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Plants possess highly sensitive mechanisms that monitor environmental stress levels
for a dose-dependent fine-tuning of their growth and development. Differences in plant
responses to severe and mild abiotic stresses have been recognized. Although many
studies have revealed that glutathione can contribute to plant tolerance to various
environmental stresses, little is known about the relationship between glutathione and
mild abiotic stress, especially the effect of stress-induced altered glutathione levels
on the metabolism. Here, we applied a systems biology approach to identify key
pathways involved in the gene-to-metabolite networks perturbed by low glutathione
content under mild abiotic stress in Arabidopsis thaliana. We used glutathione
synthesis mutants (cad2-1 and pad2-1) and plants overexpressing the gene encoding
γ-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway.
The plants were exposed to two mild stress conditions—oxidative stress elicited
by methyl viologen and stress induced by the limited availability of phosphate. We
observed that the mutants and transgenic plants showed similar shoot growth as
that of the wild-type plants under mild abiotic stress. We then selected the synthesis
mutants and performed multi-platform metabolomics and microarray experiments to
evaluate the possible effects on the overall metabolome and the transcriptome. As
a common oxidative stress response, several flavonoids that we assessed showed
overaccumulation, whereas the mild phosphate stress resulted in increased levels of
specific kaempferol- and quercetin-glycosides. Remarkably, in addition to a significant
increased level of sugar, osmolytes, and lipids as mild oxidative stress-responsive
metabolites, short-chain aliphatic glucosinolates over-accumulated in the mutants,
whereas the level of long-chain aliphatic glucosinolates and specific lipids decreased.
Coordinated gene expressions related to glucosinolate and flavonoid biosynthesis also
supported the metabolite responses in the pad2-1 mutant. Our results suggest that
glutathione synthesis mutants accelerate transcriptional regulatory networks to control
the biosynthetic pathways involved in glutathione-independent scavenging metabolites,
and that they might reconfigure the metabolic networks in primary and secondary
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metabolism, including lipids, glucosinolates, and flavonoids. This work provides a
basis for the elucidation of the molecular mechanisms involved in the metabolic and
transcriptional regulatory networks in response to combined low glutathione content
with mild oxidative and nutrient stress in A. thaliana.

Keywords: glutathione, mild abiotic stress, oxidative stress, phosphorus limiting stress, metabolomics,
transcriptomics

INTRODUCTION

Plants can respond to environmental changes and enhance their
ability to tolerate biotic and abiotic stresses, including oxidative
and nutrient stress (Mittler, 2002, 2006; Vinocur and Altman,
2005; Schachtman and Shin, 2007; Qin et al., 2011). Because
reactive oxygen species (ROS) produced via plant metabolism
under various stress conditions induce oxidative stress, plants
need to reprogram and reconfigure their metabolism to survive
(Moller et al., 2007; Baxter et al., 2014). Differences in plant
responses to severe and mild abiotic stress have been documented
(Kreps et al., 2002; Skirycz et al., 2010; Claeys and Inze, 2013;
Dubois et al., 2013, 2015; Claeys et al., 2014). These differences
suggest that plants possess highly sensitive systems that monitor
environmental stress levels for a dose-dependent fine-tuning of
their growth and biological processes in response to stress.

Glutathione is one of the important molecules that protect
cells against ROS and maintain intracellular redox homeostasis
(Marrs, 1996; Noctor et al., 2012). It has two main stable
forms—thiol (GSH) and disulfide (GSSG)—and is synthesized
from its constituting amino acids via two steps catalyzed
by γ-glutamylcysteine synthetase (GSH1) and glutathione
synthetase (GSH2) (Dixon et al., 2002). GSH1 is localized in
plastids; GSH2 is primarily localized in the cytosol, but it
can also be found in the chloroplast (Wachter et al., 2005).
A complete loss-of-function of GSH1 results in embryo lethality
(Cairns et al., 2006), whereas loss-of-function of GSH2 results
in a seedling-lethality phenotype (Pasternak et al., 2008). Some
mutants with defects in the GSH1 gene (Cobbett et al., 1998;
Vernoux et al., 2000; Ball et al., 2004; Parisy et al., 2007) harbor
nucleotide transitions or deletions in a region of the putative
catalytic domain of GSH1 (Parisy et al., 2007). Compared to
that in wild-type (WT; Columbia; Col-0) plants, two GSH1
mutants—cadmium-sensitive 2-1 (cad2-1) (Cobbett et al., 1998)
and phytoalexin-deficient mutant 2-1 (pad2-1)—showed lower
glutathione content (40 and 22%, respectively) (Parisy et al.,
2007). The former mutant was found to be cadmium sensitive
(Howden et al., 1995), whereas the latter was highly susceptible to
Pseudomonas syringae and Phytophthora brassicae (Cobbett et al.,
1998). The importance of glutathione in plant defense has been
well documented (for example, see reviews by Noctor et al., 2012;
Queval and Foyer, 2012).

In addition to the above central functions of glutathione, many
studies have revealed that glutathione content can contribute
to the promotion of tolerance to various environmental
stresses (Noctor et al., 1998; Zhu et al., 1999; Gullner et al.,
2001; Gomez et al., 2004; Liedschulte et al., 2010). Among
the key glutathione-associated genes in Arabidopsis thaliana,

glutathione-S-transferase (GST) plays an important role in the
mechanisms underlying plant responses to abiotic stresses,
including drought and salt (Ji et al., 2010; Qi et al., 2010;
Jha et al., 2011; Xu et al., 2015), cold (Huang et al.,
2009), and cadmium (Dixit et al., 2011). Other researchers
(Chen et al., 2012; Cheng et al., 2015) determined whether
altered glutathione levels affect the abiotic stress tolerance in
Arabidopsis and found that an endo- and exogenous increase
in glutathione levels in GST-knockout Arabidopsis elicited
both drought and salt stress tolerance; pad2-1 exhibited a
survival rate of approximately 50% under stress conditions.
In addition to the important role of phytohormones such as
salicylic acid (SA), jasmonic acid (JA), and ethylene in plant
defense responses, the relationship between glutathione and
phytohormones has been considered to play a pivotal role
during abiotic stress. Combined transcriptome and proteome
analysis of pad2-1 subjected to combined osmotic and cold stress
revealed that glutathione confers stress tolerance to plants via a
process associated with lignin, phenylpropanoid, and ethylene
biosynthesis (Kumar et al., 2015). Subsequent studies showed
that glutathione induces the transcription of genes associated
with ethylene biosynthesis in a WRKY33-dependent manner
(Datta et al., 2015). Comparative transcriptome and proteome
analyses by using ethylene-insensitive, abscisic acid (ABA), and
glutathione mutants suggested a crosstalk among ethylene, ABA,
and glutathione in inducing stress-responsive genes and proteins
to mitigate osmotic and cold stress in Arabidopsis (Kumar et al.,
2016). However, little is known about the relationship between
glutathione and mild abiotic stress, especially nutrient stress.
Furthermore, the effect of stress-induced altered glutathione
levels on global primary and secondary metabolism has not been
studied.

In this study, we applied a systems biology approach
to identify key pathways involved in the gene-to-metabolite
networks affected by low glutathione content under mild abiotic
stress in Arabidopsis. We used GSH1 mutants (cad2-1 and
pad2-1) and GSH1-overexpressing plants and exposed them to
two conditions—mild oxidative stress elicited by methyl viologen
(MV) and mild stress induced by the limited availability of
phosphate (P-lim). We observed no severe visual phenotypes
(e.g., chlorosis) in the assayed plants and found that glutathione
synthesis mutants and the transgenic plants showed growth
similar to that of Col-0 plants under the two mild abiotic
stresses. Metabolite and transcript profiling and glutathione
quantification showed that the GSH1 mutants exposed to
MV-induced oxidative and P-lim stresses survived by modulating
their metabolic and transcriptional networks associated with
secondary metabolism.
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MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis ecotype Columbia (Col-0) was used. The mutant
cad2-1 (Cobbett et al., 1998) was used as an allelic mutant of pad2-
1 (Parisy et al., 2007). Further, 35S::GSH1 transgenic plants, 7-5
and 13-6 (Cheng et al., 2015), were also used to evaluate the shoot
phenotypic changes. Plants other than those exposed to MV stress
and P-lim were grown in Murashige and Skoog agar medium.
Sterilized seeds were stratified at 5◦C for 2 days and then sown on
Murashige and Skoog medium containing 1% sucrose. Oxidative
stress was produced by adding 0.05 µM MV to the Murashige
and Skoog medium. The low phosphorus condition was created
using P-lim medium in which the phosphate concentration was
20% of that in the Murashige and Skoog medium. Seedlings
of Arabidopsis Col-0 and mutants were cultivated in growth
chambers at 22◦C under 16-h light/8-h dark conditions for
18 days (light strength, 80 µmol·m−2

·s−1 of the photosynthetic
photon flux). GSH1-overexpression lines were cultivated under
the same condition for 20 days.

Metabolite Profiling
Harvested aerial parts of WT and mutant plants (n = 8,
biological replicates) were frozen immediately in liquid nitrogen
to quench enzymatic activity. Primary and secondary metabolites
were extracted according to previously established methods; we
performed GC-TOF-MS analysis (Kusano et al., 2007a,b) for
primary metabolites and LC-q-TOF-MS analysis for secondary
metabolites (Matsuda et al., 2009; Nakabayashi et al., 2014)
and lipids (Kimbara et al., 2013). The details of metabolite
profiling are shown in Supplementary Document S1. Principal
component analysis (PCA) was performed using SIMCA-P
12.0 (UmetricsAB1) with log10 transformation and autoscaling.
For stress treatment- and genotype comparison, differentially
abundant metabolites were identified using linear regression
models in the LIMMA method (Smyth, 2005), which yields
false discovery rate (FDR)-adjusted p-values for multiple testing
problems (Benjamini and Hochberg, 1995). The significance level
was set at FDR < 0.05. Our data are reported in a manner
compliant with the guidelines recommended by Fernie et al.
(2011), as shown in Supplementary Table S4. VENNY2 was used
to generate the Venn diagram.

Glutathione Quantification
Plant samples (n = 3, biological replicates) were frozen
immediately in liquid nitrogen and stored at −80◦C until
analysis. Each frozen sample was extracted with a 20-fold
amount of solvent [methanol/water (8:2 v/v)]. Aerial parts were
mashed for 6 min in a 2-mL tube by using a mixer mill
(MM400; Retsch, Haan, Germany) at a frequency of 20 Hz. The
mixture was centrifuged at 15,000 rpm, and then supernatant
containing glutathione was taken out. The supernatant was
used for the quantification of GSH and GSSG by using ultra
high performance liquid chromatography (UHPLC-MS; Nexera,

1http://www.umetrics.com
2http://bioinfogp.cnb.csic.es/tools/venny/

Shimadzu, Kyoto, Japan) coupled with a triple quadrupole mass
spectrometer (TSQ Quantum Ultra Thermo; Fisher Scientific,
San Jose, CA, United States). UHPLC separation was performed
on an Acquity UPLC BEH C18 column (50 mm × 2.1 mm,
1.7 µm particle size; Waters) maintained at 40◦C. Other LC
conditions were as follows: flow rate, 0.4 mL/min; injection
volume, 5 µL (GSH) and 20 µL (GSSG); solvent system,
acetonitrile (0.1% formic acid):water (0.1% formic acid); and
gradient program, 2:98 v/v at 0–3 min, 98:2 at 7–10 min.
For mass spectrometry (MS) detection, heated-electrospray
ionization was used as the ionization source in the positive
mode. Other conditions were as follows: sheath gas pressure, 50
arbitrary units; ion sweep cone gas, 0 arbitrary units; vaporizer
temperature, 450◦C; aux gas pressure, 20 arbitrary units; and
spray voltage, 3,000 V. Selected reaction monitoring (SRM)
was used to quantify GSH and GSSG. SRM was conducted
by scanning the product ions at m/z 162.070 obtained from
the fragmentation of the parent ions at m/z 308.167 of GSH.
SRM was conducted by scanning the product ions at m/z
231.010 obtained from the fragmentation of the parent ions
at m/z 613.244 of GSSG. The collision energy for MS/MS was
27 V. Identities were confirmed by comparing the MS/MS
spectra with authentic standards [reduced glutathione (GSH,
97.0%) and oxidized glutathione (GSSG, 98.0%)] purchased
from Tokyo Chemical Industry (Tokyo, Japan). Statistical data
analysis and plotting were performed using Microsoft Excel
and the unpaired Welch’s t-test by using the R-function
t.test().3

RNA Isolation, Microarray Hybridization,
and Data Analysis
We performed analysis of mRNA as described previously
(Kusano et al., 2011). Briefly, total RNA was extracted from the
18-day-old aerial part of each mutant and WT sample using the
RNeasy plant mini kit (Qiagen4) according to the manufacturer’s
instructions. Three independent hybridizations were performed
using the Affymetrix ATH1 GeneChip microarray, according to
the manufacturer’s instructions (Affymetrix).5 A single biological
replicate was used for each hybridization. Preprocessing and
normalization/summarization of all CEL files were performed
using R, the Bioconductor (Gentleman et al., 2004), and
a robust multi-chip average (RMA) (Bolstad et al., 2003;
Irizarry et al., 2003). The quality of the GeneChip data
was assessed using the AFFYPLM package (Bolstad et al.,
2005). The annotation of each gene in the CSV file ATH1-
121501.na31.annot.csv (downloaded in April 2012)6 released
by Affymetrix was used. For stress treatment- and genotype
comparison, differentially expressed genes were detected using
linear regression models in the LIMMA method (Smyth, 2005),
which provides FDR-adjusted p-values for multiple testing
problems (Benjamini and Hochberg, 1995). The significance

3http://www.r-project.org/
4http://www.qiagen.com
5http://www.affymetrix.com
6http://www.affymetrix.com/Auth/analysis/downloads/na31/ivt/ATH1-121501.
na31.annot.csv.zip
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level was set at FDR < 0.05. Genevenn7 was used to generate the
Venn diagram.

Functional Enrichment Analysis
The transcript profiles were visualized using MAPMAN
(v3.5.1R2) (Thimm et al., 2004) to inspect coordinated changes
in metabolism and other biological process. GO enrichment
analysis was performed using Cytoscape (v3.2.1) App BiNGO
(Maere et al., 2005). The resulting enriched GO categories were
visualized using the Enrichment Map (v2.2.0) (Merico et al.,
2010; Isserlin et al., 2014) and AutoAnnotate (Kucera et al.,
2016).

RESULTS

GSH1 Mutants and 35S::GSH1
Transgenic Plants Showed Similar
Growth to That of WT Plants under Mild
Abiotic Stress Conditions
Previously, we reported that, under no-stress condition, the shoot
phenotype of the pad2-1 mutant was similar to that of WT plants
(background, Col-0), but showed significant changes in the levels
of primary metabolites (Fukushima et al., 2014) (Supplementary
Figure S1 and Table S1). To further understand the relationship
between the GSH1 mutation related to glutathione content and
mild abiotic stress, we selected two GSH1 mutants, pad2-1
and cad2-1, and two GSH1-overexpressing plants, 7-5 and 13-6
(Cheng et al., 2015). We first assessed the phenotypic changes
of individual WT plants and the GSH1 mutants under different
concentrations of MV (Supplementary Figure S2). Our current
experimental setup was based on these pilot experiments and
findings from MV treatment to isolate MV-resistant mutants
in the previous studies [for example, see (Fujibe et al., 2004;
Sukrong et al., 2012; Egert et al., 2013)]. GSH1 mutants and
GSH1-overexpressing plants were grown on untreated medium
(control condition), on medium containing a low concentration
(0.05 µM) of MV compared to that used in previous studies [e.g.,
10 µM MV treatment in AtGenExpress (Kilian et al., 2007)],
or on P-lim medium that had a phosphate concentration of
20% of that in the medium (Supplementary Figure S3). We
evaluated the shoot phenotypic changes in the GSH1 mutants
(Figure 1) and GSH1-overexpressing plants (Supplementary
Figure S4). No plants exhibited chlorosis and/or necrosis
attributable to treatment with the low MV medium (Figure 1A
and Supplementary Figure S4A). MV treatment of the mutants
and WT plants resulted in an approximately 50% growth
reduction (Figure 1B). The fresh weight of the aerial parts of
the mutants grown under control- and P-lim conditions was
approximately 70% of that of the WT plants. These findings
suggest that, under the no-stress condition, the GSH1 mutations
were silent at the aerial parts, although the mutants were shown
to have impaired lateral root density (Schnaubelt et al., 2013,
2015). Therefore, since the applied stress treatments did not

7http://genevenn.sourceforge.net/vennresults.php

FIGURE 1 | Visual phenotypes, fresh weight of shoots, and GSH and GSSG
levels in WT plants and the allelic mutants of GSH1 (cad2-1 and pad2-1)
grown under three different conditions. Visible phenotypic changes in
18-day-old GSH1 mutants grown on Murashige and Skoog medium
(no-stress), Murashige and Skoog medium containing 0.05 µM methyl
viologen (MV), and low-phosphorus (P-lim) Murashige and Skoog medium (A).
Fresh weight (FW) of aerial parts of WT plants and GSH1 mutants grown
under the three conditions (n = 20, biological replicates) (B). Quantification of
the glutathione content in WT plants and GSH1 mutants grown under the
three growth conditions. Content of the reduced form of glutathione, GSH
(n = 3, biological replicates) (C). Content of the oxidized form of glutathione,
GSSG (n = 3, biological replicates) (D). GSH:GSSG ratio as an indirect
determinant of oxidative stress (E). Each error bar indicates the standard
deviation from the mean. Asterisks represent differences from the control
(significant levels were ∗∗ α = 0.01 and ∗ α = 0.05) by Welch’s t-test. The
letters “a” and “b” represent significant differences compared to that under the
no-stress condition (significant levels were a, α = 0.01 and b, α = 0.05) by
Welch’s t-test.
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result in severe growth inhibition in the assayed plants, we
considered them as mild stress treatments (Figures 1A,B and
Supplementary Figure S2).

The GSH and GSSG contents were lower in the mutant
than in the WT plants under the no-stress condition (GSH,
approximately 20%; GSSG, approximately 50%). Changes in
GSH and GSSG contents differed with stress conditions
(Figures 1C,D). The level of GSH was decreased significantly
in WT plants subjected to MV stress, whereas that of GSSG
was increased (arrows in Figures 1C,D); the GSH and GSSG
contents were almost identical under the P-lim and control
conditions. The two GSH1-overexpressing plants manifested no
changes at the phenotypic level under the no-stress condition
(Supplementary Figure S4A). The fresh weight of the shoot
biomass of the GSH1 mutants, WT plants, and transgenic lines
grown under the two mild stress conditions showed similar
trends (Supplementary Figure S4B). Increased levels of GSH
and GSSG failed to rescue the shoot biomass of the GSH1-
overexpressing plants under the MV condition (Supplementary
Figures S4C,D). The GSH:GSSG ratio can be regarded as an
indirect determinant of oxidative stress; the GSSG level increases
and the GSH:GSSG ratio decreases, when the plant cells are
exposed to oxidative stress (Queval et al., 2007; Noctor et al.,
2012). Under the MV and P-lim conditions, the measured
GSH:GSSG ratio was lower in the two GSH1 mutants than in
the WT plants (Figure 1E). The GSH:GSSG ratio was largely
unaltered in the transgenic lines (Supplementary Figure S4E).
On the other hand, the overexpression transgenic plants showed
high GSH:GSSG ratio under P-lim conditions. Taken together,
our findings suggest that, under both mild abiotic conditions,
neither low nor high concentrations of glutathione elicited
critical changes in the shoot growth and biomass of the
examined plants. In our subsequent analysis, we focused on the
GSH1 mutants to avoid pleiotropic effects from 35S-mediated
overexpression.

Environmental and Genetic Perturbation
in the Metabolic Pathways of the GSH1
Mutants under Mild Abiotic Stresses
To assess the wide range of metabolic impacts attributed to
genotypic differences and types of mild abiotic stresses, we
performed multi-platform metabolite profiling (Supplementary
Table S2). For a visual inspection of the extent of metabolomic
changes under the MV and P-lim stress conditions, we subjected
the metabolite profile data to PCA. On the PCA score scatter
plot (Figure 2A), the samples were clustered according to the
applied abiotic stress conditions, as evidenced by the separation
of PC1. We observed a genotype-dependent separation in
the score scatter plot in the PC1/PC3 or PC2/PC3 direction
(Supplementary Figure S5). These results indicate that global
perturbations due to abiotic stress strongly affected the changes
in the metabolite level of the mutant and WT plants.

We compared the metabolic responses in the metabolite
profiles of the WT plants and GSH1 mutants grown under
the no-stress condition or exposed to MV or P-lim stress.
Under MV-induced oxidative stress, a total of 285 significantly

FIGURE 2 | Summary of metabolite profiling conducted in this study. Principal
component analysis (PCA) of the metabolite profiles of WT plants and
mutants, cad2-1 and pad2-1, exposed to MV and P-lim treatment; integrated
data obtained from multi-platform metabolite profiling were used (n = 8,
biological replicates). The PCA score scatter plot shows that the samples
were clustered according to the corresponding abiotic conditions as
evidenced by the separation of PC1 (A). Venn diagram of MV- (B) and
P-lim-responsive (known) metabolites (C). FDR, false discovery rate.

changed metabolites was identified (Figure 2B), of which 223
were increased and 62 were decreased, respectively, including the
commonly and exclusively accumulated metabolites. In all, 110
metabolite levels increased in the WT plant and GSH1 mutants
after MV treatment, whereas 11 metabolite levels decreased
(Figure 2B). For P-lim, we identified 178 increased and 70
decreased metabolites, respectively. The levels of 41 metabolites
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increased in the 3 genotypes under P-lim condition, whereas
21 metabolite levels decreased (Figure 2C). The number of
significantly altered metabolites between GSH1 mutants and WT
plants under mild abiotic stress was smaller than that of the
treatment (Supplementary Figure S6), indicating consistency
with the results of PCA score plots.

MV-Responsive Metabolites
The differentially accumulated metabolites involved in primary
and secondary metabolism were visualized on a simplified
metabolic map (Supplementary Figure S7). Stress-specific
metabolite alterations against oxidative stress were significantly
increased, for example, γ-amino butyrate (GABA), 2-oxo
glutarate, proline, and putrescine. MV treatment resulted
in a significant increase in the level of sugar and osmolytes.
Sucrose, glucose, fructose, xylose, maltose, arabinose, trehalose,
raffinose, inositol, and galactinol were observed in all the
samples (Supplementary Figure S7A). Notable changes
were observed in metabolite levels associated with secondary
metabolism in the GSH1 mutants and WT plants by MV and
P-lim treatments (Figure 3). Triacylglycerols (TAG) increased
under almost all conditions, whereas phosphatidylcholine
(PC) 34:6 decreased under all conditions. The phospholipids,
34:2 and 34:3 phosphatidylglycerols (PG) and 34:2 and 36:3
digalactosyldiacylglycerols (DGDG), increased after MV
treatment. As for glucosinolates, the level of long-chain aliphatic
glucosinolates [8-MTO (8-methylthio-n-octylglucosinolate)
and 8-MSOO (8-methylsulfinyl-n-octylglucosinolate)] was
remarkably decreased after MV treatment. Antioxidants,
including flavonols and anthocyanins except kaempferol (F2),
were significantly increased across the GSH1 mutants after MV
treatment.

Low Phosphate-Responsive Metabolites
In addition to lowered glucose-6-phosphate and fructose-
6-phosphate levels under P-lim condition in both the WT
and the mutants, several low phosphate-responsive meta-
bolites were identified. Examples include the phospholipids, 36:1
and 36:2 PCs, 36:2 phosphatidylethanolamine (PE), and 34:2 and
34:3 phosphatidylinositol (PI), decreased in the GSH1 mutants
under P-lim condition. In the glucosinolate biosynthesis,
the level of aliphatic glucosinolates, 4-MSOB (4-methylsul
finyl-n-butylglucosinolate), 5-MTP (5-methylthio-n-pentylglu
cosinolate), 5-MSOP (5-methylsulfinyl-n-pentylglucosinolate),
7-MSOH (7-methylsulfinyl-n-heptylglucosinolate), and
8-MSOO (8-methylsulfinyl-n-octylglucosinolate), increased
in the GSH1 mutants under P-lim condition (Figure 3A). In
contrast, P-lim stress elicited a significant decrease in 3-MTP (3-
methylthio-n-propylglucosinolate) in all genotypes/conditions.
P-lim stress also resulted in moderate increases of detected
flavonoids with kaempferol aglycone (F1, F2, F3, and F4) and that
of quercetin (F5) in the GSH1 mutants. There was also opposite
changes in dihydrouracil levels in a genotype/stress dependent
manner. Other metabolites such as the monosaccharides
xylose and arabinose and the disaccharide maltose, tryptophan,
octadecatrienoate, fumarate, and threonine were also increased
under P-lim condition (Supplementary Figure S7A).

GSH1 Mutant-Specific Changes in Metabolite Levels
under Mild Abiotic Stress
A genotype-dependent comparison of the metabolite profiles
of WT plants and GSH1 mutants grown under abiotic stress
conditions is shown in Figure 3B. Compared to that of WT
plants, the metabolite profile of each mutant allele under both
stress conditions exhibited a similar trend in metabolic responses.
Metabolite changes in the biosynthetic pathways of glucosinolates
and anthocyanins in the pad2-1 and cad2-1 mutants were noted;
the flavonol level tended to increase and the level of anthocyanins
was remarkably decreased under both the stress conditions. The
level of low-phosphate responsive kaempferol-type flavonols,
F1 and F4, was higher in the GSH1 mutants than in the WT
plants under P-lim condition. In the mutants subjected to
no-stress and MV conditions, short-chain glucosinolates, 3-MTP
and 3-MSOP (3-methylsulfinyl-n-propylglucosinolate), were
increased and long-chain glucosinolates, 8-MTO and 8-MSOO,
were decreased. The level of metabolites [e.g., 8-MSOO and A11,
one of the major anthocyanin that contains three acyl groups,
namely cyanidin-3-O-[2-O-(2-O-(sinapoyl)-xylosyl)-6-O-(p-O-
coumaroyl)-glucoside]-5-O-[6-O-(malonyl)-glucoside (Tohge
et al., 2005)] downstream of glucosinolate and anthocyanin
pathways was decreased.

Genome-Wide Expression Changes in
Response to Mild Abiotic Stress
Functional Enrichment Analysis
For a better understanding of the metabolic responses to the
imposed stress conditions, we performed transcript profiling
by using microarray analysis. In this experiment, we focused
on pad2-1 as a representative GSH1 allele in transcript
profiling (Supplementary Table S3). To characterize the gene
expression patterns of differentially expressed genes (DEGs) in
the WT and pad2-1 plants subjected to MV or P-lim stress
conditions, we performed gene ontology (GO) enrichment
analysis. By using Enrichment Map (Merico et al., 2010; Isserlin
et al., 2014), we revealed biological processes between stress
treatment and no-stress condition based on hypergeometric
tests of GO terms (Figure 4). The enriched GO terms in
MV-treated vs. no-stress condition for each genotype are
shown in Figure 4A. We also created an enrichment map
showing biological processes between pad2 and WT under
two differential conditions based on hypergeometric tests of
GO term enrichment analysis (Supplementary Figure S8). We
identified GO terms “sulfate assimilation,” “response to heat,”
and “response to temperature stimulus” as well as a cluster-
comprising terms related to “cell wall” and partially related
to “regulation metabolic process” as pad2-1-specific expression
responses to MV treatment (Figure 4A). For the enriched GO
terms in P-lim vs. no-stress, GO terms “response to heat,”
“response to light stimulus,” and “response to radiation” were
enriched in only pad2-1 (Figure 4B). To inspect the expression
level of genes in the primary and secondary metabolism, we
also performed MAPMAN (Thimm et al., 2004) analysis. For
metabolism, remarkable changes were noted for many transcripts
directly or indirectly involved in hormone, secondary, and cell
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FIGURE 3 | Changes in metabolite levels associated with secondary metabolism in the GSH1 mutants and WT after MV and P-lim treatments. (A) Stress treatment
comparison: Log2fold-change in metabolites exposed to the two abiotic stresses. The fold-change is represented by two directed colors; red and blue indicate
increase and decrease, respectively, in the metabolite level elicited by MV treatment or P-lim. (B) Genotype-dependent comparison: Red and blue indicate increase
and decrease, respectively, in the metabolite levels in the mutants vs. WT plants. For abbreviations of the metabolite names, see Supplementary Table S5. n = 8,
biological replicates, ∗FDR < 0.05.

wall metabolism (Supplementary Figures S9–S11). Coordinated
induction of genes for ABA and JA metabolism was noted
in the P-lim treated pad2-1. For secondary metabolism, we
identified coordinated expression for glucosinolate metabolism
as pad2-1-specific response to both mild abiotic stresses. In
addition, there were coordinated changes in transcript levels
associated with phenylpropanoids and phenolics as a pad2-1-
specific response to P-lim. Cell wall modification and pectin
esterases were identified as coordinated pathways in only WT
plants under P-lim condition.

Mild Oxidative- and Low Phosphate-responsive
Genes
Methyl viologen treatment resulted in 87 (WT plants) and
37 (pad2-1) MV-inducible genes (Figure 5A, left). Genes
down-regulated by genetic and environmental perturbations
are shown in Venn diagrams that represent the classification

of genes (Supplementary Figure S12). The stress-inducible
genes included those encoding GST, UDP-glycosyl transferase
(UGT), and cytochrome P450 (CYP), which are associated with
detoxification and transcriptome responses when plants are
exposed to oxidative stress (Dixon et al., 2002). In addition, genes
related to flavonoids [e.g., PRODUCTION OF ANTHOCYANIN
PIGMENT 1 (PAP1)] and glucosinolates [e.g., MYB DOMAIN
PROTEIN 29 (MYB29)/PRODUCTION OF METHIONINE-
DERIVED GLUCOSINOLATE 2 (PMG2)] were up-regulated.

P-lim condition resulted in 93 (WT) and 105 (pad2-1)
low phosphorus-inducible genes (Figure 5A, right). The
inducible genes included SPX1, phosphate starvation-induced
genes (PS2 and PS3), phosphate transporter 1;4 (PHT1;4),
and PHOSPHOCHOLINE PHOSPHATASE 1 (PEPC1), which
are known to be up-regulated during phosphorus deprivation
(Morcuende et al., 2007). As pad2-1-specific transcriptional
responses, genes encoding phosphoenolpyruvate carboxylase
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FIGURE 4 | Enrichment map showing biological processes between stress treatment and no-stress condition based on hypergeometric tests of gene ontology (GO)
terms by using BiNGO software (Maere et al., 2005). The map shows the enriched GO terms in MV-treated vs. no-stress condition (A) and in P-lim vs. no-stress
(B). Enrichment map can be used to compare differential transcriptomic responses to abiotic stress between 2 genotypes (i.e., pad2-1 vs. WT). Nodes represent GO
terms, and links between nodes represent gene overlap between GO terms, resulting in a rapid identification of the major enriched functional categories. Inner circle
size of each node represents the number of DEGs in “comparison 1” (e.g., MV vs. no-stress in WT) within the GO term in a biological process. Node border size
represents the number of DEGs in “comparison 2” (e.g., MV vs. no-stress in pad2) within the GO term in a biological process. Color of the node and border indicate
significance based on the BiNGO FDR of the GO term for “comparison 1” and “comparison 2,” respectively. The red-filled nodes highlight the major GO functional
terms. Link size shows the number of DEGs that overlap between the two connected GO terms (Jaccard coefficient, the cut-off is 0.25). Green links correspond to
both datasets when it is the only colored link. Green links indicate “comparison 1” and blue indicates “comparison 2.” Blue dotted circles represent summarized GO
term clusters based on AutoAnnotate (Kucera et al., 2016). The maps were generated using Cytoscape (v3.2.1) Enrichment Map plugin (Merico et al., 2010; Isserlin
et al., 2014).
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FIGURE 5 | Venn diagrams representing the classification of genes based on microarrays. (A) We identified 87 MV-inducible genes in WT plants and 37
MV-inducible genes in the pad2-1 mutant. We also identified 93 low-P-inducible and 105 low-P-inducible genes in WT plants and the pad2-1 mutant, respectively.
(B) Genotype-dependent up-regulated genes. Under the control condition, MV-treatment, and low P stress condition, we identified 131, 56, and 75 up-regulated
genes, respectively, in pad2-1. We used genevenn (http://genevenn.sourceforge.net/vennresults.php) to draw the diagrams. Differentially expressed genes were
identified using a threshold |log2 fold-change| ≥ 1 and FDR < 0.05.
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kinase (PPCK1 and PPCK2), glutathione transferases (e.g.,
GSTU4, GSTU8, GSTF3), and lipid biosynthesis enzymes [e.g.,
SULFOQUINOVOSYLDIACYLGLYCEROL 2 (SQD2)] were up-
regulated.

We also identified genotype-dependent altered genes. Under
the no-stress condition, 131 up-regulated genes were identified
in pad2-1; their number was 56 after MV treatment and 75
after exposure to low P-stress (Figure 5B). Several pad2-1-
specific expression changes were noted under the different
environmental conditions in genes encoding GSTs, UGTs, CYPs,
heat shock proteins (HSPs), senescence-associated genes (SAGs),
and transcription factors such as ETHYLENE RESPONSIVE
ELEMENT BINDING FACTOR 6 (ERF6) and HEAT SHOCK
TRANSCRIPTION FACTOR A2 (HSFA2).

Transcript Changes in Mild
Stress-Responsive Genes and
Well-Characterized Stress-Responsive
Factors
Among the DEGs, we focused on “marker genes” that are
highly induced by stress treatments (Claeys et al., 2014).
They include marker genes elicited under oxidative stress
[NAC DOMAIN-CONTAINING PROTEIN32 (NAC032) and
ALDO-KETO REDUCTASE 4C9 (AKR4C9)], those induced
by abscisic acid (ABA) [NINE-CIS-EPOXYCAROTENOID
DIOXYGENASE3 (NCED3) and CYP707A3] and dehydration
[LATE EMBRYOGENESIS ABUNDANT-LIKE5 (LEA5), also
known as SAG21], mild osmotic stress markers [MYB51, ERF5,
and WRKY DNA-BINDING PROTEIN33 (WRKY33)], and
genes overexpressed in response to phosphate starvation [SQD1
and SQD2] (Table 1). We found that the expression of the
oxidative stress markers NAC032 and AKR4C9 was remarkably
up-regulated in pad2-1 grown under MV stress and control
conditions. Under P-lim stress, NAC032 and AKR4C9 genes
were up-regulated in WT plants; genotype comparison showed
the up-regulation of the AKR4C9 gene in pad2-1 plants. Marker
gene expressions associated with ABA and mild osmotic stress
were largely unaltered except for LEA5/SAG21 (up-regulated in
pad2-1 under control conditions) and WRKY33 (down-regulated
in pad2-1 by MV treatment). With respect to stress marker
responses to phosphate starvation, both SQD1 and SQD2 genes
were up-regulated in pad2-1 under P-lim stress; the SQD1 gene
was only up-regulated in WT plants.

To assess the changes in other stress-responsive genes,
including well-known transcription factors, in the WT
plants and the GSH1 mutants exposed to abiotic stress, we
investigated the general patterns of gene expression associated
with DREB/CBF (dehydration-responsive-element binding
protein/C-repeat-binding factor) and AREB/ABF (ABA-
responsive element-binding/ABA-responsive element-binding
factor) protein. They play a crucial role in the adaptation to
various stresses (Yamaguchi-Shinozaki and Shinozaki, 2006).
Among DREB/CBF and AREB/ABF genes, the transcript level of
DREB2A was down-regulated (log2 fold-change, approximately
−1) in the WT and pad2-1 plants grown under both stress
conditions. The expression of DREB2A was gradually induced

by H2O2 (Sakuma et al., 2006). Under the MV condition,
the mutants showed slight up-regulation of DREB1A/CBF3,
DREB1C/CBF2, and DREB2A. The expression of AREB2/ABF4 in
the WT and pad2-1 plants was unchanged under the three growth
conditions. An abiotic stress-responsive gene in Arabidopsis
is Responsive to Desiccation (RD) (Yamaguchi-Shinozaki and
Shinozaki, 1993). Both WT and pad2-1 plants showed down-
regulation of RD29A under both stress conditions; the expression
of RD29B in WT and pad2-1 plants was unaltered under the
three conditions (Table 1). The expression of two genes encoding
ZAT12 (Davletova et al., 2005; Vogel et al., 2005) and STZ
(Sakamoto et al., 2004) was markedly higher in the MV-treated
pad2-1 than in WT plants (Table 1).

Integrated Pathway Analysis Reveals
Specific Changes in the Biosynthesis of
Aliphatic Glucosinolates and
Anthocyanins at the Metabolite and
Transcript Levels in Mild Stress-Treated
pad2-1 Mutants
To assess the coordinated responses of glucosinolate and
flavonoid biosynthesis under mild stress conditions, we
performed pathway analysis of combined metabolite and
transcript profile data. The integrated metabolomic and
transcriptomic responses in WT and pad2-1 plants under
the two stress conditions are shown in Figure 6. As pad2-1-
specific metabolite responses, the level of short-chain aliphatic
methylsulphinylalkyl glucosinolates [4-MSOB, and 5-MSOP]
and 6-MSOH (6-methylsulfinyl-n-hexylglucosinolate) was
increased in pad2-1 under both stress conditions; the difference
was a significant but moderate effect size (all the ranges from
0.39 to 0.97 in log2 fold-change) (Figure 6A, left). The level
of 8-MTO and 8-MSOO was decreased by MV treatment,
irrespective of the genotype (all the ranges from −1.37 to −0.56
in log2 fold-change). The level of 5-MTP, 7-MSOH, 8-MTO,
and 8-MSOO was increased in pad2-1 under P-lim condition
(all the ranges from 0.45 to 0.82 in log2 fold-change). Gene
expressions associated with glucosinolate biosynthesis were
up-regulated in pad2-1 grown under abiotic stress conditions.
These included some genes encoding methylthioalkylmalate
synthase (MAM) (Textor et al., 2007), MYB29 (Hirai et al., 2007;
Sonderby et al., 2007; Gigolashvili et al., 2008), branched chain
aminotransferase (BCAT) (Schuster et al., 2006), flavin-containing
monooxygenase (FMO) (Hansen et al., 2007), and other genes
involved in glucosinolate biosynthesis. Under the MV condition,
the transcript levels of these genes were significantly higher in
pad2-1 mutants than in WT plants, except for the MAM gene
(Figure 6B, left). Compared to that in WT plants, the level of
8-MSOO was decreased in pad2-1 mutants under all conditions,
whereas that of 3-MSOP was increased under no-stress and MV
conditions.

In WT and pad2-1 plants, MV treatment triggered the up-
regulation of the transcript levels of dihydroflavonol reductase
(DFR), 2OG-Fe(II) oxygenase, and PAP1 after a remarkable
increase in flavonols and anthocyanins (Figure 6A, right).
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FIGURE 6 | Integrated metabolomic and transcriptomic responses in the glucosinolate and flavonoid pathways of WT plants and pad2-1 mutant exposed to MV and
P-lim stress. (A) Stress-treatment comparison: The log2fold-change in the metabolomic/transcriptomic levels elicited by exposure to MV or P-lim. Red indicates an
increase (up-regulation) by MV or P-lim and blue indicates decrease (down-regulation) in the pad2-1 mutant compared to that in WT plants. (B) Genotype-
dependent comparison: Red and blue indicate an increase and a decrease, respectively, in the metabolite and transcript levels in the mutant compared to that in WT
plants. ∗FDR < 0.05. Abbreviations: Ctrl, control (no-stress) condition; HMT3, homocysteine S-methyltransferase; MAM3/MAM-L, methylthioalkylmalate
3/methylthioalkylmalate-L; SOT17, sulfotransferase 17; BCAT4, branched chain aminotransferase 4; FMO GS-OX3, flavin-monooxygenase glucosinolate
S-oxygenase 3; CYP79F1, cytochrome P450 CYP79F1; MYB29, MYB DOMAIN PROTEIN 29; FMO GS-OX1, flavin-containing monooxygenase glucosinolate
S-oxygenase 1; AOP2, alkenyl hydroxialkyl producing 2; DFR, dihydroflavonol 4-reductase; 2OG-Fe(II) oxygenase, 2-(oxo)glutarate and Fe(II)-dependent oxygenase;
PAP1, production of anthocyanin pigments 1; SRG1, SENESCENCE-RELATED GENE 1; DOGT1, DON-GLUCOSYLTRANSFERASE 1; Kaem F1, Kaempferol-
3,7-O-di-rhamnopyranosid; Kaem F2, kaempferol-3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside; Kaem F3, kaempferol-3-O-alpha-L-rhamnopyranosyl
(1→2)-beta-D-glucopyranoside-7-O-alpha-L-rhamnopyranoside; Kaem F4, kaempferol-3-Galactoside-6′ ′-Rhamnoside-3′ ′ ′ ′-Rhamnoside; Quer F5,
quercetin-3,7-O-alpha-L-dirhamnopyranoside; Quer F6, quercetin-3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside; Antho A5, cyanidin conjugate (A5);
Antho A8, cyanidin conjugate (A8); Antho A10, cyanidin conjugate (A10); Antho A11, cyanidin conjugate (A11); 8-MTO, 8-methylthio-n-octylglucosinolate; 7-MTH,
7-methylthio-n-heptylglucosinolate; 6-MTH, 6-methylthio-n-hexylglucosinolate; 5-MTP, 5-methylthio-n-pentylglucosinolate; 4-MTB, 4-methylthio-n-
butylglucosinolate; 3-MTP, 3-methylthio-n-propylglucosinolate; 8-MSOO, 8-methylsulfinyl-n-octylglucosinolate; 7-MSOH, 7-methylsulfinyl-n-heptylglucosinolate;
6-MSOH, 6-methylsulfinyl-n-hexylglucosinolate; 5-MSOP, 5-methylsulfinyl-n-pentylglucosinolate; 4-MSOB, 4-methylsulfinyl-n-butylglucosinolate; 3-MSOP,
3-methylsulfinyl-n-propylglucosinolate. See also Supplementary Table S5.

As discussed previously (Saito et al., 2008; Fukushima and
Kusano, 2014; Nakabayashi and Saito, 2015), the metabolomic
and transcriptomic responses in the anthocyanin pathway

in Arabidopsis were well correlated under oxidative stress
conditions. In contrast to mild MV-induced oxidative stress,
the increased level of kaempferols mentioned above was not
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correlated with the transcript levels in the pathway under P-lim
condition. Compared to that in WT plants, pad2-1 mutants under
MV and P-lim conditions showed a significant increase in two
genes encoding SENESCENCE-RELATED GENE 1 (SRG1) and
DON-GLUCOSYLTRANSFERASE 1 (DOGT1) in the flavonol
biosynthetic pathway; the level of flavonols was largely unaltered
(Figure 6B, right). When we focused on genotype-dependent
changes, we found that, in the anthocyanin synthetic pathway,
a remarkable decrease in the transcript level of 2OG-Fe(II)
oxygenase and the anthocyanin level in pad2-1 mutant was noted
compared to that in WT plants. Our finding that the anthocyanin
level was lower in the mutant was consistent with that of previous
findings on GSH1-antisense transgenic plants reported by (Xiang
et al., 2001).

DISCUSSION

Impact of Low Glutathione Content and
Visual Phenotypes of GSH1 Mutants and
Transgenic Plants
In this study, we investigated the changes in metabolite and
transcript levels that reflect regulatory networks compensating
for the reduction in the glutathione levels to enable the survival
of GSH1 mutants under two mild abiotic stress conditions.
We chose MV because the reduction of GSSG to GSH plays
an important role in maintaining and regulating the cellular
redox status during oxidative stress induced by MV. GSH1
is localized in plastids (Wachter et al., 2005), and MV is a
fairly specific stimulus for ROS production in the chloroplast
(Noctor et al., 2015). We chose the P-lim condition because
phosphorus is an important component of the phospholipid
membrane in the chloroplast (Hartel et al., 2000; Andersson
et al., 2003; Jouhet et al., 2004; Okazaki et al., 2013). While
phosphorus is also involved in plant growth and metabolism
as one of the major nutrient ions, the molecular basis of
plant adaptation to deal with a low phosphorus environment
has not been completely elucidated. Although the series of
genes and enzymes that are associated with these plant
responses and adaptations (GSH1 is an example) are known,
the comprehensive molecular mechanisms of their regulation
and control are less well understood. Therefore, we applied the
integrated omic approach by using high-throughput molecular
phenotyping to GSH1 mutants grown under mild MV and P-lim
conditions.

GSH1 mutants, cad2-1 (Cobbett et al., 1998) and pad2-1
(Parisy et al., 2007), showed differences in sensitivity to cadmium
and biotic stresses from that of WT plants (Bednarek et al.,
2009; Clay et al., 2009; Schlaeppi et al., 2010). Generally,
glutathione synthesis mutants show shorter primary roots and
lower levels of lateral root density compared to that in WT
plants because of glutathione depletion (Schnaubelt et al., 2015).
Low glutathione levels do not largely affect the shoot phenotypes
of glutathione synthesis mutants under no-stress conditions.
The characterization of leaf area phenotypes by using a high-
resolution phenomic approach showed that glutathione synthesis

mutants, except for an allele of GSH1 mutant called regulator
of APX2 1-1 (rax1-1) (Ball et al., 2004), were not as sensitive
as the WT plants under 1 µM MV treatment (Schnaubelt
et al., 2013). We found that the two GSH1 mutants (cad2-1
and pad2-1), GSH1-overexpressing plants [7-5 and 13-6 (Cheng
et al., 2015)], and WT plants exhibited a similar level of growth
reduction under the mild MV stress condition (Figure 1 and
Supplementary Figure S4). This suggests that neither a low nor
high content of glutathione can compensate for the reduction
in the shoot biomass of Arabidopsis under MV treatment.
In WT plants, the level of GSH was slightly lower in the
MV than in the no-stress condition and the GSSG level was
increased (Figures 1C,D). The GSH:GSSG ratio in WT plants
was similar under the control and P-lim condition, suggesting
that the oxidative stress status was low in both (Figure 1E).
Since glutathione peroxidase catalyzes the changes from GSH
to GSSG, tracing the GSH:GSSG ratio by measuring GSH and
GSSG might yield a specific marker of oxidative stress, e.g.,
increased H2O2 metabolism (Queval et al., 2007; Noctor et al.,
2012).

Effects of Combined Low Glutathione
and Mild Abiotic Stress on Metabolism in
Arabidopsis
Our metabolite and transcript profiling revealed distinctive
metabolic and transcriptional responses against two mild abiotic
stresses. Genetic perturbation of metabolic responses in the WT
plants and the two allelic mutants subjected to oxidative stress
by MV clearly showed a specific enhancement in metabolite
production in the sugar and flavonoid metabolism (Figure 3
and Supplementary Figure S7). This type of stress might
result in an altered metabolic status to compensate for the
reduced ROS scavenging ability by reprogramming the sugar
and flavonoid metabolism to produce specific antioxidant
metabolites that consist of aglycone with sugar conjugates,
i.e., flavonols and anthocyanins, as a common oxidative stress
response. We observed that our P-lim condition resulted in
increased levels of specific flavonol-glycosides, kaempferol 3-O-
rhamnoside-7-O-rhamnoside (F1), kaempferol 3-O-[glucosyl(1
→ 6)glucoside] 7-O-rhamnoside (F4), and quercetin 3-O-
rhamnoside-7-O-rhamnosides (F5). Previous transcript- and
flavonoid profiling demonstrated that the LATERAL ORGAN
BOUNDARY DOMAIN (LBD) gene family of transcription
factors (LBD37, LBD38, and LBD39) regulate the late steps of
anthocyanin-specific biosynthesis and flavonol glycosides [F1
to F6, see (Tohge et al., 2005)] derived from kaempferol or
quercetin were largely unaltered in the LBD-overexpression
or mutant seedlings irrespective of nitrogen supply (Rubin
et al., 2009). Another report also demonstrated that flavonoid
overaccumulation [e.g., flavonols (F1, F2, F3, F5, and F8) and
anthocyanin] was important to enhanced tolerance to oxidative-
and drought stresses (Nakabayashi et al., 2014). Together these
observations suggest that specific flavonols and anthocyanins
play a distinct role in mitigating abiotic stress in Arabidopsis.

Changes in the GSH level under each stress condition (MV
or P-lim vs. control) were almost identical in WT plants and the
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mutants (Figure 1 and Supplementary Figure S7). Antioxidants
such as ascorbate and glutathione play a central role in
plant defense under oxidative stress conditions (for example,
see Foyer and Noctor, 2009). Conversely, phytochelatins,
polymerized to form GSH, protect plants from heavy metal
toxicity (Xiang et al., 2001; Schat et al., 2002). In general,
GSH is maintained at a high concentration in the sulfur
assimilation pathway (Saito, 2000, 2004). Glucosinolates and
phytochelatins are downstream metabolites in the pathway.
No accumulation of phytochelatins was noted in the cad2-1
mutant (Jozefczak et al., 2015). Our metabolite profiling showed
that, with the exception of 8-MTO and 8-MSOO, the level of
glucosinolates was higher under both stress conditions than
under no-stress in pad2-1 and cad2-1 mutants (Figures 3A, 5A,
left). The accumulation patterns of glucosinolates under the
applied stress conditions might be explained by metabolic
perturbation resulting in a decrease of phytochelatin and
an increase of glucosinolate levels to compensate for the
reduced glutathione level against mild oxidative stress.
Glucosinolates might protect against oxidative stress in the
GSH1 mutants.

As mentioned above, our results imply that coordinated
responses of glucosinolate and flavonoid biosynthesis at
the metabolite and transcript levels are associated with the
plant response to MV-induced oxidative stress and to stress
elicited by P-lim (Figure 6). We found that, in the GSH1
mutants, a short-chain aliphatic glucosinolate (3-MSOP)
was over-accumulated under mild oxidative stress, and the
level of long-chain aliphatic glucosinolates was decreased
(Figures 3B, 6B, left). Glucosinolate biosynthesis involves the
breakdown of methionine to produce short-chain glucosinolates
that harbor three carbons in their moiety (3C-glucosinolates) in
the first round of glucosinolate chain elongation. Subsequently,
4C- and long-chain glucosinolates are synthesized by further
rounds of elongation (Field et al., 2004). These elongation
reactions are mediated by genes depicted in Figure 6 (left).
The increase in the 3-MSOP level together with a decrease
in the level of long-chain glucosinolates might be due to
the gap and could result in the production of glucosinolates
exhibiting different chain lengths. By using the insect herbivore
Spodoptera littoralis, Schlaeppi et al. (2008) found that
the pad2-1 mutant exhibited a reduction of two 3C- and
4C-glucosinolates, 4-methylsulfinylbutylglucosinolate and
indolyl-3-methylglucosinolate, and that their reduction was
correlated with the reduced GSH level (approximately 20% of
that in WT plants). In addition, glutathione has possible roles
as an s atom donor for glucosinolates (Noctor et al., 2012). It
could be a reason of the decrease of long-chain glucosinolate
level in pad2-1 mutants. In the flavonoid biosynthetic pathway
in pad2-1 mutants, the decrease in the anthocyanin level is likely
due to a reduction in the transcript level of genes encoding
2OG-Fe(II) oxygenase and PAP1 (Figure 6B, right). Under
the control condition, the accumulation patterns of GSH and
anthocyanins were roughly correlated in Arabidopsis (Xiang
et al., 2001). Our results suggest that the correlation between
GSH content and anthocyanin level is regulated at the transcript
level.

Identification of Key Pathways
Associated with the Gene-to-Metabolite
Networks Perturbed by Low Glutathione
Content under Mild Abiotic Stress
In this study, we imposed mild stress conditions to obtain a
better understanding of the fundamental basis of plant responses
to abiotic stress. Changes in the GSH:GSSG ratio reflected their
oxidative stress status under the assayed conditions (Figure 1).
Clauw et al. (2015) who used an automated phenotyping
system and genome-wide transcriptome analysis based on RNA
sequencing showed that six Arabidopsis accessions exhibited
common and specific response to mild drought stress (Clauw
et al., 2015). Our comparative transcript profiling of the GSH1
mutants and WT plants revealed common as well as specific stress
responses, particularly against mild oxidative stress induced by a
low concentration of MV and against mild stress elicited by low
phosphorus (Table 1, Figure 5, and Supplementary Figure S12).
We also evaluated the specific changes in transcript levels in
response to environmental and genetic perturbations (Figure 5).
We showed that stress-inducible genes included those encoding
specific GSTs, UGTs, or CYPs that were associated with a well-
known detoxification and transcriptome response when plants
are exposed to oxidative stress. Our transcriptome results are
in agreement with previous findings obtaining by conducting
expression analysis of known “severe” oxidative stress-related
genes (Dubreuil-Maurizi et al., 2011). However, we were able to
find the pad2-specific transcript and metabolic responses under
mild oxidative stress; an example is related to glucosinolate
biosynthesis. The pad2-1 mutant clearly reprograms the cellular
metabolic networks and the transcriptome in response to the
applied mild abiotic stress, but whether they can be reversible
is unclear and needs further studies. Very severe stress causes
visible symptoms in plant growth and development, for example,
stunted growth, light yellow or green leaves, and rolled leaves.
Such phenotypic changes generally affect metabolite profiles
(for example, see Fiehn et al., 2000). In addition, we were
able to see significant metabolic fluctuation even under the
strictly controlled conditions (Weckwerth et al., 2004; Kusano
et al., 2007a). Combined metabolite- and transcript profiling has
important implications for the diagnostic characterization of the
“mild” stress level and fine-tuning molecular responses in plants.

WRKY-type transcription factors play an important role
in the response to biotic and abiotic stress and are also
important components of a plant signaling pathway that
controls developmental processes (Eulgem et al., 2000; Ulker
and Somssich, 2004; Rushton et al., 2010). Interplay among
three types of group I WRKY proteins, WRKY33, WRKY25,
and WRKY26, is crucial for promoting heat and salt tolerance
in Arabidopsis (Li et al., 2011). Arabidopsis sigma factor-
binding proteins (SIB1 and SIB2) stimulate the DNA binding
activity of the WRKY33 transcription factor in plant defense (Lai
et al., 2011). MV treatment also induces WRKY33 expression
(Zheng et al., 2006; Miller et al., 2008). Our microarray
experiment showed remarkable down-regulation of WRKY33
gene expression in pad2-1 by mild MV treatment (Table 1).
Cross-talk between glutathione and phytohormones is also
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important for abiotic stress responses in Arabidopsis. Datta and
colleagues showed that glutathione regulates the transcription
levels of genes involved in ethylene biosynthesis via WRKY33
(Datta et al., 2015). Ethylene is known to regulate a wide range
of plant processes, including growth, ripening, and responses to
environmental stress (Kieber, 1997; Guo and Ecker, 2004; Klee,
2004; Yoo et al., 2009; Wang et al., 2013). As genotype-dependent
altered genes and pad2-1-specific responsive genes, we detected
changes in transcript levels of genes, including GSTs, UGTs,
CYPs, HSPs, and SAGs, and transcription factors such as ERF6
and HSFA2. Our findings suggest that WRKY33 protein plays a
vital role either as positive or negative transcriptional regulators,
perceiving direct or indirect signal transduction in different
ways under mild oxidative stress, though detailed regulatory
mechanisms are still unclear.

The Relationship between Known Stress
Marker Genes and Low Glutathione
Content
Although the glutathione biosynthetic pathway can be considered
as a key component in the sulfur assimilation pathway (Saito,
2000, 2004; Kopriva, 2006; Takahashi et al., 2011), except for the
gene encoding SUFE2 that was up-regulated in pad2-1 compared
with that in WT plants under all conditions, we observed no
significant changes in the transcript level of genes involved in this
pathway. Unlike our MV treatment and P-lim condition, earlier
transcriptome analysis of cadmium-treated plants showed the
induction of genes associated with sulfur assimilation reduction
and glutathione pathways in Arabidopsis roots (Herbette et al.,
2006). During oxidative stress elicited by MV and under P-lim
conditions, DREB1A, DREB1B, DREB1C, and DREB2A genes
were slightly up-regulated in pad2-1, but not in WT plants
(Table 1). This suggests that DREB/CBF factors contribute, at
least partly, to plant survival by increasing resistance under
the imposed mild stress conditions. DREB2A interacts with the
Radical-Induced Cell Death1 (RCD1) protein (Jaspers et al., 2010;
Vainonen et al., 2012) that is involved in programmed cell death
signaling and regulates plant stress responses (Overmyer et al.,
2000; Ahlfors et al., 2004). The rcd1 mutant exhibits MV and UV-
B tolerance (Fujibe et al., 2004). UV-B also elicits oxidative stress,
resulting in changes in photomorphogenesis, photosynthesis,
membranes, and secondary metabolism (Landry et al., 1995;
Mittler, 2002; Frohnmeyer and Staiger, 2003; Kusano et al.,
2011). Our current understanding of the molecular mechanisms
controlling programmed cell death (PCD) in plants is limited,
particularly with regard to how signaling by ROS drives/regulates
the changes in expression leading to PCD (Kragelund et al., 2012).
These mechanisms have not yet been identified. Genes encoding
ZAT12 and STZ were also up-regulated in pad2-1 under both
stress conditions (Table 1). ZAT12 is related to the control of
cold-responsive gene expression and to the adaptation of plants
to a freezing environment (Vogel et al., 2005). STZ is related
to the Cys2/His2-type zinc-finger transcriptional repressor that
involves drought stress tolerance (Sakamoto et al., 2004). These
findings suggest that ZAT12 and STZ are also involved in plant
responses to mild oxidative and low phosphorus stress.

CONCLUSION

Glutathione is a critical molecule that protects plant cells against
ROS and is one of the important antioxidants in abiotic stress
responses in plants. Despite efforts focused on elucidating
the relationship among glutathione content, biosynthesis, and
abiotic/biotic stress, understanding of low glutathione-mediated
plant responses to mild rather than severe oxidative and nutrient
stress remains incomplete. In this study, we assessed the effects
of combined low glutathione with mild oxidative and low
phosphorus stress on the metabolism in Arabidopsis. This study
presents integrated metabolomics and transcriptomics analysis
of glutathione depletion mutants, or GSH1 mutants (cad2-1
and pad2-1), in Arabidopsis in response to mild MV-induced
oxidative and low phosphate stress. The data presented here
suggest that sensitivity to mild oxidative stress induced by a
low concentration of MV in the mutant of the GSH1 gene is
similar to that of WT plants in terms of plant shoot growth.
Our broad metabolite profiling showed that several flavonoids
overaccumulated as a common oxidative stress response, whereas
increased levels of flavonols with specific kaempferol- and
quercetin-glycosides were observed as a common mild phosphate
stress response. In addition to a significant production of
sugar, osmolytes, and lipids as mild oxidative stress-responsive
metabolites, we identified opposite alteration between short-
chain- and long-chain aliphatic glucosinolates in the GSH1
mutants. Genome-wide transcriptome analysis supports the
metabolite responses by detecting coordinated gene expressions
related to glucosinolate and flavonoid biosynthesis in the
pad2-1 mutant. We also hypothesize that pad2-1 mutants
accelerate transcriptional regulatory networks to control the
biosynthetic pathways involved in glutathione-independent
scavenging metabolites, and that they might reconfigure the
metabolic networks in the primary and secondary metabolism of
compounds, including lipids, glucosinolates, and flavonoids. The
findings of our study provide a basis for the elucidation of the
molecular mechanisms involved in the transcriptional regulation
and reprogramming of metabolic networks in response to mild
oxidative and nutrient stress in Arabidopsis.
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FIGURE S1 | Strategy to choose the candidate lines that showed no visible
phenotypes, but had altered metabotypes compared to that of WT. See also
Supplementary Table S1. (A) Workflow of the screening for the eight candidate
lines from the 50 mutant lines. Visual phenotypes of the 50 lines were preliminary
observed as described in (Fukushima et al., 2014). (B) PCA of metabolite profiles
of the “batch 2” dataset obtained using GC-TOF-MS. Score scatter plots were
shown using PC1 (13%) and PC2 (10%) in the left panel and PC1 (13%) and PC3
(8%) in the right panel, respectively.

FIGURE S2 | Visible phenotypic changes in 18-day-old samples grown under
different concentrations of methyl viologen (MV). We observed WT individual plants
grown under Murashige and Skoog medium containing 0.01, 0.03, and 0.05 µ MV
(A). We also compared WT with pad2-1 plants under different MV treatments (B).

FIGURE S3 | Visible phenotypic changes in 18-day-old samples grown under
Murashige and Skoog medium (control MS), MS medium containing 0.05 µM of
methyl viologen (MV), and phosphorous-limiting MS (P-lim, the concentration
corresponds to 20% of ordinary MS medium).

FIGURE S4 | Visual phenotypes, fresh weight of shoots, and GSH and GSSG
levels in WT plants and 35S::GSH1-overexpressing transgenic lines, 7-5 and
13-6, grown under three different conditions. Visible phenotypic changes in
20-day-old GSH1-overexpressing lines grown on Murashige and Skoog medium
(no stress), Murashige and Skoog medium containing 0.05 µM methyl viologen

(MV), and low-phosphate (P-lim) Murashige and Skoog medium (A). Fresh weight
(FW) of aerial parts of WT and transgenic plants grown under the three conditions
(n = 8) (B). Quantification of the glutathione content in WT and transgenic plants
grown under the three growth conditions. Content of the reduced form of
glutathione, GSH (n = 3, biological replicates) (C). Content of the oxidized form of
glutathione, GSSG (n = 3, biological replicates) (D). GSH:GSSG ratio as an
indirect determinant of oxidative stress (E). Each error bar indicates the standard
deviation from the mean. Asterisks represent differences from the control
(significant levels were ∗∗ α = 0.01 and ∗ α = 0.05) by Welch’s t-test. The letters
“a” and “b” represent significant differences compared to the no-stress condition
(significant levels were a, α = 0.01 and b, α = 0.05) by Welch’s t-test. Note that
the control values in glutathione levels are considerably higher than those shown
in Figure 1, because the differences can arise due to both technical (e.g.,
unwanted instrumental variation) and/or biological factors (e.g., quality of the
Arabidopsis seeds).

FIGURE S5 | Principal component analysis of the metabolite profiles of WT plants
and GSH1 mutants (cad2-1 and pad2-1) exposed to MV and P-lim; integrated
data obtained from multi-platform metabolite profiling were used (n = 8, biological
replicates). Detected metabolites contained sugar and sugar alcohols, amino
acids, organic acids, fatty acids, glucosinolates, flavonoids, and lipids. The PCA
score scatter plots indicate that the samples were clustered according to the
corresponding genotype-dependent separation in the PC1/PC3 or PC2/PC3
direction.

FIGURE S6 | Venn diagram of identified/annotated metabolites under different
conditions (control, MV, and P-lim). The threshold was set at FDR < 0.05 and
|log2fold-change| ≥ 1.

FIGURE S7 | Metabolite changes in the GSH1 mutants and WT by MV and P-lim
treatments. (A) Stress-treatment comparison: Log2fold-change in metabolites
exposed to the two abiotic stresses. The fold-change is represented by two
directed colors; red and blue indicate increase and decrease, respectively, in the
metabolite level elicited by MV treatment or P-lim. (B) Genotype-dependent
comparison: Red and blue indicate increase and decrease, respectively, in the
metabolite levels in the mutants vs. WT plants. For abbreviations of the metabolite
names, see Supplementary Table S5. n = 8, biological replicates, ∗FDR < 0.05.

FIGURE S8 | Enrichment map showing biological processes between pad2-1 and
WT under 2 differential conditions based on hypergeometric tests of gene ontology
(GO) terms by using BiNGO software (Maere et al., 2005). The map indicates the
enriched GO terms in pad2 vs. WT under MV (A) and under P-lim condition (B).
Enrichment map can be used to inspect differential transcriptomic responses
between 2 genotypes (i.e., pad2-1 vs. WT) under abiotic stress. Nodes represent
GO terms and links between nodes represent gene overlap between GO terms.
Inner circle size of each node represents the number of DEGs in “comparison 1”
(e.g., pad2 vs. WT under no-stress condition) within the GO term in biological
process. Node border size represents the number of DEGs in “comparison 2”
(e.g., pad2-1 vs. WT under MV stress) within the GO term in biological process.
Color of the node and border refer to the significance based on the BiNGO FDR of
the GO term for “comparison 1” and “comparison 2,” respectively. The red-filled
nodes highlight the major GO functional terms. Link size shows the number of
DEGs that overlap between the two connected GO terms (Jaccard coefficient, the
cut-off is 0.25). Green links correspond to both datasets when it is the only color
link. Green links indicate “comparison 1” and blue indicates “comparison 2.” Blue
dotted circles represent summarized GO term clusters based on AutoAnnotate
(Kucera et al., 2016). The maps were generated using Cytoscape (v3.2.1)
Enrichment Map plugin (Merico et al., 2010; Isserlin et al., 2014).

FIGURE S9 | Overview of the transcript profiles associated with hormone
metabolism based on MapMan. The Affymetrix ATH1 microarray of treatment (A)
and genotype comparison by using MapMan software
(http://mapman.gabipd.org/web/guest/mapman). The log2fold-change is shown
by color: for (A) red, upregulated by stress treatment; blue, downregulated by
stress treatment; for (B) red, upregulated in pad2-1; blue downregulated in
pad2-1. A Wilcoxon test with Benjamini–Hochberg multiple-testing correction was
used to identify MapMan BINs that were significant, coordinately (FDR < 0.05)
compared to the others.

FIGURE S10 | Overview of the transcript profiles associated with secondary
metabolism based on MapMan. For detail explanation, see the legend to
Supplementary Figure S9.
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FIGURE S11 | Overview of the transcript profiles associated with cell wall
metabolism based on MapMan. For detail explanation, see the legend to
Supplementary Figure S9.

FIGURE S12 | Venn diagrams representing the classification of genes based on
microarray data. (A) Down-regulated genes by MV treatment and P-lim stress. (B)
Genotype-dependent down-regulated genes.
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