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Abstract

Objectives

The aims of this study were to test the utility of benchtop NGS platforms for NIPT for trisomy

21 using previously published z score calculation methods and to optimize the sample prep-

aration and data analysis with use of in silico and physical size selection methods.

Methods

Samples from 130 pregnant women were analyzed by whole genome sequencing on

benchtop NGS systems Ion Torrent PGM and MiSeq. The targeted yield of 3 million raw

reads on each platform was used for z score calculation. The impact of in silico and physical

size selection on analytical performance of the test was studied.

Results

Using a z score value of 3 as the cut-off, 98.11% - 100% (104-106/106) specificity and

100% (24/24) sensitivity and 99.06% - 100% (105-106/106) specificity and 100% (24/24)

sensitivity were observed for Ion Torrent PGM and MiSeq, respectively. After in silico based

size selection both platforms reached 100% specificity and sensitivity. Following the
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physical size selection z scores of tested trisomic samples increased significantly—p =

0.0141 and p = 0.025 for Ion Torrent PGM and MiSeq, respectively.

Conclusions

Noninvasive prenatal testing for chromosome 21 trisomy with the utilization of benchtop

NGS systems led to results equivalent to previously published studies performed on high-

to-ultrahigh throughput NGS systems. The in silico size selection led to higher specificity of

the test. Physical size selection performed on isolated DNA led to significant increase in z

scores. The observed results could represent a basis for increasing of cost effectiveness of

the test and thus help with its penetration worldwide.

Introduction
The last few years have been marked by rapid progress in the field of non-invasive prenatal
diagnostics. Since 1997 when the presence of cell-free fetal DNA (cffDNA) in maternal circula-
tion was discovered [1] different applications based on it progressed to clinical diagnostics,
including fetal gender determination [2], fetal RhD status determination [3], and fetal aneu-
ploidy screening [4]. Fetal aneuploidy screening has become widely available with the advance
of the next generation sequencing (NGS) technology. In recent studies non-invasive prenatal
tests (NIPT) for common trisomies of chromosomes 21, 18 and 13 (T21, T18 and T13) reached
almost 100% sensitivity and specificity [5–9]. Currently different tests are offered on a com-
mercial basis and in most cases these are based on whole genome sequencing on ultrahigh
throughput NGS platforms. In the majority of laboratories Illumina HiSeq systems are in use
for these tests, but other NGS systems achieve similar sensitivity and specificity, including Illu-
mina GIIx [10], SOLiD [11] and Ion Proton [12, 13]. All these NGS systems belong to high to
ultrahigh throughput category of NGS systems and are associated with high initial investment
into laboratory infrastructure as well as high running and maintenance costs. Moreover, due to
their high throughput large numbers of samples are required to reach cost-effectiveness. The
lack of validation studies performed on low to middle throughput benchtop NGS systems (Ion
Torrent PGM, MiSeq) limits their utilization for NIPT in laboratories with limited budget or
low sample turnover. Only recently, studies testing the feasibility of utilization of Ion Torrent
PGM, have been published and their results proved the potential of the benchtop NGS
sequencers for NIPT, too. However, these studies analyzed only low numbers of euploid:aneu-
ploid samples (4:9 and 4:4, respectively) [14, 15]. Although a z score is widely accepted as the
standard parameter used for the detection of trisomic samples, there is no consensus about the
selection of a z score calculation method. In the study performed by Jiang et al. four different
approaches to z score calculation were compared and the differences in sensitivity and specific-
ity of detection of chromosome 21 trisomic samples were recorded [16]. In our study, three dif-
ferent z score calculation methods were used and compared: 1—the approach using reads
mapped to all chromosomes utilized as a reference [17], 2—the approach using reads mapped
to chromosome 14 as a reference [18] and 3—the approach using the reads mapped to an opti-
mal combination of chromosomes with the lowest coefficient of variance for reference samples
[8, 19]. The performance of NIPT testing based on the z score is influenced by number of fac-
tors, with the most important being lengths of the reads and depth of coverage on the technical
side and fetal fraction on the biological side [20]. In previously published validation studies
read lengths starting from 36 bp and reads counts starting from 2.2x106 of unique reads have
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been reported as sufficient for accurate and cost-effective aneuploid sample detection [13, 18,
19].

In a recent large international collaborative study low fetal fraction—below 4%—was deter-
mined as the main cause for NIPT test failure. Such a low fetal fraction was found to be present
in 0.9% (17/1988) of analyzed samples [21]. According to available information from one of
the premium NIPT service provider the proportion of samples with fetal fraction below 4%
based on analysis of 11225 samples is 4.8% [22].

A significant impact of size selection of maternal circulating DNA on the increase of fetal
fraction (up to 4 times) was previously reported when only DNA fragments below 300 bp were
collected and used in cffDNA analysis [23, 24]. Moreover, Lo et al. revealed that the fetal to
maternal DNA ratio is highest when a cut-off between 143 and 166 bp is used [25]. For virtual
enrichment of fetal DNA fraction in genomic data gained from the analysis of maternal circu-
lating DNA in silico size selection could be applied, when only reads of a particular length are
utilized in z score calculation. Additionally, currently available technologies allow size selection
of DNA fragments with high specificity and reproducibility (AmPure XP Reagent beads, Lab-
Chip XT system, Pippin Prep system) [26]. Based on the current detailed knowledge about the
overrepresentation of fetal DNA in certain size fractions selecting specific size fractions using
mentioned technologies could be the means to enrich circulating DNA and thus minimize or
even eliminate problems associated with the analysis of samples with low fetal fraction.

The aims of this study were to test the utility of benchtop NGS platforms for NIPT for tri-
somy 21 using previously published z score calculation methods and to optimize the sample
preparation and data analysis with the use of in silico and physical size selection methods.

Materials and Methods

Ethical committee approval
All parts of the study have been approved according to Slovak legislation as well as interna-
tional demands for ethical review. The study was approved by the Ethical Committee of the
St. Cyril and Method Hospital in Bratislava (decision from 18. October 2012). Patients were
included in the study after signing the written informed consent approved by the ethics
committee.

Samples
Peripheral blood samples were taken from 130 pregnant women at 12–23 weeks of pregnancy.
Of all tested samples 24 were from pregnant women with previously confirmed chromosome
21 trisomy by invasive methods (amniocentesis, chorionic villi sampling), 50 samples were
from pregnant women without elevated risk of fetal chromosome 21 trisomy (risk lower than
1:260) and 56 from pregnant women with high risk of having fetus with chromosome 21 tri-
somy (1:1.25–1:260).

Sample processing and DNA extraction
Blood samples were collected in a K3 EDTA Vacutainer (BD, Plymouth, UK) tubes and stored
at 4–8°C for up to 24 h before plasma separation. The plasma was separated by two step centri-
fugation at 2200 g and 16000 g each for 10 min and stored at –20°C until further processing.
The cell-free DNA was isolated from 1.8 ml of maternal plasma using a QIAamp Circulating
Nucleic Acid Kit (Qiagen, Hilden, Germany). A final elution volume of 85 μl and 56 μl was
used for samples analyzed during the validation phase on Ion Torrent PGM and MiSeq, respec-
tively. For physical size selection protocol the DNA was isolated from second plasma aliquot
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from 10 samples with chromosome 21 trisomy and eluted to 56 μl of molecular biology grade
water.

Physical size selection of DNA samples
Fifty-five μl of Agencourt AMPure XP Reagent beads (Beckman Coulter, Brea, CA, USA) was
added to 50 μl of isolated plasma DNA and the solution was mixed thoroughly. The solution
was incubated for 5 minutes at room temperature. The tube was placed into a magnetic rack
for 5 minutes and the supernatant was transferred into a new tube and 1.8 x volume of beads
was added. The solution was mixed by pipetting up and down and incubated for 5 minutes at
room temperature. The tube was placed into the magnetic rack for 5 minutes. The pellet was
washed with 100 μl 70% ethanol and dried. The pellet was resuspended in 79 μl or 50 μl of Low
TE solution and incubated for 5 minutes at room temperature. The tube was placed into the
magnetic rack for 5 minutes and supernatant was collected and used in library preparation on
Ion Torrent PGM and MiSeq, respectively. Five of the size selected DNA samples were used for
Ion Torrent PGM and five for MiSeq library preparation.

Plasma DNA sequencing using Ion Torrent platform
For library preparation, the Ion Plus Fragment Library Kit (Life Technologies, Carlsbad, CA,
USA) was utilized with the original protocol starting from the end repair step (79 μl starting
volume). After the end repair step 100 μl of the solution was purified by adding 2.5 x volume of
Agencourt AMPure XP Reagent beads. As samples were analyzed individually on either Ion
318 Chip or Ion 318 Chip v2 (Life Technologies) non-barcoded adapters were used in the
adapter ligation step. After adapter ligation and nick-repair, 100 μl of the solution was purified
in two steps by adding 1.0 x volume and 1.6 x volume of Agencourt AMPure XP Reagent
beads. The prepared library was amplified for 15 cycles and purified in two steps by adding 1.6
x and 1.8 x volume of Agencourt AMPure XP Reagent beads. The library was quantified by Ion
Library TaqMan Quantitation Kit (Life Technologies) and diluted according to the manufac-
turer’s recommendations. In emulsion PCR, the DNA library was amplified using Ion PGM
Template OT2 200 Kit (Life Technologies). The Ion PGM Sequencing 200 Kit v2 (Life Tech-
nologies) with the original protocol was used for sequencing.

Plasma DNA sequencing using MiSeq platform
The DNA library was prepared according to the TruSeq Nano protocol (Illumina, San Diego,
CA, USA) starting from the end repair step (50 μl starting volume). Briefly, 100 μl of the solu-
tion after the end repair step was purified with Sample Purification Beads by adding 0.8 x vol-
ume and 1.8 x volume of undiluted magnetic beads in two steps. Sample multiplexing was used
according to the TruSeq Nano low throughput scheme. After A-tailing and index ligation, the
library was purified with Sample Purification Beads twice by adding 1.0 x volume in two sepa-
rate purification steps. Subsequently, the library was amplified using 8 cycles. The amplified
library was purified with Sample Purification Beads by adding 1.0 x volume once. The final
libraries were quantified using the Qubit 2.0 Fluorometer (Life Technologies, Carlsbad) and
Qubit dsDNA HS assay kit (Invitrogen, Eugene, Oregon, USA) and quality checked on the
2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) with use of the High Sensitiv-
ity DNA analysis kit (Agilent Technologies, Lithuania). The libraries were normalized to 4
nmol.l-1, and 8–10 samples were pooled together and denatured according to the standard pro-
tocol. The final library pool was analyzed on MiSeq system using Miseq Reagent kit v3 (Illu-
mina) with pair-end run setting of 2x100 cycles.
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NGS data analysis
Ion Torrent produced fastq files (one per sample) were processed as follows. First, the (rem-
nants of) adapters and poor quality ends from each read were removed using the trimmomatic
program [27]. Additionally, this program removed all reads that were shorter than 35 bp after
this trimming. More particularly, the following command was used—java -jar /usr/local/tools/
trimmomatic-0.32/trimmomatic-0.32.jar SE -threads 1 -phred33 input.fastq output.fastq
HEADCROP:11 SLIDINGWINDOW:5:25 MINLEN:35. Moreover, since each read could have
been shortened by a different amount (this was determined by the quality of the read's end),
original uncut length for each read produced by the above program was stored. This length was
later used in the read length based filtering (i.e., reads up to 140 bp, 145 bp, 150 bp, etc.). Subse-
quently these reads were mapped to the unmasked reference human genome (hg19) using a
Bowtie2 algorithm [28]. MiSeq produced fastq files (two per sample) were directly mapped
using the bowtie2 algorithm (default parameters); there was no trimming performed in this
case. Reads with mapping quality of 40 or higher were retained for further data processing.
Next, unique reads were processed to eliminate the GC bias according to Liao et al. 2014 [13]
with exclusion of the intrarun normalization. To assess the importance of GC correction, the
coefficient of variation (CV) values of chromosome 21, calculated according to Chiu et al. [17]
of the training set before and after GC correction were calculated. Because of the different read
count in each sample, the CV values were calculated from the fractional genomic representa-
tion instead. Before the GC correction, the CV values were 0.93% and 0.83%; after the applica-
tion of GC correction the CV values were 0.71% and 0.7% for Ion Torrent and MiSeq,
respectively. In training set 60 randomly chosen euploid samples were used.

To calculate the z scores, the GC corrected data and three previously published methods for
z score calculation were used. The difference between z score calculation methods was in the
utilization of different chromosomes or chromosomes sets used as reference for mapping
sequencing reads. The first method used all chromosomes (except chromosomes 13, 18 and
21) [17], the second used chromosome 14 [18] and the third used an optimal combination of
chromosomes with the lowest coefficient of variance for reference samples [8, 19]. Note that in
the third case the selected chromosomes for internal reference were 7, 11, 20, 22 and 7, 11, 17,
20 for Ion Torrent PGM and MiSeq, respectively. The application of the first and second z
score calculation method is well described in their referred publications. The application of
third method is described below. The matrix of chromosome counts of 60 training euploid
samples (each row corresponds with one sample and the columns contain chromosomes in the
order 1:22, X, Y) was used to determine the best internal reference chromosomes (IR). A candi-
date IR was any combination of chromosomes excluding combinations containing chromo-
somes 13, 18, 21, X and Y (thus, there are 2^19 candidate IRs). For each candidate IR its CV
value was calculated as follows. First, for each training sample the ratio between the read count
of chromosome 21 and the summed read count of candidate IR chromosomes was calculated
(thus 60 values as there are 60 training samples were obtained). Then the mean M and standard
deviation S of these 60 values were calculated. The CV value of the candidate IR was given by
S/M. It was done for all candidate IRs, and the one with the lowest CV value was chosen. Intui-
tively, this was the IR under which the euploid training samples appear to be most compact.
Using the IR the ratio between the read count of chromosome 21 and the summed read count
of IR chromosomes for each test sample was calculated, and the values M and S (associated
with the chosen IR) were chosen to obtain the z-score of any test sample in the usual manner.

Fetal fraction was calculated in trisomic samples according to the method of Rava et al. [29].
To test the effect of in silico size selection, we filtered out reads of a size greater than 140 bp and
then in 5 bp steps up to 180 bp, and used the remaining reads for z score calculation.
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Statistical analysis
Data were analyzed using Microsoft Excel 20071 (Microsoft, Redmont, WA, USA), Origi-
nLab9 (OriginLab, Northampton, MA, USA) and GraphPad Prism1 version 6 (GraphPad
Software, La Jola, CA, USA). Results of z score calculations with three tested methods were
compared using ANOVA (euploid samples) and the Friedman test (trisomic samples) and
results of utilization of original and size selected data or samples were compared using a paired
t-test. The p value< 0.05 was considered as significant. The basic data used in statistical analy-
ses are summarized in S1 and S2 Tables.

Results

Sequencing data collection and primary analysis
On average 5.829 ± 1.026 million and 3.098 ± 0.951 million raw reads were obtained from
sequencing, with average read lengths of 179 ± 7 bp and 172 ± 7 bp on Ion Torrent PGM and
MiSeq, respectively. To reach similar conditions for comparison of the two tested benchtop
NGS platforms in the z score calculation step the gained raw read counts were normalized and
a maximum of 3 million of reads were randomly selected in all samples. After filtering steps,
the counts of final reads used in z score calculations decreased from 3 million per sample to an
average of 2.160 ± 0.065 million and 2.099 ± 0.221 million for Ion Torrent PGM and MiSeq,
respectively.

Validation of utilization of Ion Torrent PGM and MiSeq
After z score calculations with the three methods, the specificity of the test varied between
98.11%–100% (95% CI—93.35% to 100%) and 99.06%–100% (95% CI: 94.86% to 100%) and
sensitivity of the test was 100% and 100% (95% CI: 85.75% to 100.00%) for Ion Torrent PGM
and MiSeq, respectively (Table 1).

When z score values of trisomic samples calculated by the three chosen z score calculation
methods were compared, the difference was found to be statistically significant (p< 0.0001, for
both Ion Torrent PGM and MiSeq analyses) while no significant difference was recorded when
comparing z scores of euploid samples. According to the results of a post hoc Dunn´s multiple
comparison test and the calculation of the difference of average z scores of trisomic and euploid
samples the method 3 achieved the highest difference between z scores of trisomic and euploid
samples (Fig 1) and was used in the next steps in the study.

In silico size selection based optimization of data analysis and test
performance
Limiting read lengths led to a substantial drop in read counts; nevertheless, z scores reached
the highest average values when the reads up to 160 bp and 155 bp were used in z score calcula-
tions for Ion Torrent PGM and MiSeq, respectively (Fig 2).

When using only reads of up to 160 bp for Ion Torrent PGM and 155 bp for MiSeq for z
score calculation the specificity as well as sensitivity of trisomy 21 detection of both platforms
reached 100% because a decrease of z score values of all false positive samples was observed.
On the other hand z scores of trisomic samples increased significantly (p = 0.0407) on Ion Tor-
rent PGM and were not significantly different on MiSeq despite the fact that the number of
reads used for z score calculation dropped to approximately 1/4 in comparison to numbers of
reads used for z score calculation before in silico size selection (26.36% and 24.31% on Ion Tor-
rent PGM and MiSeq, respectively; Fig 3).

Noninvasive Prenatal Testing on Benchtop NGS Systems

PLOSONE | DOI:10.1371/journal.pone.0144811 December 15, 2015 6 / 12



Fetal fraction determination
The fetal fractions calculated in samples with confirmed chromosome 21 trisomy were 8.12%–
42.62% (median = 13.19%) and 7.85%–47.49% (median = 13.86%). After in silico size selection,
which resulted in the change of only so-called “effective” fetal fraction while the fetal fraction
physically present in the analyzed sample remain unchanged, the effective fetal fractions
increased to 14.08%–50.66% (median = 22.35%) and 13.82%–56.89% (median = 26.09%) for
Ion Torrent PGM and MiSeq analyzed samples, respectively. The increase of the effective fetal
fraction after in silico size selection was statistically significant in samples analyzed on both
benchtop NGS platforms (p< 0.0001).

Physical size selection based optimization of sample processing and
test performance
The z scores calculated for samples without physical size selection using 3 million raw reads
and after physical size selection using 3 million and 2 million raw reads were found to be signif-
icantly different (p< 0.05), with significantly higher z scores found in physically size selected

Table 1. The performance of three z score calculation methods for noninvasive detection of chromosome 21 trisomy.

z score calculation method 1* 2* 3*

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Ion Torrent PGM all reads 100% (24/24) 99.06% (105/106) 100% (24/24) 100% (106/106) 100% (24/24) 98.11% (104/106)

Ion Torrent PGM up to 160 bp reads 100% (24/24) 100% (106/106) 100% (24/24) 100% (106/106) 100% (24/24) 100% (106/106)

MiSeq all reads 100% (24/24) 100% (106/106) 100% (24/24) 99.06% (105/106) 100% (24/24) 100% (106/106)

MiSeq up to 155 bp reads 100% (24/24) 100% (106/106) 100% (24/24) 100% (106/106) 100% (24/24) 100% (106/106)

*—1—the approach using reads mapped to all chromosomes utilized as a reference [17], 2—the approach using reads mapped to chromosome 14 as a

reference [18] and 3—the approach using the reads mapped to optimal combination of chromosomes with the lowest coefficient of variance for reference

samples [8, 19].

doi:10.1371/journal.pone.0144811.t001

Fig 1. Z score values of samples calculated by three different previously publishedmethods. □ –trisomic samples, � –euploid samples, horizontal line
—mean z score value of trisomic samples. Dotted lines represent the standard limit for identification of a trisomic sample (z score = 3). A—Ion Torrent PGM
analyzed samples, B—MiSeq analyzed samples.

doi:10.1371/journal.pone.0144811.g001
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samples. Statistically not significantly different z scores were obtained when 3 million raw
reads without and 1 million raw reads with physical size selection of identical samples were
compared (Fig 4).

Discussion
To our knowledge this is the first study focused on the validation of benchtop NGS systems uti-
lization in NIPT. Previously only two feasibility studies were performed on Ion Torrent PGM.
These studies analyzed small scale sample groups (< 10 samples per euploid/aneuploid groups)
[14, 15] and therefore their results cannot be directly compared to previously published large
scale validation studies [5–7, 11, 13, 16, 21]. In contrast, we have analyzed more than 100 sam-
ples from low risk and high risk euploid pregnancies and over 20 samples from pregnancies
with previously confirmed chromosome 21 trisomy. For the detection of trisomic samples

Fig 2. Determination of optimal in silico size selection limit for sequencing reads to be used in z score calculation.Dotted lines represent the
standard limit for identification of a trisomic sample (z score = 3). A—Ion Torrent PGM analyzed samples, B—MiSeq analyzed samples.

doi:10.1371/journal.pone.0144811.g002

Fig 3. Z score values of trisomic and euploid samples before and after in silico size selection of sequencing reads. □ –trisomic samples, � –euploid
samples, horizontal line—mean z score value). Dotted lines represent the standard limit for identification of a trisomic sample (z score = 3). A—Ion Torrent
PGM analyzed samples, B—MiSeq analyzed samples.

doi:10.1371/journal.pone.0144811.g003
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three selected methods based on z score calculation were used as the accepted standard in
NIPT for most common aneuploidies. Our results showed that two benchtop NGS platforms,
Ion Torrent PGM and MiSeq, could be safely used for NIPT reaching similarly high sensitivity
and specificity as high and ultrahigh throughput NGS systems [5–7, 11, 13, 16, 21]. Neverthe-
less, our data raise several questions that need to be addressed before the utilization of bench-
top NGS platforms in NIPT with appropriate confidence. One of the questions is what
coverage is necessary for the correct identification of an extra chromosome 21 (as well as 18
and 13). In our study up to 3 million raw reads per sample were targeted by design. In reality in
some samples analyzed on both platforms this could not be reached and therefore on average
2.996 million (SD = ± 0.037) and 2.793 million (SD = ± 0.280) raw reads were used in filtering
steps and subsequent z score calculation on Ion Torrent PGM and MiSeq, respectively. With
this limited number of reads the sensitivity was 100% and specificity of the test was close to
100% when standard filtering criteria were used for read mapping, quality filtering and GC-
bias reduction before z score calculation. Using three different z score calculation methods, 0 to
2 and 0 to 1 false positive samples were identified among euploid samples analyzed on Ion Tor-
rent PGM and MiSeq, respectively.

According to the previously published data there is a difference in the abundance of differ-
ently sized DNA in between mother and fetus originating DNA [4, 25]. Additionally, it was
shown that size selection of specific DNA fragment size could be used to significantly increase
the fetal fraction [23, 24]. It is widely accepted that low fetal fraction is the leading cause for
false negative results in the NIPT test or the test failure [21]. To test whether in silico size selec-
tion could lead to an increase of the fetal fraction and subsequently to higher specificity and
sensitivity of the test size selection of sequencing reads from 140 bp up to 180 bp in step of 5 bp
was performed. This analysis led to the highest z scores of trisomic samples when cut off values
of 160 bp and 155 bp were used for Ion Torrent PGM and MiSeq reads, respectively (Fig 2).
The difference between Ion Torrent PGM and MiSeq cut off values mimics the difference of
average read lengths that was recorded on raw sequencing reads—179 bp and 172 bp, respec-
tively. After in silico size selection and z score calculation based on reads up to 160 bp and 155
bp was performed on the whole set of samples (euploid and trisomic) no false positives were

Fig 4. Z score values calculated from reads without size selection (all), after in silico size selection (IS) and after physical size selection (P).
Horizontal lines represent mean z score value calculated from 3, 2 and 1 million raw reads (3m, 2m, 1m). Dotted lines represent the standard limit for
identification of a trisomic sample (z score = 3). A—Ion Torrent PGM analyzed samples, B—MiSeq analyzed samples.

doi:10.1371/journal.pone.0144811.g004
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identified and both sensitivity and specificity of the test reached 100%. Moreover, although
only approximately 25% of original filtered reads were used in z score calculation after in silico
size selection z scores of trisomic samples were significantly higher (p< 0.05) or not signifi-
cantly different in the case of Ion Torrent PGM and MiSeq data, respectively. This finding
shows that it is possible to decrease the number of reads needed for NIPT for chromosome 21
trisomy by a factor of 4 without decreasing the power of the test if a specific size fractionation
of cffDNA could be performed as part of the sample preparation procedure. Therefore in our
study we decided to introduce physical size selection into the sample processing procedure
also. For size selection the AMPure beads, which are routinely used in size selection steps of
NGS library preparation protocols, were utilized. We tested several concentrations of AMPure
beads and optimal results with dominant enrichment of DNA fragment sizes around 155–160
bp were identified when a two step protocol was used. In all the cases, a significant increase of z
score values was detected when the z scores calculated from 3 million raw reads of samples
without physical size selection were compared to z scores calculated from 3 million and 2 mil-
lion raw reads of samples after physical size selection. Z score values were found to be not sig-
nificantly different when z scores calculated from 3 million raw reads of samples without
physical size selection were compared to z scores calculated from 1 million raw reads of sam-
ples after physical size selection. This finding was consistent between samples analyzed on Ion
Torrent PGM as well as MiSeq. Therefore, with such a simple two-step size selection the num-
ber of reads needed for NIPT for chromosome 21 trisomy could be decreased by a factor of 3
without a decrease in test power. In the end both in silico and physical size selection methods
bring similar results, but each of the performed size selection procedures has its pros and cons.
Implementation of in silico size selection into NIPT performing laboratory routine is associated
with simple adding of a filtering step focused on sequencing read length into the data analysis
pipeline without changing the validated sample preparation protocol. Moreover, as no addi-
tional manipulation with a sample is needed, the risk of sample contamination during its pro-
cessing is minimized. On the other hand, inclusion of the physical size selection in NGS library
preparation as a routinely performed step with consumables and chemistry that are normally
used in NGS allows simultaneous analysis of increased number of samples per run. That leads
to the increased cost efficiency of NIPT without compromizing sensitivity and specificity of the
test.

To sum up, currently there are only few laboratories over the world that perform NIPT in
their laboratories and this testing is performed almost exclusively on high-to-ultrahigh
throughput NGS systems. The results of our study showed that with future larger scale valida-
tion studies and further sample preparation procedure tuning low-to-middle throughput
(benchtop) NGS systems could be utilized with similar cost efficiency and sensitivity and speci-
ficity for routine NIPT and help with better global accessibility of the test.

Supporting Information
S1 Table. Data used in basic statistics and evaluation of detection of trisomic samples ana-
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(XLSX)
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