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ABSTRACT 

 

This Thesis describes the process of designing and developing the aerodynamic 

package of the 2016 Formula Student race car (Thireus 277) of Centaurus Racing 

Team with the use of CAD Tools and Computational Fluid Dynamics (CFD). It further 

investigates the effects of aerodynamics on the vehicle's behavior and performance 

with regard to the Formula Student competition regulations. The methods used 

during the development are evaluated and put into context by investigating the 

correlation between the CFD results of the car model and the lap-time simulated 

counterpart. The aerodynamic package consists of a nosecone, two sidepods, an 

undertray, a front and a rear wing. The Thesis details all the stages involved in 

designing and optimizing these components to achieve the desired results and 

maximize the amount of performance enhancing aerodynamic downforce generated 

by the aerodynamic package, while maintaining drag force at low levels. 
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1. INTRODUCTION 

Aerodynamics is the science of how air flows around and inside objects. More 

generally, it can be labeled “Fluid Dynamics” because air is really just a very thin type of 

fluid. Above slow speeds, the air flow around and through a vehicle begins to have a more 

pronounced effect on the acceleration, top speed, fuel efficiency and handling. Therefore, 

to build the most efficient possible race car it is needed to understand and optimize how 

the air flows around and through the body, its openings and its aerodynamic devices. It is 

now established that aerodynamics has a key role in the performance and the efficiency 

of an open wheel racing car, even when it is moving at low speeds on the track like a FSAE 

car does. A well aerodynamically designed car is able to utilize the airflow around it in order 

to produce as much vertical to the ground force as possible while maintaining the air 

resistance force at low levels. The vertical force is known in Motorsport as Downforce and 

the resistance force is called Drag. In this way, the grip and thus the performance of the 

tires increases and the car is able to achieve higher cornering speeds while at the same 

time there is better fuel consumption due to the reduced air resistance. 

 

 

 

 

In order to keep the speed of the vehicles at low levels for safety reasons, most tracks 

at several FSAE Competitions consist primarily of repeated sharp turns and less of long 

straights. This fact led the majority of the FSAE teams to realize that the race can be won 

mainly by increasing the cornering performance of their cars. This makes the necessity of 

an efficient aerodynamic design even greater due to the significant difference that is made 

in the cornering speed, which can considerable reduce the lap-time of a FSAE car which 

uses aerodynamic devices. Moving at the same direction of thinking Centaurus Racing 

Team proceed for the first time since its foundation in the design and development of an 

efficient aerodynamic package for its 3rd race car Thireus 277 for the season of 2015 - 2016. 

  

Figure 1: Mark’s Webber accident at the Circuit de la Sarthes due to the car suffering of 
aerodynamic instabilities along the circuit's long high-speed straight sections, Le Mans 1999 
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2. AERODYNAMICS OF A FSAE RACE CAR 

2.1. Introduction to Race Car Aerodynamics 

 
Each year FSAE cars become even more faster, which means that their power keeps 

increasing to. However, exactly such as there is a loss of energy from the engine being 

transferred to the transmission and wheels, thus there is also a limit to the amount of 

power that you can put from the tires on the ground. To increase this undesired limit, an 

extra force must be applied on the wheels, directing to ground. Increasing weight can do 

this, but weight makes the handling of the car worse while requires even more power and 

since FSAE cars become constantly lighter this downward force becomes even more 

important. By reducing the resistance (Drag) of the car through the air, it can achieve 

higher top speeds and go faster on straights while with the right design of its body shape 

a great amount of downward pressure (Downforce) can be transferred onto the tires and 

so the car will go even faster around the corners. Research into aerodynamics has allowed 

cornering speeds in “high speed” corners to be much higher than that which is possible 

without the use of aerodynamic aids, although it has reduced ultimate top speeds which 

is not that important for an FSAE competition. 

 

2.1.1. Downforce 

Every object travelling through air creates either a lifting or a downforce situation. A 

wing can make a plane to take off, but if we put it upside down, it can make a high-speed 

race car stay to the ground.  The same principle that allows an airplane to rise off the 

ground by creating lift from its wings is used in reverse to apply force that presses the race 

car against the surface of the track. Typically, the term "lift" is used when talking about any 

kind of aerodynamically induced force acting on a surface. This is then given an indicator, 

either "positive lift" (up) or "negative lift" (down) as to its direction, since most 

aerodynamic devices were invented for aircraft and were designed to lift them into the air. 

 

 

 

 

 
 

 In race car aerodynamics, the vertical downward force provided by aerodynamic 

devices mounted on a race car, pushes the tires onto the track surface to provide more 

grip, which in turn enables higher cornering speeds and faster braking. The grip between 

tires and track pavement provided entirely by aerodynamical forces is  called 

"aerodynamical grip" and is distinguished from "mechanical grip" which is a function of 

the car mass repartition, tires and suspension. The creation of downforce by passive 

devices such as wings, bodywork, diffusers etc. almost always can only be achieved at the 

cost of increased aerodynamic drag (or friction), and the optimum setup is almost always 

a compromise between the two. Because it is a function of the flow of air over and under 

Figure 2:  Race cars use inverted airplane wings to produce downforce instead of lift 

http://www.formula1-dictionary.net/downforce.html
http://www.formula1-dictionary.net/tires.html
http://www.formula1-dictionary.net/cornering_tech.html
http://www.formula1-dictionary.net/corners.html
http://www.formula1-dictionary.net/f1_speed.html
http://www.buildyourownracecar.com/glossary/downforce/
https://en.wikipedia.org/wiki/Bernoulli%27s_principle
https://en.wikipedia.org/wiki/Lift_%28force%29
https://en.wikipedia.org/wiki/Wing
http://www.formula1-dictionary.net/grip.html
http://www.formula1-dictionary.net/tires.html
http://www.formula1-dictionary.net/downforce.html
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Friction
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the car, and because aerodynamic forces increase with the square of velocity, downforce 

increases with the square of the car's speed and requires a certain minimum speed in order 

to produce a significant effect. 

 

2.1.2. Drag Force 

When the fluid flows over a surface, the surface will resist its motion. In 
aerodynamics, drag is the fluid drag force that acts on any moving solid body in the 
direction of the fluid freestream flow. Aerodynamic drag on a race car is the sum of friction, 
form and pressure drag. Friction drag occurs as air particles pass over a car's surfaces and 
the layers of particles closest to the surface adhere. Skin friction drag is caused by the 
actual contact of the air particles against the surface of the moving object. The layer above 
these attached particles slides over them, but is consequently slowed down by the non-
moving particles on the surface. The layers above this slowed layer move faster. As the 
layers get further away from the surface, they slow less and less until they flow at the free-
stream speed. The area of slow speed, called the boundary layer, appears on every surface, 
and causes one of the three types of drag.  

The force required to shift the molecules of air out of the way creates a second type 
of drag, form Drag. Due to this phenomenon, the smaller the frontal area of a vehicle, the 
smaller the area of molecules that must be shifted, and thus the less energy required to 
push through the air. With less engine effort being taken up in the moving air, more will 
go into moving the car along the track, and for a given engine power, the car will travel 
faster. Form drag and pressure drag are virtually the same type of drag. The separation of 
air creates turbulence and results in pockets of low and high pressure that leave a wake 
behind the car. This opposes forward motion and is a component of the total drag. 
Streamlining the moving object will reduce form drag, and parts of a race car(mostly 
suspension parts) that do not lend themselves to streamlining are enclosed in covers called 
fairings. So, drag in race car aerodynamics, is comprised primarily of three forces: 

• Frontal pressure, or the effect created by a vehicle body pushing 
air out of the way. 

• Rear vacuum, or the effect created by air not being able to fill the 
hole left by the vehicle body. 

• Boundary layer, or the effect of friction created by slow moving air 
at the surface of the vehicle body. 

 
 

 

 

 

Flow detachment applies only to the “rear vacuum” portion of the drag forces and 
has a greater and greater negative effect as vehicle speed increases. In fact, the drag 
increase with the square of the vehicle speed, so more and more horsepower is needed to 
push a vehicle through the air as its speed rises. Therefore, when a vehicle reaches high 

Figure 3: Drag force acting on a moving race car 

https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Freestream
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speeds it becomes important to design the car to limit areas of flow detachment. 
Understanding the relationship between speed and drag is important in calculating 
maximum endurance and the range of the race car. When drag is at a minimum, power 
required to overcome drag is also at a minimum. 

 

2.1.3. CL, CD Coefficients 

Lift coefficient (CL, CN or CZ) is a dimensionless coefficient that relates the lift 

generated by a lifting body to the fluid density around the body, the fluid velocity and an 

associated reference area. The lift coefficient is a simple way that aerodynamicists use to 

represent a very complex idea and model all of the complex dependencies of shape, 

inclination, and some flow conditions on lift. This coefficient expresses the ratio of the lift 

force to the force produced by the dynamic pressure times the area. Lift coefficient is often 

found using computer generated models(CFD) or with wind tunnel testing. In certain 

ranges of operating conditions and when there is no stall, the lift coefficient has a constant 

value and the lift or downforce produced is then proportional to the square of airspeed 

and can be determined using the following equation: 

 

  𝐿 =
1

2
𝐶𝐿 𝜌 𝑢2𝐴              (2.1) 

where L is the lift force, A is the relevant plan area, ρ is the fluid density and u is the flow 

speed.  

 

Drag coefficient (CD or CX) is a common measure in automotive design as it pertains 

to aerodynamics. The drag coefficient of an automobile impacts the way the automobile 

passes through the surrounding air. Aerodynamic drag increases with the square of speed 

therefore, it becomes critically important at higher speeds. Reducing the drag coefficient 

of a car improves the performance of the vehicle as it pertains to speed and fuel efficiency. 

CD changes as a function of the shape of the body.  Drag force changes as a function of CD 

and flow direction, air density and viscosity, object size, speed and is proportional to the 

density of the air and to the square of the relative speed between the air and the object. 

One way to express this is by means of the drag equation: 

  𝐹𝐷 =
1

2
𝐶𝐷 𝜌 𝑢2𝐴           (2.2) 

where also L is the lift force, A is the relevant plan area, ρ is the fluid density and u is the 

flow speed. The reference area Α depends on what type of drag coefficient is being 

measured. For automobiles and many other objects, the reference area is the projected 

frontal area of the vehicle. This may not necessarily be the cross-sectional area of the 

vehicle, depending on where the cross section is taken. For airfoils, the reference area is 

the nominal wing area. Since this tends to be large compared to the frontal area, the 

resulting drag coefficients tend to be low, much lower than for a car with the same drag, 

frontal area, and speed. 

The drag coefficient of a vehicle is affected by the shape of body of the vehicle. In 

order to achieve a low drag coefficient, the boundary layer around the body must remain 

attached to the surface of the body for as long as possible, causing the wake to be narrow. 

A high form drag results in a broad wake. The boundary layer will transition from laminar 

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Lift_%28force%29
https://en.wikipedia.org/wiki/Lifting_body
https://en.wikipedia.org/wiki/Fluid_density
https://en.wikipedia.org/wiki/Fluid_velocity
https://en.wikipedia.org/w/index.php?title=Reference_area&action=edit&redlink=1
https://www.grc.nasa.gov/www/k-12/airplane/shape.html
https://www.grc.nasa.gov/www/k-12/airplane/incline.html
https://www.grc.nasa.gov/www/k-12/airplane/airsim.html
https://www.grc.nasa.gov/www/k-12/airplane/ratio.html
https://en.wikipedia.org/wiki/Lift_%28force%29
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Flow_speed
https://en.wikipedia.org/wiki/Flow_speed
https://en.wikipedia.org/wiki/Drag_coefficient
https://en.wikipedia.org/wiki/Automotive_design
https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/Drag_equation
https://en.wikipedia.org/wiki/Lift_%28force%29
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Flow_speed
https://en.wikipedia.org/wiki/Airfoil
https://en.wikipedia.org/wiki/Boundary_layer
https://en.wikipedia.org/wiki/Wake
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to turbulent if Reynolds number of the flow around the body is sufficiently great. Larger 

velocities, larger objects, and lower viscosities contribute to larger Reynolds numbers. 

Various other characteristics affect the coefficient of drag as well, some race cars may 

actually have higher drag coefficient, but this is to compensate for the amount of lift the 

vehicle generates, while others use aerodynamics to their advantage to gain speed and 

have much lower coefficients of drag. Other high performance race cars have a surprisingly 

high CD, due to wider tires, extra wings and larger cooling systems as the usual cars have 

half size radiators with the remaining area blanked off to reduce cooling and engine bay 

drag.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4. Wings Theory 

Every wing in planar view has the shape of an airfoil. Low speed aerodynamics airfoils 
have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, 
often with a symmetric curvature of upper and lower surfaces. The geometry of the airfoil 
is described by three terms. The leading edge which is the point at the front of the airfoil 
that has maximum curvature and minimum radius, the trailing edge which is the point of 
minimum curvature at the rear of the airfoil, the chord line which is the straight line 
connecting leading and trailing edges. The chord length, is the length of the chord line and 
it is the reference dimension of the airfoil section. The shape of the airfoil is defined using 
the following two geometrical parameters. The mean camber line which is the locus of 
points midway between the upper and lower surfaces and the thickness distribution which 

Figure 4: Drag and Lift coefficients of a FSAE car with different 
aerodynamic packages 

https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Tire
https://en.wikipedia.org/wiki/Spoiler_%28automotive%29
https://en.wikipedia.org/wiki/Symmetry
https://en.wikipedia.org/wiki/Leading_edge
https://en.wikipedia.org/wiki/Trailing_edge
https://en.wikipedia.org/wiki/Chord_%28aircraft%29
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varies along the chord. Finally, two important concepts used to describe the airfoil's 
behavior when moving through a fluid, the aerodynamic center which is the chord-wise 
length about which the pitching moment is independent of the lift coefficient and angle of 
attack while the second one is the center of pressure, which is the chord-wise location 
about which the pitching moment is zero. 

 

 

 

 

 

 

Thanks to Newton's third law, we know that if the airfoil exerts a downward force 

on the air, the air will in turn exert an upward force on the wing. The lift on an airfoil is 

primarily the result of its angle of attack and shape. Wings are shaped so that that air flows 

faster over the top of the wing and slower underneath. Based to Bernoulli’s principal, fast 

moving air equals low air pressure while slow moving air equals high air pressure. The high 

air pressure underneath the wings will therefore push the aircraft up through the lower air 

pressure. In aerodynamics, angle of attack specifies the angle between the chord line of 

the wing and the relative air flow. Since a wing can have twist, a chord line of the whole 

wing may not be definable, so an alternate reference line is simply defined. Often, the 

chord line of the root of the wing is chosen as the reference line. When oriented at a 

suitable angle, the airfoil deflects the oncoming air resulting in a force on the airfoil in the 

direction opposite to the deflection. This force is known as aerodynamic force and can be 

resolved into two components: lift and drag. Most airfoil shapes require a positive angle 

of attack to generate lift, but cambered airfoils can generate lift at zero angle of attack. 

This "turning" of the air in the vicinity of the airfoil creates curved streamlines, resulting in 

lower pressure on one side and higher pressure on the other. This pressure difference 

results to a flow field around the airfoil which has a higher average velocity on the upper 

surface than on the lower surface.  

 

 

 

 

 

 

 

 

Figure 5:  Basic Airfoil characteristics 

Figure 6: How a moving airfoil works 

https://en.wikipedia.org/wiki/Aerodynamic_center
https://en.wikipedia.org/wiki/Center_of_pressure_%28fluid_mechanics%29
https://en.wikipedia.org/wiki/Angle_of_attack
https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/Wing_root
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Newton.27s_third_law
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Newton.27s_third_law
https://en.wikipedia.org/wiki/Aerodynamic_force
https://en.wikipedia.org/wiki/Lift_%28force%29
https://en.wikipedia.org/wiki/Drag_%28physics%29
https://en.wikipedia.org/wiki/Camber_%28aerodynamics%29
https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
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A symmetrical wing has zero lift at 0° degrees angle of attack. Increasing the angle 

of attack is associated with increasing the lift the airfoil creates and the lift coefficient up 

to the maximum limit. As the angle of attack keeps increasing, separation of the airflow 

from the upper surface of the wing becomes more pronounced and the separation point 

of the flow moves from the trailing edge towards the leading edge leading to a reduction 

in the rate of increase of the lift coefficient. The lowest pressure over the foil is found at a 

point on the hump near to the leading edge. In front of this low pressure point also known 

as the transition point, there exists laminar flow and behind it begins the turbulent flow. 

With the transition point being the lowest pressure area of the airfoil, there exists an 

adverse pressure gradient while the pressure of air there is lower than at trailing edge. The 

adverse pressure gradient therefore, acts against the regular flow of air over the airfoil. 

The normal skin friction drag acting on the airfoil, reduces the flow kinetic energy. So, there 

is no energy to act against the adverse. The lower levels of the boundary layer thus stop 

moving, while the upper layers overrun them. This causes the flow separation.  

The critical angle of attack is the angle of attack which produces maximum lift 

coefficient. This is also called the "stall angle of attack". Below this critical angle of attack 

and as the angle of attack increases, the coefficient of lift CL increases. Conversely, above 

the critical angle of attack the air begins to flow less smoothly over the upper surface of 

the airfoil and begins to separate. At the critical angle of attack, upper surface flow is more 

separated and the airfoil or wing is producing its maximum coefficient of lift. As angle of 

attack increases further, the upper surface flow becomes more and more fully separated 

with the wing producing even less lift, the CL decreasing and coefficient of drag CD rapidly 

increasing. The critical or stalling angle of attack is typically around 12° - 20° for many 

airfoils. 

 

 

 

 

 

 

 

 

 

 

 

Despite profile drag being large in the post stall regimes, a soft stall can extend the 

range of available performance at CLmax. So, one of the requirements is that a high 

downforce wing should possess a soft stall and sustain CLmax or perform close to it for a 

large angle of attack range to provide flexibility during car set up. Due to the very low 

Figure 7: Behavour of the airflow around an airfoil in differenet angles of attack 

https://en.wikipedia.org/wiki/Flow_separation
https://en.wikipedia.org/wiki/Stall_%28fluid_mechanics%29
https://en.wikipedia.org/wiki/Airfoil
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aspect ratios of race car wings, the primary source of drag comes from the induced 

component of overall drag. Therefore, the chief concern in motorsports airfoil design is 

not one of profile drag reduction. Instead it is a maximization of downforce and the ability 

of the designed airfoil to sustain the highest possible levels of downforce across a wide 

range of physical and aerodynamic adversities. 

 

2.1.5. Venturi & Ground Effects 

The Venturi effect is the phenomenon that occurs when a fluid that is flowing through 
a pipe is forced through a narrow section, resulting in a pressure decrease and a velocity 
increase. The effect is mathematically described through the Bernoulli equation and can be 
observed in both nature and industry. The Venturi effect is similar to the feeling one gets 
when the thumb is placed at the end of a garden hose with the water turned on. The water’s 
velocity increases when the thumb is placed over the water. The pressure increases over 
the smaller surface area, however, the narrow flow then creates a vacuum in the water. In 
fluid dynamics, a fluid's velocity must increase as it passes through a constriction in accord 
with the principle of mass continuity, while its static pressure must decrease in accord with 
the principle of conservation of mechanical energy. Thus, any gain in kinetic energy a fluid 
may accrue due to its increased velocity through a constriction is balanced by a drop-in 
pressure. Referring to the adjacent diagram, using Bernoulli's equation in the special case 
of steady, incompressible, inviscid flows along a streamline, the theoretical pressure drop 
at the constriction is given by: 

𝑃1 − 𝑃2 =
𝜌

2
(𝑢2

2 − 𝑢1
2)          (2.3) 

where is ρ the density of the fluid, u1 is the slower fluid velocity where the pipe is wider, u2 

is the faster fluid velocity where the pipe is narrower. 

 

 

 

 

 

 

 

 

 

A curved aerodynamic surface influences the airflow even a long way from that 

surface, bending the airflow in such a way that flow adjacent to the surface follows that 

surface almost perfectly. The further away from the surface you go, the straighter the flow 

becomes. When an aerodynamic surface is placed close to the ground, the presence of the 

ground determines where the flow becomes straight. This has the effect of speeding up 

the airflow between the surface and the ground, increasing the aerodynamic effect of the 

surface. It was discovered that large amounts of downforce could be generated from the 

Figure 8: Venturi effet Inside a Venturi tube 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Continuity_equation#Fluid_dynamics
https://en.wikipedia.org/wiki/Static_pressure
https://en.wikipedia.org/wiki/Mechanical_energy#Conservation_of_mechanical_energy
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Bernoulli%27s_principle
https://en.wikipedia.org/wiki/Density
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airflow between the underbody of the car and the ground plane. In particular, low pressure 

could be created underneath the car by using the ground plane almost like the floor of a 

Venturi duct. The ceiling of these Venturi ducts took the form of inverted wing profiles 

mounted in sidepods between the wheels of the car. The decreasing cross-sectional area 

in the throat of these ducts, and the inverted wing profile accelerated the airflow and 

created low pressure in accordance with the Bernoulli principle. Putting it simply as 

possible, Ground Effect is the art of creating a low pressure area underneath the car so 

that the atmospheric pressure pushes the car to the ground, which is the reverse of what 

happens with an aircraft wing. The way this can be achieved is by utilizing the Venturi 

Effect. 

 

 

 

 

 

 

 

 

 

The flow volume between the vehicle and the ground is strongly dependent on the car's 

attitude relative to the ground. Very small ground clearance results in positive lift, since there 

is almost no airflow between the underbody and the ground. With increasing ground 

clearance the airflow produces low pressures causing overall lift to be lowered to negative 

values and then to rise again as ground clearance continues to increase. This is due to the fact 

that the flow velocity under the car decreases as ground clearance increases. In this case, 

more downforce can be generated using a diffuser between the rear wheels.  

The Ground effect works exactly the same for any type of wing. At a large height in 

ground effect, the flow is accelerated over the suction surface greater level than in a 

freestream, resulting in greater suctions on the suction surface. As the wing is brought closer 

to the ground, flow is accelerated to a higher degree, causing an increased peak suction and 

associated pressure recovery. At a height where the pressure recovery is sufficiently steep, 

boundary-layer separation was observed at the trailing edge of the suction surface. As the 

height is reduced beyond this, the wing still generates more downforce, but the rate of 

increase slows, and the downforce reaches a maximum, the downforce reduction 

phenomenon. Below this height, the down-force reduces sharply. As the height is reduced 

from the first height where flow separation was observed, the separation point moves 

forward steadily. At the maximum downforce, the boundary layer separates at approximately 

80%c. Heights greater than the maximum downforce are known as the force enhancement 

region. Below the maximum downforce is known as the force reduction region. 

  

Figure 9: Ground effect on a moving car 

http://www.formula1-dictionary.net/bernoulli_equation.html
http://www.formula1-dictionary.net/bernoulli_equation.html
http://www.formula1-dictionary.net/diffuser.html
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2.2. FSAE Aerodynamic Devices 

Aerodynamic upgrades are one of the key areas in a FSAE car development which can 
easily make the difference in the competition events, with direct effect on the top and 
cornering speed. Depending on the required goals of every team in question, they can either 
choose to reduce drag and increase top speed, increase down force and drag levels for 
cornering speeds, or aim for a balance between the two. Aerodynamic upgrades come in many 
different forms and have evolved mostly from the early days of FSAE competitions with a 
streamline design in the very beginning. This was in an attempt to increase overall top speeds 
and played a big impact on design directions. Most common devices and many others are used 
to make FSAE cars increase their aerodynamic efficiency, this in turn helps to keep the tires 
planted on the ground and maximize grip. There are many differences between “open wheel” 
and “closed wheel” aerodynamic designs and some components are not applicable in both 
specifications but they share the common goal to increase downforce levels with the minimal 
amount of drag. Producing downforce without creation of drag is impossible and it is always 
a balancing act to reach the best trade off and maximize aerodynamic efficiency. 

 

2.2.1. Nosecone 

The nosecone is the aerodynamic 

bulkhead area in the front of the driver’s feet. 

As seen on open wheel race cars, is an 

effective way to mount the front wing and 

minimize frontal area. Its design promotes 

undertray and diffuser’s airflow optimization, 

promoting reduced drag and increasing 

downforce potential. Height and cross section 

in this area is critical as a minimal cross 

section is needed between the front wheels 

and as much space as possible underneath to 

fit bodywork to direct airflow around and 

under the sidepods. So, most teams tend to raise nosecones as high as they can go. New 

nosecone designs tend to have an angled upper surface and a “V” cross section to the front 

bulkhead, to make the surfaces more aerodynamically efficient. 

 

The front body work of the FSAE car usually experiences the highest pressure on the 

entire vehicle. This is because the fast-moving air stagnates (slows) when it hits the 

nosecone, causing a pressure rise. This stagnation pressure can be useful if the goal of the 

nose cone is downforce or undesirable if the goal is minimizing drag. For a downforce nose, 

the upper surface will show a low amount of curvature to maximize stagnation pressure. 

The angle between the upper surface of the nose and ground determines how much 

downforce and drag will be produced. A low drag nosecone will have convex curvature 

which lowers the drag, but also creates some lift. Low drag nosecones are probably the 

better option since a downforce nose will create both downforce and drag. The lift created 

by a low drag nosecone can be counteracted by the use of a front wing which can also 

provide downforce on the nose. Besides just adding additional downforce, front 

aerodynamic devices help to balance the car aerodynamically by providing a moving of the 

Figure 10: Nosecone of a FSAE car, 
 Tankia 2013 - TU Graz 
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center of pressure. A forward center of pressure creates oversteer and a rearward center 

of pressure creates understeer while it also moves rearward with increasing velocity.  

 

 

 

 

 

 

Τhe efficiency of a low-pressure area underneath the car is being seriously 
compromised by the low nose position at the front end of the car. Low nosecones 
effectively divert air sideways and upwards around the car's upper bodywork, and reduce 
dramatically the volume of air passing underneath the car. However, the generation of low 
pressures relies on increasing the speed of the air passing underneath the car, in relation 
to air passing over and around it. Having high nose allows air to go straight through under 
the nose instead of having to go around it. At first sight the higher nose is equal to less 
downforce as by itself it pushes less air up over the nose. However not only it can reduce 
drag but also all the air that passed under the nose is guided under the car or split to either 
side of the car by the splitters located in front of the sidepods. In simple terms, the more 
air that can be drawn underneath a car, the faster that air will have to be moving, and the 
faster the air is moving, the lower the pressure. Although rising the nosecone of the car 
increases the volume of air that passes underneath the car, the efficiency of the front wing 
decreases as far as it gets from the ground due to the ground effect. That means that 
during the design a compromise must be between the distance of the nosecone from the 
ground and the ride height of the front wing, so that the functionality of the first will not 
affect the aerodynamic efficiency of the other. 

 

 

 

 

 

 

 

 

 

Figure 12: One of the best aerodynamically designed bodywork and 
nosecone, Tankia 2010 - TU Graz 

Figure 11: Stagnation point on the nosecone of a FSAE car, 
this type of nosecones produce great amounts of Drag 

http://www.formula1-dictionary.net/drag.html
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2.2.2. Front wing 

 The first part of a FSAE car that 

comes in contact with the air is 

definitely the front wing. This means 

that it’s the first part of the car that 

interacts with the air, therefore it has 

the important role to determine 

the under-stream flow through the rest 

of car. Front wings are normally 

mounted close to the suspension, or 

even on the mounts in order to transmit 

downward loads of force as effectively as possible and create downforce in order to press 

the tires of the front wheels into the ground and generate higher grip levels. The front wing 

generates up 20% - 30% of the total downforce on the car.  The basic design of a FSAE front 

wing is generally a multi-element airfoil which is typically closely coupled airfoils consisting 

of two or even four elements extended from both sides of the nosecone, with movable 

flaps incorporated in the design to adjust of the angle of attack. The wing’s main element 

is usually a symmetric airfoil which is raised in the center in order to allow a slightly better 

airflow to the underfloor, but it also reduces the wings ride height sensitivity.  

Front wings have a minimal effect on drag for the whole aerodynamic design, unlike 

small changes at the rear of the car, which can have drag penalties due to the wake being 

altered. The design of the front wing is critical in controlling the flow of air over the rear 

part of the car and allowing the air flow to the underfloor aerodynamic aids. A very 

common mistake that many teams do is that they choose to place three or four elements 

in the area between the inner side of the front wheels and the nosecone in order to achieve 

as much downforce as they can. This type of design prevents a great amount of air from 

flowing straight ahead into the side pods and therefore radiators receive less airflow and 

the car engine temperature can dramatically rise. Any aerodynamic issues at the front of 

the car has a huge impact on the rear of the car, so it is critical to get this right from the 

beginning of the design process.  

The parts of the front wing, which tend to change most in design, are the endplates 

which are mounted at either end of the wing and their role is to aid the airflow to be forced 

over or under the wing further increasing its efficiency. The primary function of this feature 

is to stop the high-pressure air on the top of the wing from being encouraged to roll over 

the end of the wing to the low-pressure air beneath, causing induced drag. To increase 

front wing efficiency and maximize performance, the end-plates stop air spilling over the 

component and control airflow helping to make sure airflow is ducted to the rear wing and 

doesn't spill over the sides, while reducing drag. The rearward airflow coming of the device 

is smoothed out and helps to increase other aerodynamic devices efficiency. Additionally, 

another design aim of the endplates is to discourage the dirty air created by the front tires 

from getting under the floor of the car.  Further to these, some teams use ''splitters'', which 

are vertical fences, attached to the undersurface of the front wing, to assist the endplate. 

This can also help to deal with the turbulences generated by the front wheels. 

 

Figure 13: FSAE front wing, RP16c - Dynamics e.V. 
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 The exposed wheels of a FSAE car probably induce the most drag than any other part 

of the car. Since the FSAE rules prohibit any cover of the wheels an inevitable large 

separation of the flow takes place behind them and this causes the large amounts of 

formed drag. The amount of generated skin friction from the bodywork cannot even be 

compared to that type of drag. The interaction between the front wheels and the front 

wing makes it very difficult to come up with the best solution, however most teams are 

using a front wing in order to deflect the oncoming air around the front tires. Major design 

modification lies on the endplates and flaps of the wing, aiming to reduce tip vortex and 

wake of front wheel, either by making the inside edges of the front wing endplates curved 

to direct the air towards the chassis and the wheels or with sculpted outside edges to the 

endplates to direct the air from the outside of the front wheels. 

 

 

 

 

 
At the lower outside edges of the front wing endplates there are usually some semi-

circular tunnels which called footplates. These tunnels are designed to help preventing 
airflow migrating from the outside of the endplate, underneath into the low-pressure 
region developed by the wing. As the higher-pressure airflow moves around and passes 
underneath the endplate, it trips over the lip of the endplate and flows into the low-
pressure zone underneath the wing and this lateral mixing of high and low pressure airflow 
causes a small but powerful vortex to form just at inside of the endplate, hence footplates 
are also called vortex tunnels. When a vortex separates from a solid surface, it possesses 
a low-pressure core, in some sort of balance with the centrifugal ''force'' of the air spiraling 
around the vortex on helical trajectories. These vortexes act as air ''curtains'', sealing off 
other low pressure areas like the undertray and can also allow greater angles of attack for 
the front wing elements to be used, even right in front of the front tires and without the 
airflow stalling from their surface. This flow will then move onto the rear of the tire and if 
the footplate is correctly designed it will help to control front tire wake of the front wheels. 
If the front wing creates a turbulent wake or has a poor vortex generation, then every 
device that is developed downstream of the front wing must be optimized to work in that 

Figure 14: How endplates improve the efficiency of a wing 

Figure 15: Left, a well designed front wing prevents the incoming airflow from hitting 
direct on the front tires. Right, front wing endplate directs the airflow around the tires, 

Wind tunnel testing at Monash University.  

http://www.formula1-dictionary.net/vortex.html
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environment, but often with less success.  Many tests on different ride heights and wing 
angles of attack showed that these tunnels can significantly improve the downforce of a 
front wing up to 8%. However, due that footplates are considered part of the front wing, 
they must be located within the maximum allowable envelope for wings defined by the 
FSAE rules and cannot extend out of the front wheels. This means that the length of the 
wing must be reduced by a corresponding amount in order for the footplate to be 
compatible with the rules. Tests using different wings lengths showed that a loss up to 15% 
in total front wing downforce can result from the required reduction in wing length, and 
that is the main reason that most teams avoid the use of footplates in their wings. 

 

 

 

 

 

 

 The relationship between the front wing and the 

ground is a delicate one, with the wing generally being 

more efficient the closer it gets to the track due to the 

ground effect taking place. FSAE front wings usually 

operate most efficiently with ground effect typically at 

ride heights of about 40mm - 80mm, depending on the 

wing design. Therefore, the front wing must be placed 

in a low position near to the ground to gain as much 

advantage from ground effect as possible. At higher 

ride heights, the wheels reduce wing downforce and 

increase wing drag, whereas the drag of the wheels 

themselves also rises. At low ride heights, however, 

the opposite happens and the wing performance improves, while the wheels produce less 

drag. The rear of the airfoil acts as a diffuser, the lower pressure region behind the airfoil 

assisting with increasing the speed of the airflow between the airfoil and the ground. Both 

these factors contribute to lowering the pressure beneath the airfoil and this is the reason 

that an inverted wing in ground effect has improved performance in comparison to an 

airfoil in free stream. As the angle of attack is increased, the lift also increases until stall is 

achieved at a much smaller angle in comparison to the free stream airfoil.   

 

 

 

Figure 16: Left, how footplate vortices are being created. Right, how a 
well-designed footplate operates 

Figure 17: When ground effect takes 
place in a front wing, higher CL can be 

achieved until stall occurs 
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2.2.3. Rear Wing 

The rear wing is a crucial component for the 

performance of a FSAE car. This device 

contributes to approximately one third of the 

car's total downforce, while it usually weights 

about 3 - 4kg. The main function of the rear 

wing is to aid primarily in braking and cornering 

forces for the rear tires in order to eliminate 

oversteering. Τhe rear wing is a multielement 

airfoil comprised usually of three or four sets of 

elements connected to each other by the wing 

endplates. Multiple wings and flaps are used to 

gain more downforce in the rear wing. Two 

wings will produce more downforce than one 

wing, but not twice as much. The lift coefficient increases and lift/drag ratio decreases 

when increasing the number of airfoils. Multielement airfoils increase downforce by 

allowing greater total wing camber with high angle of attack and delaying flow separation 

near the trailing edge.  This delay in flow separation on a deflected flap element is achieved 

by introducing a slot ahead of the flap nose for boundary layer control. The lower and 

biggest airfoil provide the most downforce while the 2-3 upper and smaller airfoils provide 

less downforce but can improve the efficiency of the lower one as they prevent airflow to 

stall. Sometimes an even lower extra airfoil is placed over the diffuser exit creating a low-

pressure region just below the wing to help diffuser create more downforce below the car.  

 

However, the airflow at the rear of the car can be affected by many different influences 

(intake, bodywork, driver, etc.) from the rest of the car at the front and so it is called “dirty” 

because it is mainly a separated flow with many turbulences. This causes the rear wing to 

be less aerodynamically efficient than the front wing, due to the disbursed airflow that it 

has to deal. There are many parameters including the gap width between elements, the 

orientation of each successive element and the span wise twist that must be properly 

designed to achieve maximum efficiency depending on the flow that reaches the rear wing. 

The position of the wings relative to each other is also important. If they are too close 

together, the resultant forces will be in opposite directions and thus cancel each other. 

The rear wing typically generates close to twice as much downforce as the front wing in 

order to maintain the handling balance of the car, but this also depends on the design and 

the suspension set up of each FSAE car. A larger aspect ratio or angle of attack, can be seen 

compared to the front wing and often two or more sections stacked are used on top of 

each other in order to create the amount of downforce needed and maximize available 

space. In rear-wheels cars, this is significant vital and the rear wing will not only add 

acceleration and braking abilities, but also cornering grip. A greater wing angle increases 

the downforce and produces more drag, thus reducing the cars top speed. So, when racing 

on FSAE tracks with long straights and few turns it is better to design the wings to have 

small angle of attack. Opposite to that, when the car is racing on FSAE tracks with many 

turns and few straights, more downforce is required thus it is better to design the wings to 

have greater angle of attack. 

 

 

Figure 18: FSAE rear wing, F0711-10 - Rennteam 

http://www.formula1-dictionary.net/diffuser.html
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As air flows over the wing, it is disturbed by the shape, causing a drag force. Although 

this force is designed to be less than the downforce, it can seriously limit top speed and 

cause the engine to use more fuel to get the car through the air. The design of the wings 

should reflect the need to generate enough grip to brake at speed without skidding.  This 

allows more powerful brakes to be used with the same tires because the downforce 

increases the tires grip.  Τhe maximum speed of the car and the necessary rate of 

deceleration must be also taken under consideration. The wings should be optimized 

between the downforce needed for grip whilst braking and the drag they produce.  The 

main problem at the designing of rear wing is the turbulence or the “wake” that is left 

behind of this device. To make sure wake is reduced to minimum, the air exiting the car 

cannot be turbulent with vortices. However, due to the Venturi tube effect under the car 

and the wing creating downforce above the car, the two exiting “dirty” air flows meet at 

the back of the car creating great vortices and affecting the aerodynamics of the car 

significantly by creating drag. Therefore, it is always an aim to make the two airflows meet 

as linearly as possible with minimal drag.   

 

Rear wing endplates are designed with form and function in mind. Because of their 

form, they provide a convenient and sturdy way of mounting wings. The aerodynamic 

function of these endplates is to prevent air spillage around the wing tips and thus they 

delay the development of strongly concentrated trailing vortices. Trailing vortex or induced 

drag is the dominating drag on any kind of wings. An additional function of the rear 

endplates is to help reduce the influence of up flow from the wheels. The vortices start 

later on the wing with end plates because the airflow is forced to move in one direction of 

motion and can only start whirling after the rear wing. Splitting the airfoil into separate 

elements is one way to overcome the flow separation caused by adverse pressure 

gradients.  

 

 

 

 

 

 

 

 

 

 

 

Figure 20: How rear wing endplates reduce drag and improve the 
aerodynamic efficiency 

Figure 19: Variation of lift coefficient with the number of elements 

http://www.formula1-dictionary.net/drag.html
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At high angles of attack, air is unable to follow the contour of the lower wing surface 
and can detach (stall), lowering the efficiency of the wing and adding drag. Adding a small lip 
on the trailing edge, causes a lower pressure just behind it which sucks the lower flow back 
up to the wing surface. The Gurney Flap (or wickerbill) is a small tab projecting from the trailing 
edge of a wing. Typically it is set at a higher angles of attack on the high pressure side surface 
of the airfoil, and it’s height must be of the order of local boundary layer thickness or 1% - 4% 
of the wing chord length in order to be effective. This trailing edge device can improve the 
performance of a simple airfoil to nearly the same level as a complex high-performance 
design. The device basically operates by increasing pressure on the pressure side of the wing, 
decreasing pressure on the suction side, and helping the boundary layer flow stay attached all 
the way to the trailing edge on the suction side of the airfoil. At the same time, a long wake 
downstream of the flap containing a pair of counter rotating vortices can delay or eliminate 
the flow separation near the trailing edge on the lower surface. Correspondingly, the total 
suction on the airfoil is increased. The designer has to get all the downforce possible out of 
the wing surfaces allowed by the rules. The Gurney flap surely causes some extra drag, but 
can generate more downforce from the allowable wings because of the higher angles of 
attack. Gurney flaps are also used as a quick way to fine tune the force a wing generates in 
order to adjust the way a car handles. Varying the height of the Gurney flap adjusts downforce 
(and drag, of course) and so most teams have devised ways of changing the Gurney quickly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally, when the aim of top speed is the main consideration of the design, the 

reduction of the angle of attack is inevitable in order to minimize drag. Usually the rear 

wing elements are designed to have adjustability just like the front wings, each of these 

can be adjusted when the car is racing in different dynamic events (Acceleration, 

Endurance etc.) via small Allen keys to achieve the required downforce and drag levels of 

each event. In Acceleration event for example, many teams often choose to set their rear 

wings in low or even zero angle of attack in order to reduce the drag of the elements in 

minimum while until the car reaches at least 40km/h the rear wing doesn’t produce 

enough downforce to give the required grip to the tires to avoid spinning. On the other 

hand in Endurance and Skidpad events where the downforce is vital for the ongoing turns, 

teams set their rear wings at the angle of attack that they have design them to operate 

and be most efficient.  Some of the most advanced FSAE teams are also using a drag 

reduction system(DRS) operating with electronic actuators which give the ability to the 

driver with just the press of a button to level off the angle of attack, of the rear wing 

elements while driving, to reduce drag and downforce, thus increasing top speed. In the 

near future, active aerodynamic devices would be adjusted via computer calculations to 

Figure 21: Gurney flaps are usually placed on the trailing edge of the last 
element and can significantly increase the efficiency of the rear wing 

http://www.formula1-dictionary.net/stall.html
https://en.wikipedia.org/wiki/Trailing_edge
https://en.wikipedia.org/wiki/Trailing_edge
https://en.wikipedia.org/wiki/Right_angle
https://en.wikipedia.org/wiki/Airfoil
http://www.formula1-dictionary.net/chord_of_wing.html
http://www.formula1-dictionary.net/boundary_layer.html
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operate with specific way depending on speed, rpms, corner radius and track conditions 

giving thus huge performance gains compared to most static set-ups requiring adjustments 

that are being today. This would help to reach maximum performance levels for the tires 

while increasing fuel economy and the overall driving efficiency of the car. 

 

 

 

 

 

 

 

 

 

 

 

2.2.4. Undertray Diffuser 

The undertray is not only the largest 
aerodynamic component on a FSAE car, 
it’s also the most aerodynamically 
efficient, producing nearly 9 times more 
downforce per unit of drag than a rear 
wing. Since the major rule changes in 2015 
which heavily restrict the rear wing size, a 
focus on the optimization of the undertray 
has made it a critical part of the package. 
The location of the undertray is important 
because being in such a close proximity to the ground means it is able to take advantage 
of the phenomenon of ground effect, which essentially magnifies the suction force 
produced by airflow beneath the undertray surface. Bringing these surfaces closer 
together accelerates the flow, resulting in lower pressure and a greater amount of 
undertray downforce. Simple fluid dynamics says that when flow accelerates its pressure 
decreases. This is in fact the nozzle effect (or Venturi effect), when the flow in a convergent 
nozzle accelerates and drops its pressure and then recover in the diffuser. By shaping the 
underbody as an inverted wing, or with appropriate tunnels, or even with a simple scant 
angle that work with the Venturi effect, the overall pressure between the undertray and 
the ground decreases creating additional downforce. The key role of undertray is to 
accelerate the flow of air under the car, creating a greater difference in pressure between 
the upper and lower surfaces of the car, thus increasing downforce and aerodynamic grip, 
which literally sucks the car to onto the track creating much higher grip levels. 

The Diffuser is the rear element at the underbody of a FSAE car close to the floor, from 

which air exits the car. This is the last components where air interacts with the car. The 

objective of the diffuser is to slow the flow back down again and to give the used air flow 

Figure 22: FSAE Rear wing Drag Reduction System(DRS) on action 

Figure 23: FSAE Rear Diffuser 
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from the undertray of the car as much possible space to exit from the rear end. This 

ultimately means that if the air can escape more easily from under the car, then more air 

at faster velocities can flow under the undertray of the car creating a lower pressure and 

therefore higher downforce. The diffuser increases in volume along its length, creating a 

void that has to be filled by the air passing under the body. This Venturi effect means that 

the flow is accelerated through the throat of the diffuser, creating the desired low 

pressure, then gradually returned to the same velocity at which it joined the wake. It is 

important to re-equalize the large pressure difference that the undertray creates between 

it and the ambient pressure which surrounds the car. Without a diffusion system in place 

to gradually slow the air down, significant drag would be induced by the forced, sudden 

mixture of high and low pressure airflow. Additionally, the expanding air exiting our 

diffuser is able to interact with the rear wing improving their combined performance. 

 

 

 

 

 

 

 

 

With the diffuser working, the car turns into a Venturi tube, being the most efficient 

aerodynamic package on an FSAE car. However, considering the diffuser has the potential 

to give an amount of 30-40% of the total downforce, the exit of the used air flow can 

sometimes be deemed much more significant. Diffusers leverage the low-pressure area 

behind the vehicle, and can sometimes leverage high speed exhaust gases ejected into the 

diffuser to create even lower pressure (blown Diffusers). The speed of air flow can 

significantly influence downforce, whereby the faster the flow exits, the more downforce 

is generated. With an increasing driving speed the airspeed will also increase. When this 

happens the proportional difference between the speed of the air on top of the undertray 

and underneath the undertray will get higher. This means the difference in pressure will 

be higher. So, the generated downforce and drag are completely dependent on the 

dimensions of the undertray diffuser and the speed of the air/speed of the car. When the 

incorrect dimensions are taken the undertray diffuser will generate a lot of drag and will 

generate a little amount of downforce or even positive lift. The diffuser doesn't directly 

produce downforce only to the rear end of the car but, in essence, it produces downforce 

along the whole of the car. 

Figure 24: The diffuser opperates as an inverted airfoil 
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The angle or slope of the diffuser is also important, the diffuser must have a gradual 

change of angle to prevent flow separation from its roof and sides. The angle of the diffuser 

relative to the ground affects the magnitude of downforce that is created. If the angle of 

the diffuser is close to zero the boundary layer flow will not detach, but the air speed will 

not be reduced enough to make a laminar transition of the air at the end of the car when 

to two airstreams meet. If the diffuser has a very large angle the boundary layer flow will 

detach and the airflow underneath the diffuser will be turbulent. In general, it is desired 

to have the highest angle without flow separation to generate maximum downforce. Once 

separation occurs the downforce is reduced and drag is greatly increased. Two-

dimensional simulations of diffuser angle show that maximum downforce is reached with 

an angle of 8-12°. However in reality there is another effect occurring that changes this 

statement. Starting at the diffuser entrance there is a vortex that forms that travels down 

the length of the diffuser. A vortex adds a rotational component to the velocity decreasing 

the pressure along its length. This vortex flow also adds energy to the flow and will delay 

separation allowing larger diffuser angles. Vortices can also be used on other parts of the 

undertray. Large vortex generators can be placed at the entrance of the undertray so that 

the vortices travel along the length of the vehicle, reducing the pressure and increasing 

downforce. These vortices can also be used along the sides of the undertray creating a 

"false seal" that also increases downforce. 

 

 

 

 

 

 

Figure 25: The lowest pressure occurs where the air moves the 
fastest, just immediately ahead of the diffuser.  

Figure 26: Lift and drag coefficient variation with ground clearance 
for a race car with underbody diffuser 
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2.2.5. Sidepods 

Sidepod is the part alongside the 

cockpit that accommodates the radiator 

and often the engine exhaust and oil tank 

system. The main function of sidepods is to 

provide enough air for the cooling of the 

engine and to control underbody flow to 

generate desired downforce. The profile of 

sidepods are varied significantly on every 

car, based on the different aerodynamic 

designs. The internal shaping has to 

maximize thermal transfer rates and reduce drag penalties, which can be a balancing act 

in its self. The design normally incorporates chimneys and cooling louvres help to extract 

hot air as quickly as possible. General design of sidepods where quite tall and boxy in the 

beginning, but modern designs lend to be lower and sleeker, as teams strive for less drag 

and more downforce, at the rear of the car. 

 

The width and height of the sidepods are determined by the need to accommodate 

the oil and water radiators for engine and exhaust cooling. The distribution of engine heat 

to water and oil will depend upon the detail philosophy of the engine design, but in total 

it will be similar for all the engines. Most teams aim to minimize engine heat rejection 

quantity and maximize coolant temperatures, in order to minimize the radiators sizes and 

airflow requirements for cooling system. However, for safety reasons bigger radiators than 

needed are selected, thus it takes all the space available in the sidepods to package 

radiators and their ducting to cool them. The bigger a radiator is, the greater its resistance 

in airflow and therefore increased drag. There is a parabolic growth of the flow resistance 

from an increasing Reynolds number. In this case, an increase of the Reynolds number 

means an increase of the velocity. So, the aim is to achieve the highest heat rejection with 

lowest possible drag. Heat transfer rate is also affected by the area of the sidepod inlet as 

it determines whether the flow into the sidepod is laminar or turbulent. Varying both 

outlet and inlet areas of the cooling system to give only the required amount of cooling 

under any given condition means that the cooling drag and fuel consumption are kept to 

a minimum. 

The velocity distribution on the front face of the radiator must be uniform. This is the 
reason why the sidepod inlet is designed to ensure an even distributed velocity distribution 
on the front face of the radiator and at the same time balance the pressure distribution at 
the inlet and outlet in order to minimize the drag from a sufficient airflow through the 
radiator. The best way to design the ducting in order to avoid separation, which would 
decrease the efficiency of the radiator, is to have a smooth expansion after the inlet that 
has a smaller area than the front face of the radiator. To further increase the performance 
of the ducting and eliminate stall, the inlet edges can be rounded like a thin airfoil leading 
edge. Shortening the sidepods by moving the leading-edge rearwards, has not helped the 
task of providing enough cooling air to the radiators. The turbulent wake from the front 
wheel spreads as it moves downstream and so envelops the radiator intakes more, the 
further they are behind the wheels. A wide variety of barge-board arrangements has 
emerged since sidepods are shortened, to try and take control of both front wheel and 

Figure 27: FSAE Sidepods, University of Auckland 
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front wing wakes and move them to regions where they can do some good, instead of 
hurting the cooling by entering the radiator intake. 

 

 

 

 
 
 

 

The aluminum radiator cores used in most FSAE cars are relatively thick and have high 
air pressure drop coefficients, and so do not require high velocity air to flow through them. 
Instead, the cooling air must be slowed efficiently, and the static pressure thereby raised, 
between the intake and the front face of the radiator. The internal ducting of the sidepods 
takes the form of a divergent duct to the one or more radiators in each sidepod. The 
pressure behind the radiator must be as low as possible to provide the greatest possible 
pressure difference across the core. Communicating the radiator exit ducts to the rear of 
the car ensures that the base pressure, lowered further by the rear wing underside, is used 
to "pull" air out of the radiator. The high pressure ahead of the wheels "pushes" air under 
the car, filling and decreasing the desirable low pressure generated there. The high velocity 
air flow around the inside edge and along the side of the wheel and tire creates low 
pressure, which is desirable as it inhibits the inflow under the floor area.  

Setting the radiator at an angle of attack of 40-50° inside the sidepod is another 

effective way to improve its functionality, as it increases the size of the radiator core for 

greater heat transfer and takes advantage of the natural convection of air. Once the lighter 

heated air exits the radiator, it travels directly upward toward the top surface of the 

sidepod due to the density difference. This restricts the airflow and creates low velocity 

regions inside the sidepod. In order to solve this problem, gills can be placed in the region 

where the sidepod is blocking the airflow assisting the expulsion of hot air from the 

radiator exit and allowing the sidepod to “breathe”. However, regardless on fact that most 

of the hot air exits sidepods upwards and backwards, there is still great amount of up-force 

generated due to upper shape of the sidepods which isn’t generating any downforce at all. 

All gain in downforce occurs only due to previously mentioned hot air outlets (chimneys, 

gills etc.) including the position and direction hot air and exhaust gasses. 

 

 
 
  

Figure 28: Curved sidepod edges help to avoid stall on the inlet  

Figure 29: Velocity field on the interior of a FSAE sidepod 
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2.2.6. Brake Cooling Ducts 

Under braking, the friction of the 
brake pads against the disc transfers the 
kinetic energy of the car into heat, which 
passes through the brake disc, pads and 
caliper. If this energy is not removed from 
these components, they will eventually 
fail. By far the most efficient method of 
heat transfer from the brakes is through 
convection. This is achieved by forcing cold 
air through the ducts and blowing it 
through the radial center vents of the hot 
disc, on the surface of the pads and 
calipers as well as any nearby electronic 
sensors. As flow passes through the large 
number of flow paths drilled or molded racially through the brake disc, heat is transferred 
from the hot disc into the colder air, and as this flow heads out of the wheel it can be up 
to 200°C hotter than when it went in. 

The key for the inlet is to be in a high-pressure location which is usually the front 
surface of the car. Any inlet on the front of the car will work to a degree. They will be more 
effective the closer to the center of the wheel you can put them. As you move away from 
center, the air is traveling sideways over the wheel, not straight on, so inlets further to the 
sides are less effective. If a front wing is used, the duct inlet must be placed in such a way 
that the air passing from the front wing is driven directly to it. The amount of air is 
controlled by using different size ducts, which are smaller for circuits with less braking 
demand and larger for heavy braking circuits in order to manage the temperatures of the 
brakes and achieve the correct balance between high performance and acceptable wear 
rates. Moving from the smallest to largest cooling ducts can cost 1.5% in aerodynamic 
efficiency, which represents a loss of about 1km/h in top speed.  

  

Figure 30: Brake cooling duct 

Figure 31: FSAE Brake cooling ducts with different inlet sizes 
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2.2.7. Flip-Ups 

Exposed wheels are the anti-thesis of optimal aerodynamics in that they contribute 

significant drag and lift (the opposite of downforce). They also shed highly turbulent air in 

their wake, which is essentially useless as a feeder for other aerodynamic devices on the 

car. Lift due to exposed wheels is also a major problem for all open wheel racecars since 

regulations prohibit enclosing the wheels within the bodywork. Exposed wheels generate 

upward lift forces that decrease the downforce created by the wings and other structures. 

This positive lift may reduce the downforce of a FSAE car by approximately 11%. Plus, they 

disturb the air flow around rear wing.  To resolve this problem, Flip-Ups are placed on the 

rear section of the sidepods, in front of the rear tires guiding air over the rear wheels while 

creating some downforce and shielding rear wing from influence of dirty air coming from 

front and rear wheels. Flip-Ups are also used to align the air with the wheel and thus reduce 

drag. Close by, and sometimes integrated into the Flip-Ups are winglets (small airfoils with 

end plates) to create additional downforce.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: FSAE Flip-Ups, Dynamis PRC - Politecnico di Milano 

Figure 33: FSAE Flip-Ups, Rennteam Uni Stuttgart e.V. - Universität Stuttgart 
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2.2.8. Suspension Wishbone Covers 

Wishbones rods are in a direct contact 

with air for a wingless car or with the air coming 

through the front wing for a car with a full 

aerodynamic package. These parts are mainly 

circular or rectangular shaped, which makes 

them generate even more drag than an airfoil, 

therefore these bars and rods have an oval or 

airfoil envelope shape. Aerodynamic suspension 

helps to increase overall down force levels for 

the whole aerodynamic package. If there is 

airflow separation at the front of the car, this 

could easily reduce the whole aerodynamic 

package, or at least negate some of the down 

force generation potential. Their role is not to 

produce downforce but they are simply shaped that way to reduce the wishbone’s drag 

and keep the flow heading to the sidepods relatively undisturbed as the stall behind the 

suspension components (wishbones, dampers, rockers etc.) can critically affect the 

efficiency of the radiator which is located inside the sidepod. These suspension arms are 

often made in a shape of a wing, although the upper surface is identical to the lower 

surface. Due to the manufacturing difficulties, most FSAE teams tend to design airfoil 

shaped shrouds in order to cover the cylindrical wishbones inside them, rather than 

making them as a single part like in a F1 car. Case a, represents an un streamlined 

suspension arm, and the lower one b, a suspension arm with an aerodynamic covering. 

Both have roughly the same cross sectional area, but b has a drag force up to ten times 

less than a. 

 

  

Figure 34: Streamlined wishbone improves the 
smoothness of the air flow for parts behind and 
reduces drag 

Figure 35: FSAE Suspension covers, RP16c - Dynamics e.V.   

Figure 36: FSAE Suspension covers, TU 
Darmstadt Racing Team - DART Racing 
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2.3. Aerodynamic Forces Distribution & Balance 

On most FSAE cars downforce is produced largely (about 40-50%) by the undertray-
diffuser while front and rear wings produce each about 20-30% of the total downforce, 
with the front and rear wings being the main tuning elements. Notice how the downforce 
is distributed at the front, middle and rear of the car. This results in a relatively even 
distribution of load between the front and rear tires. By tuning the front and rear 
downforce you alter the cars center of pressure. The center of pressure (CP) is the balance 
of downforce at the front and rear axles, also known as the aerodynamic balance. The 
distance between CP and center of gravity (Cg) is called static margin and it is typically 
required for the position of CP to be as much closer to that of Cg. A slightly rearward 
aerodynamic package, where the CP is behind the Cg is commonly used to ensure high 
speed stability. Designing for a good aerodynamic balance will ensure that the vehicle 
exhibits neutral handling characteristics rather than understeer or oversteer as a result of 
unevenly distributed aerodynamic loads. 

 Downforce has to be balanced between both the front and rear, left and right of the 
car. Due to the symmetry of the car, the balance between left and right can be easily 
achieved but achieving balance between front and rear is a different thing. Flow in the 
front greatly affects flow in the back of the car and vice versa. Downforce must be adjusted 
according to each racing track characteristics of the different FSAE events (Endurance, 
Skidpad etc.) and the dynamic behavior of the car. If a car has significantly more downforce 
at the rear than at the front or even if it has lift at the front, the front of the car can feel 
lighter under certain situations on the track. That lightness in the front of the car can lead 
to understeer, simply because the front wheels are lacking grip relative to rear grip. S most 
FSAE teams are trying to achieve an increase in front and rear downforce, while keeping 
the balance between the two forces correct, in order to avoid introducing any undesirable 
handling or grip issues by getting that balance wrong. 

 

 

 

 

 

 

 

 

 

Another advantage of balancing downforce is that it can help reduce body roll while 
cornering and body pitch during braking or acceleration. This in turn helps reduce sudden 
variations in vertical forces applied to the tires at the limit, increasing vehicle stability in 
the wake of driver input. Vehicle behavior is also more linear near the limit of adhesion, 
contributing to increased driver control. Downforce not only increases dynamic 
performance, but also creates a more stable vehicle behavior environment for steering, 

Figure 37: Aerodynamic forces percentage distribution based on the efficiency of each device 

http://www.formula1-dictionary.net/wings.html
http://www.formula1-dictionary.net/set_up.html
http://www.formula1-dictionary.net/aerodynamic_balance.html
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throttle, and braking inputs. In low-speed corners little power is needed to maintain speed, 
so reducing the drag has almost no effect.  In high-speed corners the influence of drag can 
become quite significant however, it makes only 10% of the difference than that which can 
be achieved by balancing downforce. In other words, creating downforce to press the 
vehicle onto the road as speed increases not only contributes to increased absolute 
cornering speed and thus absolute dynamic performance, but also significantly improves 
vehicle control quality as measured by response to driver inputs and vehicle stability at the 
limit. 

Interference in the air flow results in increase of the pressure on the corresponding 
axle. This situation is especially evident during cornering. In the case where the rear axis 
carry more load, the front axle is not able to follow the path expected by a driver, thereby 
extending the radius-we deal with the effect of understeer. The opposite concept is 
oversteer where more susceptible to the occurrence of slip is a rear axle with much intense 
slip conditions. Increased pressure obtained through the interference with the flow of air 
results in more efficient acceleration, but a bad balance can lead to oversteer. Balance is 
determined by the addition of the moments produced due to both downforce and drag 
force over their perpendicular cantilever lengths about the design center of pressure, 
which in this case is taken as the ground position directly below the car’s center of gravity 
which is usually at mid-wheelbase. For a FSAW car, a typical aerodynamic balance is 
approximately 45% downforce to the front and 55% to the rear. 

 

 

 

 

 

 

 

 

When both downforce and drag is already known for the front and rear of the car, 

an approximate calculation for the aerodynamic balance of the vehicle can be done based 

on the free body diagram, showing in Figure 32 above. After the analysis of the applied 

forces and moments on the car, the force acting on rear tires (Nr) can be found using the 

equation below and respectively calculate the force for the front tires (Nf). Wing positions 

can be estimated by measuring the perpendicular distance from the balance point to the 

estimated center of pressure for each wing. 

 

 

 

 

 

Figure 38: Free body diagram of an FSAE car used for the estimation of the aerodynamic balance   

(2.4) 

(2.5) 

(2.6) 
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FSAE cars are largely limited on corner entry by the rear grip available. In low to mid 

speed turns the car needs a slight rear bias to the CP, this prevents the car suffering corner 

entry oversteer. Too much aggressive front wing in these corners will make the car too 

pointy and hinder lap-times while in faster turns the front wing can lead the car. The drivers 

turn in gentler in to fast turns, which creates less lateral acceleration at the rear axle. So, 

it is rare for the rear to step out on turn-in in to fast corners. Thus, at higher speeds it can 

be a Cg biased towards neutral or the front. Since applying downforce to a body will create 

better traction, we need to figure out how and where to apply it. Basically, a race car 

handling is described as oversteer, understeer or neutral. Oversteer in aerodynamic terms 

means more front downforce (or less rear downforce) while understeer would be more 

rear downforce (or less front downforce) and neutral would be a good combination of both. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Braking during cornering can easily put the car off-balance. Under the effect of 

deceleration, the front of the vehicle is more heavily loaded (due to weight transfer on the 

front), and because of the steering that extra load becomes unbalanced by acting of the 

centrifugal force on outer front corner of the car. This places a big load onto that 

suspension unit and creates a great deal of extra work for that tire to have to cooperate 

with. When this happens, even for rear-wheel drive vehicles, the rear of the car becomes 

lighter and with the dramatic unloading of the diagonally opposite wheel and suspension 

unit to that which has been unnaturally loaded. This braking effect being due to the 

retardation effect of the engine. This makes it more difficult for the rear tires to grip the 

road, due to the reduced amount of downforce and the rear of the car can more easily 

become provoked into oversteer and start to overtaking the front. Applying the brakes 

whilst cornering can even cause the rear tire, the one traveling on the inside of the bend, 

to lose contact with the road altogether. 

Figure 39: a) A CP ahead of Cg is able to lead on an oversteering situation  
b) When CP is behind the Cg an understeering situation is expected 

http://www.formula1-dictionary.net/cornering_tech.html
http://www.formula1-dictionary.net/grip.html
http://www.formula1-dictionary.net/oversteer.html
http://www.formula1-dictionary.net/oversteer.html
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The majority of the braking is done by the front wheels, but obviously all four wheels 
provide braking force. By increasing the rear grip without reducing the front grip it is 
possible to increase the overall grip under braking of the car as a whole, so additional rear 
downforce can have a positive effect on how much grip the rear wheels have under 
braking. Comparing a FSAE car running without a rear wing with a full aero car, the addition 
of a rear wing can produce downforce at the rear, helping to address the front downforce 
to rear downforce balance, but that balance requires to look at front downforce and rear 
downforce simultaneously. By creating a downforce with the same front to rear balance 
as vehicle weight, changes in steering characteristics from low to high speeds remain well 
under control. At higher speeds this translates into a more linear response. More precise 
control of the vehicle helps the driver delve further into the car's potential. 

 
 Even though FSAE wings do not see large changes in angle of attack during forward 

motion, it is necessary to have as wide an operating range as possible in order to have 
enough options when it comes to car setup. The rear wing is often used to balance the car 
after the front wing setup has been completed to compensate for any possible undesirable 
characteristics of the car endowed to it by pre-existing handling traits. The amount of 
downforce generated by current FSAE cars changes the load at the wheels by about 70% 
at the front and about 90% at the rear. For the suspension and tires, the car appears to be 
approximately two times as heavy at final speed than it is at low speeds. Combine this 
100% increase in vertical load with the low ground clearance it can be clear how 
aerodynamics can affect the performance of a FSAE car even during braking. 

 
 

 

 

 

 

 

 

 

 

  

Figure 40: Free body diagram of a race car during Braking 
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3. SETUP OF THE CFD MODELS 

 
This chapter gives a precise description of the straightforward and reliable way of 

how CFD simulations in the field of external aerodynamics of a FSAE car were made for the 
development of the aerodynamic package of Centaurus Racing Team’s 2016 car Thireus 
277. Comparing to the aerodynamic devices that were reported on Chapter 2, this 
aerodynamic package consisted of a low drag Nosecone, an Undertray with a rear Diffuser, 
two symmetric Sidepods and also a front and rear Wing which were not placed on the real 
car due to the lack of time. These aerodynamic devices were simulated and tested one by 
one until a complete CFD model be created and simulated giving the final aerodynamic 

characteristics of the whole vehicle. All the CAD models were designed with Solidworks 

software, by using mainly the Surfaces Tools while the powerful tool ANSA was used as 
pre-Processor in order to successfully deal with the “cleaning” of the highly complex 
geometries and generate high quality mesh with precise handling. The set up and solving 

of all the CFD cases was made with ANSYS-Fluent solver while for the visualization and 

estimation of the results was made using the advanced post-Processor, mETA. Items and 
approaches listed below do not claim to be complete nor optimized, they are just 
recommendations based on personal experience and recent comparable studies.  

 
Computational Fluid Dynamics (CFD) is the use of applied mathematics, physics, 

numerical analysis and data structures to solve and analyze problems that involve fluid 
flows and visualize how a fluid(air is the fluid for Aerodynamics) flows as well as how it 
affects objects as the flow pass. Computational fluid dynamics is based on the Navier-
Stokes equations. These equations describe how the velocity, pressure, temperature, and 
density of a moving fluid are related. Computers are used to perform the calculations 
required to simulate the interaction of liquids and gases with surfaces defined by boundary 
conditions. With high-speed supercomputers, better solutions can be achieved. Initial 
experimental validation of such software is performed using a wind tunnel with the final 
validation coming in full-scale testing. Τhe current generation of CFD packages generally is 
capable of producing accurate solutions of simple flows. The codes are, however, designed 
to be able to handle very complex geometries and complex industrial problems. When 
used with care by a knowledgeable user CFD codes are an enormously valuable design tool. 

 
An integrated CFD simulation consists of three main stages which are pre-Processing, 

Solving and post-Processing and are strictly performed in that order. In pre-Processing step 
the initial CAD geometry gets “cleaned” from any type of problematic surfaces and is 
divided into smaller fragments, called meshing or grid generation step. With mesh probe-
points where the analysis has to be done are actually defined. Thus, at the Solving stage 
exactly as the geometry is discretized the same are the Navier-Stokes equations for each 
cell which are later solved giving on the post-Processing step the values that are obtained 
in the form of colorful contour plots using the visualization techniques that can give a very 
good insight to locate the hot-spots, recirculation and dead zones. So, it is not only the 
qualitative depiction of values that are generated but also the quantitative that can help 
the user to analyze the overall flow phenomena.  

 
 
 
 

   

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Boundary_value_problem#Boundary_value_conditions
https://en.wikipedia.org/wiki/Boundary_value_problem#Boundary_value_conditions
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Wind_tunnel
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3.1. pre-Processing 

 

3.1.1. Geometry “Clean-up” 

When setting up a CFD model there is usually a geometry of interest which imported 
from a Computer Aided Design (CAD) package to use in the simulation. The complexity of 
each CAD geometry depends on the accuracy interest from the data imported and is 
directly connected with the available computing power. During the preparation for a CFD 
simulation, a consistent definition of fully connected geometry has to be ensured. 
Typically, the CAD geometry that is imported in the pre-Processor has not been created 
there but in one of many CAD packages. The first basic step after importing the CAD design, 
comprises of a “Cleaning-up” of the geometry in order to eliminate any kind of errors that 
may have occur during the CAD designing process. Many of these errors can be generalized 
as file translation issues. Exporting these files out of CAD software into a neutral file format 
(IGES, STEP, SAT etc.) accepted by the pre-Processor can introduce misrepresentations in 
the geometry. As a result of translation errors between CAD representations, errors or 
differences in the way the geometry is interpreted may occur.  

 
Depending on the severity of the problem, sometimes a mesh can be generated even 

with a less than perfect geometric representation, however, in most cases, these should 
be resolved before meshing. In some cases, there exist small details in the geometry that 
if meshed, would result in very small elements and a potentially huge element budget. 
Small curves and surfaces can sometimes result from details in the design solid model that 
may not be necessary for analysis or may even be a result of careless construction of the 
CAD model. In either case, it is important to remove or modify these features before 
meshing. Assemblies of parts are often required to have a conformal mesh across their 
interface. The operations imprint and merge are often required to connect parts together 
so that when meshed, the representation will be a single continuous mesh. Modeling 
errors caused by the user in the CAD package is another problem that has to be fixed during 

CAD Design

pre-Processing

Solving

post-Processing

Figure 41:  Process followed for the correct execution of a complete CFD Simulation 
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the pre-Process. In the CAD package, the user may not create the geometry correctly, 
causing some parts to overlap or introduce small gaps between parts that should touch. If 
also the meshing software's tolerance is finer than the CAD package's, this disparity in 
tolerance can cause subsequent geometry modification operations in the meshing package 
to inadvertently create sliver features, which tend to be difficult and tedious to deal with. 
This tolerance problem also causes misalignment issues between adjacent volumes of 
assemblies, hindering the sharing of coincident geometry in order to produce a conformal 
mesh. 

 

3.1.2. Creation of Fluid Domain  

 
During the pre-Processing the Fluid Domain inside which the CFD simulation is going 

to take place must be defined carefully to ensure the reliability of the results. In external 

aerodynamics the Fluid Domain has the shape of a rectangular box and represents a virtual 

wind tunnel in which the body of interest must be placed and must be ensured that there 

is always enough space between the inlet, the geometry and the outlet so, that the 

boundary conditions could be met with the geometry of the vehicle included thus the 

dissipation of vortices downstream from the vehicle does not disturb the solution 

upstream and the pressure at the stagnation point evolves reasonably. The entrance to 

the wind tunnel is typically placed about 4-5 times the characteristic length ahead of the 

geometry and an inlet velocity is defined on it. Respectively the exit of the wind tunnel is 

placed about 8-10 times the characteristic length behind the geometry and is considered 

as a pressure outlet while the side walls of the domain are placed about 2-3 times the 

characteristic length further. Typically, the ratio of the vehicle cross section to the wind 

tunnel cross section is within a certain range. This ratio is called blockage ratio and has to 

be less than 6% or even less than 2% depending on the inlet velocity and the kind of results 

that the user wants to examine on each case. As a result, the effects of the Fluid Domain 

walls on the pressure distribution and thus, the drag coefficient are small. Otherwise, the 

flow field around the car is disturbed by wall influences.  

 
To reduce the total cell count, and therefore computing time, a symmetry plane was 

used down the center of all the geometries. Symmetric Computational domain may be 
used to reduce the computation effort without significant loss of accuracy and can save up 
to 50% or more in simulation turnaround time. Additionally, you can use the shortage 
memory to run more accurate simulations with more mesh cells clustered in areas of 
interest. However, it is not always given that a symmetric model will also have a symmetric 
flow field. For instance, the flow over a symmetric cylinder in a certain Reynolds number 
range exhibits vortex shedding that is clearly not a symmetric flow field. However, for 
external flow over FSAE cars the flow is symmetric enough to only run a simulation on 
symmetric half model. Symmetric simulations are also not applicable if the domain 
boundaries represent the walls of a real wind-tunnel. In this case the simulation should 
take into account the related wall effects. Simulations with complete vehicle domain is 
recommended when the car is tested in cornering or if a correlation with experimental 
data has to be done.  

 
 
 

 

 

http://www.symscape.com/reynolds-number
http://www.symscape.com/blog/vortex-shedding-behind-cylinder
http://www.symscape.com/examples/rans/open-wheel-racecar-cfd
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3.1.3. Mesh Creation 

3.1.3.1. Surface Mesh 

 
The first step in the surface meshing procedure is the imposing of the estimated 

average element size on the whole vehicle geometry. The most common type of elements 
that is used for a CFD simulation is the triangle elements. Triangle cells are shaped of 3 
sides and is one of the simplest types of mesh. The faceted triangular surface resolution 
has to meet several requirements. For a typical FSAE car shape, pressure or form drag is 
dominant over skin friction, so the accuracy of the drag and lift predictions are largely 
determined by the accuracy of the predicted static pressure distribution on the body. This 
pressure distribution is strongly affected by the locations of flow separation and 
reattachment. Even though that the mesh must be very fine in the critical regions there is 
still the problem of knowing where these regions are and how fine the mesh should be. 
Along solid surfaces there will be a boundary layer and so there must be several points 
close to the surface in a direction normal to the surface. This allows the numerical solution 
to model the rapid variation in velocity through the boundary layer. Another example is 
where a surface has a large amount of curvature causing a rapid variation in pressure in 
the flow direction. However, large flow gradients also exist in areas of the flow away from 
the solid surfaces, like in the wake behind the car. Creating a suitable mesh in these areas 
is more difficult as the exact location of the critical areas is difficult to determine.  

 
 
 
 
 
 
 
 
 
 
 
 

The surface mesh of all models is created by using ANSA CFD algorithm which gives 
the user the possibility to identify locations where geometry simplifications have to be 
applied or a higher degree of mesh resolution is needed to capture the geometric details 
and accurately describe separation. There are also sharp angles between the wheels and 
the ground plane. This is a source for highly skewed cells. It is necessary to blunt this angle 
by introducing small faces connecting ground and tires and it can be made by using ANSA 
Fuse function. The surface meshing should result in a high quality, non-uniform triangular 
surface mesh that resolves all radii and geometrical details well. Therefore, it is important 
that the surface mesh resolves all relevant details of the geometry and satisfies the 
requirements of the physical models used in the simulation. To ensure high quality surface 
mesh for all the models, three quality criteria are used which are defined according to 
ANSYS-Fluent solver.  The first and most important quality criterion is the Skewness of 
elements. According to the definition of Skewness, a value of 0 indicates an equilateral cell 
(best) and a value of 1 indicates a completely degenerate(worst) cell. Degenerate cells are 
characterized by nodes that are nearly coplanar. Cells with a skewness value above 1 are 
invalid. Highly skewed cells should be avoided as they can decrease solution accuracy and 
even destabilize the solution. The next criterion that is used is Wrapping which is the 
amount by which an element deviates from being planar. Since three points define a plane, 
this check only applies to quads. The quad is divided into two trias along its diagonal and 

Figure 42: Triangle surface mesh element 
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the angle between the trias’ normal is measured. The maximum angle found between the 
planes is the warping of the element which for ANSYS-Fluent is 40°. Finally, the min and 
max angle criteria are used for shell elements, which is the maximum angle between 
adjacent edges and is computed by using corner node positions in 3-D space. The best 
possible triangle maximum angle, for an equilateral triangle, is 60° while Fluent sets the 
minimum angle limit at 30°. By using ANSA mesh quality improvement functions (Fix 
Quality, Reconstruct, Smooth) the surface mesh of all models results to compatible with all 
quality criteria. To illustrate the importance of mesh generation, it is worth mentioning 
that about 70% of the total time spent on a CFD case is devoted only to the creation of a 
high quality and accurate mesh. The quality of the mesh determines largely the accuracy 
and stability of the numerical computation.  

 

 

 

 

 

 

 

 

 

  
Figure 44: Skewness criterion for surface mesh elements 

Figure 43: Surface mesh quality criteria used in ANSA according to ANSYS-Fluent solver 

Figure 45: Surface Warping criterion definition 

Figure 46: min/max Angle criterion definition 
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3.1.3.2. Layers 

 
Properly resolving a boundary layer around any model requires a fine grid resolution 

close to the model surface. The actual cell density depends on several factors such as the 

boundary layer type (laminar or turbulent), the near wall function model used and, in case 

of turbulent flow, the implemented turbulence model. Compared with laminar flows, 

numerical results for turbulent flows are even more dependent on grid density due to the 

inherent strong interaction of mean flow and turbulence. First of all, the boundary layer 

mesh is extruded using the Advancing Front method, which extrude layers consisting of 

tetrahedral elements from the surface faces into the specified core zone. Therefore, the 

first layer height and the growth rate must be specified based on the estimated boundary 

thickness of each case. To accurately predict the estimated boundary thickness of each 

model, ANSA Y+ Calculator is used with a given velocity and the characteristic length of 

each geometry. This propagation is either determined by a specified number of element 

layers or by the constraint of a constant growth rate even in the adjacent element layers. 

The specified core zone is filled with uniform isotropic elements.  

The surface mesh must be as smooth as possible to allow prism layers to be extruded 
from the surface of the examined geometry. Wall Layers are mesh element layers along all 
fluid-wall and fluid-solid interfaces. It augments the original mesh to produce a smooth 
distribution along all walls, which is critical for accurate flow and boundary layer thickness 
prediction. Wall Layers ensures adequate mesh across small gaps, which can be very 
difficult manually. Wall Layers creates layers before the 3D volume mesh is constructed. 
Diagnostic algorithms detect and avoid element clashes in small gaps automatically. 
Element layer height across each surface can be absolute or have an aspect ratio, and is 
based on the smallest length scale on a surface. For all models 6 layers in total are used 
with the first three having an absolute height and the next three a growth ratio of 1.2. A 
gradual transition between surfaces ensures gradual variations in element height 
throughout the model.  

 
 

 

  

Figure 48: Types of boundary layers 

Figure 47: Methodology used for Layers creation in ANSA 
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3.1.3.3. Volume Mesh 
 

The final step of the pre-Processing is the generation of the volume mesh which is 

going to fill in the fluid domain with Tetra volume elements. Tetrahedral(Tetra) elements 

are solid elements which have been extracted from 2D tria elements. As there are many 

complex geometries it is needed to have some mesh regions where a local volumetric 

control is used to captures the flow gradient vortex and wake, some of these important 

regions are the wake behind tires the wake in the rear end of the car and the underbody. 

In order to control the volume mesh near the car, extra size boxes may be created to refine 

mesh in critical regions where stall or strong vortices are expected to occur. These boxes 

should extend about half a characteristic length in front, to the sides and to the top, and 

about a characteristic length in the wake. Next, the whole fluid domain is filled with Tetra 

elements using the Tetra Rapid algorithm. An initial tetrahedron encloses the whole flow 

domain, and is successively refined, up to the boundary of the core zone. Thus, the 

required refinement in certain regions close to the bounding surfaces is ensured while 

larger elements in the majority of the flow domain are maintained.  

Tetra Rapid is a volume meshing algorithm available in ANSA and was used for the 

creation of the volume mesh for all the models. The Tetra Rapid algorithm uses tetrahedral 

elements and pyramids if the surface mesh contains also quads. Most suited for 

geometries of thick Volumes or large domains with a significant variation in length along 

the surface mesh. This algorithm is specifically designed to handle large size CFD models 

and is bench marked to be 6 times faster than other algorithms (patented). The Maximum 

growth rate has to be defined, which is the approximate growth factor of volume element 

size from layer to layer while the generation moves towards the interior of the Volume. 

The values should range from 1.0 to 3.0 and for this project all models have the default 

value of 1.2. The standard method creates tetras from an enclosed volume of shell 

elements, plus several parameters.  This provides the user with a lot of control over the 

final tetra mesh.  The volume tetra mesher quickly and automatically creates a tetrahedral 

mesh on an enclosed volume of surfaces or solid geometry with only a few inputs.   Finally, 

the quick tetra mesher creates a tetra mesh that maintains user specified quality 

requirements, but may sacrifice details in the shape of the part to do so.   

 

 

 

 

 

 

 

 

The user can select the quality criterion definition with respect to which the generated 

tetra. Specifying high quality threshold values results in a better-quality mesh but requires 

more time for its generation. Five mesh quality criteria are used for the volume mesh. The 

Figure 49: Tetra volume mesh elements 
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Volume Aspect Ratio for tetrahedral elements is evaluated by finding the longest edge 

length and dividing it by the shortest height as measured from a node to its opposing face. 

Skewness is the difference between the shape of the cell and the shape of an equilateral 

cell of equivalent volume. This quality index is applied only to tetrahedral elements, all 

others are assigned value of zero. Volume Skewness is defined as 1-shape factor, so a value 

of 0 is perfect and a Skewness value of 1 is the worst possible value. The Warping criterion 

for volume elements is performed in the same way as for all faces of surface elements. 

Finally, the min/max angle of elements measures the deviation of an element from its ideal 

shape, such as a triangle’s deviation from equilateral. 

  

Figure 50: Volume mesh quality criteria used in 
ANSA, according to ANSYS-Fluent 

Figure 535: Aspect Ratio criterion for volume 
elements 

Figure 516: Skewness criterion for volume elements 

Figure 527: min/max element Angle criterion for volume elements 
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3.1.4. pre-Processing of the CFD Models for the Aerodynamic Package 

3.1.4.1. Nosecone: 

In order to properly setup a CFD model 

for the whole car, all parts of the aerodynamic 

package are tested one by one in order to 

optimize their features and assembly them to a 

final model. The first model is the nosecone of 

the car, which is the most front part of the car (if 

there is not a front wing) and due to the 

symmetry of the geometry, half of the nosecone 

is simulated. Assuming that the characteristic 

length of the nosecone is 1.2m, the Fluid Domain 

that is created for the CFD simulation is extended ten times the characteristic length (12m) 

to the rear, five times to the front (6m) and three times to the sides (3.6m). For the surface 

mesh of the model, ANSA CFD algorithm is used to create trias elements with a minimum 

target length of 50mm, a maximum target length of 150mm, a growth rate of 1.2, a 

distortion angle of 10° and a 30° angle limit for the sharp edges. Three rectangular size 

boxes are also used to refine mesh around the nosecone’s surface with a maximum length 

of 25mm, 15mm and 25mm each. Using these parameters and with respect to the quality 

criteria that were referred earlier the surface mesh has a total of 230,248 elements while 

all elements are compatible with skewness criterion. 

 

Figure 54: Nosecone’s CAD model 

Figure 56: Fluid Domain for the CFD simulation of the Nosecone 

Figure 55: Surface mesh used for Nosecone model 



 

45 
 

 After the successful generation of surface the mesh, layers are next to be created. 

To define the total height of layers it is first necessary to estimate the boundary layer’s 

thickness. Using ANSA Y+ Calculator for a characteristic length of 1.2m and a velocity of 

17m/s the estimated first layer height is about 6.3 × 10−4 m. So, a total number of six 

layers are created with the first three having an absolute height of 0.63mm and the next 

three a growth factor of 1.2. Finally, for the volume mesh tetras elements are created using 

ANSA Tetra Rapid algorithm with a growth rate of 1.2, while the maximum length for 

volume elements inside the three size boxes of is 35mm, 20mm and 35mm respectively 

resulting in a final model with 2,846,742 volume elements in total.  

  

Figure 58: Layers created for Nosecone model 

Figure 57: Volume mesh elements generated for Nosecone model 
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3.1.4.2. NACA Airfoils:  

 
In order to design the front and rear 

wing of the aerodynamic package it is first 

necessary to select the most efficient and 

suitable NACA airfoil for each wing and 

estimate their optimal dimensions, position 

and angle. For the setup of the CFD model 

though, the Fluid Domain that is created is 

extended ten times the characteristic length 

(6.7m) to the rear, five times to the front 

(3.35m) and three times to the sides (2m) assuming that the characteristic length of the 

whole model is about 0.67m. For the surface mesh of the model, ANSA CFD algorithm is 

used to create trias elements with a minimum target length of 50mm, a maximum target 

length of 100mm, a growth rate of 1.2, a distortion angle of 10° and a 30° angle limit for 

the sharp edges. Three rectangular size boxes are also used to refine mesh around the 

airfoils’ surfaces with a maximum length of 20mm, 10mm and 20mm each. Using these 

parameters and with respect to the quality criteria that were referred earlier the surface 

mesh has a total of 157,892 elements while all elements are compatible with skewness 

criterion. 

 

Figure 59: CAD model of NACA airfoils 

Figure 61: Fluid Domain used for NACA airfoils model 

Figure 60: Surface mesh created on NACA airfoils  
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  After the creation of the surface the mesh, layers are again next to be created. Using 

ANSA Y+ Calculator for a characteristic length of 0.67m and a velocity of 17m/s the 

estimated first layer height is about 5.9 × 10−4 m. So, a total number of seven layers are 

created with the first four having an absolute height of 0.59mm and the next three a 

growth factor of 1.2. Finally, for the volume mesh tetras elements are created using ANSA 

Tetra Rapid algorithm with a growth rate of 1.2, while the maximum length for volume 

elements inside the three size boxes of is 25mm, 15mm and 25mm respectively resulting 

in a model with 6,741,986 volume elements. 

  

Figure 62: Layers creation for NACA airfoils model 

Figure 63: Volume elements created for NACA Airfoils model 
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3.1.4.3. Front Wing: 

 
For the setup of the front wing’s CFD 

model, again half of the wing’s symmetric 

geometry is used while the Fluid Domain that 

is created and extended ten times the 

characteristic length (6.5m) to the rear, five 

times to the front (3.25m) and three times to 

the sides (2m) assuming that the 

characteristic length of the whole model is 

about 0.65m. For the surface mesh of the 

model, ANSA CFD algorithm is used to create trias elements with a minimum target length 

of 50mm, a maximum target length of 150mm, a growth rate of 1.2, a distortion angle of 

10° and a 30° angle limit for the sharp edges. Three rectangular size boxes are also used to 

refine mesh around the front wing’s surface with a maximum length of 25mm, 15mm and 

25mm each. Using these parameters and with respect to the quality criteria that were 

referred earlier the surface mesh has a total of 581,970 elements while all elements are 

compatible with skewness criterion. 

 

 

Figure 64: CAD model of the front wing 

Figure 65: Fluid Domain of front wing model 

Figure 66: Surface mesh used for the front wing model 
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  After the creation of the surface the mesh, layers are created. Using ANSA Y+ 

Calculator for a characteristic length of 0.65m and a velocity of 17m/s the estimated first 

layer height is about 5.9 × 10−4 m. So, a total number of six layers are created with the 

first four having an absolute height of 0.59mm and the next three a growth factor of 1.2. 

Finally, for the volume mesh tetras elements are created using ANSA Tetra Rapid algorithm 

with a growth rate of 1.2, while the maximum length for volume elements inside the three 

size boxes of is 35mm, 20mm and 35mm respectively resulting in a model with 7,947,126 

volume elements. 

  

Figure 68: Layers created for front wing model 

Figure 67: Volume mesh element of the front wing model 
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3.1.4.4. Rear Wing: 

 
For the setup of the rear wing’s CFD model, 

a Fluid Domain is created and extended ten times 

the characteristic length (8m) to the rear, five 

times to the front (4m) and three times to the 

sides (2.5m) assuming that the characteristic 

length of the whole model is about 0.8m. For the 

surface mesh of the model, ANSA CFD algorithm 

is used to create trias elements with a minimum 

target length of 50mm, a maximum target length 

of 150mm, a growth rate of 1.2, a distortion 

angle of 10° and a 30° angle limit for the sharp edges. Three rectangular size boxes are also 

used to refine mesh around the rear wing’s surface with a maximum length of 25mm, 

15mm and 25mm each. Using these parameters and with respect to the quality criteria 

that were referred earlier the surface mesh has a total of 188,954 elements while all 

elements are compatible with skewness criterion. 

 

Figure 69: CAD model of the Rear wing 

Figure 71: Fluid Domain created for Rear wing model 

Figure 70: Surface mesh created on the Rear wing’s surface 
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  After the creation of the surface the mesh, layers are created. Using ANSA Y+ 

Calculator for a characteristic length of 0.8m and a velocity of 17m/s the estimated first 

layer height is about 6 × 10−4 m. So, a total number of six layers are created with the first 

four having an absolute height of 0.6mm and the next three a growth factor of 1.2. Finally, 

for the volume mesh tetras elements are created using ANSA Tetra Rapid algorithm with a 

growth rate of 1.2, while the maximum length for volume elements inside the three size 

boxes of is 35mm, 20mm and 35mm respectively resulting in a model with 10,347,973 

volume elements.  

Figure 73: Layers of the Rear wing model 

Figure 72: Volume mesh created for the Rear wing model 
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3.1.4.5. Undertray & Sidepods: 

 

The flow that reaches the sidepods 

and the undertray beneath the vehicle is 

totally different than a freestream flow, 

because it is disturbed from the body and 

the wheels of the car in front. So, in order to 

simulate these devices accurately it is 

necessary to build first a whole car model 

and test the different aerodynamic devices 

that are mounted on it. For the setup of the 

CFD models for both devices, a Fluid Domain is created and extended ten times the 

characteristic length (27m) to the rear, five times to the front (14m) and three times to the 

sides (8m) assuming that the characteristic length of the whole model is about 2.7m. For 

the surface mesh of the model, ANSA CFD algorithm is used to create trias elements with 

a minimum target length of 50mm, a maximum target length of 250mm, a growth rate of 

1.2, a distortion angle of 10° and a 30° angle limit for the sharp edges. Three rectangular 

size boxes are used to refine mesh around the car’s surface with a maximum length of 

50mm, 30mm and 40mm each. For these models an extra of four smaller size boxes are 

used to refine mesh around the sidepods and undertray to better estimate stall and drag 

for these devices. These four size boxes have a maximum length of 20mm and 15mm each. 

Using these parameters and with respect to the quality criteria that were referred earlier 

the surface mesh has a total of 626,484 elements while all elements are compatible with 

skewness criterion. 

 

Figure 74: CAD of the model for Sidepods & Undertray 

Figure 76: Fluid Domain of the CFD model for Sidepods & Undertray 

Figure 75: Surface mesh and size boxes used for the Sidepods & 
Undertray models 
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 After the creation of the surface the mesh, layers are next to be created. Using ANSA 

Y+ Calculator for a characteristic length of 2.7m and a velocity of 17m/s the estimated first 

layer height is about 6.7 × 10−4 m. So, a total number of six layers are created with the 

first four having an absolute height of 0.67mm and the next three a growth factor of 1.2. 

Finally, for the volume mesh tetras elements are created using ANSA Tetra Rapid algorithm 

with a growth rate of 1.2, while the maximum length for volume elements inside the size 

boxes is 50mm, 30mm, 40mm and 20mm respectively resulting in a model with 8,291,113 

volume elements. 

 

Figure 77: Layers used to predict stall on the Sidepods' surface 

Figure 78: Layers created for the Undertray model to calculate stall accurately 



 

54 
 

  

Figure 79: Layers created both for Sidepods & Undertray car models 

Figure 80: Volume mesh elements created for the Sidepods & Undertray models 
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3.1.4.6. Full Aerodynamic Package: 

 

The final model to be tested is the car 

with all the aerodynamic devices mounted 

on it. This model is similar to that of the 

Sidepods & Undertray with only difference 

the front and rear wing that are also 

imported in the model, so many mesh 

parameters are in common. For the setup of 

the CFD model the Fluid Domain that is 

created, is extended ten times the 

characteristic length (31m) to the rear, five 

times to the front (16m) and three times to 

the sides (9m) assuming that the characteristic length of the whole model is about 3.1m. 

For the surface mesh of the model, ANSA CFD algorithm is used to create trias elements 

with a minimum target length of 50mm, a maximum target length of 250mm, a growth 

rate of 1.2, a distortion angle of 10° and a 30° angle limit for the sharp edges. Three 

rectangular size boxes are used to refine mesh around the car’s surface with a maximum 

length of 50mm, 30mm and 40mm each. For the final model two extra size boxes are used 

to refine mesh around the front and rear wing to better estimate stall and drag for these 

devices. These two size boxes have a maximum length of 20mm and 15mm each. Using 

these parameters and with respect to the quality criteria that were referred earlier the 

surface mesh has a total of 543,181 elements while all elements are compatible with 

skewness criterion. 

Figure 81: CAD model of the car with full 
aerodynamic package 

Figure 82: Fluid Domain of the final CFD model 

Figure 83: Surface mesh created for the final model 
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  After the creation of the surface the mesh, layers are next to be created. Using ANSA 

Y+ Calculator for a characteristic length of 3.1m and a velocity of 17m/s the estimated first 

layer height is about 6.9 × 10−4 m. So, a total number of six layers are created with the 

first four having an absolute height of 0.69mm and the next three a growth factor of 1.2. 

Finally, for the volume mesh tetras elements are created using ANSA Tetra Rapid algorithm 

with a growth rate of 1.2, while the maximum length for volume elements inside the size 

boxes is 50mm, 30mm, 40mm and 20mm respectively resulting in a model with 12,722,658 

volume elements. 

  

Figure 85: Layers created on front & rear wing of the final model 

Figure 84: Volume mesh elements created for the final CFD model 
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3.2. Solving Process 
 

After the pre-Processing is completed and all the models are successfully meshed 

the CFD cases are ready to be solved, using ANSYS-Fluent. At this section are defined the 

numerical methods and the parameters of the CFD solver like the solving algorithms, the 

turbulence models, the boundary conditions, the convergence criteria, the monitors of 

interest, the number of iterations and anything else needed to properly solve each case. 

The governing equations for the time dependent three-dimensional fluid flow and heat 

transfer around a body are the continuity equation, momentum equations and energy 

equation. The general approach in road vehicle external aerodynamics is to assume 

incompressible and isothermal flow, as Ma < 0.3, which is in the vicinity of 100m/s at sea-

level and it is unlikely that the flow will reach this velocity anywhere in the domain. Thus, 

the energy equation can be neglected and the momentum- and continuity equations can 

be written on incompressible form, neglecting the density terms. The same solver settings 

are used for all the models, so they are going to be described only once for all the cases. 

On the diagram bellow are shown the steps of the solving process as they are followed for 

all models, until the final results reach the desired accuracy.    

 

 
 

 

  

Figure 86: Solving Process Steps 
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3.2.1. General Settings 

The first step when starting the solver is to define if the solving process is going to 

be Serial or Parallel. Parallel solving with 4 Processes is used, while Double Precision is 

avoided for all the cases in order to reduce the CPU time needed. Note that the Dimension 

setting is already filled in 3D and cannot be changed, since ANSYS Fluent automatically sets 

it based on the mesh or geometry for the current system.  

 

 

 

 

 

 

 

 

 

 

 

 

After launching Fluent the General card is selected first in the navigation pane to 

perform the mesh-related activities and to choose a solver. All mesh parameters in ANSA 

are defined at mm, so when mesh files are imported from ANSA to ANSYS it necessary first 

to use a scale factor to convert the mesh length from mm to m, which is the units that 

ANSYS-Fluent operates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 87: ANSYS-Fluent Launcher card settings 

Figure 88: General Settings card 
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Fluent solvers are based on the finite volume method where the Fluid Domain is 
discretized into a finite set of control volumes or cells. The general transport equation (3.1) 
for mass, momentum, energy, etc. is applied to each cell and discretized and all equations 
are solved in or der to render the flow field.  

 

Each transport equation is discretized into algebraic form (3.2). For a cell, P: 
 

 

Discretized equations require information at both cell centers and faces. Field data 
(material properties, velocities, etc.) are stored at cell centers. Face values are interpolated 
in terms of local and adjacent cell values while the discretization accuracy depends on the 
“stencil” size. The discretized scalar transport equation contains the unknown scalar 
variable at the cell center as well as the unknown values in surrounding neighbor cells. This 
equation will, in general, be nonlinear with respect to these variables. The discretized 
equation (3.3) can be expressed simply as: 

 

where the subscript nb refers to neighbor cells, and αp and αnb are the linearized 

coefficients for φ and φnb. The above equation is written for every control volume in the 

domain resulting in equation sets which are solved iteratively. Coefficients αp and αnb are 

typically functions of solution variables (nonlinear and coupled), they are written to use 

values of solution variables from the previous iteration and they are updated with each 

outer iteration. 
The Pressure-Based solver is selected by default on the Solver Type field and is used 

for all models. In this case, the coefficients αp and αnb are scalar values. This type of solver 

employs an algorithm which belongs to a general class of methods called the projection 

method. In the projection method, wherein the constraint of mass conservation 

(continuity) of the velocity field is achieved by solving a pressure (or pressure correction) 

equation. The pressure equation is derived from the continuity and the momentum 

equations in such a way that the velocity field, corrected by the pressure, satisfies the 

continuity. Since the governing equations are nonlinear and coupled to one another, the 

solution process involves iterations wherein the entire set of governing equations is solved 

repeatedly until the solution converges. The Pressure-Based solver takes momentum and 

pressure as the primary variables while pressure-velocity coupling algorithms are derived 

by reformatting the continuity equation. The Pressure-Based solver is applicable for a wide 

range of flow regimes from low speed incompressible flow to high-speed compressible 

flow and usually requires less memory (storage). It allows also flexibility in the solution 

procedure while the Pressure-Based coupled solver (PBCS) that is used, is applicable for 

most single-phase flows. Finally, all CFD simulations are done as Steady cases, at one 

moment without any timestep being used on the Time field.  

(3.1) 

(3.2) 

(3.3) 
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3.2.2. Viscus Models 

Since the airflow around a FSAE race car is turbulent, a model needs to be selected 

for simulation of the turbulent flow. There appears to be four major turbulence models 

that are used in the automotive industries: k-ε, k-ω, Lattice-Boltzmann and Large Eddy 

Simulation (LES). Of these models the k-ε and k-ω are most widely used with the k-ε said 

to be the most stable. The fidelity of CFD predictions for turbulent flow is highly dependent 

upon the quality of the turbulence modeling. This is even more important for the flow 

around ground vehicles, whose salient flow features include three-dimensional boundary 

layers with strong streamline curvature, separation and strong vortices. These features 

require turbulence models that can properly account for Non-Equilibrium effects and 

anisotropy. 

On the viscus model card that appears k-epsilon model is selected, which specifies 
turbulent flow to be calculated using one of three k-epsilon models bellow. For all the 
cases, Realizable k-epsilon model is used. Industrial applications of this model show that it 
is possible to achieve good results in terms of integral values (e.g., drag coefficient), which 
are within 2-5%. Due to its implementation, it is very stable and fast converging. Therefore, 
it is perfectly suited for automated calculation processes, allowing a huge number of 
calculations in a relatively small time frame. The Realizable k-ε model is a relatively recent 
development and differs from the standard k-ε model in two important ways. The 
realizable k-ε model contains a new formulation for the turbulent viscosity and a new 
transport equation for the dissipation rate, ε has been derived from an exact equation for 
the transport of the mean-square vorticity fluctuation. The term "Realizable'' means that 
the model satisfies certain mathematical constraints on the Reynolds stresses, consistent 
with the physics of turbulent flows. Neither the standard k-ε model nor the RNG k-ε model 
is realizable.  

 

 

 

 

 

 

 

 

 

 

 

 

An immediate benefit of the realizable k-ε model is that it more accurately predicts 

the spreading rate of both planar and round jets. It is also likely to provide superior 

performance for flows involving rotation, boundary layers under strong adverse pressure 

Figure 89: Viscous Models setting card 
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gradients, separation, and recirculation. Both the Realizable and RNG k-ε models have 

shown substantial improvements over the standard k-ε model where the flow features 

include strong streamline curvature, vortices, and rotation. Since the model is still 

relatively new, it is not clear in exactly which instances the Realizable k-ε model 

consistently outperforms the RNG model. However, initial studies have shown that the 

realizable model provides the best performance of all the k-ε model versions for several 

validations of separated flows and flows with complex secondary flow features. One of the 

weaknesses of the Standard k-ε model or other traditional k-ε models lies with the 

modeled equation for the dissipation rate (ε) limitation of the Realizable k-ε model is that 

it produces non-physical turbulent viscosities in situations when the computational 

domain contains both rotating and stationary fluid zone. This is due to the fact that the 

Realizable k-ε model includes the effects of mean rotation in the definition of the turbulent 

viscosity. This extra rotation effect has been tested on single rotating reference frame 

systems and showed superior behavior over the Standard k-ε model. However, due to the 

nature of this modification, its application to multiple reference frame systems should be 

taken with some caution.  

To understand the mathematics behind the Realizable k-epsilon model, consider 
combining the Boussinesq relationship (3.4) and the Eddy Viscosity (μt) definition (3.5) to 
obtain the following expression (3.6) for the normal Reynolds Stress in an incompressible 
strained mean flow: 

 

 

 

Using 3.5 equation for 𝑣𝑡 =
𝜇𝑡

𝜌
, one obtains the result that the normal stress 𝑢2̅̅ ̅, 

which by definition is a positive quantity, becomes negative, that is, “non-Realizable”, 
when the strain is large enough to satisfy 3.7 equation.  

 

The modeled transport equations for k and ε in the realizable k-ε model are:  

 

 
 

 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Where: 

 

The model constants C2, σk and σε have been established to ensure that the model 

performs well for certain canonical flows. The model constants are: 

 

The next field to be filled is the Near-Wall Treatment, which   specifies the near-wall 
treatment to be used for modeling turbulence. Non-Equilibrium Wall Functions is used for 
all the CFD cases. The key elements in the Non-Equilibrium Wall Functions are the Launder 
and Spalding’s log-law for mean velocity is sensitized to pressure-gradient effects and the 
two-layer-based concept which is adopted to compute the budget of turbulence kinetic 

energy (𝐺𝑘
̅̅̅̅ ,�̅� ) in the wall-neighboring cells. The log-law for mean velocity sensitized to the 

pressure gradients is: 

 

 

The non-equilibrium wall function employs the two-layer concept in computing the 

budget of turbulence kinetic energy at the wall-adjacent cells, which is needed to solve the 

𝑘 equation at the wall-neighboring cells. The wall-neighboring cells are assumed to consist 

of a viscous sublayer and a fully turbulent layer. The following profile assumptions for 

turbulence quantities are made: 

 

Using these profiles, the cell-averaged production of 𝑘, 𝐺𝑘
̅̅̅̅  , and the cell-averaged 

dissipation rate 𝜀  ̅, can be computed from the volume average of and of the wall-adjacent 
cells. For quadrilateral and hexahedral cells for which the volume average can be 
approximated with a depth-average: 

 
and 

 
 

 
 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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3.2.3. Boundary Conditions 

Boundary conditions specify the flow and thermal variables on the boundaries of τηε 
physical model. They are, therefore, a critical component of the CFD simulations and it is 
important that they are specified appropriately. The specification of boundary conditions 
should be geared as close as possible to the measurement conditions that would have 
been done during a real wind tunnel test. In the majority of cases, flow velocity and 
turbulent intensity of the wind tunnel are known.  

 

 
 

     Figure 90: Boundary Conditions settings card 

At the wind tunnel inlet, velocity inlet boundary conditions are used to define the 

free stream flow velocity in the computational wind tunnel. Therefore, a velocity inlet 

boundary condition is used to model the incoming flow. Velocity inlet boundary conditions 

are used to define the flow velocity, along with all relevant scalar properties of the flow, 

at flow inlets. The total (or stagnation) properties of the flow are not fixed, so they will rise 

to whatever value is necessary to provide the prescribed velocity distribution. This 

boundary condition is intended for incompressible flows, and its use in compressible flows 

will lead to a nonphysical result because it allows stagnation conditions to float to any 

level. The velocity inlet too close to a solid obstruction, since this could cause the inflow 

stagnation properties to become highly non-uniform. The velocity inlet boundary 

condition defines flow entering the physical domain of the model, Fluent uses both the 

velocity components and the scalar quantities that are defined as boundary conditions to 

compute the inlet mass flow rate, momentum fluxes, and fluxes of energy and chemical 

species. The mass flow rate entering a fluid cell adjacent to a velocity inlet boundary is 

computed as: 
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For all the CFD cases the Components velocity specification method is used and the 
inlet velocity is depending on the speed that each model of interest has to be tested with 
the CFD simulation. The inlet velocity values vary from 11m/s to 34m/s which is the final 
speed of the car. Usually the Turbulence Intensity ranges from 1-5% while for external flow 
problems the Turbulent Viscosity Ratio is between 1 - 10. 

 

        Figure 91: Definition of Velocity Inlet boundary condition 

Pressure outlet boundary conditions are used to specify the static pressure at the 
computational wind tunnel outlet boundary. Pressure outlet boundary conditions require 
the specification of a static (gauge) pressure at the outlet boundary. The value of the 
specified static pressure is used only while the flow is subsonic. Should the flow become 
locally supersonic, the specified pressure will no longer be used and pressure will be 
extrapolated from the flow in the interior. All other flow quantities are extrapolated from 
the interior. To set the static pressure at the pressure outlet boundary, the appropriate 
value for Gauge Pressure in the Pressure Outlet panel is needed. This value will be used for 
subsonic flow only and is relative to the operating pressure set in the Operating Conditions 
panel.  

 

Figure 92: Definition of Pressure Outlet boundary condition 

https://www.sharcnet.ca/Software/Fluent6/html/ug/node1353.htm#Operating_Conditions
https://www.sharcnet.ca/Software/Fluent6/html/ug/node1353.htm#Operating_Conditions
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 For all models that are tested, the reference geometry is defined with a stationary 
wall boundary condition. Wall boundary conditions are used to bound fluid and solid 
regions. In viscous flows, the no-slip boundary condition is enforced at walls by default, 
but it can be specified aa tangential velocity component in terms of the translational or 
rotational motion of the wall boundary, or as "slip'' wall by specifying shear. The stationary 
boundary condition specifies a fixed wall, whereas the moving boundary condition can be 
used to specify the translational or rotational velocity of the wall, or the velocity 
components. In viscous flows, the no-slip boundary condition is enforced at walls by 
default and is used in all CFD cases. 

 

 
 

          Figure 93: Definition of Stationary wall boundary condition 

Effects like rotating wheels and moving road where is needed have to be modeled 
using the Rotating/Moving Wall Boundary Conditions respectively. This adds tangential 
velocity to the selected walls. Wall motion conditions are entered in the Momentum 
section of the Wall panel. The Wall panel will expand, to show the wall velocity conditions. 
Note that the moving wall condition cannot be used to model problems where the wall 
has a motion normal to itself. Fluent will neglect any normal component of wall motion 
that is defined either with Absolute or Relative to Adjacent Cell Zone method which is used 
by default. For the CFD cases were the road is included in the simulation, it is defined with 
a linear translational motion and the wall's Speed and Direction has to be specified. To 
define non-linear translational motion, the Components option can be used. For problems 
including the whole vehicle with the wheels, the surfaces of the wheels include rotational 
wall motion and have to be defined as Rotational walls with a specific rotating Speed about 
a specified rotation axis which. This axis is independent of the axis of rotation used by the 
adjacent cell zone, and independent of any other wall rotation axis. For 3D problems, the 
axis of rotation is the vector passing through the specified Rotation-Axis Origin and parallel 
to the vector from (0,0,0) to the ( X,Y,Z) point specified under Rotation-Axis Direction. Note 
that the modeling of tangential rotational motion will be correct only if the wall bounds a 
surface of revolution about the prescribed axis of rotation (e.g., a circle or cylinder). Note 
also that rotational motion can be specified for a wall in a stationary reference frame. The 
no-slip condition is the default, and it indicates that the fluid sticks to the wall and moves 
with the same velocity as the wall, if it is moving.  

https://www.sharcnet.ca/Software/Fluent6/html/ug/node1354.htm#Wall
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Figure 94: Definition of Moving wall boundary condition for road  

Symmetry Boundary Condition is defined for the rest walls of the domain (wind 
tunnel’s top and sides). Symmetry boundary condition is used for all cases where the half 
geometry is used and reflects an equally symmetric flow solution. As such, symmetry 
boundary conditions can reduce computational costs significantly a and do not require 
specification of any flow variable. Fluent assumes a zero flux of all quantities across a 
symmetry boundary. There is no convective flux across a symmetry plane: the normal 
velocity component at the symmetry plane is thus zero. There is no diffusion flux across a 
symmetry plane: the normal gradients of all flow variables are thus zero at the symmetry 
plane. The symmetry boundary condition can therefore be summarized as a zero-normal 
velocity and a zero normal gradients of all variables at a symmetry plane. As stated above, 
these conditions determine a zero flux across the symmetry plane, which is required by 
the definition of symmetry. Since the shear stress is zero at a symmetry boundary, it can 
also be interpreted as a "slip'' wall when used in viscous flow calculations.  

 

Figure 95: Symmetry boundary condition default card 
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3.2.4. Reference Values 

At this card are defined the physical parameters of the problem that is examined 

each time. These Reference Values are used in the computation of derived physical 

quantities and non-dimensional coefficients, like the Drag and Lift coefficients. The first 

parameter that is defined for all cases is the frontal Area of each geometry, which can be 

easily calculated using the Projected Surface Area tool. Next the characteristic length of 

each model is defined on the Length field, as it was calculated for ANSA models, while on 

the Velocity field is defined the inlet velocity of each CFD case. All the other fields use their 

default values or they just change according to the rest reference values. Force coefficients 

use the reference area, density, and velocity. In addition, the pressure force calculation uses the 

reference pressure. Moment coefficients use the reference length, area, density and velocity. 

Reynolds number uses the reference length, density, and viscosity. Pressure and total pressure 

coefficients use the reference pressure, density, and velocity, while Skin friction coefficient uses the 

reference density and velocity. These reference values are used only for postprocessing.  

 

 

Figure 96: Reference Values settings card 

 

 

Figure 97: Projected Surface Areas calculator 
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3.2.5. Solution Methods 

Scheme provides a drop-down list of the available pressure-velocity coupling 
schemes while as previously mentioned, the Pressure-Based solver allows to solve flow 
problems in either a Segregated or Coupled manner. The Coupled algorithm is selected 
because it obtains a robust and efficient single phase implementation for steady-state 
flows, with superior performance compared to the Segregated solution schemes.  

 

Figure 98: Solution Methods settings card 

The Pressure-Based Segregated algorithm solves the momentum equation and 
pressure correction equations separately, but this semi-implicit solution method results in 
slow convergence. The Coupled algorithm on the other hand, solves the momentum and 
pressure-based continuity equations together. However, the memory requirement 
increases by 1.5 - 2 times that of the segregated algorithm since the discrete system of all 
momentum and pressure-based continuity equations must be stored in the memory when 
solving for the velocity and pressure fields (rather than just a single equation, as is the case 
with the segregated algorithm). The full implicit coupling is achieved through an implicit 
discretization of pressure gradient terms in the momentum equations, and an implicit 
discretization of the face mass flux, including the Rhie-Chow pressure dissipation terms.  

In the momentum equations, the pressure gradient for component k is of the form: 

 

Where 𝑎𝑢𝑘𝑝 is the coefficient derived from the Gauss divergence theorem and 

coefficients of the pressure interpolation schemes. Finally, for any 𝑖𝑡ℎ cell, the discretized 

form of the momentum equation for component 𝑢𝑘 is defined as: 

(3.17) 
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In the continuity equation, the balance of fluxes is replaced using the flux expression, 
resulting in the discretized form: 

 

As a result, the overall system of equations (3.18) and (3.19), after being transformed 

to the δ-form, is presented as: 

 

where the influence of a cell 𝑖 on a cell 𝑗 has the form: 

 

 

 

In some cases, using porous jump boundary conditions, the Coupled scheme may 
suffer from convergence instability that do not respond to changes in the coupled solver 
settings. This behavior depends on the specific flow configuration and porous jump 
boundary condition values and it is recommended to change the pressure-velocity 
coupling to one of the segregated schemes. For transient flows, using the Coupled 
algorithm is necessary when the quality of the mesh is poor, or if large time steps are used.  

 

 

 

 

 

 

 

 

 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Figure 99: Pressure-Based Coupled algorithm diagram 
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Spatial Discretization   contains settings that control the spatial discretization of the 
convection terms in the solution equations. Gradient contains a drop-down list of the 
options for setting the method of computing the gradient. Gradients are needed not only 
for constructing values of a scalar at the cell faces, but also for computing secondary 

diffusion terms and velocity derivatives. The gradient 𝛻𝜑 of a given variable 𝜑 is used to 
discretize the convection and diffusion terms in the flow conservation equations. The Least 
Squares Cell-Based gradient method t is selected and used for all the CFD models. In this 
method, the solution is assumed to vary linearly. In Cell Centroid Evaluation, the change in 

cell values between cell 𝑐0 and 𝑐𝑖 along the vector 𝑟𝑖 from the centroid of cell 𝑐0 to cell 𝑐𝑖, 
can be expressed as:  

 

If similar equations are used for each cell surrounding the cell 𝑐0 and assuming that 

𝐽 is the coefficient matrix that is purely a function of geometry, the following system is 
written in a compact form as:  

 

The objective here is to determine the cell gradient (𝛻𝜑0) by solving the 
minimization problem for the system of the non-square coefficient matrix in a least-
squares sense. The above linear-system of equation is over-determined and can be solved 
by decomposing the coefficient matrix using the Gram-Schmidt process. This 

decomposition yields a matrix of weights (𝑊𝑖0
𝑥, 𝑊𝑖0

𝑦
,𝑊𝑖0

𝑧) for each cell. Thus, for our cell-

centered scheme this means that the three components of the weights () are produced for 

each of the faces of cell 𝑐0. Therefore, the gradient at the cell center can then be computed 

by multiplying the weight factors by the difference vector ∆𝜑 = (𝜑𝑐1
− 𝜑𝑐0

) as: 

 

On irregular (skewed and distorted) unstructured meshes, the accuracy of the least-
squares gradient method is comparable to that of the node-based gradient. However, it is 
less expensive to compute the least-squares gradient than the node-based gradient. 
Therefore, it has been selected as the default gradient method in the ANSYS-Fluent solver. 
The next field is Pressure (for the pressure-based solver only) which contains a drop-down 
list of the discretization schemes available for the pressure equation where Second Order 
is used by default. Finally, Momentum, Turbulent Kinetic Energy and Turbulent Dissipation 
Rate are the names of the other convection-diffusion equations being solved and in the 
drop-down lists that appears for these fields, the Second Order Upwind discretization 
scheme is used in all cases. 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/flu_th/flu_th_sec_eval_derivatives.html#g_flu_th_solver_lsq_cell
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3.2.6. Solution Controls 

At this card are defined solution parameters like the Courant Number and the 

Relaxation Factors that are used. When the Pressure-Based solver and the Coupled 

pressure-velocity scheme is used for time-independent flows, the Courant Number is used 

to stabilize the convergence behavior and a value of 50 is settled for all the cases. The 

under-relaxation of equations, also known as implicit relaxation, is used in the pressure-

based solver to stabilize the convergence behavior of the outer nonlinear iterations by 

introducing selective amounts of 𝜑 in the system of discretized equations. This is 

equivalent to the location-specific time step: 

 

The Courant Number (CFL) in terms of 𝑎 on the above equation, can be written as:  

 

Explicit Relaxation Factors for the Coupled scheme defines the explicit relaxation of 

variables between sub-iterations for Momentum and Pressure. Both values of Momentum 

and Pressure are settled as 0.25. The Under-Relaxation Factors field contains the under-

relaxation factors for all equations that are being solved with the Pressure-Based solver. 

The Pressure-Based solver uses under-relaxation of equations to control the update of 

computed variables at each iteration. This means that all equations solved using the 

Pressure-Based solver, will have under-relaxation factors associated with them. Under-

relaxation factor 𝑎, is included to stabilize the iterative process for the Pressure-Based 

solver. Τhe default under-relaxation parameters for all variables are set to values that are 

near optimal for the largest possible number of cases. These values are suitable for many 

problems, but for some particularly nonlinear problems it is prudent to reduce the under-

relaxation factors initially. Typically, an increase in the under-relaxation factors brings 

about a slight increase in the residuals, but these increases usually disappear as the 

solution progresses. If the residuals continue to increase after the first 4 or 5 iterations, 

the under-relaxation factors should be reduced.   

Figure 100: Solution Controls settings card 

(3.27) 

(3.28) 
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3.2.7. Monitors 

At the end of each solver iteration, the residual sum for each of the conserved 
variables is computed and stored, thus recording the convergence history. By default, 
residual values for all relevant variables are printed in the text (console) window after each 
iteration. Residual plots show when the residual values have reached the specified 
tolerance. On a computer with infinite precision, these residuals will go to zero as the 
solution converges. On an actual computer, the residuals decay to some small value 
("round-off'') and then stop changing ("level out''). For single-precision computations (the 
default for workstations and most computers), residuals can drop as many as six orders of 
magnitude before hitting round-off. Double-precision residuals can drop up to twelve 
orders of magnitude. There are no universal metrics for judging convergence. Residual 
definitions that are useful for one class of problem are sometimes misleading for other 
classes of problems. For most problems, the default convergence criterion in ANSYS-Fluent 
is sufficient. This criterion requires that the scaled residuals must decrease to 10−3 for all 
equations except the energy and P-1 equations, for which the criterion is 10−6.  

 

 

 

 

 

 

 

Therefore, to judge convergence it is not only enough to examine residual levels, but 
also to monitor relevant integrated quantities such as the Drag and Lift coefficients and 
check if they reach steady values. So, for all cases two extra monitors are created for Drag 
and Lift coefficient respectively and are also plotted to have a clear view of their 
convergence behavior. 

 

  

Figure 101: Residual Monitors settings for convergence criteria 

Figure 102: Drag and Lift monitors 
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3.2.8. Solution Initialization 

Before starting any CFD simulation, the Fluent solver needs an initial "guess'' for the 

solution flow field. In many cases, you must take extra care to provide an initial solution 

that will allow the desired final solution to be attained. The Solution Initialization task page 

defineσ values for flow variables and initialize the flow field to these values. The default 

initialization method for single phase steady-state flows is the Hybrid Initialization method 

and is used for all the CFD cases. 

 

 

 

 

 

 

 

 

 

 Hybrid initialization is a collection of recipes and boundary interpolation methods. 

It solves Laplace's equation to determine the velocity and pressure fields. All other 

variables, such as turbulence, species fractions, volume fractions, and so on, will be 

automatically patched based on domain averaged values or a particular interpolation 

recipe. These recipes are shown in detail below: 

• Velocity Field: Laplace's equation is solved with appropriate boundary conditions 

to produce the velocity field in the domain ∇2𝜑, where 𝜑 is the velocity potential. 

The velocity components are given by the gradient potential  �⃗� = ∇𝜑.  

The Velocity potential is expressed as follows for the various boundary conditions: 

 

- Wall Boundaries: The velocity normal to the wall is zero. 

 
 

- Inlet Boundaries: The velocity normal to the inlet boundaries are computed from 

the user-specified boundary values. 

 
 

- Far Field Boundaries: At the far-field boundaries the velocity normal to the 

boundaries is computed from the user-specified free stream conditions. Far away 

from the body the flow approaches the free stream conditions: 

Figure 103: Solution Initialization card 
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- Outlet Boundaries: They are specified as zero potential  𝜑 = 0 

 

• Pressure Field: An additional Laplace equation is solved with the appropriate 

boundary condition to produce the smooth pressure field in the domain, only if the 

pressure information is available in at least one inlet and one outlet in the domain. 

Otherwise, the pressure field will be initialized with the averaged constant value 

from all the boundaries  ∇2𝑃 = 0, where 𝑃 is expressed as follows for the various 

boundary conditions: 

- Pressure inlet boundaries: 𝑃 is computed as 1% less than the specified Total 

Pressure. 

 

- Pressure outlet boundaries: 𝑃 is computed as 1% more than the specified Gauge 

Pressure at this boundary. 

 

- Velocity/Mass flow inlet boundaries: 𝑃 uses the value of the specified 

Supersonic/Initial Gauge Pressure. 

 

- Wall Boundaries: the normal gradient of 𝑃 is set to zero. 

 
 

• Turbulent Parameters: By default, turbulent parameters are initialized with 

constant values (domain averaged). 

 

• Species Fractions: By default, secondary species mass/mole fractions are initialized 

with a 0.0 value. 
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4. CFD SIMULATIONS RESULTS ANALYSIS 

4.1. Nosecone 
 

The first part of the aerodynamic package to be tested is the nosecone of the car. Three 

main types of nosecones are designed and tested, that are also the most common in use. One 

with horizontal edge, one with vertical and one with an angled edge. Three extra variant 

models are created for each one of these types, having a different design of their top surface 

like peaked lines, side channels and a lifted cockpit deflector which are the most common 

aerodynamic design technics used in hoods of different race cars. The main idea behind the 

design of the nosecone is the minimization of the drag, as this device is not used to produce 

downforce. However, the aim is to avoid the generation of lift and achieve at least neutral 

situation. Numerous CFD simulations are done for all these 13 models at the speed of 60km/h, 

which is the average speed of a FSAE car, in order to calculate their aerodynamic coefficients 

(CL & CD) and compare them until the most efficient type is selected. 

4.1.1. Horizontal Nosecone 

 

 The first type of nosecone that is tested is the Horizontal edge nosecone. The 

purpose of this design is to use the round horizontal edge in order to “feed” the undertray 

of the car with even more air as it creates a larger opening on the underside. However, 

that design leads to a sharp form of the side edges which could easily affect the air directing 

to sidepods. Also, the pressure being created on the stagnation point is quite low and that 

can be also seen on the Drag coefficient value (0.282) on the table below, while the lift 

coefficient is at -0.196 which results in an aerodynamic efficiency of 0.71. 

  

   

Characteristics 

Lift Coefficient (CL) -0.196 

Drag Coefficient (CD) 0.282 

Efficiency (CL / CD) 0.71 

Figure 104: Horizontal nosecone CAD design 
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Figure 105: Pressure distribution and streamlines around the horizontal nosecone 

 

 

 

 

 

 

 

 

 

 

4.1.2. Vertical Nosecone 

The next design of nosecone is the Vertical edge nosecone. The purpose of this 

design is to use the round vertical edge in order to “split” the incoming air to the sides in 

order to direct it to the sidepods. However, that design leads again to a sharp form of the 

upper and underside edges of the nosecone, which affect the undertray and can easily lead 

to a flow separation, which begins from the leading edge of the nosecone as shown in the 

Figure below. The pressure being created on the stagnation point is significantly higher on 

that type and that can be also seen on the increase of the Drag coefficient (0.289) on the 

table below, while the lift coefficient is also increased at -0.21 which results in an 

aerodynamic efficiency of 0.73. 

 

 

  

Characteristics 

Lift Coefficient (CL) -0.21 

Drag Coefficient (CD) 0.289 

Efficiency (CL / CD) 0.73 

Figure 106: Vertical nosecone CAD designs 
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Figure 107: Pressure distribution and streamlines around the vertical nosecone 

 

 

 

 

 

 

 

 

 

 

4.1.3. Angled Nosecone 

The last design of nosecone is the one with the Vertical edge. The purpose of this 

design is to use again a vertical edge in order to “split” the incoming air to the sides for the 

sidepods and use the angle of that edge in order to reduce the pressure of the stagnation 

point and give more space to the underside of the nosecone to “feed” the undertray. The 

pressure being created on the stagnation point is significantly lower comparing to the 

previous type. The Drag coefficient is 0.292 as shown on the table below, while the lift 

coefficient is at -0.202 which results in an aerodynamic efficiency of 0.69. Although the 

drag coefficient is slightly higher for that type of nosecone, the models that occurred with 

the combination of peaked lines and cockpit deflector on the top surface, were more 

efficient comparing to the rest models. 

 

 

 

 

 

 

 

 

 

  

Characteristics 

Lift Coefficient (CL) -0.202 

Drag Coefficient (CD) 0.292 

Efficiency (CL / CD) 0.69 

Figure 108: Angled nosecone CAD design 
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Figure 109: Pressure distribution and streamlines around the vertical nosecone 

 

 

 

 

 

 

 

 

 

 

 

4.1.4. Final Nosecone 

 
The final design of nosecone that was selected is the one with the Vertical edge and 

a combination of peak lines and a cockpit deflector. These extra aids o the top surface of 

the nosecone seem to improve significantly its efficiency. The pressure being created on 

the stagnation point is even lower comparing to the simple angled model. The Drag 

coefficient is slightly increased at 0.305 as shown on the table below, but the lift coefficient 

is now at -0.238 which results in the best aerodynamic efficiency of 0.78.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics 

Lift Coefficient (CL) -0.238 

Drag Coefficient (CD) 0.305 

Efficiency (CL / CD) 0.78 

Figure 110: Final nosecone CAD designs 
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Figure 111: Pressure distribution and streamlines around the final nosecone 

Figure 112: CFD Results for each combination of Nosecone types 

 

 

 

 

 

 

 

 

 

 

4.1.5. Results Comparison 

On the table below are shown in summary the results that occurred from the CFD 

simulations that were done for all the combinations of nosecone models. For all cases 

Drag, Lift coefficients, downforce and drag are calculated, while the most crucial factor is 

the ratio CL / CD which is known as the aerodynamic efficiency. As it is shown on the table, 

the use of peaked lines increases slightly the drag coefficient and affect the lift coefficient 

more. The side channels on the other hand can easily increase lift coefficient but it also has 

a big impact on the increase of drag coefficient. Furthermore, the cockpit deflector seems 

to increase a lot the lift coefficient for the vertical and angled models and if combined with 

peaked lines gives the best results. Although the aim of the nosecone’s design is the 

minimization of drag the final model that is selected has a high drag coefficient but 

considering that it has also one of the highest lift coefficients its aerodynamic efficiency is 

satisfactory. 
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4.2. Undertray 
 

The next step after the selection of the final nosecone is the creation of a CFD model 

with the whole car and wheels, in order to simulate and test properly the different types 

of undertrays that were designed. Five main types of undertray are designed and simulated 

at the speed of 60km/h while the ride height from the ground is 4cm for all cases, in order 

to select the most efficient device at these conditions.  The aim of all designs is to achieve 

the highest amount of downforce, while keeping drag as low as possible and avoid stall at 

the outlet od the diffusers. The weight of each undertray is also taken under consideration 

in order to estimate the aerodynamic efficiency of each type comparing to its mass.  

4.2.1. Single Diffuser (Undertray_1) 

The first undertray model has a large single diffuser at the rear of the undertray. Its 

dimensions are restricted from the rules which set a standard safe distance from the 

wheels. The maximum available space for the angle of the diffuser at the rear side of the 

chassis is also restricted from the bulk-head, so the maximum angle is settled at 8°. Seven 

vertical flaps are placed along the exit of the diffuser to keep the flow attached and avoid 

stall, while there is not any ground effect device used at the underside. Along the sides of 

the undertray side-skirts are placed to prevent air from escaping and as it can be seen from 

the floor plan there is a narrowing of the undertray which aims to guide all the incoming 

air directly to the diffuser. However, this type of undertray produce only a total downforce 

of 28.7 N, but it has the least amount of drag (61.87 Ν) due to the small angle of the diffuser 

and weighs about 6.15kg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen on the Figure bellow, the flow stays attached along the undertray’s 

surface. Although, the narrowing of the undertray seems to work and guide the air directly 

to the diffuser the side-skirts on the other hand cannot prevent much of the incoming air 

Characteristics 

Number of Diffusers 1 

Diffuser Angle 8˚ 

Ground Effect Device ✖ 

Downforce 28.7 N 

Drag 61.87 N 

Weight 6.15 Kg 

Figure 113: Single diffuser undertray CAD designs 
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Figure 114: Streamlines and pressure distribution for the single diffuser undertray 

from escaping due to their low height which is restricted from the FSAE rules. Finally, the 

pressure distribution is low (green regions) at the entrance of the diffuser an even lower 

just at the outlet of the diffuser where flow seems to accelerate more (red streamlines).  

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Separated Rear Diffusers with Splitter (Undertray_2) 

The second type of undertray has the same designing with the previous one until the 

inlet of the diffuser which is now different. The restriction of the diffuser’s angle from the 

bulk-head of the chassis has a direct impact on the downforce that is generated, as it is 

shown on the previous type. An easy solution to increase the diffusers angle is to design 

two separated diffusers that are extending at the rear of the car, within the FSAE 

regulations. These two extended diffusers have an angle of 10.5° each and two long flaps 

are also placed to avoid flow separation due to the higher angle. This type of undertray has 

also a triangular bump at the center of the undertray which works as a splitter in order to 

separate the oncoming air and send it directly in to the two rear extended diffusers. This 

bump works also as a ground effect device as it is the lowest surface of the undertray and 

closer to the ground than any other part and interact with the moving ground. Finally, a 

curvature fillet has been placed at the exit edge of that bump in order to take advantage 

of the outcoming air and work as a small diffuser. This undertray produce a total downforce 

of 31.4 N and its drag is increased up to 71.58 Ν, while the addition of the new diffuser 

resulted in a weight of 9.81kg which is inacceptable comparing with the downforce that is 

being generated. 

 

 

 

 

 

Figure 115: Separated rear diffuser CAD designs 
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Figure 116:  Streamlines and pressure distribution for the separated diffusers undertray 

 
 

As it can be seen on the Figure bellow, the flow stays again attached along the 

undertray’s surface.  The bump on middle of the undertray seems to successfully split the 

air and send it to the diffusers, however it is not so effective as a ground effect device, as 

the pressure on its surface is not as low as it was expected. The narrowing of the undertray 

is the same as on the previous type, however due the separated oncoming air from the 

splitter, it seems that there is also an amount of air escaping from the sides. Finally, from 

the pressure distribution, it is shown that the center of pressure has been transferred to 

the longer diffusers at the rear and is again low at both the entrance and the outlet of the 

undertray. 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. Separate Rear Diffusers (Undertray_3) 

The third type of undertray has again the same designing with the previous two until 

the inlet of the diffuser and with the triangular bump splitter having been replaced by a 

small diffuser just under the bulk-head with an angle of 8°, in order to take advantage of 

the oncoming air in the middle of the undertray. The two rear extended diffusers have 

again an angle of 10.5° each and two long flaps are also placed to avoid flow separation. 

This undertray produce a total downforce of 44.72 N and its drag is increased up to 66.84 

Ν, while the removal of the new diffuser resulted in a total weight of 7.41kg which is 2kg 

lower than the previous type but again high enough comparing to the generated 

downforce. 
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Figure 118: Streamlines and pressure distribution for the separated diffusers undertray 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen on the Figure bellow, the flow stays again attached along the 

undertray’s surface. Although, the narrowing of the undertray is the same as on the 

previous types, it seems that at this case less air is escaping from the sides is however due 

to the lower pressure that is created in the diffusers’ inlet and sucks more air in. 

Furthermore, the streamlines show that the air is clearly accelerating even more along the 

whole underside of the car which is also the reason why it generates higher amounts of 

downforce. Finally, from the pressure distribution it is shown that the center of pressure 

has been transferred more to the rear due to the middle diffuser and is also lower both at 

the entrance and the outlet of the diffusers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 117: Separated diffusers CAD designs 
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Figure 120: Venturi effect taking place on vertical axis Y, due to the angle of the diffuser 

Figure 121: Venturi effect taking place of the horizontal axis X, due to the shape of the undertray 

4.2.4. Side Diffusers (Undertray_4) 

 The next type of undertray is completely different than the previous designs. In order 

to reduce the weight of the undertray the rear long diffusers are replaced by two side diffusers 

which have an angle of 17.5° each. This gave more space for the central diffuser too, which 

was also replaced from a curvature fillet with vertical flaps due to the lack of space for a bigger 

diffuser with higher angle. 

 

 

 

 

 

 

 

 

 

However, at that case, the angle of the side diffusers is restricted from the 

suspension dumpers that are located just above the diffusers’ exits. To overcome this 

problem and increase the downforce without increasing the diffusers’ angles, the diffuser 

tunnels are designed in such a way that they can take advantage of the Venturi effect in 

two dimensions, vertically and horizontally. As it is shown from the floor plan of the 

undertray, the shape of the diffuser tunnels is similar to that of a Venturi tube. The inlets 

are shaped like nozzles which are getting thinner on the middle of the undertray and end 

up to the diffusers in order to accelerate the air even more along the whole surface, as it 

is shown in the Figures bellow. 

Figure 119: Side diffusers CAD designs 



 

85 
 

Figure 122: Streamlines and pressure distribution for the side diffusers undertray 

 This type of undertray produce even more downforce at about 48.62 N, but its drag 

is increased up to 80.6 Ν which is higher than in previous models. However, the total 

weight of this undertray is reduced at 6.63 kg. 

 

 

 

 

 

 

 

The Figure bellow shows that, the flow stays attached along the whole undertray’s 

surface. Although, on this type of undertray there is no narrowing at the rear, the low 

pressure that is created along the underside of the car prevents the air from escaping from 

the sides. The fact that the diffuser tunnels are extended along the whole underside of the 

car and they are not just placed between the rear wheels at the end of the undertray seems 

that it makes the air to accelerate even more along the whole underside of the car which 

is also the reason why it generates higher amounts of downforce. Finally, from the 

pressure distribution it is shown that the center of pressure has been transferred more to 

the front, while the pressure has been distributed equally at the whole surface and it 

seems to be lower at the entrance of the undertray which is not desired. 
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4.2.5. Side & Double Diffusers (Undertray_5) 

The final type of undertray that is designed is based on the previous model with 

some extra modifications in order to improve the aerodynamic efficiency. More specifically 

the diffusers’ inlets and outlets are redesigned in order take advantage of the available 

space from the dumpers and chassis, while the tunnels are longer to shift the center of 

pressure more to the rear. Furthermore, the sharp inlet of the previous undertray is now 

replaced from a smooth curvature surface which accelerates the air beneath the nosecone 

and guides the air smoothly to the diffusers’ inlets. At the rear side of the undertray a 

double diffuser with a ground effect device on the middle is placed in order to take 

advantage of the oncoming air on the center. The vertical flaps that are placed on these 

diffusers are designed with a specific curvature in order to deflect the air exiting the 

undertray and send it directly in the low-pressure area just behind the rear wheels, in order 

to reduce the drag that is created there. Similar vertical flaps are placed at the outlets of 

both side diffusers in order to avoid flow separation and guide the air on the upper surface 

of the central diffuser and use it to generate more downforce.          

 

 

 

 

 

 

 

 

 

 
 

This final type of undertray produce about double as much downforce as any 

previous type and reaches an amount of 86.34 N, while its drag has fallen to 77.64 Ν which 

is an acceptable value comparing to its increased efficiency. Although, that the total weight 

of this undertray is at 7.36 kg which is heavier than some previous types, the generated 

amount of downforce is higher than its own weight so it is the most efficient one

Characteristics 

Number of Diffusers 3 

Diffuser Angle 15.5˚ 

Ground Effect Device ✔ 

Downforce 86.34 N 

Drag 77.64 N 

Weight 7.36 Kg 

Figure 123: Side & double diffusers CAD designs 
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Figure 124: Streamlines and pressure distribution for the side & double diffusers undertray 

Figure 125: CFD results for different ride heights of the final undertray 

On the Figure bellow it shown that, the flow is attached along the whole undertray’s 

surface. Τhe low pressure that is created at the outlets of the side diffusers sucks the 

oncoming air and prevents it from escaping from the sides. Again, due to that the diffuser 

tunnels are extended along the whole underside of the car seems that it makes the air to 

accelerate more along the whole underside of the car but especially at the rear end of the 

undertray which is also the reason why it generates higher amounts of downforce. 

Additionally, from the pressure distribution it is shown that the center of pressure has been 

clearly transferred more to the rear of the car due to the longer diffusers, while the 

pressure has been distributed equally at the whole underside surface. Finally, due to the 

curvature surface on the undertray’s inlet, the extremely low pressure region that 

occurred on the previous model seems to have been disappeared and the pressure is now 

smoother, allowing the air to flow directly to the rear diffusers.  

 

 

 

 

 

 

 

 

 

 

 

 

As it has been already mentioned, the CFD simulations for all the undertray types 

were done in a ride height of 4cm from the ground. However, the undertray is an 

aerodynamic device which is strictly connected with the ground effect, thus the distance 

from the moving road has a direct impact to the aerodynamic efficiency of the undertray. 

So, the next step after the selection of the best type of undertray is the definition of the 

ideal ride height which should compatible with the FSAE regulations. Two extra CFD 

simulations are done for a ride height of 3 and 2cm and the results are summarized on the 

table below.    
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Figure 126: Drag & Lift coefficients variation with ride height for the final undertray 

Figure 127: CFD results of the final undertray at different speeds and a ride height of 3cm 

At the ride height of 3cm the lift coefficient is significantly increased from -0.578 to 

-0.658 with just a small increase in drag coefficient from 0.517 to 0.521, which both 

resulted in a total downforce of 102.42 N and a drag of 78.41 N respectively. For the 2cm 

ride height on the other hand, the lift coefficient is shown to be just a bit higher at -0.675 

which may be due to the fact that less air is entering on the underside of the car, while the 

drag coefficient increased to 0.528 giving a total drag of 80.04 N and a downforce of 137.88 

N. Although, the aerodynamic efficiency and downforce reach their peak at the 2cm ride 

height, the undertray was finally placed 3cm from the ground due to the FSG 2016 

regulations which set a minimum ride height of 3cm for all cars and also due to the “soft” 

suspension setup which could easily led to a collision between the undertray and the 

ground. On the diagram bellow is shown the change of drag and lift coefficient at the three 

different ride heights that were tested. 

 

 

 

 

 

 

 

 

 

 

 

After the definition of the optimal ride height for the undertray, four more CFD 

simulations are done at different speeds of air from 40 – 120km/h in order to test how 

the undertray operates at these speeds and the affect that it has on the flow field around 

the vehicle. It is interesting how downforce and drag change almost exponential as the 

speed increases, while at the final speed of the car the undertray can generate up to 

367.22 N of downforce which is about three times its weight. 

 

  



 

89 
 

Figure 128: Drag & Lift coefficients variation with the increase of speed 

Figure 129: CFD results in summary for all types of undertrays 

Figure 130: Downforce and Drag comparison for all the undertrays 

 

 

 

 

 

 

 

 

 

4.2.6. Results Comparison 

 

Finally, on the table below are shown the results of the CFD simulations for each 

type of undertray. It interesting how the final type of undertray has the double efficiency 

comparing to the first one, while their weight is about the same and there are small 

differences between the drag. The final undertray was also tested first without the vertical 

flaps but the results shown that drag is higher due to the flow separation that occurs on 

the diffusers which also results in lower downforce. 
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4.3. Sidepods 
 

After the selection of the most efficient undertray, sidepods are the next 

aerodynamic devices to be tested in order to set a complete car CFD model and estimate 

the final results. Sidepods are used to provide enough air for the cooling system through 

the radiator, while normalizing the turbulent flow coming from the front wheels and slow 

down the air in order to be more time for the convection to take place within the radiator’s 

fins. In order to properly design the sidepods to be efficient, it is first necessary to estimate 

the required amount of mass flow for the radiator in different conditions. Depending on 

the speed that the car moves, the RPMS of the engine can be significantly different, which 

means that the engine has different cooling needs at different speeds. After a short 

calculation based on the average RPMS of the engine for speeds between 40-100km/h, the 

specifications of the radiator’s fan and the dimensions of the radiator, the mass flow 

requirements of the radiator are estimated approximately for each speed. The graph 

below highlights in summary these data and was used in order to design all the types of 

sidepods and test their efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Except of the mass flow of air, drag and lift coefficients must again be considered 

during the designing of the sidepods as their aerodynamic efficiency too. Furthermore, 

stall should definitely be avoided both on the inner and outer surface of the sidepods not 

only for the reduction of drag but also because of the huge impact that it has on the 

efficiency of the radiator inside the sidepod. Due to boundary layer effects, generally at 

sharp leading edges, the flow separates from the surface and forms strong vortex. In 

sidepods this stall usually occurs on the sidepod’s inlets when the leading edge is designed 

too sharp and the vortices that are created affect the pressure distribution in front of the 

radiator. To avoid this undesired situation the inlets of the sidepods have to be designed 

with a specific curvature radius in order to keep the flow attached on the sidepod walls 

Figure 131: Required mass flow of air (in kg/s) for the radiator in speeds between 40-100km/h 
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Figure 132: Separation occurring on the inlet of the sidepod due to the sharp leading edge 

Figure 133: Stall is eliminated for leading edge’s radius above 2cm 

and make turbulent flow of the wheels laminar. Numerous CFD simulations of sidepods’ 

inlets are done at the speed of 60km/h, with different radius for their leading edges in 

order to predict stall and select the identical fillet radius to use for the design of all the 

types of sidepods. 

Firstly, a sidepod model is created with a sharp leading edge on the inlet in order to 

test if stall can occur at any speed between 40-100km/h, which are the speeds that an 

FSAE car can reach during a race. On the figure below it is shown that at the speed of 

60km/h and with a sharp leading edge, the flow can easily separate and generate vortices 

either on the interior or the exterior of the sidepod. On that case, the flow is separated at 

the outer surface of the sidepod, which can increase the drag of the car and even worse 

affect other aerodynamic devices like the rear wing. The model with the sharp edge 

resulted in a drag coefficient of 0.157. 

 

 

 

 

 

 

 

 

 

 Four sidepods models are created next with leading edge radius between 1-4cm. 

After the CFD simulations at 60km/h it resulted that stall stops at a radius of 2cm or above 

and the flow stays attached both in the interior and exterior of the sidepod as it shown on 

the figure below. For the 2cm radius model a drag coefficient of 0.134 occur which is 

significantly improved comparing to the sharp edge model. So, the leading edge radius on 

the inlets of all the sidepods types are selected to be 2cm as the minimum permitted radius 

to avoid stall on the inlet. 
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4.3.1. No Sidepods 

Before proceeding to the design of the sidepods it is first necessary to simulate the 

car model without any sidepods in order to take a first idea of how the flow field is formed 

behind the front wheels and how would the radiator operate in these conditions. The CFD 

simulation is done at 60km/h and the aim is to calculate the pressure distribution in the 

frontal area of the radiator. The radiator is placed in the position that is designed on the 

side of the chassis close to the main hoop. The results of the CFD simulation show that the 

region between the front and rear wheels is a region with a high turbulent flow field due 

to the strong vortices that are created behind the front wheels. These vortices are directing 

straight in to the radiator’s inlet and have a huge impact on the pressure field in front of 

it. As it is shown on the figure below the pressure distribution at the lower right side of the 

radiator is low due to the vortices and that means that this region of the radiator would 

not let the air to flow in to the fins as it happens on the rest surface. This situation is surely 

undesired for the correct operation of the sidepod as it essentially reduces the active area 

of the radiator. 

 

 

 

 

 

 

 

 

 

 

At that case, the mass flow of air passing through the radiator is about 0.892 kg/s. 

Although this mas flow is higher than the required amount of air (0.63kg/s) at the speed 

of 60km/h, the flow passing throw the radiator is basically turbulent which is also shown 

by the non-uniform pressure distribution in front of the radiator. The lift coefficient at that 

case is 0.286, while the drag coefficient is low as expected at 0.426. Note that at this case 

the lift coefficient has a positive value which means that the car without any aerodynamic 

device mounted on it generates lift. 

   

Characteristics 

Mass flow 0.892 Kg/s 

Lift Coefficient (CL) 0.286 

Drag Coefficient (CD) 0.426 

Figure 134: Pressure distribution on the frontal surface of the radiator, for the model without sidepods 
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4.3.2. Lowered Sidepods 

 From the previous simulation, it is clear that the use of a sidepod is necessary in 

order to protect the radiator from the turbulent flow behind the wheels and improve its 

efficiency. So, the aim is to design a sidepod in such a way that it can eliminate turbulent 

flow on the inlet and create an equally distributed pressure field on the radiator’s surface. 

The first type of sidepods have a lowering at the side of the outlet in order to work as a 

nozzle and accelerate the air coming out in order to drop pressure and create a greater 

pressure difference between the front and rear of the radiator. 

  

 

 

 

 

 

 

However, this type of sidepods seems to create a very low pressure region in front 

of the radiator. There is a peak for the pressure distribution between the front and rear 

side of the radiator, after which it seems that a region with extremely low pressure behind 

the radiator can significantly affect the radiator, the same way as when this low pressure 

is occurring on the radiator’s surface. Considering also that just beneath the outlet of the 

sidepod there is also the outlet of the diffuser the pressure drops even more, so the outlet 

of the sidepods should be designed is such a way that will not lead to such a high pressure 

drop. The use of a sidepod resulted in an increase of the mass flow up to 0.969kg/h, while 

drag coefficient occur at 0.527 and lift coefficient at -0.601. 

  

Figure 135: CAD designs of the first type of sidepods 

Figure 136: Pressure distribution on the frontal surface of the radiator, for the 
lowered sidepods model 
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4.3.3. Lifted Sidepods 

 To improve the previous undesired situation with the low-pressure region at the 

rear of the radiator, the new sidepods are designed with a lifted rear surface which leaded 

to a bigger opening at the outlet of the sidepods. However, the outlet should stay small 

enough in order for the pressure to remain lower that the pressure in front of the radiator. 

In addition, this lifted surface of the sidepods should be designed according to that and 

avoid also any flow separation on the outer surface of the sidepod due to high angle. 

 

 

 

 

 

 

 

 

At that case, it seems that the pressure distribution in the radiator’s surface is much 

more improved and equally distributed. However, there are again some regions around 

the radiator that still have low pressure but doesn’t affect the flow. This type of undertray 

provide to the radiator a mass flow of 0.946 kg/s, which might be slightly lower than the 

previous type but with such uniform pressure distribution the efficiency of the radiator is 

higher.  

Characteristics 

Mass flow 0.946 Kg/s 

Lift Coefficient (CL) -0.642 

Drag Coefficient (CD) 0.538 

Figure 137: CAD designs of the second type of sidepods with lifted upper surface 

Figure 138: Pressure distribution on the frontal surface of the radiator, for the lifted sidepods model 
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4.3.4. Final Sidepods 

 From the previous case, it is clear that the most appropriate type of sidepods for 

the flow field between the wheels is the one with a lift surface on the outlet. The final type 

of sidepods is similar to that model, with some extra improvements. The rear lifted surface 

at the rear is redesigned to take advantage of that surface in order to generate extra 

downforce without any flow separation. At the same time, the sides of the sidepods are 

now thinner in order to make the outlet small enough to keep the pressure in desired low 

limits and due to FSAE regulations. Three gills are placed at the side of each sidepod 

working as openings for the stalled air which is trapped behind the radiator and affects the 

pressure difference, in order to reduce the total, drag and let the air flow easier through 

the sidepod. 

 

 

 

 

 

 

 

As it is shown on the figure below, the pressure distribution at the final sidepods 

models is equally distributed and the low-pressure regions at the edges of the radiator are 

now eliminated. Some small regions with low pressure do not affect the efficiency of the 

radiator as they are not in front of the fins of the radiator. These final sidepods provide a 

mass flow of air up to 0.958kg/s which is improved comparing to the previous model, while 

lift coefficient is increased up to -0.668 and drag coefficient is declined at 0.532. 

  

Characteristics 

Mass flow 0.958 Kg/s 

Lift Coefficient (CL) -0.668 

Drag Coefficient (CD) 0.532 

Figure 139: CAD designs of the final type of sidepods with lifted upper surface 

Figure 140: Pressure distribution on the frontal surface of the radiator, for the final sidepods model 
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Figure 141: Improved flow field inside the final sidepods 

Figure 142: Pressure distribution inside the final sidepods 

As it is shown on the figure below, the flow field between the front and rear wheels 

is now clearly laminar. The use of the sidepod protects the radiator from the turbulent flow 

that is created behind the front wheels and it also slows down the flow entering the 

sidepod in order to give more time to the convection to take place inside the radiator’s 

fins. The side gills on the sidepods let also the excessive amount of air to flow out of the 

sidepods, keeping with that way the pressure on the outlet to stay on the desired limits. 

 

 

 

 

 

 

 

 

 

 

 

The lifted inlet of the undertray, which is just beneath the inlet of the sidepods, 

causes a slight separation of the flow at the bottom of the sidepod. However, this 

separation doesn’t affect the efficiency of the radiator because it is direct to the end cap 

at the underside of the radiator and not to the radiator’s fins. Considering also that in 

reality there is also the fan of the radiator which sucks even more air, these low-pressure 

regions in front of the radiator would probably disappear.  
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Figure 143: Mass flow and aerodynamic characteristics of the final sidepods model at speeds 
from 40-100km/h 

Figure 144: Real mass flow at the finals sidepod, comparing to the estimated required mass 
flow at different speeds 

The model with the final sidepods have to be tested in all possible speeds between 

40-100km/h in order to estimate if the mass flow of air entering the sidepods and passing 

through the radiator is enough, comparing to the required mass flow that was calculated 

in the first place. As it Is shown on the table below, the mass flow gradually increases at 

higher speeds reaching up to 1.652kg/s of air at the final speed of the 100km/h. Drag and 

lift coefficients have also the same trend, but drag coefficient seems to increase with a 

higher rate, for speeds above 80km/h. This can be seen also from the aerodynamic 

efficiency (CL / CD), which increases steadily up to a peak of 1.4 at the speed of 80km/h and 

above that speed the significant increase of drag drops the efficiency at 1.27. 

 

 

 

 

 

 

 

The diagram below shows that the mass flow of air with the final sidepods exceeds 

of the required mass flow that was estimated for the correct operation of the radiator, for 

all the speeds from 40km/h to 100km/h. In some speeds, also the estimated mass flow 

seems to be double as the required mass flow, which is very positive for safety reasons. At 

the final speed of 100km/h however, the real mass flow is slightly higher than the required 

mass flow, but this is not a big problem while the time period that the car reaches and 

stays at its final speed during the race is negligent.   
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4.4. Wings 
 

4.4.1. Front Wing 

In order to properly design the front wing of the aerodynamic package of the car, it 

is necessary first to select the appropriate NACA airfoil type to assembly the front wing 

and estimate also their identical angle of attack, number of elements and their dimensions. 

Furthermore, three different types of front wings are designed and tested in order to select 

the most efficient one and determine the correct ride height to be placed. All the CFD 

simulations are done at the speed of 60lm/h. 

4.4.2.1. NACA Airfoil selection 
 

The first step before proceeding to the design of a complete front wing model is the 

selection of the most efficient type of NACA airfoil. Due to the lack of time there were not 

tested different types of NACA airfoil profiles, but the selection process was based on the 

airfoils theory and on a bibliography research for the designing of different front wings 

from other FSAE teams. The conclusion of this research is that the most efficient and 

appropriate type of airfoil for the design of a front wing of a FSAE car is the NACA-6412 

considering the low speeds that the cars move and the fact that the front wing should not 

generate big amounts of drag which can affect other aerodynamic devices on the rear.  

 

 

 

 

 

After having select the airfoil that is going to be used for the assembly of the front 

wing, the next step is selection of the most efficient angle of attack for these airfoils. For 

the front wing the number of elements that are used depends on their position on the 

wing. For the main elements which is the central airfoil beneath the nosecone most times 

is used a single element, while for the region between the front wheels and the nosecone 

are usually placed two to three elements or in some cases even four, depending on the 

design of the front wing and the wheels’ diameter. In order to determine the angle of 

attack for the elements three models are created tested with 3D CFD simulations. The first 

model is a single NACA 6412 airfoil with 20cm width and 30cm chord length and is tested 

for angles from 4° to 14°. 

  

Figure 145: NACA 6412 airfoil used on the front wing 

Figure 146: CFD results of the single airfoil model for angles between 4° and 14° 
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The single element is selected to be placed with an angle of attack of 10°, having a 

lift coefficient of -1.659, a drag coefficient of 0.413 and an efficiency of 4.02. The second 

model has two elements, with the first being the element of the previous model with the 

new angle of attack and the second one being a NACA 6412 airfoil with 20cm width and 

25cm chord length. At this model only the angle of attack of the second airfoil is tested for 

angles between 10° and 20°. According to the results of the table below, the second airfoil 

is placed at an angle of 18°, where it has a lift coefficient of -1.708, a drag coefficient of 

0.583 and the efficiency is at 2.93. 

  

 

 

 

 

 

 

 

 

The third model is consisted of three elements, which are going to be the part of the 

wing which is placed just in front of the front wheels. The third airfoil that is placed is again 

a NACA 6412 airfoil with a width of 20cm and a chord length of 15cm. The previous two 

airfoils remain with their selected angles of attack of 10° and 18° respectively and only the 

third airfoil is tested in different angles of attack from 20° to 30°. The results of the 

simulations for the three airfoils models shown that the optimal angle of attack for the 

third airfoil is at 28° were the lift coefficient is up to -1.782, the drag coefficient is at 0.729 

and the efficiency is at 2.44. 

  

Figure 147: CFD results of the double airfoils model for angles between 10° and 20° 

Figure 148: CFD results of the three airfoils mode for angles between 20° and 30° 
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However, the selection process of the most appropriate angle of attack was not only 

based on the drag and lift coefficients. Velocity and pressure were also taken under 

consideration in order predict the angle of attack above of witch the flow is separated and 

stall occurs. The more elements are used the higher the angle of attack can be, but drag 

increases rapidly to which is an undesired situation. On the figure below it shown the 

velocity field around the airfoils for all the models and angles of attack that were tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the main airfoil of the front wing, which is the element that is placed on the 

center of the wing under the nosecone it usually used a symmetric airfoil in order to let 

the air pass unobstructed to the undertray’s inlets. However, the NACA 4412 airfoil is 

selected as the main airfoil because of its less aggressive shape and the fact that is an airfoil 

which can take a great advantage of ground effect at low speeds without any flow 

separation and generate higher amount of downforce comparing to the symmetric airfoil 

which can sometimes even produce lift. 

 

 

 

 

 

The main airfoil NACA 4412 is always used as a single element and only in small 

angles of attack in order to generate low drag and avoid stall to feed the undertray with a 

laminar flow and improve its efficiency. Again, a single element with 20cm width and a 

chord length of 35cm is tested with 3D CFD simulations for angles between 2° and 8°. The 

Figure 149: Velocity field for the three NACA 6412 airfoils models, for angles between 4° and 30° 

Figure 150: NACA 4412 airfoil used as the main element of the front wing 



 

101 
 

main airfoil is selected to be placed with an angle of attack of 6° where the lift coefficient 

is at -1.318 and the drag coefficient is at 0.272, resulting in a high efficiency of 4.85. In 

comparison with the NACA 6412, it is interesting how the NACA 4412 is increasing its 

efficiency as the angle of attack is getting higher which is due to the low amount of drag 

that is generating and which is the main reason that was selected as the main airfoil of the 

front wing. 

 

 

 

 

 

 

Except of the aerodynamic characteristics of the main airfoil for all these angles, 

there are also tested the velocity and pressure contours that occur around the airfoil in 

order to estimate when stall occurs and how the separated flow is guiding to the undertray. 

It is also clear from the velocity field, how much less drag is produced with this type of 

airfoil comparing to the previous one. On the figures below are shown both the velocity 

field and pressure distribution around the airfoil for all cases with angles from 2° to 8°. 

  

Figure 151: CFD results of the main airfoil model for angles between 2° and 8° 

Figure 152: Velocity field of NACA 4412 main airfoil model, for angles between 2° and 8° 

Figure 153: Pressure distribution of NACA 4412 main airfoil model, for angles 
between 2° and 8° 
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4.4.2.2. Front Wing  
 

After the definition of the most efficient angle of attack for the two, three and main 

element, the front wing is ready to be designed. The previous three models are now 

redesigned with different dimensions in order to assembly the front wing and be 

compatible with FSAE rules. In more detail, the main element NACA 4412 has now a width 

of 60cm and its position will be just under the nosecone. The two elements NACA 6412 

have a width of 30cm, while their position on the front wing is between the inner side of 

the front wheels and the main element. The reason that these two airfoils are placed on 

this specific position is to send the oncoming air directly to the sidepods in comparison 

with the three airfoils which would deflect the air above the sidepods. Finally, the three 

NACA 6412 elements are place at the outer side of the front wing, just in front of the front 

wheels and have the same width as the wheels 25cm. The aim of these three airfoils in 

front of the wing is to deflect air above or by the sides of the front wheels in order to avoid 

flow separation and reduce the drag. 

 

 

 

 

 

 

 

The CFD results of the front wing at 60km/h shown that the wing at a ride height of 

3cm has a lift coefficient of -5.88 and a drag coefficient of 1.012 which result in a total 

efficiency of 5.81. Although the lift coefficient is high the small distance of the ground can 

lead to flow separation at the first elements of the wing thus the drag is increasing 

significantly. This can be also seen by the velocity field on the figure below, where the blue 

color shows regions where stall has occurred and it is clear that stall begins below the two 

elements and affect also the flow beneath the main element. 

 

  

Figure 154: CAD Design of the front wing 

Figure 155: Velocity field and Pressure distribution of the front wing at a ride height of 3cm 
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Due to the small distance between the front wing and the ground the efficiency of 

the wing is strictly connected with the ride height of the moving road. That means that 

when the front wing is placed close to the ground, the ground effect takes place and so, 

the final step is to select the appropriate ride height to place the front wing in order to 

increase its efficiency and avoid stall at any cost. Five CFD simulations of the front wing are 

done at a speed of 60km/h, for five different ride heights from 3cm to 6cm. The front wing 

is finally placed 6cm from the ground were the lift coefficient is at -5.692 and drag 

coefficient has dropped at 0.917 resulting in a 6.21 efficiency. 

 

 

 

 
 

On the figures below it shown how the velocity field around the airfoils is affected 

by the ride height at each simulation. For the part of the wing with the two airfoils it is 

shown that at the 4cm there is a large flow separation at the first airfoil which affects 

significantly the second one and increases drag, which at the ride height of 6cm seems to 

have been eliminated and the flow stays attached on the airfoils. The same situation, can 

be seen for the velocity field of the three airfoils, were again at 4cm there is a green region 

behind the airfoils were the flow is separated, which again at 6cm has disappeared 

improving the efficiency and the drag coefficient as it shown on the table. Finally, the 

streamlines of the front wing confirm this situation, as at 4cm are shown the strong 

turbulences that are created behind the wing due to the stall, while at 6cm the flow is 

more laminar and the streamlines are straight. 

  

Figure 156: CFD Results of the front wing at ride heights from 3 - 6cm 

Figure 158: Velocity field around the front wing for 4 and 6cm ride height 

Figure 157: Streamlines of the front wing for 4 and 6cm ride height 
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4.4.2. Rear Wing 

 

In order to properly design the rear wing of the aerodynamic package, it is first 

necessary to select the most appropriate type of airfoil to be used in order to achieve the 

highest possible efficiency for the rear wing. The aim of the rear wing is to produce high 

amounts of downforce in order to push the rear tires to the road and balance the 

aerodynamic forces acting on the car. For that reason, high lift airfoils are preferable, but 

again the amount of drag being produced has to stay in logically low levels. 

 

4.4.2.1. NACA Airfoil selection 

For the selection of the NACA airfoil to be used for the assembling of the rear wing, 

a bibliographic research was done again based on other FSAE teams and on the 

aerodynamics theory for high lift and low speed airfoils instead of testing different types 

of NACA airfoils, due to the lack of time. This research resulted in the selection of the 

EPLER-E423 high lift airfoil, due to its aggressive save which can lead to high amounts of 

downforce with small angles of attack, while keeping drag at low levels.  

 

 

 

 

 

 

After the selection of the type of airfoil it is again necessary to test it and estimate 

the identical angle of attack, the number of elements and their dimensions. Usually, rear 

wings are consisting from two to four airfoils which in some case can be up to five 

depending on the design. For this rear wing however, three elements are selected to be 

used and the process to define their angle of attack is the same as previous. The first model 

consists of a single EPLER-E423 airfoil with 20cm width and 35cm chord length, while it is 

tested for angles from 1° to 13°.  

 

  

Figure 159: EPLER-E423 airfoil used for the assembly of the rear wing 

Figure 160: CFD results of the single airfoil model for angles between 1° and 13° 
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The second model consists of two EPLER-E423 airfoils, with the first element being 

the one that was tested on the previous model with the final selected angle of attack. The 

second airfoil has a width of 20cm and a chord length of 30cm and the aim is to test it 

different angles of attack in order to achieve higher amounts of downforce. This airfoil is 

tested for higher angles of attack between 15° and 25°, while it is selected to be placed 

with an angle of 23° achieving a lift coefficient of -1.995, a drag coefficient of 0.893 and a 

efficiency of 2.23. 

 

 

 

 

 

 

 

 

The third model consists of three elements in total, which is going to be also the final 

shape of the rear wing. The previous two airfoils are exactly the same as the final model 

that was selected in the previous case, with an angle of 23° for the second element, while 

the third airfoil that is added at this model is again an EPLER-E423 with 20cm width and 

250cm chord length. This airfoil has to be place in even higher angle of attack to keep the 

flow attached for the whole rear wing, so it is tested at angles between 22° and 30°. After 

the 3D CFD simulations at those angles, the third element is placed at an angle of 28° and 

the final model has a lift coefficient of -1.979, a drag coefficient of 1.02 and an aerodynamic 

efficiency of 1.92. Although the fact that drag coefficient is significantly high, it is not a 

problem as the adding of the rear wing’s endplates will correct this undesired situation and 

will improve the total efficiency. 

 

 

 

 

 

 

 

However, in order to select the suitable angle of attack for the airfoils, the velocity 

field around the airfoils has also to be taken under consideration. As it is shown on the 

figures below, for the single element the flow seems to accelerate significantly after the 

angle of 7° and that’s why it was placed at 9°, because after that drag is rising high. For the 

double elements model, it is clear how the second airfoil accelerates the air even more 

Figure 161: CFD results of the double airfoils model, for angles between 15° and 25° 

Figure 162: CFD results of the three airfoils model, for angles between 22° and 30° 
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and helps the flow to stay longer attached increasing downforce. Finally, the third element 

increases the region of the accelerating air and helps the flow to stay attached along on 

the whole chord of the second element, while the openings between the airfoils let the 

excessive air to pass through, reducing drag. 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.2. Rear Wing  

The design of the rear wing is much more simple comparing to that of the front wing 

while there are no any parts behind the rear wing which affect its efficiency. The final 

model of the three EPLER-E423 airfoils is used with the selected angles of attack at 9°, 23° 

and 28°, but their width is now 80cm, which is the distance between the rear wheels and 

it is the area where the rear wing is placed, as it is defined by FSAE Regulations. Two large 

endplates are added at the both sides of the airfoils and are extending to the ground and 

to the rear in order to keep the low pressure that is created beneath the wing. The CFD 

simulation is done at 60km/h but an inaccuracy in the results is expected due to the fact 

that the flow reaching at the rear wing in reality is completely different from the free 

laminar flow that is tested at this case. However, the whole aerodynamic package mounted 

on the car is tested on the next section where the final results of the car are examined.   

  

Figure 163: Velocity field of the three EPLER-E423 airfoils models, for angles between 3° and 28° 

Figure 164: Rear wing CAD design 
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The CFD results for the rear wing on a freestream flow showed that it has a lift 

coefficient of -4.571 and a drag coefficient of 1.174 which result in an efficiency of 3.89 

and a total downforce of 208N. The figures below show the velocity field and pressure 

distribution on the surface of the rear wing, where it can be seen that the air speed above 

the wing is lower than under it where the pressure is also significantly lower especially 

under the first element. Furthermore, a small flow separation can be seen on the outer 

sides of the endplates which due to the sharp edges and the high vortices that are also 

created there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the figure below shows the velocity streamlines around the rear wing. It is 

clear that the flow stays attached along the upper surfaces of the airfoils and accelerates 

beneath the main element, reaching a peak of 32km/h. This figure can be also confirmed 

from the velocity field contour shown on the plane below, where the flow reaches its 

maximum speed under the main element and creates small stall regions only at the 

openings between the airfoils. 

  

Figure 165: Velocity field and Pressure distribution on the surface of the rear wing 

Figure 166: Streamlines and Velocity field contour around the rear wing 
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4.5. Whole Car Models 
 

After the completion of all the CFD simulations for each part of the aerodynamic 

package, the final step is the CFD simulation of the models with the whole car and the 

moving road, in order to calculate the final aerodynamic characteristics of each model and 

make an estimation of their efficiency. Three car models are situated, one with no 

aerodynamic devices, one with the sidepods and undertray mounted on it and the final 

one with a full aerodynamics package including front and rear wings too. All CFD 

simulations are done at the speed of 60km/h, with a moving road while for the comparison 

of the final results, all models are tested in speeds from 40km/h to 100km/h. 
 

4.5.1. Model without an Aerodynamic Package  

The first model to be tested, is the car without any aerodynamic device mounted on 

it.  The aim of this simulation is to determine the efficiency of the car without aerodynamic 

devices and calculate its aerodynamic characteristics like the drag and lift coefficient in 

order to estimate how much will the aerodynamic devices improve this situation. As it was 

already calculated at the study for the sidepods, this model produce lift which means that 

the aerodynamic package that is going to be used at each case should also overcome first 

this amount of generated lift in order to produce downforce. The model is simulated at   

60 km/h with a moving road at the same speed and more details are added in order to 

estimate the drag coefficient more accurately. 

 

 

 

 

 

 

 

 

 

This model is expected to heave the least amount of drag due to the smaller frontal 

area of 0.728m2 and the lack of aerodynamic devices producing downforce. The drag 

coefficient is calculated at 0.426, the lift coefficient is 0.286, producing a drag force of 

58.42N, and a lift force of 38.42N while resulting in a total aerodynamic efficiency of 0.67.  

The figure below show the pressure distribution created on a contour plane along the 

vehicle. There is an expected flow separation at the end of the nosecone just in front of 

the driver which is due the cockpit opening. It is also clear that on the underside of the car 

the pressure is higher comparing to the pressure on the top, which is the reason why the 

car produces lift, while the high-pressure region behind the car is the reason why the drag 

is so low.   

Figure 167: CFD model of the car without any aerodynamic devices 
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The pressure distribution on the car’s surface also confirms the aerodynamic 

characteristics that were calculated. The higher-pressure points (193.5 Pa) appear on the 

frontal areas of the front and rear wheels, on the stagnation point of the nosecone, on the 

driver’s head and on the main hoop. On the underside of the car, the pressure distribution 

along the car’s surface is between 79.5 Pa and -376 Pa, which is significantly high and 

considering the moving road there is no ground effect taking place as there are no 

aerodynamic devices to take advantage of it. Finally, the center of pressure seems to be 

transferred to front of the car which also an undesired situation which can result in 

oversteering issues.   

  

Figure 168: Pressure distribution contour of the model without any aerodynamic devices 

Figure 169: Surface pressure distribution of the model without any aerodynamic devices 
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Next the velocity field around the car is calculated and projected on a contour plane 

along the car. The blue color show the regions were the speed of air is significantly low, 

which is evidence that the flow there is separated and drag is increased. At this contour 

can be seen in more detail that the large flow separation is on the cockpit and behind the 

head restrain, while also on the sides of the front wheels the stall is greater that the rear 

wheels.  

 

 

 

 

 

 

 

 

 

Streamlines are also used in order to visualize the air flow around the vehicle. On the 

figure below are shown the velocity streamlines, where the red color represents higher 

speeds and the blue ones represent the low. It seems that the air flow smoothly at the 

front side of the car, while the bump of the nosecone directs the air above the driver’s 

head. At the underside of the car the flow is again laminar along the whole surface and 

accelerates at just 22.5m/s on the front of the car, while a large amount of air is escaping 

from the sides and rear of the car, increasing the pressure beneath the car. 

  

Figure 170: Velocity field around the model without any aerodynamic devices 

Figure 171: Velocity streamlines of the model without any aerodynamic devices 
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Furthermore, flow velocity vectors are used to show in more detail the magnitude 

of the velocity in each region of the car’s surface. The blue vectors represent the points 

were velocity is close to zero and pressure is respectively high, while the green and red 

vectors show the regions were the magnitude of velocity is high. Regions like the 

nosecone’s stagnation point, the cockpit and the frontal areas of wheels are characterized 

by vectors with zero velocity while on the wheels’ sides and main hoop the magnitude is 

higher and separation may occur easier. 

 

 

 

 

 

 

 

 

 

 

 

Finally, turbulence intensity is used to visualize areas around the car where strong 

vorticities and stall occurs. The figure below represents with green volume mesh elements 

the regions were turbulence intensity is higher than 1.5%. This figure confirms again that 

the highest turbulence regions are behind the wheels and behind the car. This situation 

makes clear the need of a front wing in order to make the air avoid the wheels and direct 

it to the sidepods and undertray. 

  

Figure 172: Velocity vectors on the surface of the model without any aerodynamic devices 

Figure 173: Turbulence Intensity higher than 1.5% for the model without any aerodynamic devices 
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4.5.2. Model with Undertray & Sidepods  

The next model to be tested is the car with the final sidepods and final undertray 

that were selected earlier, mounted on it. The car with this aerodynamic package is exactly 

how the car Thireus 277 participated at the FS Germany and FS Hungary competition at 

2016. The CFD simulation is done again at 60km/h, with a moving road too, in order to 

calculate the aerodynamic characteristics of the car and compare them with these that 

resulted for the car without any aerodynamic device and estimate if the efficiency of the 

car is improved.  

 

 

 

 

 

 

 

 

 

The addition of the undertray and sidepods resulted in a slightly increased frontal 

area of 0.8m2 and due these devices drag and downforce are expected to be higher too. 

The CFD simulation resulted in a drag coefficient of 0.532, a lift coefficient of -0.668 which 

gave a drag force of 81.21N, and a downforce of 108.87N while the total aerodynamic 

efficiency at 1.26. Considering that the model with the naked car without any devices 

generated a lift force of 58.42N, the undertray and sidepods package overcome that lift 

and produces a total downforce of 167.3N. The pressure distribution on the contour plane 

below does not differs much from the previous, while again the highest stall region is at 

the driver’s cockpit and the increased drag of the model can be also seen at the light blue 

region behind the vehicle. 

  

Figure 174: CFD model of the car with undertray & sidepods 

Figure 175: Pressure distribution contour of the model with undertray & sidepods 
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The pressure distribution on the car’s surface is shown on the figure below. On the 

top surface of the car it seems that the points where the highest pressure (185 Pa) occurs 

are the nosecone’s stagnation point, the frontal areas of the wheels and some region at 

the sides of the sidepods. At the underside of the car the figure is completely different, as 

at this model the pressure is fluctuated between 106 Pa and -370 Pa which is significantly 

lower comparing to the previous model. Furthermore, the center of pressures is now 

transferred more to the rear at the diffusers’ outlets, avoiding the creation of oversteering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocity field is also calculated and projected on a contour plane along the car. 

It seems again that the low velocity regions are the cockpit and the area behind the head 

restrain and the wheels. However, at the sides of the sidepods at the gills outlets it seems 

that the air’s speed is significantly low but the air coming out of the gills seems to slightly 

improve this undesired situation, while the region with separated flow behind the car is 

bigger. 

  

Figure 176: Surface pressure distribution of the model with undertray & sidepods 

Figure 177: Velocity field around the model with undertray & sidepods 
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Next streamlines are used to visualize the flow of air around the vehicle. As it is 

shown on the figures below the flow is laminar at the front of the car, while it is also clear 

how the lifted surface of the sidepods generate downforce and there is an amount of air 

escaping out of the sidepods’ gills. From the figure at the underside of the vehicle the air 

clearly accelerates along the whole surface and reaches a peak of 27m/s at the undertray’s 

diffusers. It can be also seen how the middle diffuser’s vertical flaps direct a small amount 

of air behind the rear wheels to reduce drag. 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the figure below show how the nosecone splits the oncoming air and 

send it directly to the sidepods. The streamlines are laminar and the turbulence flow 

behind the front wheels is eliminated which is due to the low-pressure region inside the 

sidepods which sucks more air in and prevents it from creating strong vortices.  

  

Figure 178: Velocity streamlines of the model with undertray & sidepods 

Figure 179: Velocity Streamlines passing through the sidepods 
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On the figure below it is shown the velocity magnitude in vectors projected on the 

car’s surface. The blue vectors show again the point where velocity is close to zero while 

the greener vectors highlights points where velocity is higher that 19m/s. Again, the 

stagnation point of the nosecone, the frontal areas of the wheels and the area of the 

cockpit are characterized by low magnitude of velocity, while areas as the side of the 

wheels, the main hoop and the upper surface of the nosecone have higher magnitude of 

velocity which reaches a peak of 39m/s. 

 

 

 

 

 

 

 

 

 

 

Finally, turbulence intensity higher than 1.5% is visualized with green volume mesh 

elements in order to predict the regions where high vortices occur and the flow is highly 

turbulent. As it is shown on the figure below, again the regions behind the wheels and the 

driver are area where high turbulence occurs. It is also clear that there are strong vortices 

starting from the inner side of the front wheels and directing straight into the upper side 

of the sidepods, while vortices with lower intensity occur also at the outlet of the gills and 

the upper surface of the sidepod without having any significant impact. 

  

Figure 180: Velocity vector on the surface of the model with undertray & sidepods 

Figure 181: Turbulence Intensity higher than 1.5% of the model with undertray & sidepods 
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4.5.3. Model with a Full Aerodynamic Package  

The final model to be tested is the car with complete aerodynamic package mounted 

in it. The model is same as the previous with the sidepods and undertray, with only 

difference the addition of the front and rear wing that were selected earlier. The CFD 

simulation is done at the speed of 60km/h with a moving road at the same speed. The aim 

of this simulation is to test the impact of using a front and rear wing on the aerodynamic 

efficiency of the car and estimate if it can improve the flow field around the vehicle. 

Furthermore, it is necessary to test also the efficiency of the front and rear wing 

respectively as they are mounted on the car and the flow reaching at them is completely 

different. 

 

 

 

 

 

 

 

 

The new model with the addition of the front and rear wing has obviously, the 

highest frontal area of 1.02m2, comparing to the previous models. The CFD results shown 

that the car with a full aerodynamic package has a lift coefficient of -1.898, a drag 

coefficient of 0.82 which result in a high efficiency of 2.31. The model generates a total 

downforce of 342N which is three times higher than the previous model, while the drag 

has significantly rise as expected at 148N. From the pressure contour on the plane below 

it can be seen that the pressure distribution has completely changed comparing to the 

previous models. The low and high peaks of pressure are significantly higher now but due 

to scale of that is used they are not clear. Again, the area of the cockpit has the greatest 

stall, while the rear wing has a huge impact on the pressure distribution behind the car and 

it is also clear how the small flow separation of the main hoop affects the flow reaching 

the rear wing. On the front of the car it can be seen how the pressure is significantly lower 

at the underside of the nosecone which can surely improve the efficiency of the undertray. 

  

Figure 182: CFD model of the car with a full aerodynamic package 

Figure 183: Pressure distribution contour of the model with a full aerodynamic package 
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 Pressure distribution is also calculated and visualized on the surface of the car. As it 

can be seen from the figure below, the stagnation point of the nosecone, the frontal area 

of the rear wheels and the upper sides of the wings deal with the highest pressure between 

97Pa and 212Pa. It is interesting how the addition of the front wing has eliminated the 

high pressure that is created on the frontal area of the front wings, which means that it 

successfully deflects the oncoming air from hitting the wheels. At the underside of the car 

the peak of low pressure is about -930Pa and it can be seen at the undersides of the front 

and rear wings, while along the whole surface of the undertray the pressure distribution is 

below of -358Pa. The center of pressure is now transferred more to the front due to the 

low-pressure region that is created at the front wing from the ground effect taking place, 

but the addition of the rear wing and the diffuser keep the center of pressure close to the 

center of mass just under the driver avoiding any oversteering on understeering situation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocity field around the car is visualized with a contour plane where the blue 

color represents the areas where velocity is lower than 3m/s and the red color represents 

regions where velocity is higher than 23m/s and flow is accelerating. As it can be seen on 

the figure below flow separation occurs on the cockpit area, on the region behind the 

driver and on the sides of the sidepods. It is interesting how flow separation at the sides 

of the front wheels is eliminated due to the front wing and it has been transferred to the 

sides of the sidepods. Other regions where stall occurs are the side of the rear and front 

wings which is due to the thin endplates that split the flow. Finally, the flow is accelerating 

immediately under the front wing where it reaches a peak of 33m/s while keeping the high 

speed at 20m/s along the whole surface of the undertray and dropping pressure.  

Figure 184: Surface pressure distribution of the model with a full aerodynamic package 
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The streamlines below are used to visualize the path that follows the air flow around 

the car. Red streamlines represent the points where the speed of the air is higher than 

33m/s while the blue ones represent points where the speed is below 7m/s. It is clear that 

the front wing takes advantage of the ground effect and the flow there is accelerating and 

reaching the peak of 33m/s while the air flowing to the undertray is significantly higher 

comparing to the previous cases. The front wing directs also an amount of air to the inner 

side of the rear wing which can rapidly improve its efficiency. Finally, the rear wing it self 

seems to receive the biggest amount of air at the rear and accelerate it at 20m/s, while 

creating strong vortices which are the main reason for the increase in drag. 

  

Figure 185: Velocity field around the model with a full aerodynamic package 

Figure 186: Velocity streamlines of the model with a full aerodynamic package 
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On the figure below are shown in more detail the streamlines of the front wing. It is 

clear how the part with the three elements in front of the front wheels works efficiently as 

it creates strong vortices that are avoiding the contact with the front wheels and protect 

the flow from being separated and turbulent. These vortices are directing just in the region 

behind the front wheels, reducing this way the drag that is formed there, while when they 

reach the rear of the car they are sucked from the significantly low pressure region under 

the rear wing and improve its efficiency as even more air is accelerating under the wing’s 

airfoils. 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the figure below shows the shape of the flow reaching at the rear wing. 

This figure confirms that the flow of the rear wing is influenced by many parts of the car 

that are located at the front and that has a huge impact on the efficiency of the rear wing. 

It is clear how the flow is strongly affected by the cockpit area, the driver and the head 

restrain and is separated by creating vortices that are directing under the rear wing and 

interact with the freestream flow there which decreases its speed. 

 
 

  

Figure 187: Streamlines of the front wing 

Figure 188: Velocity streamlines reaching at the rear wing 
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Velocity vectors are representing the resultant force of X, Y and Z direction and the 

color shows the magnitude. Vectors with blue color represent points were the resultant 

magnitude of the velocity is lower than 6m/s while red vectors show points where velocity 

is between 16 - 33m/s. According to the figure below at the front edge of the front wing 

velocity vector reach their maximum magnitude, while it also clear that the vectors are 

pointing at the underside of the car which means that the air passing under the front wing 

is directing to the undertray. At the endplates’ sides of the front wing it can be seen that 

strong vortices are generated, as the vectors there are yellow and their direction is 

fluctuated. The velocity vectors at the frontal area of the front wheels are now pointing at 

the same direction and their color show that the flow there is less interacted as the front 

wheel deflects the air and prevent him of coming in contact with the wheels. On the 

stagnation point of the nosecone all vectors are blue, as the flow has almost zero speed 

while also velocity at the upper side of the front wing’s main element is again low as the 

biggest amount of air is directing beneath the airfoil.  

 

 

 

 

 

 

 

 

 

Finally, the figure below show with green volume elements the regions where the 

turbulence intensity is higher than 1.5%. As it can be seen, the front wing has reduced the 

turbulences behind the front wheels and at the outer surface of the sidepods while the 

highest intensity is at the rear side of the car where the weak of the rear wing contributes 

in the creation of large vortices with intensity higher than 3%.  

  

Figure 189: Velocity vectors on the surface of the model with a full aerodynamic package 

Figure 190: Turbulence Intensity higher than 1.5% of the model with a full aerodynamic package 
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4.5.4. Results Comparison 

The final step is a comparison of the CFD results between the previous car models in 

order to make a conclusion for the efficiency of each aerodynamic package. As it is shown 

on the table below the car with a full aerodynamic package has the highest efficiency of 

2.31 which is about double as much as the efficiency with only an undertray and sidepods 

and three times higher comparing to the car without any devices. This can be also seen 

from the drag and lift coefficients and the amount of downforce and drag that each model 

generates. 

 

 

 

 

In order to test furthermore the efficiency of each model at different speeds, CFD 

simulations are done for speeds between 40 - 100km/h and the chart below highlights the 

produced amount of downforce for each case. According to this chart the car without any 

aerodynamic device generates lift for all these speeds as its lift coefficient is positive and 

reaches a peak of -100N at the final speed. Next the model with undertray and sidepods 

has a gradual increase for the generated downforce which start at 150N for 40km/h and 

reaches a peak of 240N at the speed of 100km/h. Finally, the model with a full aerodynamic 

package has clearly a gradual increase in downforce as from 150N at 40km/h it is rocketed 

at the peak of 870N at the final speed of 100km/h and is about five times higher than the 

previous model. 

  

Figure 191: CFD Results of each car model 

Figure 192: Downforce generated at each case for speeds between 40-100km/h 
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Although the model with a full aerodynamic package generates the highest amount 

of downforce at all speeds, it is expected that this model will produce also big amounts of 

downforce. The chart below highlights data for the drag force of each model for speeds 

from 40 - 100km/h. Both models of the car without any aerodynamic device and with 

undertray have the same gradual increasing tendency, starting with a drag force under 50N 

at 40km/h and reaching a peak value of 140N for the first model and a value of 180N for 

the undertray model. On the other hand, the model with a full aerodynamic package 

generates a significantly higher amount of drag at all speeds, as it starts with a drag close 

to the previous models at 60N and then rapidly increases and reach its peak of 375N for 

the final speed of the car at 100km/h. The generated drag of the full aerodynamic model 

is about doubled comparing to the rest models, however this happens only for speeds over 

80km/h and it is an acceptable situation as at the average speed of the car at 60km/h the 

amount of drag is as much higher as it was expected according to the generated downforce 

that was referred earlier. 

  

Figure 193: Drag generated at each case for speeds between 40-100km/h 
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5. LAP-TIME SIMULATIONS & VALUATION OF THE RESSULTS 

Although that the CFD simulations of all models of the aerodynamic package are 

completed and their results have been analyzed, it is necessary to test these results in real 

time lap simulations, in order to make a conclusion about the efficiency of each 

aerodynamic package and its impact on the track performance of the car. OptimumLap is 

used in order to simulate the performance of the car on the track by using data for the 

tires, engine and aerodynamics as inputs. The vehicle model used in OptimumLap is a point 

mass, quasi-steady state model which mathematically is overly simplistic, but, in reality, 

this model is very powerful at analyzing the global performance trends of a vehicle without 

having to capture or model more detailed effects. The advantage of this is that a vehicle 

can be characterized by very few inputs, requiring very little time to setup and conduct a 

simulation. Even though the model is a point-mass model, meaning that no weight transfer 

or transient effects are taken into account, the simulated results still correlate well with 

logged data. All the lap-time simulations are done for the FS Germany 2016 Endurance 

Track.  

 

 

 

 

 

 

 

 

 

 

 

 

The tire and engine data of Thireus 277 that are inserted as it is shown on the figure 

above, resulted in an engine torque and power trend as it is shown on the diagram below. 

The engine torque increases rapidly with the engine speed and reaches a peak of 62N·m 

at 9041rpm and then drops sharply, while the engine power is rising gradually until the 

peak of 84hp at 10,000 rpm and then is slightly declined.  

  

Figure 194: Tire & Engine Data used for the lap-time simulation model 

Figure 195: Engine Torque & Power versus Engine Speed 
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5.1. Without Aerodynamic Devices 
 

The first model that is simulated is the car without any aerodynamic devices. On the 

figure below are shown the general and Aerodynamics data that are used. The total mass 

of this model resulted at about 319kg with a 70kg driver on it, 2WD driven type and FSAE 

vehicle type are also selected. For the Aerodynamics data, the values are imported exactly 

as they were calculated on the section 4. Note that the lift coefficient in OptimumLap is 

referred as downforce coefficient and as this model was calculated with a positive lift 

coefficient, it has to be imported with a minus sign. 

 

 

 

 

 

 

 

 

 

 

 

The simulation of the car with these characteristics at the FS Germany 2016 

Endurance Track resulted in a total lap-time of 48.50sec. The figure below shows the speed 

of the car at each part of the track. The blue color represents speeds below 56km/h while 

the red color show speeds above 70km/h. The maximum speed of the car at the straight 

line of the track is calculated at 111km/h, while the average speed of the car during corners 

is calculated at 42km/h. 

 

 

 

 

 

 

 

 

 

Figure 196: General & Aero Data used for the 
model without aerodynamics devices 

Figure 197: Speed of the car without aerodynamic devices along the track 
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Figure 199: General & Aero Data used for 
the model with undertray & sidepods 

The next figure shows the downforce that the car generates along the whole track. 

As the CFD results shown on section 4, the car without any aerodynamic devices generates 

lift at all speeds, thus all the values of downforce below have a minus sign. So, at that case 

the blue color represents values of lift above 85N, while the red color shows values of lift 

below 40N. Although this model generated lift at all parts of the track it is interesting how 

at the minority of the track the lift force is not exceeding the value of 65N, which means 

that the car without any aerodynamic devices generates a small amount of lift which can 

be easily overcome with a use of an aerodynamic package. 

 

 

 

 

 

 

 

 

 

 

5.2. Undertray & Sidepods 
 

The next model to be simulated in the Endurance track of FS Germany 2016 is the 

car with the undertray and sidepods. The aerodynamic package that is mounted at this 

model add an extra weight of 11kg, which resulted in a total vehicle mass of 330kg. Again, 

the FSAE vehicle type and 2WD Driven type is used. The rest aerodynamic data are 

imported exactly as they were calculated at section 4. Note that at this case the lift 

coefficient of -0.668 is inserted as a positive value while it is referred as Downforce 

coefficient and the frontal area has also changed. 

Figure 198: Generated Downforce of the car without aerodynamic devices along the track 
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  The simulation of this model with OptimumLap at the Endurance track 

resulted in a total lap-time of 47.84sec which is about 0.7sec faster comparing to the 

previous model. The final speed of the car at the straight line of the track is about the same 

as previous, but the average cornering speed of the vehicle is now slightly increased at 

43km/h. Considering that at this case the car is by 11kg heavier it seems that with an 

addition of only an aerodynamic undertray with a lift coefficient of -0.668 the car can 

increase its corner speed and reduce lap-time by half a second. However, if the undertray 

could be constructed in a more efficient way with better handling of the composite 

materials its total weight could be about the half and the results would be significantly 

improved. 

 

 

 

 

 

 

 

 

 

 

The next figure shows again the amount of downforce that is generated at each point 

of the track during the race. The color distribution is completely different than the previous 

model, as now the car generates downforce and not lift. The blue color shows values of 

downforce below 111N, which the car reach them only the corners of the track where it is 

moving with the average speed of 4km/h. The red color on the other hand represents 

values of downforce from 168N and above, which are reached when the car its moving on 

the straights and reaches speeds higher than 70km/h.  

  

 

  

Figure 200: Speed of the car with undertray & sidepods along the track 

Figure 201: Generated Downforce of the car with undertray & sidepods along the track 
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5.3. Full Aerodynamic Package 
 

The final model to be tested and analyzed is the car with a full aerodynamic package 

mounted on it. The addition of the front and rear wing resulted in a total vehicle mass of 

338kg, while again the vehicle type is situated as FSAE and the driven type is selected 2WD. 

The aerodynamics data that are inserted are according to the CFD results that were 

calculated earlier. The frontal area is significantly increased at 1.019m2 while the lift 

coefficient of 1.898 is inserted again with a positive sign. 

 

 

 

 

 

 

 

 

 

 

The simulation of the car with a full aerodynamic package at the endurance track of 

FS Germany 2016 resulted in a total lap-time of 46.67sec which is 1.2sec quicker than the 

previous model. The figure below shows the different values of speed that the car is 

fluctuated at along the whole track. With blue color are represented the values of speed 

that are beneath 57km/h and are mainly shown at the corners of the track. The average 

speed of the vehicle along the corners is about 46km/h which is significantly higher than 

in the previous models and this is due to the extra downforce that is acting on the tires. 

The red color on the other hand shows values of speed over 75km/h which are shown at 

the straights of the track, where the car reaches also its final speed of 112km/h. 

 

 

 

 

 

  

Figure 202: General & Aero Data used for the 
model with a full aerodynamic package 

Figure 203: Speed of the car with a full aerodynamic package along the track 
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Finally, the figure below shows the amount of downforce that the car produces as 

its passes from different parts of the track. The blue color is used for values of downforce 

that are lower than 400N and is found mainly on the corners of the track where the car 

moves with its average speed of 46km/h. The red color represents downforce values that 

are higher than 600N and are shown on the straight lines of the track where the car reaches 

speeds over 80km/h. It is interesting how this model can produce the same amount of 

downforce (100N) at its lower speed of 30km/h, with the previous model on its average 

speed of 43km/h, while the maximum amount of downforce at 112km/h is three times 

higher (1,128N) than it was on the model with the undertray. So, it can be clear how the 

downforce can significantly affect the performance of the car and improve its efficiency. 

 

 

 

 

 

 

 

 

 

 

 

5.4. Track Results Comparison 
 

At this section are presented numerous graphs and charts for different 

characteristics of the models on the track, like the generated downforce and drag, the 

corner speed and engine throttle and power versus a variety of other factors. These charts 

can help the user to make better conclusions in detail for the efficiency of each model and 

compare the advantages of each case. Furthermore, some graphs are used in order to 

compare the CFD results that were calculated for each model with the real-time track data. 

Every model is represented with a different color in all charts. The purple color is used for 

the car with a full aerodynamic package, the orange color is used for the model with the 

undertray and sidepods, while the blue color represents the car without any aerodynamic 

devices as it is shown on the figure below. 

 

 

  

Figure 204: Generated Downforce of the car with a full aerodynamic package along the track 

Figure 205: Colors used to represent each model on the next charts 
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The first graph highlights the variance of the generated amount of downforce with 

speeds between 30 - 115km/h. This chart can confirm the accuracy of the CFD results, as 

according to the graph it can be seen that the variance line of each model follows the same 

tendency as it was predicted with the CFD calculations. In more detail the values of 

downforce of all the models at each speed along the track are really close to the calculated 

values of the CFD simulations, at 60km/h the model without devices generates a 

downforce at about -35N (CFD prediction: -38N), the undertray model generates about 

100N (CFD prediction: 108N), while the full aero model generates 350N (CFD prediction: 

342N). Furthermore, at the final speed of 100km/h the model without devices generates 

a downforce of -98N (CFD prediction: -101N), the undertray model generates about 226N 

(CFD prediction: 220N), while the full aero model generates 847N (CFD prediction: 852N). 

 

 

 

 

 

 

 

 

 

 

The same figure can be seen for the drag, where the tendency is similar to the CFD 

predictions. In detail, at 60km/h the model without devices generates a drag force at about 

51N (CFD prediction: 58N), the undertray model generates about 78N (CFD prediction: 

81N), while the full aero model generates 350N (CFD prediction: 342N). Furthermore, at 

the final speed of 100km/h the model without devices generates a downforce of -98N (CFD 

prediction: -101N), the undertray model generates about 226N (CFD prediction: 220N), 

while the full aero model generates 146N (CFD prediction: 148N). 

  

Figure 206: Downforce generated at each case for speeds between 30 - 115km/h 

Figure 207: Drag generated at each case for speeds between 30 - 115km/h 
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The next graph, highlights data about the aerodynamic downforce of each model, as 

the car passes from different radius corners and straights along the track. It is clear again 

how the car with a full aerodynamic package generates the highest amount of downforce 

during the corners while on the straight line (0m Radius) it a reaches an amount of 

downforce about three times higher than the model with the undertray. For corners with 

radius between 200 - 1500m this difference in downforce is still the same and is the reason 

why the car with a full aerodynamic package reaches higher speeds while cornering. 

 

 

 

 

 

 

 

 

 

 

 

The graph below has again data about the generated downforce of each model, but 

at this case it shows values of downforce along the whole distance of the track. At this 

diagram, the differences between the amount of downforce at each case can be seen in 

more detail, as it is clear that at each part of the track either on straights or corners the car 

with a full aerodynamic package generates significantly higher amounts of downforce. It 

also interesting how more rapidly increases the downforce of the full aero model as the 

car exits the corners, comparing to the other two cases.  

Figure 208: Downforce generated at different corner radius for each case 

Figure 209: Downforce generated at different parts of the track for each case 
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On the two charts below, it is shown the impact of the higher amount of downforce 

in the performance of the vehicle and the engine too. The first graph show the variation of 

the vehicle speed with the corner radius for each model. This figure confirms that the extra 

generated amount of downforce at the full aero model car really increase the performance 

of the tires, which results in an increase of the cornering speed. As it shown below for 

corners with radius between 200 - 1500m the full aero model reaches speeds that are 

about 3-5km/h higher than in the other models and which is the main reason why this 

model has the fastest lap time, as the whole track is mainly consisted of corners. 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the last graph below highlights data about the percent of the engine throttle 

along the different radius corners. It can be seen that again the model with a full 

aerodynamic package requires the least percent of throttle during corners, in comparison 

to the other two case were the equivalent percent is about 8-10% higher. This difference 

in throttle is due to the fact that in the case of the full aero model, the increased downforce 

improves significantly the performance of the tires, thus with less throttle the car can keep 

its cornering speed at higher levels.   

Figure 210: Vehicle speed at different corner radius for each case 

Figure 211: Percent of Engine Throttle at different corner radius for each case 
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SOFTWARE USED 
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QUOTE 

 
«If you can keep your head when your boss is wrong 

and blaming it on you. 

If you can trust your CFD predictions when everyone doubt you, 

but make allowance for their ignorance too. 

If you can wait for residuals to fall and not be tired of waiting 

or when experimentalists lie about you, don’t deal in lies, 

or on getting good predictions don’t give way to pride 

and yet your pressure contours don’t look too good, nor appear too pretty. 

If you can do a transient calculation and not let it be your master. 

If you can plan the next project  and not make dates your aim. 

If you can meet with Convergence and Divergence and treat these two imposters 

just the same. 

If you can bear to hear the truth you’ve spoken twisted by non-specialists to 

make a trap for fools 

or watch a geometry and meshing session you gave your life to …crash, broken, 

and stop and build it up again with the next Release. 

If you can make a billion cell automotive simulation, 

and risk it all on a 1000 core parallel run. 

And on crashing start again at the beginning, 

and never breathe a word about the cost. 

If you can force your heart and nerve to understand CFD jargon, 

and comprehend when there is nothing in you, 

except the will which says “what does it mean?”. 

If neither SST, K-omega nor Direct Navier-Stokes can hurt you. 

If you can fill all your CPU’s 

with 100 Gigabyte’s worth of simulations to run. 

You must be using a suite of CFD software and everything that’s in it, 

and what is more… you are a CFD Engineer my son!» 

 

 

 

 

Then just iterate, iterate, iterate, make one change at a time, study 

your results carefully and remember, when it comes to Aerodynamics, 

common sense doesn’t work… 
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