451, while 

nodules resulting from PMI6pRKenvZ inoculation showed infection zones with more 

bacteroids. A typical senescent zone is characterized by degeneration of both symbionts 

that happens in the end of the fixation zone. This degradation indicates that the symbiotic 

interaction has finished (Timmers et al. 2000). Although these results indicate the 

contribution of additional envZ copies to the development of nodules that are more 

effective in fixing atmospheric nitrogen and providing these N-compounds to the host 

plant.  

 The nodulation kinetics was also evaluated in plants inoculated with EE-7 strains 

harboring pRK415 or pRKenvZ plasmids, for 35 days after inoculation. Although plants 

inoculated with EE7pRKenvZ show more nodules during the whole experiment, this 

difference is statistically not significant, corroborating the results in pots assay. The 

coloration of the interior of the nodules from both treatments was similar (light red). In 

this case, the improvement of SE observed in the pot assay is probably not related with 

the formation of more effective nodules, as seems to happen in the PMI-6 modified strain. 

Thus, these results suggest that extra envZ copies might improve the SE by different 

mechanisms in the two studied mesorhizobia strains.  

In order to investigate in more detail the early steps of the infection process, the 

modified strains were transformed with fluorescent proteins (gfp and rfp) genes, 

inoculated in pre-germinated chickpea seeds and observed under confocal microscopy. 

Roots inoculated with PMI6pRKenvZGFP showed a much higher number of infection 

threads than the ones inoculated with the corresponding strain harboring pRK415. 

Analysis of co-inoculation of PMI6pRKenvZGFP and PMI6pRK415RFP also confirmed 

that the number of infection threads and attached bacteria on the intracellular zone were 

higher for the strain with extra envZ copies. These results suggest that EnvZ may 

contribute to a more effective infection and this difference at the beginning of the 

symbiosis process in PMI-6 may account for the higher number of nodules observed in 

hydroponic conditions. Upon single inoculation, no change in the number of infection 
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threads was detected for EE7pRKenvZ, when compared with the empty vector strain. 

Nevertheless, upon co-inoculation it seems that there is a higher density of bacterial cells 

modified with envZ gene attached on the intracellular zone. Several studies have shown 

that EnvZ/OmpR system may influence the bacteria motility, biofilm formation and 

flagella production (Kim et al. 2003; Li et al. 2014; Prigent-Combaret et al. 2001; Prüβ 

2017; Tipton and Rather 2017; Yuan et al. 2011). Zheng et al (2015) showed that the 

flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage 

of plant host interaction and a mutation  causing the loss of the swimming ability lead to 

decreased bacterial attachment on the root hair. Others studies showed that motile 

bacteria are more efficient in nodulation (Soby and Bergman 1983) or more competitive 

on the plant root (Caetano-Anolles et al. 1988; Mellor et al. 1987) than non-motile ones. 

Therefore, extra envZ copies in PMI-6 and EE-7 could have improved their motility 

abilities and consequently, enhanced the infection and competitiveness of these strains. 

Nevertheless, this improvement in the early steps of infection does not appear to be as 

marked in EE7pRKenvZ and perhaps it is related with the less EPS production observed 

in this strain. 

Extra copies of envZ in PMI-6 strain improved some important parameters, such 

as colonization and infection, number of nodules in an earlier phase of the symbiosis, 

mucoid phenotype (EPS) and root hair development. These same parameters evaluated 

in EE7pRKenvZ and EE7pRK415 did not reveal clear differences between these two 

strains that could account for the higher SE obtained for the strain with extra envZ copies, 

suggesting that EnvZ may influence the symbiosis process by different mechanisms.  

 This study represents the first report on the involvement of the EnvZ/OmpR two-

component signal transduction system in the symbiosis process. Nevertheless, 

ExoS/ChvI, another two-component system from the same family, has been previously 

reported to be essential to the establishment of an effective symbiosis in S. meliloti 

(Bélanger et al. 2009; Chen et al. 2009; Soto et al. 2006). It regulates the succinoglycan 

(EPS I) production and flagella biosynthesis (Cheng and Walker 1998; Yao et al. 2004). 

A S. meliloti exoS mutant overproduced EPS I and did not synthesize flagella, loss of 

ability of swarming and swimming. Furthermore, reduced the efficiency of root hair 

colonization of alfalfa (Yao et al. 2004). Overall, these results suggest the involvement 

of TCRS in the symbiotic performance and indicate that EnvZ could be involved with the 

infection process and affect the EPS production in some mesorhizobia strains. As envZ 

overexpression led to different symbiotic phenotypes in the tested strains, it seems that 

these effects are strain dependent. In addition, for the two strains that showed a 

significant increase in the symbiotic effectiveness, EnvZ seems to act through different 
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pathways. More studies are required to better understand the exact mechanism affected 

by EnvZ that cause the reported phenotypes.  
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General discussion 
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The conversion of atmospheric nitrogen into ammonia by symbiotic, associative 

and free-living bacteria, known as biological nitrogen fixation, is very important to the 

environment and food production. In agricultural systems, the biological nitrogen fixation 

process represents an alternative to the expensive nitrogen fertilizers, which are easily 

loss through leaching. The fixed nitrogen compensates the losses caused by the 

denitrification and represents an important part of the nitrogen cycle, replenishing the 

overall nitrogen content of the biosphere. In order to maintain crop production at high 

levels, nitrogen fertilizers are often supplied in large amounts. This increasing use of N-

fertilizers, which constitutes the largest human interference in the nitrogen cycle, has 

prompted concerns regarding the emissions of nitrogen oxides, soil acidification and 

water eutrophication. As the world’s population increases, the demand for sustainable 

food production has increased proportionally. As nitrogen generated by biological fixation 

is utilized in situ, it is less prone to leaching and volatilization and therefore this process 

contributes as an important and sustainable N-input into agriculture (Capone 2001; Dixon 

and Kahn 2004). In addition, some farmers use crop-rotation techniques in which they 

include leguminous crops, in order to fertilize the soil for future non-leguminous crops. 

The use of biotechnology in agriculture has been growing over the years as a 

sustainable strategy for increasing animal and vegetable production (Glick 2012). Plant 

growth-promoting bacteria (PGPB) which include rhizobia, can be used as tools to 

increase the production of crops, while reducing the use of environmental damaging 

chemical fertilizers or pesticides (Lucy et al. 2004). Rhizobia inoculants should be 

effective in nitrogen fixation, persistent in soil and competitive with native populations, 

as well as adapted to the field environmental conditions (Stephens and Rask 2000), in 

order to be able to establish successful and effective symbioses. 

Molecular biotechnology strategies can contribute to the improvement of rhizobia 

inoculants, particularly the genetic engineering of rhizobia to overexpress specific genes, 

directly or indirectly involved in the symbiotic process, in order to improve rhizobia 

performance, such as symbiotic effectiveness, nodulation efficiency, competitiveness 

and stress tolerance.  

Using chickpea rhizobia strains as case study, the present thesis focused in better 

understanding how extra copies of genes directly and indirectly related with the 

symbiosis could improve symbiotic performance, aiming to contribute to the development 

of highly efficient rhizobia strains. 

The NifA protein is directly involved in the nitrogen fixation in bacteroids (Novichkov 

et al. 2013). Encoded by nifA, it regulates the operon nifHDK, which encode the 

nitrogenase complex that converts atmospheric nitrogen into ammonia. It was also 
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reported that NifA controls other genes that are not directly involved in the nitrogen 

fixation process, but are related to competitiveness, nodulation efficiency, development 

of nodules and bacteroid persistence (Fischer 1994). As NifA regulator plays an 

extremely important role in the whole nitrogen fixation process, it was expected that 

chickpea plants inoculated with the transformed strains overexpressing this gene would 

show significantly higher biomass, as a consequence of a more efficient nitrogen fixation.  

Overexpression of nifA gene in four mesorhizobia strains only improved the 

symbiotic effectiveness of V15bpRKnifA. In addition, plants inoculated with this strain 

showed a higher rate of nodules development in a hydroponic assay. Similar results were 

obtained with Sinorhizobium fredii using extra-copies of nifA from Klebsiella pneumonia 

that resulted in an increase in the nodulation activity and nodulation competitiveness on 

soybean plants (Jieping et al. 2002). Furthermore, Sanjuan and Olivares (1991) reported 

that multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhanced S. 

meliloti nodulation competitiveness on alfalfa. V15-b was also modified with extra copies 

of nodD, envZ or groEL, but the symbiotic effectiveness was not improved by the 

overexpression of any of these genes.  

NodD is a regulator of other rhizobial nodulation genes (e.g. nodABC) (Cooper 

2007a), thus it was expected that extra nodD copies in mesorhizobia strains would 

improve mainly the nodulation in chickpea plants. It was previously seen that nodD 

mutation in strains with only one copy frequently suppresses the nodulation (Nod-) (e.g. 

Rhizobium leguminosarum bv. trifolli) (Broughton et al. 2000). Indeed, when nodD was 

overexpressed, ST2pRKnodD and PMI6pRKnodD strains showed an improvement in 

their ability to infect root hairs, which probably accounted for the significant increase in 

the rate of nodules development in plants inoculated with these strains. Moreover, 

nodules from plants inoculated with PMI6pRKnodD did not show senescent areas that 

were observed in nodules from plants inoculated with PMI6pRK415 (the corresponding 

control strain). Despite the fact that at the end of a 7-week pot trial, no difference in the 

number of nodules between PMI6pRKnodD and PMI6pRK415 was detected, plants 

inoculated with PMI6pRKnodD showed an expressive increase in the shoot dry weight 

of approximately 33%. 

This is the first report on the genetic transformation of a Mesorhizobium strain with 

a symbiosis gene that significantly improved its symbiotic performance. 

These plant-microbe interactions comprise several stages that require extensive 

gene expression reprogramming from both partners. It is known that some genes present 

in rhizobia, whose main function is not directly related to symbiosis, may indirectly 

influence this process. That is the case of several stress response genes, such as groEL 

or clpB (Bittner et al. 2007; Brígido et al. 2012b; Ogawa and Long 1995). For the present 
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study two genes involved in stress response were used to evaluate the effects of its 

overexpression on the symbiotic performance: the chaperone gene groEL and the two-

component system gene envZ. 

The ST-2 strain was the only one that showed an improvement of the symbiotic 

parameters when the groEL gene was overexpressed, such as symbiotic effectiveness 

and rate of nodules formation. Interestingly, as mentioned above, ST-2 also had some 

symbiotic features improved when harboring extra nodD copies. Although the main 

function of the GroEL chaperone is protect the bacteria against heat shock, it was 

reported that this protein plays a fundamental role in the formation of functional NodD 

and nitrogenase complex (Fischer et al. 1999; Ogawa and Long 1995). Therefore, it is 

tempting to suggest that there might be a similar key point determining the symbiotic 

performance improvement observed for both ST2pRKgroEL and ST2pRKnodD, namely 

an increased level of the NodD regulator. This hypothesis is supported by previous 

studies showing that Sinorhizobium meliloti mutants in groEL gene affected the activity 

of NodD and formed nodules later and with a Fix- phenotype on alfalfa (Ogawa and Long 

1995).  

The EnvZ/OmpR two-component regulatory system is activated in response to 

osmotic stress and is responsible for the regulation of the expression of outer membrane 

porins OmpF and OmpC (Alphen and Lugtenberg 1977; Wang et al. 2012). The two-

component are also associated with several cellular functions, such as virulence in 

pathogens, fatty acid uptake, exopolysaccharide (EPS) production, peptide transport,  

flagella production and regulation of type III secretion system genes in pathogenic 

bacteria (Bernardini et al. 1990; Brzostek et al. 2007; Feng et al. 2003; Feng et al. 2004; 

Li et al. 2014; Li and Zhao 2011; Mills et al. 1998; Pickard et al. 1994; Shin and Park 

1995; Vidal et al. 1998; Yuan et al. 2011).  

The envZ gene was overexpressed in five mesorhizobia strains in order to analyze 

its effects in the symbiotic performance. Two of those strains, PMI-6 and EE-7, showed 

improvement of some parameters related with the symbiosis. Interestingly, envZ was 

one of the overexpressed genes that showed the most promising results because, 

besides having improved the symbiotic effectiveness, the root dry weight of plants 

inoculated with both PMI6pRKenvZ and EE7pRKenvZ was also improved. Extra envZ 

copies increased the EPS production in PMI6pRKenvZ and the amount of root hairs and 

secondary roots were higher in plants inoculated with this strain. In addition, the rate of 

nodules formation was also increased under hydroponic conditions and the histological 

analysis of these nodules showed a higher number of bacteroid-occupied cells and each 

invaded plant cell showed a larger area occupied by bacteroids. 

Unexpectedly, none of the homologous overexpression tested could improve the 
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UPM-Ca36T strain. 

Although some tested strains showed improvement of their symbiotic performance 

with the overexpression of more than one gene (PMI-6 and ST-2) and some 

overexpressed genes were seen to improve more than one strain (envZ and nodD), none 

of the selected genes improved all the tested strains and none of the tested strains 

showed symbiotic improvement overexpressing all the genes. Overall, these results 

suggest that the improvement of symbiotic performance seems to be a strain specific 

process. 

It is noteworthy that for all the modified strains that showed an improvement in the 

symbiotic effectiveness, no alteration was detected in the number of nodules in the plant 

pot trials. However, when the nodulation of these same strains was evaluated in a time 

course approach, using hydroponic conditions, a higher number of nodules was obtained 

in all cases. The fact that these different plant trials had different durations (7 weeks for 

pot experiments and 33-35 days for hydroponic conditions) suggests that the higher 

number of nodules detected in chickpea plants inoculated with the strains carrying extra 

copies of a given gene, when compared to the same strain harboring the empty vector, 

might be a transient phase. This would mean that the strains showing SE improvement 

induced the formation of nodules in a faster rate, and this might be determinant for 

increasing plant growth, since it could represent more available N in an earlier stage of 

plant development. 

 

Future perspectives 

 

From the genes analyzed that were known to be directly related with the symbiosis 

process, nodD seems to be the one which showed more interesting and promising 

results. Therefore, more studies should be performed using these transformed strains, 

especially to understand the reason why extra copies of nodD only improved the 

symbiotic performance of some strains. Furthermore, since ST-2 showed improvement 

of symbiotic effectiveness while overexpressing both nodD and groEL genes, it would be 

interesting to investigate this known interaction between NodD and GroEL in ST-2.  

The role of the envZ gene is well documented for E. coli, however to our knowledge 

no studies were performed regarding the EnvZ/OmpR system in rhizobia. The 

expression of extra copies of envZ besides leading to an improvement of the symbiotic 

effectiveness, also affected several other symbiosis related phenotypes. Therefore, 

additional studies are required to understand how envZ is related with the symbiosis. 

Moreover, studies aiming to evaluate the osmotic tolerance of these strains could be 

important, especially since the Mesorhizobium genomes seem to lack the two main 
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targets of EnvZ/OmpR regulation (ompF and ompC), suggesting that other mechanisms 

must be under the control of this system. 

Future studies may involve the integration of extra copy of these genes in the 

genome of a chickpea Mesorhizobium strains to avoid the negative effects of the 

expression vector. 

The precise molecular mechanisms that account for the improvement in the 

symbiotic effectiveness reported on the present study require further investigation, in 

order to better understand the genetic determinants of highly effective rhizobia strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

137 
 

References 

 

Acharjee S, Sarmah BK (2013) Biotechnologically generating 'super chickpea' for food 
and nutritional security. Plant science : an international journal of experimental 
plant biology 207:108-16 doi:10.1016/j.plantsci.2013.02.003 

Aiba H, Nakasai F, Mizushima S, Mizuno T (1989) Evidence for the physiological 
importance of the phosphotransfer between the two regulatory components, 
EnvZ and OmpR, in osmoregulation in Escherichia coli. Journal of Biological 
Chemistry 264(24):14090-14094  

Albala K (2007) Beans: A History. Berg Publishers, New York, NY, USA 
Albright LM, Ronson CW, Nixon BT, Ausubel FM (1989) Identification of a gene linked 

to Rhizobium meliloti ntrA whose product is homologous to a family to ATP-
binding proteins. Journal of bacteriology 171(4):1932-41  

Alexandre A, Brígido C, Laranjo M, Rodrigues S, Oliveira S (2009) A survey of chickpea 
rhizobia diversity in Portugal reveals the predominance of species distinct from 
Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microbial Ecology 
58:930-941 doi:10.1007/s00248-009-9536-6 

Alexandre A, Laranjo M, Oliveira S (2014) Global transcriptional response to heat shock 
of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive 
gene downregulation. DNA Res 21(2):195-206 doi:10.1093/dnares/dst050 

Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic 
marker for alphaproteobacteria International journal of systematic and 
evolutionary microbiology 58(12):2839-2849  

Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major 
chaperone genes upon stress. FEMS Microbiol Ecol 75:28-36  

Alexandre A, Oliveira S (2013) Response to temperature stress in rhizobia. Critical 
Reviews in Microbiology 39(3):219-228  

Alexandre A, Oliveira S (2016) Heat shock response in bacteria with large genomes: 
lessons from rhizobia. In: de Bruijn FJ (ed) Stress and Environmental Control of 
Gene Expression in Bacteria. Wiley-Blackwell Publishers 

Alphen WV, Lugtenberg B (1977) Influence of osmolarity of the growth medium on the 
outer membrane protein pattern of Escherichia coli. Journal of bacteriology 
131(2):623-30  

Alvarez-Morales A, Betancourt-Alvarez M, Kaluza K, Hennecke H (1986) Activation of 
the Bradyrhizobium japonicum nifH and nifDK operons is dependent on promoter-
upstream DNA sequences. Nucleic Acids Research 14(10):4207-4227  

Alvarez-Morales A, Hennecke H (1985) Expression of Rhizobium japonicum nifH and 
nifDK operons can be activated by the Klebsiella pneumonia nifA protein but not 
by the product of ntrC. Molecular & General Genetics : Mgg 199(2):306-314  

B G Rolfe a, Gresshoff PM (1988) Genetic Analysis of Legume Nodule Initiation. Annual 
Review of Plant Physiology and Plant Molecular Biology 39(1):297-319 
doi:10.1146/annurev.pp.39.060188.001501 

Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the 
heat-shock regulation of chaperonin gene expression in Bradyrhizobium 
japonicum. Molecular Microbiology 19(4):827-839  

Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela 
D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn 
ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, 
Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted 
functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl 
Acad Sci U S A 98(17):9883-9888  

Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM, Kahn D (1989) fixK, a 
gene homologous with fnr and crp from Escherichia coli, regulates nitrogen 



 

138 
 

fixation genes both positively and negatively in Rhizobium meliloti. Embo j 
8(4):1279-86 doi:10.1002/j.1460-2075.1989.tb03502.x 

Bélanger L, Dimmick KA, Fleming JS, Charles TC (2009) Null mutations in Sinorhizobium 
meliloti exoS and chvI demonstrate the importance of this two-component 
regulatory system for symbiosis. Molecular Microbiology 74(5):1223-1237 
doi:10.1111/j.1365-2958.2009.06931.x 

Bergstrom LC, Qin L, Harlocker SL, Egger LA, Inouye M (1998) Hierarchical and co-
operative binding of OmpR to a fusion construct containing the ompC and ompF 
upstream regulatory sequences of Escherichia coli. Genes to cells : devoted to 
molecular & cellular mechanisms 3(12):777-88  

Beringer JE (1974a) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84 
doi:10.1099/00221287-84-1-188 

Beringer JE (1974b) R factor transfer in Rhizobium leguminosarum. Journal of General 
Microbiology 84(1):188-198 doi:10.1099/00221287-84-1-188 

Bernardini ML, Fontaine A, Sansonetti PJ (1990) The two-component regulatory system 
OmpR-EnvZ controls the virulence of Shigella flexneri. Journal of bacteriology 
172(11):6274-81  

Biswas B, Gresshoff P (2014) The Role of Symbiotic Nitrogen Fixation in Sustainable 
Production of Biofuels. International Journal of Molecular Sciences 15(5):7380  

Bittner AN, Foltz A, Oke V (2007) Only one of five groEL genes is required for viability 
and successful symbiosis in Sinorhizobium meliloti. J Bacteriol 189(5):1884-1889 
doi:10.1128/jb.01542-06 

Bittner AN, Oke V (2006) Multiple groESL operons are not key targets of RpoH1 and 
RpoH2 in Sinorhizobium meliloti. J Bacteriol 188(10):3507-3515  

Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M 
(2012) The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 
14 Rhizobia Strains by Resolution of Protein Clusters. Genes 3(1):138  

Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000) 
Simultaneous imaging of Pseudomonas fluorescens WCS365 populations 
expressing three different autofluorescent proteins in the rhizosphere: new 
perspectives for studying microbial communities. Molecular plant-microbe 
interactions : MPMI 13(11):1170-6 doi:10.1094/mpmi.2000.13.11.1170 

Boor KJ (2006) Bacterial Stress Responses: What Doesn't Kill Them Can Make Them 
Stronger. PLoS Biology 4(1):e23  

Boscari A, Van de Sype G, Le Rudulier D, Mandon K (2006) Overexpression of BetS, a 
Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from 
Medicago sativa nodules sustains nitrogen fixation during early salt stress 
adaptation. Molecular Plant-Microbe Interactions 19(8):896-903  

Brígido C, Alexandre A, Oliveira S (2012a) Transcriptional analysis of major chaperone 
genes in salt-tolerant and salt-sensitive mesorhizobia. Microbiological research 
167(10):623-629 doi:10.1016/j.micres.2012.01.006 

Brigido C, Nascimento FX, Duan J, Glick BR, Oliveira S (2013) Expression of an 
exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in 
Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. 
FEMS microbiology letters 349(1):46-53 doi:10.1111/1574-6968.12294 

Brígido C, Oliveira S (2013) Most acid-tolerant chickpea mesorhizobia show induction of 
major chaperone genes upon acid shock. Microbial Ecology 65(1):145-153  

Brígido C, Robledo M, Menendez E, Mateos PF, Oliveira S (2012b) A ClpB chaperone 
knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of 
chickpea plants. Molecular Plant-Microbe Interactions 25(12):1594-1604 
doi:10.1094/mpmi-05-12-0140-r 

Broughton WJ, Dilworth MJ (1971) Control of Leghaemoglobin Synthesis in Snake 
Beans. Biochemical Journal 125(4):1075-1080  

Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. Journal of 
bacteriology 182(20):5641-5652 doi:10.1128/JB.182.20.5641-5652.2000 



 

139 
 

Brzostek K, Brzóstkowska M, Bukowska I, Karwicka E, Raczkowska A (2007) OmpR 
negatively regulates expression of invasin in Yersinia enterocolitica. Microbiology 
(Reading, England) 153(8):2416-2425 doi:doi:10.1099/mic.0.2006/003202-0 

Caetano-Anolles G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G (1988) 
Role of Motility and Chemotaxis in Efficiency of Nodulation by Rhizobium meliloti. 
Plant physiology 86(4):1228-35  

Cai SJ, Inouye M (2002) EnvZ-OmpR Interaction and Osmoregulation in Escherichia 
coli. Journal of Biological Chemistry 277(27):24155-24161 
doi:10.1074/jbc.M110715200 

Capone DG (2001) Marine nitrogen fixation: what's the fuss? Current opinion in 
microbiology 4(3):341-8  

Carranca C, de Varennes A, Rolston D (1999) Biological nitrogen fixation by fababean, 
pea and chickpea, under field conditions, estimated by the N-15 isotope dilution 
technique. European Journal of Agronomy 10(1):49-56  

Chen EJ, Fisher RF, Perovich VM, Sabio EA, Long SR (2009) Identification of Direct 
Transcriptional Target Genes of ExoS/ChvI Two-Component Signaling in 
Sinorhizobium meliloti. Journal of bacteriology 191(22):6833-6842 
doi:10.1128/jb.00734-09 

Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) 
Legume Symbiotic Nitrogen Fixation by beta-Proteobacteria Is Widespread in 
Nature. Journal of bacteriology 185(24):7266-7272  

Chen WX, Wang E, Wang SY, Li YB, Chen XQ (1995) Characteristics of Rhizobium 
tianshanense sp. nov., a moderately and slowly growing root-nodule bacterium 
isolated from an arid saline environment in Xinjiang, Peoples-Republic-of-China. 
International Journal of Systematic Bacteriology 45(1):153-159  

Chen WX, Wang ET, Kuykendall D (2005) Genus VI.  Mesorhizobium. Bergeys Manual 
of Systematic Bacteriology. vol vol. 2 (The Proteobacteria). Springer, New York, 
pp pp. 403-408 

Cheng H-P, Walker GC (1998) Succinoglycan Production by Rhizobium meliloti Is 
Regulated through the ExoS-ChvI Two-Component Regulatory System. Journal 
of bacteriology 180(1):20-26  

Chengtao Y, Guanqiao Y, Shanjiong SS, Jiabi Z (2004) Functional difference between 
Sinorhizobium meliloti NifA and Enterobacter cloacae NifA. Science in China 
Series C, Life sciences 47(1):44-51 doi:10.1360/02yc0268 

Choi EY, Ahn GS, Jeon KW (1991) Elevated levels of stress proteins associated with 
bacterial symbiosis in amaeba-proteus and soybean root nodules cells. 
Biosystems 25(3):205-212 doi:10.1016/0303-2647(91)90006-7 

Considine MJ, Foyer CH (2014) Redox Regulation of Plant Development. Antioxidants 
& Redox Signaling 21(9):1305-1326 doi:10.1089/ars.2013.5665 

Cooper JE (2004) Multiple Responses of Rhizobia to Flavonoids During Legume Root 
Infection. Adv Bot Res 41:1-62 doi:10.1016/S0065-2296(04)41001-5 

Cooper JE (2007a) Early interactions between legumes and rhizobia: disclosing 
complexity in a molecular dialogue. J Appl Microbiol 103 doi:10.1111/j.1365-
2672.2007.03366.x 

Cooper JE (2007b) Early interactions between legumes and rhizobia: disclosing 
complexity in a molecular dialogue. Journal of Applied Microbiology 103(5):1355-
1365 doi:doi:10.1111/j.1365-2672.2007.03366.x 

Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, 
Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young 
JPW, Downie JA, Romero D, Johnston AWB, Dávila G, Parkhill J, González V 
(2008) A Common Genomic Framework for a Diverse Assembly of Plasmids in 
the Symbiotic Nitrogen Fixing Bacteria. PLOS ONE 3(7):e2567 
doi:10.1371/journal.pone.0002567 



 

140 
 

D'Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during 
initiation of nodule development. Glycobiology 12(6):79R-105R doi:10.1094 / 
MPMI -20-2-0129 

da-Silva JR, Alexandre, A, Brígido, C, Oliveira, S (2017) Can stress response genes be 
used to improve the symbiotic performance of rhizobia? AIMS Microbiology 
3(3):365-382  

de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, 
Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical 
tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International 
Journal of Systematic Bacteriology 48(2):369-382  

de Philip P, Batut J, Boistard P (1990) Rhizobium meliloti Fix L is an oxygen sensor and 
regulates R. meliloti nifA and fixK genes differently in Escherichia coli. Journal of 
bacteriology 172(8):4255-62  

del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-
Carvajal MÁ, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M (2015) 
Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and 
their roles in the early stages of molecular signaling and host-legume nodulation. 
BMC Genomics 16(1):251 doi:10.1186/s12864-015-1458-8 

Den Herder G, Parniske M (2009) The unbearable naivety of legumes in symbiosis. 
Current opinion in plant biology 12(4):491-9 doi:10.1016/j.pbi.2009.05.010 

Dénarié J, Debellé F, Promé JC (1996) Rhizobium Lipo-Chitooligosaccharide Nodulation 
Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annual 
Review of Biochemistry 65(1):503-535  

Denison RF, Harter BL (1995) Nitrate Effects on Nodule Oxygen Permeability and 
Leghemoglobin (Nodule Oximetry and Computer Modeling). Plant physiology 
107(4):1355-1364  

Dixon R, Kahn D (2004) Genetic Regulation of Biological Nitrogen Fixation. Nature 
Reviews Microbiology 2(8):621-631  

Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule: A proteomic 
perspective. PROTEOMICS 4(7):1859-1872  

Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S (2003a) A global 
analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new 
genes for nodule occupancy and stress adaptation. Mol Plant Microbe Interact 
16 doi:10.1094/mpmi.2003.16.6.508 

Djordjevic MA, Chen HC, Natera S, van Noorden G, Menzel C, Taylor S, Renard C, 
Geiger O, Weiller GF (2003b) A global analysis of protein expression profiles in 
Sinorhizobium meliloti: Discovery of new genes for nodule occupancy and stress 
adaptation. Molecular Plant-Microbe Interactions 16(6):508-524  

Downie JA (1998) Functions of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, 
Hooykaas PJJ (eds) The Rhizobiaceae Molecular Biology of Model Plant-
Associated Bacteria. Kluwer Academic Publishers, Dordrecht, pp 387-402 

Downie JA (2005) Legume Haemoglobins: Symbiotic Nitrogen Fixation Needs Bloody 
Nodules. Current Biology 15(6):R196-R198 
doi:http://dx.doi.org/10.1016/j.cub.2005.03.007 

Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the 
interactions of rhizobia with legume roots. Fems Microbiology Reviews 
34(2):150-170 doi:10.1111/j.1574-6976.2009.00205.x 

Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. 
Molecular Microbiology 34(4):633-640 doi:10.1046/j.1365-2958.1999.01646.x 

Dziejman M, Mekalanos JJ (1995) Two-Component Signal Transduction and Its Role in 
the Expression of Bacterial Virulence Factors Two-Component Signal 
Transduction. American Society of Microbiology 

E. Newton W (2007) Physiology, Biochemistry, and Molecular Biology of Nitrogen 
Fixation,  

http://dx.doi.org/10.1016/j.cub.2005.03.007


 

141 
 

Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a 
multifunctional molecule. Glycobiology 13(4):17r-27r doi:10.1093/glycob/cwg047 

Eliziário F (2015) Análise e Sobre-expressão de Genes de Simbiose de Rizóbios de 
Grão-de-bico. Master thesis, Évora University 

Euzéby JP (1997) List of Bacterial Names with Standing in Nomenclature: a folder 
available on the Internet. Int J Syst Bacteriol(47):590-592  

FAO (2009) How to feed the world 2050. Food and Agriculture Organization, Rome, Italy, 
p 35 

FAOSTAT (2014) Food and Agriculture Organization. PUblisher. 
http://www.fao.org/faostat/en/#data/QC Accessed 18/09/2017 2017 

Farkas A, Maroti G, Durgo H, Gyorgypal Z, Lima RM, Medzihradszky KF, Kereszt A, 
Mergaert P, Kondorosi E (2014) Medicago truncatula symbiotic peptide NCR247 
contributes to bacteroid differentiation through multiple mechanisms. Proc Natl 
Acad Sci U S A 111(14):5183-8 doi:10.1073/pnas.1404169111 

Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene 
products of Escherichia coli are essential for bacterial growth at all temperatures. 
Journal of bacteriology 171(3):1379-1385  

Feng X, Oropeza R, Kenney LJ (2003) Dual regulation by phospho-OmpR of ssrA/B 
gene expression in Salmonella pathogenicity island 2. Mol Microbiol 48(4):1131-
43  

Feng X, Walthers D, Oropeza R, Kenney LJ (2004) The response regulator SsrB 
activates transcription and binds to a region overlapping OmpR binding sites at 
Salmonella pathogenicity island 2. Mol Microbiol 54(3):823-35 
doi:10.1111/j.1365-2958.2004.04317.x 

Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins 
govern growth of Escherichia coli at low temperatures. Nature Biotechnology 
21(11):1266-1267  

Finan TM, Kunkel B, De Vos GF, Signer ER (1986) Second symbiotic megaplasmid in 
Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. 
Journal of bacteriology 167(1):66-72 doi:10.1128/jb.167.1.66-72.1986 

Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiological 
Reviews 58(3):352-386  

Fischer HM, Alvarez-Morales A, Hennecke H (1986) The pleiotropic nature of symbiotic 
regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of 
nif gene expression and formation of determinate symbiosis. Embo j 5(6):1165-
73  

Fischer HM, Babst M, Kaspar T, Acuña G, Arigoni F, Hennecke H (1993) One member 
of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-
regulated with symbiotic nitrogen fixation genes. The Embo Journal 12(7):2901-
2912  

Fischer HM, Schneider K, Babst M, Hennecke H (1999) GroEL chaperonins are required 
for the formation of a functional nitrogenase in Bradyrhizobium japonicum. 
Archives of microbiology 171(4):279-289  

Flores-Félix J, Menéndez E, Marcos-García M, Celador-Lera L, Rivas R (2015) 
Calcofluor white, an Alternative to Propidium Iodide for Plant Tissues Staining in 
Studies of Root Colonization by Fluorescent-tagged Rhizobia. Journal of 
Advances in Biology & Biotechnology 2(1):65-70 doi:10.9734/jabb/2015/12444 

Foo YH, Gao Y, Zhang H, Kenney LJ (2015) Cytoplasmic sensing by the inner 
membrane histidine kinase EnvZ. Prog Biophys Mol Biol 118(3):119-29 
doi:10.1016/j.pbiomolbio.2015.04.005 

Forst SA, Delgado J, Inouye M (1989) DNA-binding properties of the transcription 
activator (OmpR) for the upstream sequences of ompF in Escherichia coli are 
altered by envZ mutations and medium osmolarity. Journal of bacteriology 
171(6):2949-2955 doi:10.1128/jb.171.6.2949-2955.1989 

http://www.fao.org/faostat/en/#data/QC


 

142 
 

Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG (2008) 
Mechanism of Infection Thread Elongation in Root Hairs of Medicago truncatula 
and Dynamic Interplay with Associated Rhizobial Colonization. Plant physiology 
148(4):1985-1995 doi:10.1104/pp.108.125674 

Fred EB (1932) Root nodule bacteria and leguminous plants. University of Wisconsin 
Press., Madison.USA. 

Gage DJ (2004) Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia 
during Nodulation of Temperate Legumes. Microbiol Mol Biol Rev 68(2):280-300  

Gao H, Zhang Y, Han Y, Yang L, Liu X, Guo Z, Tan Y, Huang X, Zhou D, Yang R (2011) 
Phenotypic and transcriptional analysis of the osmotic regulator OmpR in 
Yersinia pestis. BMC microbiology 11:39-39 doi:10.1186/1471-2180-11-39 

Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. 
Annual review of microbiology 63:133-54 
doi:10.1146/annurev.micro.091208.073214 

García-Fraile P, Carro L, Robledo M, Ramírez-Bahena M-H, Flores-Félix J-D, Fernández 
MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix Á, Velázquez E 
(2012) Rhizobium Promotes Non-Legumes Growth and Quality in Several 
Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy 
for Humans. PLOS ONE 7(5):e38122 doi:10.1371/journal.pone.0038122 

Garcia M, Dunlap J, Loh J, Stacey G (1996) Phenotypic characterization and regulation 
of the nolA gene of Bradyrhizobium japonicum. Molecular plant-microbe 
interactions : MPMI 9(7):625-36  

Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and 
signaling. A review. Agron Sustain Dev 27 doi:10.1051/agro:2006030 

Geddes BA, Gonzalez JE, Oresnik IJ (2014) Exopolysaccharide production in response 
to medium acidification is correlated with an increase in competition for nodule 
occupancy. Molecular plant-microbe interactions : MPMI 27(12):1307-17 
doi:10.1094/mpmi-06-14-0168-r 

Gerahty N, Caetano-Anollés G, Joshi PA, Gresshoff PM (1992) Anatomical analysis of 
nodule development in soybean reveals an additional autoregulatory control 
point. Plant Science 85(1):1-7 doi:https://doi.org/10.1016/0168-9452(92)90087-3 

Geurts R, Bisseling T (2002) Rhizobium Nod Factor Perception and Signalling. The Plant 
Cell 14(Suppl):s239-s249 doi:10.1105/tpc.002451 

Gibson AH (1987) Evaluation of nitrogen fixation by legumes in the greenhouse and 
growth chamber. In: Elkan GH (ed) Symbiotic Nitrogen Fixation Technology. 
Marcel Dekker, Inc, New York, pp 321-363 

Gilles-Gonzalez MA, Ditta GS, Helinski DR (1991) A haemoprotein with kinase activity 
encoded by the oxygen sensor of Rhizobium meliloti. Nature 350(6314):170-2 
doi:10.1038/350170a0 

Glick BR (2012) Plant Growth-Promoting Bacteria: Mechanisms and Applications. 
Scientifica 2012:1-15  

Glick BR (2015) Beneficial Plant-Bacterial Interactions. Springer, Waterloo 
Gong Z, Zhu J, Yu G, Zou H (2007) Disruption of nifA gene influences multiple cellular 

processes in Sinorhizobium meliloti. J Genet Genomics 34(9):783-9 
doi:10.1016/s1673-8527(07)60089-7 

Gong ZY, He ZS, Zhu JB, Yu GQ, Zou HS (2006) Sinorhizobium meliloti nifA mutant 
induces different gene expression profile from wild type in Alfalfa nodules. Cell 
research 16(10):818-829 doi:10.1038/sj.cr.7310096 

Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. 
Plant physiology 131(3):872-7 doi:10.1104/pp.017004 

Gresshoff PM, Delves AC (1986) Plant Genetic Approaches to Symbiotic Nodulation and 
Nitrogen Fixation in Legumes. In: Blonstein AD, King PJ (eds) A Genetic 
Approach to Plant Biochemistry. Springer Vienna, Vienna, pp 159-206 

Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat 
shock response in E. coli. Genes Dev 18(22):2812-21 doi:10.1101/gad.1219204 

https://doi.org/10.1016/0168-9452(92)90087-3


 

143 
 

Haag AF, Arnold MF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, 
Ferguson GP (2013) Molecular insights into bacteroid development during 
Rhizobium-legume symbiosis. FEMS Microbiol Rev 37(3):364-83 
doi:10.1111/1574-6976.12003 

Hall MN, Silhavy TJ (1981) Genetic analysis of the ompB locus in Escherichia coli K-12. 
Journal of molecular biology 151(1):1-15  

Harlocker SL, Bergstrom L, Inouye M (1995) Tandem binding of six OmpR proteins to 
the ompF upstream regulatory sequence of Escherichia coli. The Journal of 
biological chemistry 270(45):26849-56  

Head CG, Tardy A, Kenney LJ (1998) Relative binding affinities of OmpR and OmpR-
phosphate at the ompF and ompC regulatory sites. Journal of molecular biology 
281(5):857-70 doi:10.1006/jmbi.1998.1985 

Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation 
in agricultural systems. Plant and Soil 311(1-2):1-18 doi:10.1007/s11104-008-
9668-3 

Hertig C, Li RY, Louarn AM, Garnerone AM, David M, Batut J, Kahn D, Boistard P (1989) 
Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA 
and fixK genes in Escherichia coli. Journal of bacteriology 171(3):1736-8  

Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of 
nitrogen fixation by nitrogenase: the next stage. Chemical reviews 114(8):4041-
62 doi:10.1021/cr400641x 

Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the 
nodD symbiotic regulatory gene. Proceedings of the National Academy of 
Sciences 84(23):8558-8562  

Hsing W, Silhavy TJ (1997) Function of conserved histidine-243 in phosphatase activity 
of EnvZ, the sensor for porin osmoregulation in Escherichia coli. Journal of 
bacteriology 179(11):3729-35 doi:10.1128/jb.179.11.3729-3735.1997 

Huang KJ, Igo MM (1996) Identification of the bases in the ompF regulatory region, which 
interact with the transcription factor OmpR. Journal of molecular biology 
262(5):615-28 doi:10.1006/jmbi.1996.0540 

Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW (2004) Symbiotic 
phenotypes and translocated effector proteins of the Mesorhizobium loti strain 
R7A VirB/D4 type IV secretion system. Mol Microbiol 54(2):561-74 
doi:10.1111/j.1365-2958.2004.04292.x 

Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of 
the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Molecular plant-
microbe interactions : MPMI 20(3):255-61 doi:10.1094/mpmi-20-3-0255 

Hungria M, Campo R, Chueire L, Grange L, Megías M (2001) Symbiotic effectiveness of 
fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biology 
and Fertility of Soils 33(5):387-394 doi:10.1007/s003740100338 

Hungria M, Johnston AW, Phillips DA (1992) Effects of flavonoids released naturally from 
bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium 
leguminosarum bv. phaseoli. Molecular plant-microbe interactions : MPMI 
5(3):199-203  

Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and 
rhizobia: Basic aspects and potential application in agriculture. Soil Biology and 
Biochemistry 29(5):819-830 doi:http://dx.doi.org/10.1016/S0038-
0717(96)00239-8 

Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain 
legumes in the tropics, with an emphasis on Brazil. Field Crops Research 65(2-
3):151-164  

Hydroworld (2009) Renewable Fuels: Manufacturing Ammonia from Hydropower. 
PUblisher. http://www.hydroworld.com/articles/hr/print/volume-28/issue-
7/articles/renewable-fuels-manufacturing.html Accessed 28/09/2017 2017 

http://dx.doi.org/10.1016/S0038-0717(96)00239-8
http://dx.doi.org/10.1016/S0038-0717(96)00239-8
http://www.hydroworld.com/articles/hr/print/volume-28/issue-7/articles/renewable-fuels-manufacturing.html
http://www.hydroworld.com/articles/hr/print/volume-28/issue-7/articles/renewable-fuels-manufacturing.html


 

144 
 

Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen Fixing Cyanobacteria: Future 
Prospect. In: Ohyama T (ed) Advances in Biology and Ecology of Nitrogen 
Fixation. InTech, Rijeka, p Ch. 02 

Janczarek M, Jaroszuk-Ściseł J, Skorupska A (2009) Multiple copies of rosR and pssA 
genes enhance exopolysaccharide production, symbiotic competitiveness and 
clover nodulation in Rhizobium leguminosarum bv. trifolii. Antonie van 
Leeuwenhoek 96(4):471-486 doi:10.1007/s10482-009-9362-3 

Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M (2015) Signal 
molecules and cell-surface components involved in early stages of the legume-
rhizobium interactions. Applied Soil Ecology 85:94-113 
doi:10.1016/j.apsoil.2014.08.010 

Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, 
Morrison MJ (2012) Legumes for mitigation of climate change and the provision 
of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable 
Development 32(2):329-364 doi:10.1007/s13593-011-0056-7 

Jieping Z, Xiaomi D, Ling X, Jiabi Z, Shanjiong S, Guanqiao Y (2002) Extra-copy nifA 
enhances the nodulation efficiency of Sinorhizobium fredii. Chinese Science 
Bulletin 47(7):565-567 doi:10.1360/02tb9130 

Jones KM (2012) Increased production of the exopolysaccharide succinoglycan 
enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago 
truncatula. Journal of bacteriology 194(16):4322-31 doi:10.1128/jb.00751-12 

Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial 
symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 
5(8):619-33 doi:10.1038/nrmicro1705 

Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) 
Differential response of the plant Medicago truncatula to its symbiont 
Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad 
Sci U S A 105(2):704-9 doi:10.1073/pnas.0709338105 

Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health 
benefits of chickpea (Cicer arietinum L.): a review. The British journal of nutrition 
108 Suppl 1:S11-26 doi:10.1017/s0007114512000797 

Kaminski PA, Batut J, Boistard P (1998) A Survey of Symbiotic Nitrogen Fixation by 
Rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: 
Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic 
Publishers, Dordrecht, pp 432-460 

Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, 
Prell J, Skeffington A, Poole PS (2009) Transcriptomic Analysis of Rhizobium 
leguminosarum Biovar viciae in Symbiosis with Host Plants Pisum sativum and 
Vicia cracca. Journal of bacteriology 191(12):4002-4014 doi:10.1128/JB.00165-
09 

Kato M, Aiba H, Tate S, Nishimura Y, Mizuno T (1989) Location of phosphorylation site 
and DNA-binding site of a positive regulator, OmpR, involved in activation of the 
osmoregulatory genes of Escherichia coli. FEBS letters 249(2):168-72  

Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range 
plasmids for DNA cloning in gram-negative bacteria. Gene 70(1):191-197 
doi:10.1016/0378-1119(88)90117-5 

Kidaj D, Wielbo J, Skorupska A (2012) Nod factors stimulate seed germination and 
promote growth and nodulation of pea and vetch under competitive conditions. 
Microbiological research 167(3):144-50 doi:10.1016/j.micres.2011.06.001 

Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-
rhizobium mutualism. Nature 425(6953):78-81  

Kim D-j, Boylan B, George N, Forst S (2003) Inactivation of ompR Promotes Precocious 
Swarming and flhDC Expression in Xenorhabdus nematophila. Journal of 
bacteriology 185(17):5290-5294 doi:10.1128/jb.185.17.5290-5294.2003 



 

145 
 

Klein S, Hirsch AM, Smith CA, Signer ER (1988) Interaction of nod and exo Rhizobium 
meliloti in alfalfa nodulation. Molecular plant-microbe interactions : MPMI 1(2):94-
100  

Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffmann B, Schell J, Kondorosi A 
(1989) Positive and negative control of nod gene expression in Rhizobium meliloti 
is required for optimal nodulation. The EMBO Journal 8(5):1331-1340  

Krause A, Doerfel A, Gottfert M (2002) Mutational and transcriptional analysis of the type 
III secretion system of Bradyrhizobium japonicum. Molecular plant-microbe 
interactions : MPMI 15(12):1228-35 doi:10.1094/mpmi.2002.15.12.1228 

Kuzma MM, Hunt S, Layzell DB (1993) Role of Oxygen in the Limitation and Inhibition of 
Nitrogenase Activity and Respiration Rate in Individual Soybean Nodules. Plant 
physiology 101(1):161-169  

Labidi M, Laberge S, Vezina LP, Antoun H (2000) The dnaJ (hsp40) locus in Rhizobium 
leguminosarum bv. phaseoli is required for the establishment of an effective 
symbiosis with Phaseolus vulgaris. Molecular Plant-Microbe Interactions 
13(11):1271-1274  

Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an 
overview on the Mesorhizobium genus. Microbiological research 169(1):2-17 
doi:10.1016/j.micres.2013.09.012 

Laranjo M, Alexandre A, Rivas R, Velázquez E, Young JPW, Oliveira S (2008) Chickpea 
rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium 
species. FEMS Microbiol Ecol 66(2):391-400 doi:10.1111/j.1574-
6941.2008.00584.x 

Laranjo M, Machado J, Young JPW, Oliveira S (2004) High diversity of chickpea 
Mesorhizobium species isolated in a Portuguese agricultural region. FEMS 
Microbiol Ecol 48(1):101-107  

Laranjo M, Oliveira S (2011) Tolerance of Mesorhizobium type strains to different 
environmental stresses. Antonie van Leeuwenhoek 99(3):651-662  

Laranjo M, Young JPW, Oliveira S (2012) Multilocus sequence analysis reveals multiple 
symbiovars within Mesorhizobium species. Systematic and Applied Microbiology 
35(6):359-367 doi:10.1016/j.syapm.2012.06.002 

Laus MC, van Brussel AAN, Kijne JW (2005) Role of cellulose fibrils and 
exopolysaccharides of Rhizobium leguminosarum in attachment to and infection 
of Vicia sativa root hairs. Molecular Plant-Microbe Interactions 18(6):533-538 
doi:10.1094/mpmi-18.0533 

lBosworth AH, Williams MK, Albrecht KA, Kwiatkowski R, Beynon J, Hankinson TR, 
Ronson CW, Cannon F, Wacek TJ, Triplett EW (1994) Alfalfa Yield Response to 
Inoculation with Recombinant Strains of Rhizobium meliloti with an Extra Copy of 
dctABD and/or Modified nifA Expression. Applied and Environmental 
Microbiology 60(10):3815-3832  

Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) 
Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and 
acylated glucosamine oligosaccharide signal. Nature 344(6268):781-4 
doi:10.1038/344781a0 

Li W, Ancona V, Zhao Y (2014) Co-regulation of polysaccharide production, motility, and 
expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in 
Erwinia amylovora. Mol Genet Genomics 289(1):63-75 doi:10.1007/s00438-013-
0790-4 

Li W, Zhao Y (2011) Effect of EnvZ/OmpR and GrrS/GrrA systems on Erwinia amylovora 
virulence. Phytopathology 101(6):S102-S102  

Limpens E, Bisseling T (2009) Nod Factor Signal Transduction in the Rhizobium–
Legume Symbiosis. In: Emons AMC, Ketelaar T (eds) Root Hairs. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp 249-276 



 

146 
 

Limpens E, van Zeijl A, Geurts R (2015) Lipochitooligosaccharides modulate plant host 
immunity to enable endosymbioses. Annu Rev Phytopathol 53:311-34 
doi:10.1146/annurev-phyto-080614-120149 

Lopez-Baena FJ, Vinardell JM, Perez-Montano F, Crespo-Rivas JC, Bellogin RA, 
Espuny Mdel R, Ollero FJ (2008) Regulation and symbiotic significance of 
nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 
(Reading, England) 154(Pt 6):1825-36 doi:10.1099/mic.0.2007/016337-0 

Lopez O, Morera C, Miranda_Rios J, Girard L, Romero D, Soberon M (2001) Regulation 
of gene expression in response to oxygen in Rhizobium etli: role of FnrN in 
fixNOQP expression and in symbiotic nitrogen fixation. Journal of bacteriology 
183(24):6999-7006  

Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting 
rhizobacteria. Antonie van Leeuwenhoek 86(1):1-25 
doi:10.1023/B:ANTO.0000024903.10757.6e 

Lund PA (2009) Multiple chaperonins in bacteria - why so many? Fems Microbiology 
Reviews 33(4):785-800 doi:10.1111/j.1574-6976.2009.00178.x 

Macchiavelli RE, Brelles-Marino G (2004) Nod factor-treated Medicago truncatula roots 
and seeds show an increased number of nodules when inoculated with a limiting 
population of Sinorhizobium meliloti. Journal of experimental botany 
55(408):2635-2640 doi:10.1093/jxb/erh261 

Machado D, Krishnan HB (2003) nodD alleles of Sinorhizobium fredii USDA191 
differentially influence soybean nodulation, nodC expression, and production of 
exopolysaccharides. Current Microbiology 47(2):134-137 doi:10.1007/s00284-
002-3972-6 

MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing 
bacteria of legumes. Plant physiology 144(2):615-622 
doi:10.1104/pp.107.101634 

Maj D, Wielbo J, Marek-Kozaczuk M, Martyniuk S, Skorupska A (2009) Pretreatment of 
clover seeds with nod factors improves growth and nodulation of Trifolium 
pratense. Journal of chemical ecology 35(4):479-87 doi:10.1007/s10886-009-
9620-x 

Manen JF, Simon P, Van Slooten JC, Osterås M, Frutiger S, Hughes GJ (1991) A nodulin 
specifically expressed in senescent nodules of winged bean is a protease 
inhibitor. The Plant Cell 3(3):259-270 doi:10.1105/tpc.3.3.259 

Martínez-Salazar JM, Sandoval-Calderon M, Guo XW, Castillo-Ramirez S, Reyes A, 
Loza MG, Rivera J, Alvarado-Affantranger X, Sanchez F, Gonzalez V, Davila G, 
Ramirez-Romero MA (2009) The Rhizobium etli RpoH1 and RpoH2 sigma factors 
are involved in different stress responses. Microbiology (Reading, England) 
155:386-397 doi:10.1099/mic.0.021428-0 

Martinez M, Palacios JM, Imperial J, Ruiz-Argueso T (2004) Symbiotic autoregulation of 
nifA expression in Rhizobium leguminosarum bv. viciae. Journal of bacteriology 
186(19):6586-6594  

Mattison K, Kenney LJ (2002) Phosphorylation alters the interaction of the response 
regulator OmpR with its sensor kinase EnvZ. The Journal of biological chemistry 
277(13):11143-8 doi:10.1074/jbc.M111128200 

Mellor HY, Glenn AR, Arwas R, Dilworth MJ (1987) Symbiotic and competitive properties 
of motility mutants of Rhizobium trifolii TA1. Archives of microbiology 148(1):34-
39 doi:10.1007/BF00429644 

Mills SD, Ruschkowski SR, Stein MA, Finlay BB (1998) Trafficking of porin-deficient 
Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are 
defective for the formation of Salmonella-induced filaments. Infect Immun 
66(4):1806-11  

Milner JL, Araujo RS, Handelsman J (1992) Molecular and symbiotic characterization of 
exopolysaccharide-deficient mutants of Rhizobium tropici strain CIAT899. 



 

147 
 

Molecular Microbiology 6(21):3137-3147 doi:10.1111/j.1365-
2958.1992.tb01770.x 

Minchin FR, James EK, Becana M (2008) Oxygen Diffusion, Production Of Reactive 
Oxygen And Nitrogen Species, And Antioxidants In Legume Nodules. In: Dilworth 
MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing Leguminous 
Symbioses. Springer Netherlands, Dordrecht, pp 321-362 

Minder AC, Narberhaus F, Babst M, Hennecke H, Fischer HM (1997) The dnaKJ operon 
belongs to the sigma(32)-dependent class of heat shock genes in 
Bradyrhizobium japonicum. Molecular & General Genetics 254(2):195-206  

Mitsui H, Sato T, Sato Y, Ito N, Minamisawa K (2004) Sinorhizobium meliloti RpoH(1) is 
required for effective nitrogen-fixing symbiosis with alfalfa. Molecular Genetics 
and Genomics 271(4):416-425  

Moscatiello R, Alberghini S, Squartini A, Mariani P, Navazio L (2009) Evidence for 
calcium-mediated perception of plant symbiotic signals in aequorin-expressing 
Mesorhizobium loti. BMC microbiology 9(1):206 doi:10.1186/1471-2180-9-206 

Moulin L, Klonowska A, Caroline B, Booth K, Vriezen JA, Melkonian R, James EK, Young 
JP, Bena G, Hauser L, Land M, Kyrpides N, Bruce D, Chain P, Copeland A, 
Pitluck S, Woyke T, Lizotte-Waniewski M, Bristow J, Riley M (2014) Complete 
Genome sequence of Burkholderia phymatum STM815(T), a broad host range 
and efficient nitrogen-fixing symbiont of Mimosa species. Stand Genomic Sci 
9(3):763-74 doi:10.4056/sigs.4861021 

Moussaid S, Domínguez-Ferreras A, Muñoz S, Aurag J, Berraho EB, Sanjuán J (2015) 
Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and 
symbiosis establishment in saline conditions. Symbiosis 67(1):103-111 
doi:10.1007/s13199-015-0338-y 

Nandwani R, Dudeja SS (2009) Molecular diversity of a native mesorhizobial population 
of nodulating chickpea (Cicer arietinum L.) in Indian soils. Journal of basic 
microbiology 49(5):463-70 doi:10.1002/jobm.200800355 

Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes 
by temperature-sensing mRNAs. RNA Biol 7(1):84-89  

Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012b) Enhanced chickpea 
growth-promotion ability of a Mesorhizobium strain expressing an exogenous 
ACC deaminase gene. Plant and Soil 353(1):221-230 doi:10.1007/s11104-011-
1025-2 

Nascimento FX, Brigido C, Glick BR, Oliveira S, Alho L (2012a) Mesorhizobium ciceri 
LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase increases its nodulation abilities and chickpea plant resistance to soil 
constraints. Lett Appl Microbiol 55(1):15-21 doi:10.1111/j.1472-
765X.2012.03251.x 

Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between 
nitrogen-fixing rhizobia and legumes. Frontiers in Plant Science 6:491 
doi:10.3389/fpls.2015.00491 

Newcomb W, Sippell D, Peterson RL (1979) The early morphogenesis of Glycine max 
and Pisum sativum root nodules. Canadian Journal of Botany 57(23):2603-2616 
doi:10.1139/b79-309 

Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. 
Microbiol Mol Biol Rev 67(4):593-656  

Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) 
Rhizobium tropici genes involved in free-living salt tolerance are required for the 
establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. 
Molecular Plant-Microbe Interactions 15(3):225-232  

Nomura M, Arunothayanan H, Dao TV, Le HTP, Kaneko T, Sato S, Tabata S, Tajima S 
(2010a) Differential protein profiles of Bradyrhizobium japonicum USDA110 
bacteroid during soybean nodule development. Soil Science and Plant Nutrition 
56(4):579-590 doi:10.1111/j.1747-0765.2010.00500.x 



 

148 
 

Nomura M, Arunothayanan H, Van Dao T, Le HT-P, Kaneko T, Sato S, Tabata S, Tajima 
S (2010b) Differential protein profiles of Bradyrhizobium japonicum USDA110 
bacteroid during soybean nodule development. Soil Science & Plant Nutrition 
56(4):579-590 doi:10.1111/j.1747-0765.2010.00500.x 

Nour SM, Cleyet-Marel J-C, Normand P, Fernandez MP (1995) Genomic heterogeneity 
of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium 
mediterraneum sp. nov. International Journal of Systematic Bacteriology 
45(4):640-648 doi:10.1099/00207713-45-4-640 

Nour SM, Fernandez MP, Normand P, Cleyet-Marel J-C (1994) Rhizobium ciceri sp. 
nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). 
International Journal of Systematic Bacteriology 44(3):511-522  

Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, 
Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA (2013) RegPrecise 
3.0--a resource for genome-scale exploration of transcriptional regulation in 
bacteria. BMC Genomics 14:745 doi:10.1186/1471-2164-14-745 

Nukui N, Minamisawa K, Ayabe S-I, Aoki T (2006) Expression of the 1-
Aminocyclopropane-1-Carboxylic Acid Deaminase Gene Requires Symbiotic 
Nitrogen-Fixing Regulator Gene nifA2 in Mesorhizobium loti MAFF303099. Appl 
Environ Microbiol 72(7):4964-4969  

Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation 
of early nod genes by the transcription activator nodD. Genes & Development 
9(6):714-729  

Okazaki S, Kaneko T, Sato S, Saeki K (2013) Hijacking of leguminous nodulation 
signaling by the rhizobial type III secretion system. Proc Natl Acad Sci U S A 
110(42):17131-17136 doi:10.1073/pnas.1302360110 

Oke V, Long SR (1999) Bacteroid formation in the Rhizobium-legume symbiosis. Current 
opinion in microbiology 2(6):641-646  

Oke V, Rushing BG, Fisher EJ, Moghadam-Tabrizi M, Long SR (2001) Identification of 
the heat-shock sigma factor RpoH and a second RpoH-like protein in 
Sinorhizobium meliloti. Microbiology (Reading, England) 147(Pt 9):2399-408 
doi:10.1099/00221287-147-9-2399 

Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. 
Nature reviews Molecular cell biology 5(7):566-76 doi:10.1038/nrm1424 

Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the 
legume-rhizobial symbiosis. Annual review of genetics 45:119-44 
doi:10.1146/annurev-genet-110410-132549 

Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial 
symbiotic associations in plants. Nature Reviews Microbiology 11(4):252-263 
doi:10.1038/nrmicro2990 

Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial 
infection in legumes Annual Review of Plant Biology. Annual Review of Plant 
Biology, vol 59, pp 519-546 

Ono Y, Mitsui H, Sato T, Minamisawa K (2001) Two RpoH homologs responsible for the 
expression of heat shock protein genes in Sinorhizobium meliloti. Molecular and 
General Genetics 264(6):902-912  

Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T 
(2002) Transcriptome analysis of all two-component regulatory system mutants 
of Escherichia coli K-12. Mol Microbiol 46(1):281-91  

Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S (2016) The Symbiotic 
Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the 
clpB Chaperone Gene. PLOS ONE 11(2):e0148221 
doi:10.1371/journal.pone.0148221 

Park H, Inouye M (1997) Mutational analysis of the linker region of EnvZ, an osmosensor 
in Escherichia coli. Journal of bacteriology 179(13):4382-4390  



 

149 
 

Park H, Saha SK, Inouye M (1998) Two-domain reconstitution of a functional protein 
histidine kinase. Proc Natl Acad Sci U S A 95(12):6728-6732  

Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. 
Annual review of genetics 26:71-112 doi:10.1146/annurev.ge.26.120192.000443 

Peck MC, Fisher RF, Bliss R, Long SR (2013) Isolation and characterization of mutant 
Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. Journal 
of bacteriology 195(16):3714-23 doi:10.1128/jb.00309-13 

Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial Associations 
with Legumes. Critical Reviews in Plant Sciences 34(1-3):17-42 
doi:10.1080/07352689.2014.897899 

Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is 
dependent on Sinorhizobium meliloti polysaccharides. Journal of bacteriology 
182(15):4310-8  

Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey 
RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, 
Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing 
crop legumes to the productivity of agricultural systems. Symbiosis 48(1):1-17 
doi:10.1007/BF03179980 

Perez-Montano F, Guasch-Vidal B, Gonzalez-Barroso S, Lopez-Baena FJ, Cubo T, 
Ollero FJ, Gil-Serrano AM, Rodriguez-Carvajal MA, Bellogin RA, Espuny MR 
(2011) Nodulation-gene-inducing flavonoids increase overall production of 
autoinducers and expression of N-acyl homoserine lactone synthesis genes in 
rhizobia. Research in microbiology 162(7):715-23 
doi:10.1016/j.resmic.2011.05.002 

Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P, Baena-Ropero I, López-Baena FJ, 
Ollero FJ, Bellogín R, Lloret J, Espuny R (2014) The Symbiotic Biofilm of 
Sinorhizobium fredii SMH12, Necessary for Successful Colonization and 
Symbiosis of Glycine max cv Osumi, Is Regulated by Quorum Sensing Systems 
and Inducing Flavonoids via NodD1. PLoS ONE 9(8):e105901 
doi:10.1371/journal.pone.0105901 

Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. 
Microbiology and Molecular Biology Reviews 64(1):180-201  

Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer H-M, Hennecke H 
(2007a) Genome-Wide Transcript Analysis of Bradyrhizobium japonicum 
Bacteroids in Soybean Root Nodules. Molecular Plant-Microbe Interactions 
20(11):1353-1363 doi:10.1094/MPMI-20-11-1353 

Pessi G, Ahrens CH, Rehrauer H, Lindemann A, Hauser F, Fischer HM, Hennecke H 
(2007b) Genome-wide transcript analysis of Bradyrhizobium japonicum 
bacteroids in soybean root nodules. Molecular Plant-Microbe Interactions 
20(11):1353-1363 doi:10.1094/mpmi-20-11-1353 

Philippot L, Hallin S (2011) Towards food, feed and energy crops mitigating climate 
change. Trends in Plant Science 16(9):476-480 
doi:10.1016/j.tplants.2011.05.007 

Pickard D, Li J, Roberts M, Maskell D, Hone D, Levine M, Dougan G, Chatfield S (1994) 
Characterization of defined ompR mutants of Salmonella typhi: ompR is involved 
in the regulation of Vi polysaccharide expression. Infection and Immunity 
62(9):3984-3993  

Podleśny J, Wielbo J, Podleśna A, Kidaj D (2014) The pleiotropic effects of extract 
containing rhizobial Nod factors on pea growth and yield. Central European 
Journal of Biology 9(4):396-409 doi:10.2478/s11535-013-0277-7 

Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C 
(2001) Complex Regulatory Network Controls Initial Adhesion and Biofilm 
Formation in Escherichia coli via Regulation of thecsgD Gene. Journal of 
bacteriology 183(24):7213-7223 doi:10.1128/jb.183.24.7213-7223.2001 



 

150 
 

Prüβ BM (2017) Involvement of two-component signaling in bacterial motility and biofilm 
development. Journal of bacteriology doi:10.1128/jb.00259-17 

Rampersaud A, Harlocker SL, Inouye M (1994) The OmpR protein of Escherichia coli 
binds to sites in the ompF promoter region in a hierarchical manner determined 
by its degree of phosphorylation. The Journal of biological chemistry 
269(17):12559-66  

Recourt K, van Brussel AA, Driessen AJ, Lugtenberg BJ (1989) Accumulation of a nod 
gene inducer, the flavonoid naringenin, in the cytoplasmic membrane of 
Rhizobium leguminosarum biovar viciae is caused by the pH-dependent 
hydrophobicity of naringenin. Journal of bacteriology 171(8):4370-4377  

Reina-Bueno M, Argandona M, Nieto JJ, Hidalgo-Garcia A, Iglesias-Guerra F, Delgado 
MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the 
soil bacterium Rhizobium etli. BMC microbiology 12:207  

Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of 
phosphorus and nitrogen in the rhizosphere and plant growth promotion by 
microorganisms. Plant and Soil 321(1):305-339 doi:10.1007/s11104-009-9895-2 

Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez-Molina E, Velázquez E (2007) 
Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying 
symbiotic genes of common chickpea endosymbiotic species, constitute a novel 
biovar (ciceri) capable of nodulating Cicer arietinum. Letters in Applied 
Microbiology 44(4):412-418 doi:doi:10.1111/j.1472-765X.2006.02086.x 

Rivas R, Velázquez E, Valverde A, Mateos PF, Martínez-Molina E (2001) A two primers 
random amplified polymorphic DNA procedure to obtain polymerase chain 
reaction fingerprints of bacterial species. Electrophoresis 22(6):1086-1089  

Robledo M, Jimenez-Zurdo JI, Soto MJ, Velazquez E, Dazzo F, Martinez-Molina E, 
Mateos PF (2011) Development of functional symbiotic white clover root hairs 
and nodules requires tightly regulated production of rhizobial cellulase CelC2. 
Molecular plant-microbe interactions : MPMI 24(7):798-807 doi:10.1094/mpmi-
10-10-0249 

Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KW, Thomas-Oates J, 
Radutoiu S, Stougaard J, Ronson CW (2009) Nodulation gene mutants of 
Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes 
on Lotus spp. Molecular plant-microbe interactions : MPMI 22(12):1546-54 
doi:10.1094/mpmi-22-12-1546 

Rodrigues C, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of 
chickpea mesorhizobia. Current Microbiology 53(1):1-7  

Rodriguez-Quinones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund 
PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are 
dispensable for normal growth. Archives of microbiology 183(4):253-265  

Roponen I (1970) The Effect of Darkness on the Leghemoglobin Content and Amino 
Acid Levels in the Root Nodules of Pea Plants. Physiologia Plantarum 23(3):452-
460 doi:10.1111/j.1399-3054.1970.tb06435.x 

Rouws LF, Simoes-Araujo JL, Hemerly AS, Baldani JI (2008) Validation of a Tn5 
transposon mutagenesis system for Gluconacetobacter diazotrophicus through 
characterization of a flagellar mutant. Archives of microbiology 189(4):397-405 
doi:10.1007/s00203-007-0330-x 

Rubio LM, Ludden PW (2008) Biosynthesis of the Iron-Molybdenum Cofactor of 
Nitrogenase. Annual review of microbiology 62:93-111 
doi:10.1146/annurev.micro.62.081307.162737 

Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial 
symbiosis. Proc Natl Acad Sci U S A 108 Suppl 2:10800-7 
doi:10.1073/pnas.1100304108 

Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold 
Spring Harbor Laboratory, New York 



 

151 
 

Sanjuan J, Olivares J (1989) Implication of nifA in regulation of genes located on a 
Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. Journal of 
bacteriology 171(8):4154-4161 doi: 10.1128/jb.171.8.4154-4161.1989 

Sanjuan J, Olivares J (1991) Multicopy plasmids carrying the Klebsiella pneumoniae nifA 
enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Molecular 
Plant-Microbe Interactions 4(4):365-369 doi:10.1094/mpmi-4-365 

Sarma AD, Emerich DW (2005) Global protein expression pattern of Bradyrhizobium 
japonicum bacteroids: A prelude to functional proteomics. PROTEOMICS 
5(16):4170-4184 doi:10.1002/pmic.200401296 

Sarma AD, Emerich DW (2006) A comparative proteomic evaluation of culture grown vs 
nodule isolated Bradyrhizobium japonicum. Proteomics 6(10):3008-28 
doi:10.1002/pmic.200500783 

Sayyed RZ, Jamadar DD, Patel PR (2011) Production of Exo-polysaccharide by 
Rhizobium sp. Indian Journal of Microbiology 51(3):294-300 doi:10.1007/s12088-
011-0115-4 

Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. 
Annual review of microbiology 47:597-626 
doi:10.1146/annurev.mi.47.100193.003121 

Schetgens RMP, Hontelez JGJ, van den Bos RC, van Kammen A (1985) Identification 
and phenotypical characterization of a cluster of fix genes, including a nif 
regulatory gene, from Rhizobium leguminosarum PRE. Molecular and General 
Genetics MGG 200(3):368-374 doi:10.1007/BF00425719 

Schlaman HRM, Phillips DA, Kondorosi E (1998) Genetic Organization and 
Transcriptional Regulation of Rhizobial Nodulation Genes. In: Spaink HP, 
Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: Molecular Biology of Model 
Plant-Associated Bacteria. Springer Netherlands, Dordrecht, pp 361-386 

Schumann W (2016) Regulation of bacterial heat shock stimulons. Cell Stress 
Chaperones 21(6):959-968 doi:10.1007/s12192-016-0727-z 

Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl 
phosphate and the osmoregulator OmpR. Journal of bacteriology 177(16):4696-
702  

Shvaleva A, Coba de la Peña T, Rincón A, Morcillo CN, García de la Torre VS, Lucas 
MM, Pueyo JJ (2010) Flavodoxin overexpression reduces cadmium-induced 
damage in alfalfa root nodules. Plant and Soil 326(1):109-121 
doi:10.1007/s11104-009-9985-1 

Soby S, Bergman K (1983) Motility and Chemotaxis of Rhizobium meliloti in Soil. Applied 
and Environmental Microbiology 46(5):995-998  

Soto MJ, Dominguez-Ferreras A, Perez-Mendoza D, Sanjuan J, Olivares J (2009) 
Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. 
Cellular Microbiology 11(3):381-388 doi:10.1111/j.1462-5822.2009.01282.x 

Soto MJ, Sanjuan J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common 
infection weapons. Microbiology (Reading, England) 152(Pt 11):3167-74 
doi:10.1099/mic.0.29112-0 

Soupène E, Foussard M, Boistard P, Truchet G, Batut J (1995) Oxygen as a key 
developmental regulator of Rhizobium meliloti N2-fixation gene expression within 
the alfalfa root nodule. Proc Natl Acad Sci U S A 92(9):3759-63  

Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. 
Annual review of microbiology 54 doi:10.1146/annurev.micro.54.1.257 

Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, 
Kennedy EP, Reinhold VN, Lugtenberg BJ (1991) A novel highly unsaturated 
fatty acid moiety of lipo-oligosaccharide signals determines host specificity of 
Rhizobium. Nature 354(6349):125-30 doi:10.1038/354125a0 

Sprent JI (2009) Evolution of Nodulation Legume Nodulation. Wiley-Blackwell, pp 51-63 
Staehelin C, Forsberg LS, D'Haeze W, Gao M-Y, Carlson RW, Xie Z-P, Pellock BJ, 

Jones KM, Walker GC, Streit WR, Broughton WJ (2006) Exo-Oligosaccharides 



 

152 
 

of Rhizobium sp. Strain NGR234 Are Required for Symbiosis with Various 
Legumes. J Bacteriol 188(17):6168-6178  

Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops 
Research 65(2-3):249-258  

Stepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the 
dnaK gene as an alternative marker for phylogenetic studies of rhizobia and 
related alpha Proteobacteria. Systematic and Applied Microbiology 26(4):483-
494  

Suarez R, Wong A, Ramirez M, Barraza A, Orozco MdC, Cevallos MA, Lara M, 
Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain 
yield in common bean by overexpressing trehalose-6-phosphate synthase in 
rhizobia. Molecular Plant-Microbe Interactions 21(7):958-966 doi:10.1094/mpmi-
21-7-0958 

Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, 
Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Medigue C, Vallenet 
D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ (2013) 
Comparative genomics of the core and accessory genomes of 48 Sinorhizobium 
strains comprising five genospecies. Genome Biol 14(2):R17 doi:10.1186/gb-
2013-14-2-r17 

Sullivan JT, Brown SD, Ronson CW (2013) The NifA-RpoN Regulon of Mesorhizobium 
loti Strain R7A and Its Symbiotic Activation by a Novel LacI/GalR-Family 
Regulator. Plos One 8(1) doi:e5376210.1371/journal.pone.0053762 

Sullivan JT, Brown SD, Yocum RR, Ronson CW (2001) The bio operon on the acquired 
symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved 
in pimeloyl-CoA synthesis. Microbiology (Reading, England) 147(5):1315-1322  

Summers ML, Elkins JG, Elliott BA, McDermott TR (1998) Expression and regulation of 
phosphate stress inducible genes in Sinorhizobium meliloti. Molecular Plant-
Microbe Interactions 11(11):1094-1101 doi:10.1094/mpmi.1998.11.11.1094 

Taíz L, Zieger E (2004) Plant Physiology, 3 edn, Porto Alegre, Brazil 
Talbi C, Sanchez C, Hidalgo-Garcia A, Gonzalez EM, Arrese-Igor C, Girard L, Bedmar 

EJ, Delgado MJ (2012) Enhanced expression of Rhizobium etli cbb(3) oxidase 
improves drought tolerance of common bean symbiotic nitrogen fixation. Journal 
of experimental botany 63(14):5035-43 doi:10.1093/jxb/ers101 

Tena W, Wolde-Meskel E, Degefu T, Walley F (2017) Genetic and phenotypic diversity 
of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and 
central Ethiopia. Can J Microbiol 63(8):690-707 doi:10.1139/cjm-2016-0776 

Terpolilli JJ, Hood GA, Poole PS (2012) What determines the efficiency of N(2)-fixing 
Rhizobium-legume symbioses? Adv Microb Physiol 60:325-89 
doi:10.1016/B978-0-12-398264-3.00005-X 

Terpolilli JJ, O'Hara GW, Tiwari RP, Dilworth MJ, Howieson JG (2008) The model 
legume Medicago truncatula A17 is poorly matched for N2 fixation with the 
sequenced microsymbiont Sinorhizobium meliloti 1021. The New phytologist 
179(1):62-6 doi:10.1111/j.1469-8137.2008.02464.x 

Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, 
and nod-box NB15 modulate expression of the y4wEFG locus that is required for 
indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Molecular plant-
microbe interactions : MPMI 17(10):1153-61 doi:10.1094/mpmi.2004.17.10.1153 

Timmers AC, Soupene E, Auriac MC, de Billy F, Vasse J, Boistard P, Truchet G (2000) 
Saprophytic intracellular rhizobia in alfalfa nodules. Molecular plant-microbe 
interactions : MPMI 13(11):1204-13 doi:10.1094/mpmi.2000.13.11.1204 

Tipton KA, Rather PN (2017) An ompR-envZ Two-Component System Ortholog 
Regulates Phase Variation, Osmotic Tolerance, Motility, and Virulence in 
Acinetobacter baumannii Strain AB5075. Journal of bacteriology 199(3) 
doi:10.1128/jb.00705-16 



 

153 
 

Tschauner K, Hornschemeyer P, Muller VS, Hunke S (2014) Dynamic interaction 
between the CpxA sensor kinase and the periplasmic accessory protein CpxP 
mediates signal recognition in E. coli. PLoS One 9(9):e107383 
doi:10.1371/journal.pone.0107383 

Tseng T-T, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host 
associations, and their description in the Gene Ontology. BMC microbiology 
9(Suppl 1):S2-S2 doi:10.1186/1471-2180-9-S1-S2 

Tsung K, Brissette RE, Inouye M (1989) Identification of the DNA-binding domain of the 
OmpR protein required for transcriptional activation of the ompF and ompC genes 
of Escherichia coli by in vivo DNA footprinting. The Journal of biological chemistry 
264(17):10104-9  

Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, 
Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, 
Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, 
Abe M, Minamisawa K (2004) Expression islands clustered on the symbiosis 
island of the Mesorhizobium loti genome. Journal of bacteriology 186(8):2439-48  

Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 
fixation by annual legumes. Field Crops Research 65(2):211-228 
doi:https://doi.org/10.1016/S0378-4290(99)00088-X 

van Brussel AA, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJ, 
Kijne JW (1992) Induction of pre-infection thread structures in the leguminous 
host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science (New York, 
NY) 257(5066):70-2 doi:10.1126/science.257.5066.70 

van Brussel AA, Tak T, Boot KJ, Kijne JW (2002) Autoregulation of root nodule formation: 
signals of both symbiotic partners studied in a split-root system of Vicia sativa 
subsp. nigra. Molecular plant-microbe interactions : MPMI 15(4):341-9 
doi:10.1094/mpmi.2002.15.4.341 

Van de Velde W, Guerra JCP, Keyser AD, De Rycke R, Rombauts S, Maunoury N, 
Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in Legume 
Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula. 
Plant physiology 141(2):711-720 doi:10.1104/pp.106.078691 

van Dillewijn P, Martinez-Abarca F, Toro N (1998) Multicopy vectors carrying the 
Klebsiella pneumoniae nifA gene do not enhance the nodulation competitiveness 
of Sinorhizobium meliloti on alfalfa. Molecular plant-microbe interactions : MPMI 
11(8):839-42 doi:10.1094/mpmi.1998.11.8.839 

Vance CP (2001) Symbiotic Nitrogen Fixation and Phosphorus Acquisition. Plant 
Nutrition in a World of Declining Renewable Resources. Plant physiology 
127:390-397 doi:http://dx.doi.org/10.1104/pp.010331 

Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural 
differentiation of bacteroids and nitrogen fixation in alfalfa nodules. Journal of 
bacteriology 172(8):4295-306 doi:10.1128/jb.172.8.4295-4306.1990 

Via VD, Zanetti ME, Blanco F (2016) How legumes recognize rhizobia. Plant Signal 
Behav 11(2):e1120396 doi:10.1080/15592324.2015.1120396 

Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) 
Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert 
surfaces: involvement of a new ompR allele that increases curli expression. 
Journal of bacteriology 180(9):2442-9  

Vijn I, Martinez-Abarca F, Yang WC, das Neves L, van Brussel A, van Kammen A, 
Bisseling T (1995) Early nodulin gene expression during Nod factor-induced 
processes in Vicia sativa. The Plant journal : for cell and molecular biology 
8(1):111-9 doi:10.1046/j.1365-313X.1995.08010111.x 

Vinardell JM, Lopez-Baena FJ, Hidalgo A, Ollero FJ, Bellogin R, del Rosario Espuny M, 
Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE (2004) The 
effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies 

https://doi.org/10.1016/S0378-4290(99)00088-X


 

154 
 

in a chromosomal-background-dependent manner. Archives of microbiology 
181(2):144-54 doi:10.1007/s00203-003-0635-3 

Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E 
(2005) Molecular systematics of rhizobia based on maximum likelihood and 
Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their 
use in the classification of Sesbania microsymbionts from Venezuelan wetlands. 
Systematic and Applied Microbiology 28(8):702-716  

Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic 
implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 
28(6):1381-9  

Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: 
rates, patterns and ecological controls in terrestrial ecosystems. Philosophical 
Transactions of the Royal Society B: Biological Sciences 368(1621)  

Wang LC, Morgan LK, Godakumbura P, Kenney LJ, Anand GS (2012) The inner 
membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the 
cytoplasm. Embo j 31(11):2648-59 doi:10.1038/emboj.2012.99 

Wei G-H, Yang X-Y, Zhang J-W, Gao J-M, Ma Y-Q, Fu Y-Y, Wang P (2007) Rhizobialide: 
A New Stearolactone Produced by Mesorhizobium sp. CCNWGX022, a Rhizobial 
Endophyte from Glycyrrhiza uralensis. Chemistry & Biodiversity 4(5):893-898 
doi:10.1002/cbdv.200790077 

Weiss C, Jebara F, Nisemblat S, Azem A (2016) Dynamic Complexes in the Chaperonin-
Mediated Protein Folding Cycle. Frontiers in Molecular Biosciences 3:80 
doi:10.3389/fmolb.2016.00080 

Wells DH, Chen EJ, Fisher RF, Long SR (2007) ExoR is genetically coupled to the ExoS-
ChvI two-component system and located in the periplasm of Sinorhizobium 
meliloti. Molecular Microbiology 64(3):647-664 doi:doi:10.1111/j.1365-
2958.2007.05680.x 

Wittenberg JB (1974) Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen 
fixation by bacteroids isolated from soybean root nodules. The Journal of 
biological chemistry 249(13):4057-66  

Yao SY, Luo L, Har KJ, Becker A, Ruberg S, Yu GQ, Zhu JB, Cheng HP (2004) 
Sinorhizobium meliloti ExoR and ExoS proteins regulate both Succinoglycan and 
Flagellum production. Journal of bacteriology 186(18):6042-6049  

Yeh KC, Peck MC, Long SR (2002) Luteolin and GroESL modulate in vitro activity of 
NodD. Journal of bacteriology 184(2):525-530  

Yoshida T, Cai S, Inouye M (2002) Interaction of EnvZ, a sensory histidine kinase, with 
phosphorylated OmpR, the cognate response regulator. Mol Microbiol 
46(5):1283-94  

Young JP, Crossman L, Johnston A, Thomson N, Ghazoui Z, Hull K, Wexler M, Curson 
A, Todd J, Poole P, Mauchline T, East A, Quail M, Churcher C, Arrowsmith C, 
Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, 
Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, 
Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of 
Rhizobium leguminosarum has recognizable core and accessory components. 
Genome Biology 7(4):R34  

Yuan J, Wei B, Shi M, Gao H (2011) Functional Assessment of EnvZ/OmpR Two-
Component System in Shewanella oneidensis. PLOS ONE 6(8):e23701 
doi:10.1371/journal.pone.0023701 

Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe 
conditions and in an arid climate. Microbiology and Molecular Biology Reviews 
63(4):968-989  

Zhang F, Smith DL (1996) Genistein accumulation in soybean (Glycine max L Merr) root 
systems under suboptimal root zone temperatures. Journal of Experimental 
Botany 47(299):785-792 doi:10.1093/jxb/47.6.785 



 

155 
 

Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012) 
Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. 
International journal of systematic and evolutionary microbiology 62(Pt 11):2737-
42 doi:10.1099/ijs.0.038265-0 

Zhang S, Huang L, Yan A, Liu Y, Liu B, Yu C, Zhang A, Schiefelbein J, Gan Y (2016) 
Multiple phytohormones promote root hair elongation by regulating a similar set 
of genes in the root epidermis in Arabidopsis. Journal of experimental botany 
67(22):6363-6372 doi:10.1093/jxb/erw400 

Zhao CT, Wang ET, Chen WF, Chen WX (2008) Diverse genomic species and evidences 
of symbiotic gene lateral transfer detected among the rhizobia associated with 
Astragalus species grown in the temperate regions of China. FEMS microbiology 
letters 286(2):263-73 doi:10.1111/j.1574-6968.2008.01282.x 

Zheng H, Mao Y, Teng J, Zhu Q, Ling J, Zhong Z (2015) Flagellar-Dependent Motility in 
Mesorhizobium tianshanense is Involved in the Early Stage of Plant Host 
Interaction: Study of an flgE Mutant. Current Microbiology 70(2):219-227 
doi:10.1007/s00284-014-0701-x 

Zhu Y, Qin L, Yoshida T, Inouye M (2000) Phosphatase activity of histidine kinase EnvZ 
without kinase catalytic domain. Proceedings of the National Academy of 
Sciences 97(14):7808-7813 doi:10.1073/pnas.97.14.7808 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

  



 

 
 

 



 

Contactos: 

Universidade de Évora 

Instituto de Investigação e Formação Avançada - IIFA 

Palácio do Vimioso | Largo Marquês de Marialva, Apart. 94 

7002-554 Évora | Portugal 

Tel: (+351) 266 706 581 

Fax: (+351) 266 744 677 




