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A hallmark of clear cell renal cell carcinoma (ccRCC) is the presence of intracellular

lipid droplets (LD) and it is assumed that phosphatidic acid (PA) produced by phos-

pholipase D (PLD) plays some role in the LD formation. However, little is known

about the significance of PLD in ccRCC. In this study, we examined the expression

levels of PLD in ccRCC. The classical mammalian isoforms of PLD are PLD1 and

PLD2, and the levels of both mRNA were higher at the primary tumor sites than in

normal kidney tissues. Similarly, both PLD were significantly abundant in tumor cells

as determined by analysis using immunohistochemical staining. Importantly, a higher

level of PLD was significantly associated with a higher tumor stage and grade.

Because PLD2 knockdown effectively suppressed the cell proliferation and invasion

of ccRCC as compared with PLD1 in vitro, we examined the effect of PLD2 in vivo.

Notably, shRNA-mediated knockdown of PLD2 suppressed the growth and invasion

of tumors in nude mouse xenograft models. Moreover, the higher expression of

PLD2 was significantly associated with poorer prognosis in 67 patients. As for genes

relating to the tumor invasion of PLD2, we found that angiogenin (ANG) was posi-

tively regulated by PLD2. In fact, the expression levels of ANG were elevated in

tumor tissues as compared with normal kidney and the inhibition of ANG activity

with a neutralizing antibody significantly suppressed tumor invasion. Overall, we

revealed for the first time that PLD2-produced PA promoted cell invasion through

the expression of ANG in ccRCC cells.
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1 | INTRODUCTION

Renal cell carcinoma (RCC) accounts for approximately 3% of all

adult malignancies and there has been a continuous increase of

new cases during the most recent 10-year period.1,2 Approximately

one-quarter of patients with RCC present with locally advanced or

metastatic disease at diagnosis, and approximately 20%-40% of

those with confined primary tumors will develop metastatic disease.3

Although new target therapies and immunotherapies have emerged,1

their efficacy is not sufficient to overcome advanced RCC.

Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidyl-

choline into phosphatidic acid (PA) and choline. The classical mam-

malian isoforms of PLD are PLD1 and PLD2.4,5 As a lipid second

messenger, PA produced by PLD plays roles in numerous essential
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cellular functions, such as vesicular trafficking, exocytosis, autophagy

and the regulation of cellular metabolism.6 A hallmark of clear cell

RCC (ccRCC), the most common histological type of RCC, is the pres-

ence of intracellular lipid droplets (LD), which consist of a neutral lipid

core containing triglycerides and cholesterol-esters surrounded by a

phospholipid monolayer.7 Although it has been reported that PA pro-

duced by PLD promotes the formation of intracellular LD,8-10 Wetter-

sten et al11 showed that LD was lost in the high grade Fuhrman 4 or

spindle cell type. Interestingly, a previous report showed that the

expression and the activity of PLD2 was elevated in ccRCC;12 how-

ever, little is known about the roles of PLD in the tumor progression

of ccRCC.

We previously reported the significant roles of PLD1 in the

tumor microenvironment of a mouse melanoma lung metastasis

model, showing that the administration of the PLD inhibitor led to a

significant reduction of tumor angiogenesis and metastases.13

Importantly, the elevated expression and the activity of PLD were

associated with cancer proliferation,14 survival,15 invasion and metas-

tasis15-18 in a series of human cancers.19

Based on the above findings, we have examined the roles of

PLD in the tumor progression of ccRCC. In this report, it was

revealed that PLD2 promoted tumor growth and the invasion of

ccRCC cells, and the level of PLD2 in a tumor specimen was signifi-

cantly correlated with the prognoses of patients. Moreover, we clari-

fied a new mechanism of PLD2-mediated cell invasion through the

induction of angiogenin (ANG). Our results suggest that PLD2 might

become a new therapeutic target in the treatment of advanced RCC.

2 | MATERIALS AND METHODS

2.1 | Patients and clear cell renal cell carcinoma
samples

Samples of primary sites from 67 patients who received radical or par-

tial nephrectomy were obtained at Tsukuba University Hospital

between 2006 and 2015 under the protocols approved by the Ethics

Committee of Tsukuba University. These samples were used as forma-

lin-fixed and paraffin-embedded (FFPE) tissue sections of the primary

sites. In 52 of 67 patients, frozen tissue samples of the cancer and

adjacent normal region were available for the primary sites. These

samples were used for extracting RNA. Among 67 patients, 16 under-

went metastasectomy or biopsy of the metastatic site. These samples

were used for FFPE tissue sections of the metastatic sites.

The patient characteristics of tumor stages were assigned

according to the TNM staging of the Union for International Cancer

Control.20 Pathological grades were classified according to the 4-

tiered Fuhrman grading system.21 The characteristics of the patients

are summarized in Table S1.

2.2 | Immunohistochemistry

Formalin-fixed and paraffin-embedded specimens were cut into

4-lm-thick sections. The sections were deparaffinized and

rehydrated. For antigen retrieval, the sections were pretreated by

microwave for 21 minutes in a citric acid buffer. After the antigen

retrieval procedure, endogenous peroxidase activity was blocked

with 3% H2O2 for 25 minutes, and the slides were incubated with

the primary antibody at 4°C overnight. The immunohistochemical

reaction was visualized using the secondary antibody Histofine

Simple Stain MAX PO (Nichirei Bioscience, Tokyo, Japan) with

diaminobenzidine as the chromogen. The primary antibodies were

listed in Table S2. To evaluate the protein expression of PLD1

and PLD2, the staining intensities of tumor cells were stratified

into high and low subgroups. When tumor cells were strongly

stained in not only cell membrane but also cytoplasm, we defined

this as high expression. The other cases were defined as low

expression.

2.3 | Cell culture

293T was purchased from RIKEN BioResource Center (Ibaraki,

Japan). SKRC52 and SKRC59 cells were kindly gifted by Dr JG Old

(Memorial Sloan Kettering Cancer Center, NY, USA). These cell lines

were cultured in RPMI 1640 medium or DMEM supplemented with

10% FBS at 37°C and a 5% humidified CO2 atmosphere.

2.4 | Quantitative RT-PCR

Gene expression levels were quantitatively measured using a 7500

Fast Real-Time PCR machine with Fast SYBR Green Master Mix

(Applied Biosystems). Hypoxanthine phosphoribosyltransferase 1

(HPRT) was used as an internal control. The primer sequences were

listed in Table S3.

2.5 | Western blot analysis

Western blot analysis was carried out as described previously.22

The primary antibody concentrations used for western blot analysis

are listed in Table S4. As a secondary antibody, anti-rabbit or anti-

mouse immunoglobulin G, HRP-linked whole donkey Ab (GE

Healthcare), was used at 1:10 000. Western blots were visualized

with ImmunoStar Zeta (Wako, Tokyo, Japan) using a Fujifilm LAS-

4000 imager (Fujifilm, Tokyo, Japan). b-actin was used as an inter-

nal control.

2.6 | siRNA-mediated expression knockdown
experiments

SKRC52 and SKRC59 cells were transfected with 25 nmol/L of ON-

TARGETplus human PLD1 SMART pool siRNA (L-009413-00-0005,

Dharmacon, Thermo Fisher Scientific, Rockford, IL, USA), 25 nmol/L

of ON-TARGETplus human PLD2 SMART pool siRNA (L-005064-00-

0005) or 25 nmol/L of ON-TARGETplus non-targeting pool siRNA

(D-001810-10-05) using Lipofectamine RNAiMax Reagent (Invitro-

gen). Pooled siRNA containing 4 different target sequences was used

to eliminate the possibility of off-target effects.
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2.7 | Construction of plasmids

The shRNA for PLD2 characterized in previous reports23,24 were

subcloned into the lentiviral vector pLKO.1. The oligonucleotide

sequences used in the construction of the shRNA vector are listed

in Table S5.

2.8 | Lentivirus production and transduction

Lentiviruses were generated in 293T cells by cotransfecting 4

plasmids including the lentiviral vector (pLKO-shControl or pLKO-

shPLD2), pMDLg/pRRE, pRSV-Rev and pMD2.G using Lipofec-

tamine 2000 Reagent (Invitrogen). At 48 hours post-transfection,

virus-containing supernatants were collected for infection. For viral

transductions, the pLKO-shControl or pLKO-shPLD2 lentiviruses

were incubated with SKRC52 and SKRC59 cells overnight at 37°C

in a humidified cell culture incubator. Twenty-four hours post-

infection, cells were selected in the presence of 1.5 lg/mL

puromycin.

2.9 | Cell proliferation and invasion assays

Cell proliferation was assessed by MTT assay using Cell Counting

Kit-8 (Dojindo, Kumamoto, Japan) according to the manufacturer’s

protocol. Briefly, cells were seeded into 96-well plates, and 10 lL of

WST-8 was added after 24, 48, 72 and 120 hours. The OD were

measured after 1-hour incubation. Cell invasion was assayed using a

BioCoat Matrigel invasion chamber (#354480, Corning, Corning, NY,

USA) according to the manufacturer’s protocol. A cell suspension of

5 9 105 in 0.5 mL medium was added into each well of the upper

chamber. As a chemoattractant, 3 nmol/L EGF was used. After

22 hours, the non-invading cells that remained on the upper surface

of the membrane were removed by scraping. The number of invasive

cells was then counted under a microscope. The assays were per-

formed in triplicate in at least 2 independent experiments, and 5

fields were counted per transwell filter.

2.10 | Reagents

Neutralizing antibodies against human ANG were purchased from

R&D Systems (AB-265-NA). The neutralizing antibody or control
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F IGURE 1 The abundance of PLD1 and
PLD2 in corresponding normal and tumor
tissues. A, The level of PLD1 or PLD2
mRNA expression in clinical specimens. P-
value was assessed by the Wilcoxon rank
sum test. B,C, Representative images of
immunohistochemical staining of PLD1 (B)
or PLD2 (C). (1) Normal tissue. (2) Primary
tumor exhibiting low staining intensity. (3)
Primary tumor exhibiting high staining
intensity. (4) Negative control of (3)
stained with a control antibody (rabbit
IgG). Scale bar, 50 lm

TABLE 1 Correlation of PLD1 protein expression and
clinicopathological factors

High PLD1 (n = 18) Low PLD1 (n = 49)
P-valuen (%) n (%)

Age: mean � SD 67.4 � 12.4 66.0 � 10.8 .5474

Clinical stage

1-2 4 (22.2) 29 (59.2) .0121*

3-4 14 (77.8) 20 (40.8)

Pathological stage

T1-2 4 (22.2) 32 (65.3) .0023*

T3-4 14 (77.8) 17 (34.7)

Grade

G1-2 3 (16.7) 35 (71.4) .0001*

G3-4 15 (83.3) 14 (28.6)

*Statistically significant difference (P < .05).
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goat IgG was added into each well of the upper chamber for cell

invasion assays. The dose of the neutralizing antibody for use was

determined based on the results of the cell invasion assays at each

dose (Figure S1).

The recombinant human ANG was purchased from R&D Systems

(AB-265-AN-050). The recombinant was diluted at 10 lg/mL in

0.1% BSA. The concentration of use was determined at 0.5 lg/mL

as described previously.26 The recombinant or control (0.1% BSA)

were added into each well of the upper chamber for cell invasion

assays.

2.11 | Lipid preparation

The phospholipid 1,2,-dioleyl phosphatidic acid (DOPA) was pur-

chased from Avanti Polar Lipids (840875P, Alabaster, AL, USA). Lipid

preparation was carried out as described previously.27 Briefly, DOPA

was prepared from powder in PBS with 0.5% BSA for a final concen-

tration of 1 mmol/L. This solution was sonicated and extruded.

Lipids were added to the cells for a final concentration of 300 nmol/

L for 4 hours. Previous reports have shown that this form of PA is

cell soluble.27 Post-treatment cells were harvested and subjected to

quantitative RT-PCR (qRT-PCR).

2.12 | Node mouse xenograft assays

Female 6 to 8-week-old Balb/c nude (nu/nu) mice were purchased

from Charles River Laboratories Japan (Yokohama, Kanagawa, Japan).

For subcutaneous xenograft assays, 5 9 106 cells were injected sub-

cutaneously into the right flanks, and the tumor volumes were mea-

sured once a week. After 10 weeks, the animals were killed and the

xenograft tumors were excised. Orthotopic xenograft was performed

as described previously.28 After the kidney was exposed,

1 9 106 cells were injected into the renal parenchyma. The mice

were killed at 12 weeks after injection. The presence of a tumor

mass was finally confirmed by H&E staining. All animal studies were

approved by the Animal Experiment Committee of the University of

Tsukuba, and all the experiments were performed in accordance with

the guidelines of the University of Tsukuba’s Regulations of Animal

Experiments.

2.13 | Statistical analysis

Data are expressed as means � SD. All statistical analysis was per-

formed using JMP 10 software (SAS Institute, Cary, NC, USA). The

significance of the differences between the 2 groups was assessed

by Student’s t test, Fisher’s exact test and the Wilcoxon rank sum

test. Survival curves were constructed using the Kaplan–Meier

method, and the difference between the curves was evaluated using

the log-rank test. To identify the prognostic factors for overall sur-

vival (OS), PLD2 expression and clinicopathological variables were

evaluated by Cox’s proportional hazard regression model. P-

values < .05 were considered statistically significant.

Additional materials and methods are detailed in Data S1.

3 | RESULTS

3.1 | Expression levels of PLD1 and PLD2 are
associated with tumor progression of clear cell renal
cell carcinoma

To clarify the roles of PLD1 and PLD2 in the tumor progression of

ccRCC, we first examined the abundance of both phospholipases in

corresponding normal and tumor tissues in all 52 cases. It was

revealed that both PLD1 and PLD2 mRNA were significantly more

highly expressed in tumor tissues than normal tissues (Figure 1A). In

tumor specimens, both were positively stained mainly in the cyto-

plasm of ccRCC cells. In normal specimens, heterogeneous staining of

PLD1 and PLD2 were observed in renal tubules (Figure 1B,C). The

staining intensities of tumor cells were subsequently stratified into

high and low subgroups, and the association between the expression

of PLD proteins and clinicopathological factors was examined. It was

revealed that higher PLD1 expression was significantly associated

with worse clinical stage as well as higher tumor stage and Fuhrman

grade (Table 1). Similarly, high PLD2 expression was significantly cor-

related with worse clinical stage and higher tumor grade (Table 2).

Collectively, these results indicated that higher expression of PLD

was related to the disease progression of ccRCC.

3.2 | Inhibition of PLD2 effectively suppressed cell
proliferation and tumor invasion of clear cell renal
cell carcinoma in vitro

To clarify the roles of PLD in the disease progression of ccRCC, we

performed siRNA knockdown of PLD1 or PLD2 in 2 different VHL�/�

ccRCC cell lines, SKRC52 and SKRC59, respectively. The effects of

each siRNA were evaluated by western blot analysis, and the specific

inhibition was confirmed (Figure 2A). Then, we performed MTT assays

to examine the effect of the siRNA knockdown of each protein on the

cell proliferation. As shown in Figure 2B, the knockdown of PLD2

TABLE 2 Correlation of PLD2 protein expression and
clinicopathological factors

High PLD2 (n = 20) Low PLD2 (n = 47)
P-valuen (%) n (%)

Age: mean � SD 68.7 � 11.0 65.4 � 11.2 .3511

Clinical stage

1-2 4 (20.0) 29 (61.7) .0029*

3-4 16 (80.0) 18 (38.3)

Pathological stage

T1-2 6 (30.0) 30 (63.8) .0159*

T3-4 14 (70.0) 17 (36.2)

Grade

G1-2 7 (35.0) 31 (66.0) .0304*

G3-4 13 (65.0) 16 (34.0)

*Statistically significant difference (P < .05).
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significantly inhibited the cell proliferation of both cells compared to

control siRNA. In contrast, no significant effect was observed in the

cell proliferation of cells treated with siRNA against PLD1.

We also evaluated the effect of both proteins on the cell migra-

tion by using a Matrigel invasion assay (Figure 2C). It was revealed

that knockdown of PLD2 significantly suppressed cell invasion in

both cells. Notably, PLD2 knockdown more effectively suppressed

tumor invasion in both cells compared with PLD1 knockdown. Then,

we examined the effect of 2 different PLD inhibitors, FIPI and

NFOT, on the cell proliferation and invasion of ccRCC cells. Both

inhibitors possessed anti-cancer effects for breast cancer cells in

recent studies.14,17 FIPI acted as a dual PLD inhibitor and NFOT

exhibited a specific inhibitory effect only for PLD2. Both inhibitors

significantly suppressed cell proliferation and invasion compared with

the control (Figures S2,S3). NFOT, the PLD2-specific inhibitor, sup-

pressed cell invasion effectively as compared with FIPI. These results

further supported the findings that PLD2 mainly promotes cell prolif-

eration and invasion in renal cancer cells.

3.3 | Knockdown of PLD2 in clear cell renal cell
carcinoma cells suppresses tumor growth and
invasion in vivo

Next, we examined the roles of PLD2 in the tumor progression of

ccRCC in vivo. For this purpose, SKRC52 cells with stably knocked-

down PLD2 were established using 2 different shRNA (#1 and #2)

and both successfully reduced the level of PLD2 without affecting

that of PLD1 (Figure 3A). Importantly, the shRNA-mediated knocking

down of PLD2 suppressed the tumor growth when the cells were

implanted subcutaneously (Figure 3B). We also examined the Ki-67

index in xenograft tumors infected with scramble or PLD2 shRNA,

and it was revealed that SKRC52/PLD2 shRNA cells exhibited a sig-

nificantly lower Ki-67 index than did SKRC52/scramble cells (Fig-

ure 3C). These results further supported the possibility that PLD2

augmented the tumor growth in vivo. Then, we performed ortho-

topic xenograft assays to examine whether PLD2 also regulates the

invasive ability of SKRC52 cells in vivo. Pathological examination of
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F IGURE 2 The effects of the siRNA
knockdown of phospholipase D (PLD) on
cell growth and invasion in clear cell renal
cell carcinoma (ccRCC) cell lines. A,
Western blot analysis of SKRC52 and
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PLD2 small interfering RNA. Whole-cell
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tumors implanted in an orthotopic site revealed that SKRC52/PLD2

shRNA cells hardly invaded into normal tissue, although SKRC52/

scramble cells extensively infiltrated into the parenchyma of the nor-

mal kidney (Figure 3D). These results indicate that PLD2 augmented

the cell invasion ability in those cells in vivo.

3.4 | Elevated expression of PLD2 is associated
with poor prognosis in clear cell renal cell carcinoma

Based on the above results, we examined the association between

the expression of PLD2 and the prognosis of patients to elucidate

the clinical impact of this protein in ccRCC. A Kaplan-Meier analy-

sis revealed that the high expression of PLD2 was significantly

associated with a poor patient prognosis (P = .002, Figure 4A). We

also examined whether PLD2 expression would be an independent

RCC prognostic factor. We employed univariate and multivariate

Cox regression analyses with clinical stage, grade, microvascular

invasion and PLD2 expression. Both univariate and multivariate

analyses revealed that PLD2 expression was an independent prog-

nostic marker for RCC patient OS (Table 3). Because PLD2 pro-

moted the tumor invasion of ccRCC in mice xenograft models, we

also examined the abundance of this protein in tumor cells invading

microvessels. Intriguingly, abundant expression of PLD2 was

observed in the site of microvascular invasion in 8 out of 10 cases

(Figure 4B). Moreover, the protein expression levels of PLD2 in the

metastatic sites were significantly elevated compared with the pri-

mary sites (P < .01, Figure 4C,D). Collectively, these results strongly

suggested that PLD2 significantly affected the prognosis of patients
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through the regulation of the invasion ability and tumor metastasis

of ccRCC.

3.5 | Angiogenin regulated by lipase activity of
PLD2 promotes cell invasion in renal cancer cells

Finally, we examined the mechanisms of PLD2 in promoting the

tumor invasion and metastasis of ccRCC. Toward this end, we com-

pared the expression profile of SKRC52/scramble and SKRC52/

PLD2 shRNA cells (#1 and #2) using a qRT-PCR array. Among 168

genes involved in angiogenesis and tumor invasion, we identified 12

genes whose expression was altered at least 1.5-fold by both shRNA

(Table S6). Among them, ANG was identified as a gene downregu-

lated by 2 different PLD2 shRNA. This result was confirmed by qRT-

PCR analysis using another set of primers and the cell line in

SKRC59 (Figure 5A). Importantly, the mRNA levels of ANG were ele-

vated in ccRCC as compared with normal kidney (Figure 5B).

To clarify the significance of ANG in the invasion ability and tumor

metastasis of ccRCC, we examined the effects of this protein in cell

invasion by using a Matrigel invasion assay. Inhibiting ANG activity
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F IGURE 4 PLD2 protein levels are correlated with poor prognosis and are elevated in the sites of metastasis in patients with clear cell renal
cell carcinoma (ccRCC). A, Kaplan-Meier curves of the overall survival of 67 ccRCC patients, with regard to the PLD2 protein level of primary
tumors. P-value was assessed by the log-rank test. B, PLD2 staining of primary tumor and microvascular invasion site in a representative patient
with ccRCC. Scale bar, 200 lm. C, Representative images comparing PLD2 immunohistochemical staining between primary and metastatic sites in
patients with ccRCC. (1) Lung metastasis. (2) Brain metastasis. (3) Retroperitoneal metastasis. Scale bar, 50 lm. D, Comparison of PLD2 protein
expression between primary and metastatic sites in 16 patients with ccRCC. P-value was assessed by Fisher’s exact test

TABLE 3 The univariate and multivariate analysis of prognostic factors on overall survival

Cox proportional hazard model
(univariate)

Cox proportional hazard model
(multivariate)

HR 95% CI of HR P HR 95% CI of HR P

Clinical stage (1-2 vs 3-4) 17.6 3.38-323 .0001* 2.97 0.10-91.1 .4889

Grade (1-2 vs 3-4) 17.8 3.45-326 <.0001* 8.99 1.18-202 .0318*

Microvascular invasion 9.38 2.46-61.2 .0006* 1.37 0.07-8.52 .7840

PLD2 (low vs high) 11.4 2.39-30.7 .0007* 4.33 1.25-18.5 .0204*

*Statistically significant difference (P < .05).
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with a neutralizing antibody significantly suppressed cell invasion in

SKRC52 and SKRC59 cells transfected with scramble shRNA (Fig-

ure 5C). Conversely, treatment with recombinant human ANG signifi-

cantly promoted the cell invasion ability of both cells with shRNA

mediated knockdown of PLD2 (Figure 5D). We further examined if

the expression of ANG was promoted by PLD2 through the produc-

tion of PA in renal cancer cells. Although ANG mRNA was downregu-

lated by the knockdown of PLD2, the reduced expression was

augmented by the treatment with PA in the same cells (Figure 5E).

Collectively, these results demonstrated that PLD2-produced PA

promotes cell invasion in ccRCC cells, at least in part through regu-

lating ANG.

4 | DISCUSSION

Phospholipase D expression and activity have been previously

reported to be elevated in various human cancers such as colorectal,

gastric, breast and kidney cancers when compared with adjacent

non-cancer tissues.12,19,29 The elevated expression of PLD2 was cor-

related with poor prognosis in colorectal cancer.29 Moreover, previ-

ous studies demonstrated that PA produced by PLD promoted

cancer proliferation, invasion and metastasis by various activated cell

signaling pathways such as AKT and ERK signaling.6,14-18

In the present study, we showed that the elevated expression of

PLD2 was associated with poor prognosis, and that PLD2 ablation

and PLD2 small-molecule inhibitors suppressed the cell proliferation

and invasion of renal cancer cells in vitro. We also revealed that

PLD2 knockdown inhibited tumor growth and invasion using human

renal cancer subcutaneous and orthotopic xenograft models. In

keeping with previous reports, we confirmed that PLD2 regulated

the phosphorylation of AKT and ERK in human renal cancer cells

(Figure S4). These findings suggest that AKT and ERK signaling acti-

vated by PLD2-produced PA might contribute to promoting tumor

progression in ccRCC.

In the present study, we focused on ANG as the downstream tar-

get of PLD2 in genes related to angiogenesis and tumor invasion

based on the results of PCR-array analysis. ANG, a 14-kDa member

of the pancreatic ribonuclease superfamily, was originally isolated

from the conditioned medium of HT-29 human colon adenocarci-

noma cells.30 ANG is a multifunctional secreted protein, which has

been previously reported to play important roles in proliferation,

invasion and metastasis coupled with the mediation of angiogenesis

in several types of human cancer.31-34 Yoshioka et al35 showed that

the protein levels of ANG were elevated in human cancers including

ccRCC by immunohistochemical analysis. Previous studies further

showed that the levels of serum ANG in patients with ccRCC were

elevated in comparison with healthy controls.36,37 However, the reg-

ulation and potential roles of ANG remain to be elucidated in ccRCC.

In the present study, we revealed for the first time that the produc-

tion of PA by PLD2 regulated the expression of ANG, and that ANG

promoted cell invasion in renal cancer cells.

As shown in Table S6, we also identified collagen type VIII

alpha-1 chain (COL8A1) as a gene downregulated by 2 different

PLD2 shRNA. This result was confirmed by qRT-PCR analysis using

another set of primers in 2 different ccRCC cell lines (Figure S5).

COL8A1 is one of the 2 alpha chains of collagen type VIII, classified

as a non-fibrillar short-chain collagen. Zhao et al38 demonstrated

that siRNA-targeted COL8A1 inhibits proliferation and invasion in

hepatocarcinoma cells. Because mRNA of COL8A1 were elevated in

ccRCC specimens as compared with normal kidney (Figure S6), we

speculate that COL8A1 is also related with ccRCC progression

through promoting cell proliferation and invasion.

Previous reports demonstrated that not only PLD2 but also

PLD1 promoted tumor invasion in several cancers.6,18,39 Because

high PLD1 expression was associated with higher tumor stage and

worse clinical stage in patients with ccRCC (Table 1), we examined

the roles of PLD1 in the regulation of ANG. In fact, it was revealed

that the expression of ANG was suppressed by the knockdown of

PLD1 (Figure S7). We also examined the abundance of this protein

in the metastatic sites and compared it with that in the primary sites.

However, the protein expression levels of PLD1 in the metastatic

sites were not significantly elevated compared with the primary sites

in our series of RCC samples (Figure S8). Collectively, PLD2 might

play main roles in the tumor metastasis of ccRCC among 2 different

PLD.

In the present targeted therapies for metastatic RCC, tyrosine

kinase inhibitors (TKI) suppress the downstream targets of hypoxia-

inducible factor (HIF) pathways such as VEGF and PDGF receptors.

Although the tumor volume is decreased by TKI, there are few cur-

able patients. As shown in the present study, PLD2 promoted a vari-

ety of cancer progression-related signaling in renal cancer cells. In

addition, the expression of PLD2 was higher in microvascular inva-

sion and in the metastatic sites of patients with ccRCC. Therefore,

PLD2 is a new potential target of treatment for metastatic RCC. The

development of targeting PLD isoenzymes with small molecule inhi-

bitors has steadily proceeded from 2000s since PLD family members

were implicated in a variety of human diseases such as viral infec-

tions, neurodegeneration and cancer.40 Although there remain some

problems such as off-target activity and PLD isoform selectivity in

F IGURE 5 PLD2 promotes cell invasion through the regulation of ANG in SKRC52 and SKRC59 cells. A, Evaluation of the mRNA
expression of ANG of SKRC52 and SKRC59 cells infected with scramble or PLD2 shRNA. P-value was assessed by Student’s t test (*P < .05,
**P < .01, ***P < .001). B, The mRNA expression of ANG in 52 clear cell renal cell carcinoma (ccRCC) patients. P-value was assessed by
Wilcoxon rank sum test. C, Analysis of cell invasion ability after treatment with ANG-neutralized antibody to control IgG. P-value was assessed
by Student’s t test (*P < .05, **P < .01, ***P < .001). D, Analysis of cell invasion ability after treatment with recombinant human ANG protein
to control (0.1%BSA). P-value was assessed by Student’s t test (*P < .05, **P < .01, ***P < .001). E, The effect of PA on the mRNA expression
of ANG in SKRC52 and SKRC59 infected with PLD2 shRNA. P-value was assessed by Student’s t test (*P < .05, **P < .01, ***P < .001)
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PLD inhibitors, new efficacious PLD2 inhibitors for metastatic RCC

might emerge in future.

In conclusion, we revealed that the elevated expression of PLD2

was associated with a poor prognosis and promoted tumor growth

and invasion in ccRCC. We also demonstrated the new finding that

PLD2-PA-ANG signaling promotes cell invasion in renal cancer cells.

Our results provide the first evidence that targeting PLD2 is a good

candidate for future therapeutic and clinical applications against

metastatic RCC.
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