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Coronary computed tomographic (CT) angiography is a 
robust noninvasive imaging modality that can visualize 

the coronary lumen and the atherosclerotic changes of the ves-
sel wall.1 Four distinct plaque characteristics have been linked 
to major adverse cardiovascular events using coronary CT 
angiography.2 Out of these 4 characteristics, positive remod-
eling, low attenuation, and spotty calcification are quantita-
tive high-risk plaque features. The napkin-ring sign (NRS) is 
defined as a plaque cross-section with a central area of low 
CT attenuation apparently in contact with the lumen, which is 
surrounded by a ring-shaped higher attenuation plaque tissue.3 
Because of its qualitative nature, identification of the NRS is 
affected by clinical experience and inter-reader variability.4
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Radiological images are multidimensional data sets, where 
each voxel value represents a specific measurement based on 
some physical characteristic.5 Radiomics is the process of 
obtaining quantitative parameters from these spatial data sets, 
to create big-data data sets, where each lesion is characterized 
by hundreds of different parameters.6 These features aim to 
quantify morphological characteristics difficult or impossible 
to comprehend by visual assessment.7

Radiomics has proven to be a valuable tool in oncology.8 
Several studies have shown radiomics to improve the diag-
nostic accuracy,9,10 staging and grading of cancer,11 response 
assessment to treatment,12–14 and also to predict clinical out-
comes.15,16 However, up until today, there is no data available on 
radiomics-based analysis of coronary plaques. Coronary ath-
erosclerotic lesions are smaller than tumors and have complex 
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geometric shapes, which might pose a challenge for radiomic 
feature analysis. Therefore, we sought to assess whether cal-
culation of radiomic features is feasible on coronary lesions. 
Furthermore, we aimed to evaluate whether radiomic param-
eters can differentiate between plaques with or without NRS.

Methods
Institutional review board approved the study (SE TUKEB 1/2017) 
and because of the retrospective study design informed consent was 
waived. The data and study materials will not be made available to 
other researchers for purposes of reproducing the results or replicat-
ing the procedure because of intellectual property rights and patient 
confidentiality. However, we made our analysis software open source 
and freely accessible for other researchers.17

Study Design and Population
From 2674 consecutive coronary CT angiography examinations be-
cause of stable chest pain, we retrospectively identified 39 patients who 
had NRS plaques. Two expert readers reevaluated the scans with NRS 
plaques. To minimize potential variations because of inter-reader vari-
ability, the presence of NRS was assessed using consensus read. Readers 
excluded 7 patients because of insufficient image quality and 2 patients 
because of the lack of the NRS; therefore, 30 coronary plaques of 30 
patients (NRS group; mean age: 63.07 years; interquartile range [IQR], 
56.54–68.36; 20% female) were included in our analysis. As a con-
trol group, we retrospectively matched 30 plaques of 30 patients (non-
NRS group; mean age: 63.96 years; IQR, 54.73–72.13; 33% female) 
from our clinical database with excellent image quality. To maximize 
similarity between the NRS and the non-NRS plaques and minimize 
parameters potentially influencing radiomic features, we matched the 
non-NRS group based on degree of calcification and stenosis, plaque 
localization, tube voltage, and image reconstruction. Detailed patient 
and scan characteristics are summarized in Table 1, whereas detailed 
description of scan characteristics and image quality measurements are 
described in Methods 1 section of the Data Supplement.

Traditional Plaque Characteristics
All plaques were graded for luminal stenosis (minimal 1% to 24%; 
mild 25% to 49%; moderate 50% to 69%; severe 70% to 99%) and 
degree of calcification (calcified; partially calcified; noncalcified). 
Furthermore, plaques were classified as having low attenuation if the 
plaque cross-section contained any voxel with <30 Hounsfield unit and 
having spotty calcification if a <3-mm calcified plaque component was 
visible. Detailed plaque and imaging information is shown in Table 2.

Image Segmentation, Conventional Quantitative 
Metrics, and Data Extraction
Image segmentation and data extraction was performed using a dedi-
cated software tool for automated plaque assessment (QAngioCT 
Research Edition; Medis Medical Imaging Systems B.V., Leiden, The 
Netherlands). After automated segmentation of the coronary tree, the 
proximal and distal ends of each plaque were set manually. Automatic 
lumen and vessel contours were manually edited by an expert if needed.18 
From the segmented data sets, 8 conventional quantitative metrics (lesion 
length, area stenosis, mean plaque burden, lesion volume, remodeling in-
dex, mean plaque attenuation, and minimal and maximal plaque attenu-
ation) were calculated by the software. The voxels containing the plaque 
tissue were exported as a DICOM data set using a dedicated software 
tool (QAngioCT 3D Workbench; Medis Medical Imaging Systems B.V.). 
Smoothing or interpolation of the original Hounsfield unit values was 
not performed. Representative examples of volume-rendered and cross-
sectional images of NRS and non-NRS plaques are shown in Figure 1.

Calculation of Radiomic Features
We developed an open-source software package in the R program-
ming environment (Radiomics Image Analysis), which is capable of 

calculating hundreds of different radiomic parameters on 2- and 3-di-
mensional data sets.17 We calculated 4440 radiomic features for each 
coronary plaque using the Radiomics Image Analysis software tool. 
Detailed description on how radiomic features were calculated can 
be found in the Methods 1 section of the Data Supplement, whereas 
a detailed description of the calculated statistical parameters can be 
found in the Methods 2 section of the Data Supplement.

Statistical Analysis
Binary variables are presented as frequencies and percentages, 
whereas ordinal and continuous variables are presented as medians 
and IQRs because of possible violations of the normality assump-
tion. For robust statistical estimates, parameters between the NRS 
and the non-NRS groups were compared using the permutation test 
of symmetry for matched samples using conditional Monte Carlo 
simulations with 10 000 replicas.19 For diagnostic performance es-
timates, we conducted receiver-operating characteristics analysis 
and calculated area under the curve (AUC) with bootstrapped con-
fidence interval values using 10 000 samples with replacement and 
calculated sensitivity, specificity, and positive and negative predic-
tive values by maximizing the Youden index.20 To assess potential 
clusters among radiomic parameters, we conducted linear regres-
sion analysis between all pairs of the calculated 4440 radiomic 
metrics. The 1−R2 value between each radiomic feature was used as 
a distance measure for hierarchical clustering. The average silhou-
ette method was used to evaluate the optimal number of different 
clusters in our data set.21 Furthermore, to validate our results, we 
conducted a stratified 5-fold cross-validation using 10 000 repeats 
of the 3 best radiomic and conventional quantitative parameters. 
The model was trained on a training set and was evaluated on a sep-
arate test set at each fold using receiver-operating characteristics 
analysis. The derived curves were averaged and plotted to assess 
the discriminatory power of the parameters. The number of addi-
tional cases classified correctly was calculated compared with le-
sion volume. The McNemar test was used to compare classification 
accuracy of the given parameters compared with lesion volume.22

Because of the large number of comparisons, we used the 
Bonferroni correction to account for the family-wise error rate. 

Table 1. Patient Characteristics and Scan Parameters

 NRS Group (n=30)
Non-NRS Group 

(n=30) P Value

Demographics

  Age, y 63.07  
(56.54–68.36)

63.96  
(54.73–72.13)

0.86

  Male sex, n (%) 24 (80) 20 (67) 0.16

  BMI, kg/m2 28.06  
(25.06–29.91)

26.93  
(23.91–29.32)

0.34

Cardiovascular risk factors

  Hypertension, n (%) 19 (63) 18 (60) 0.78

Diabetes mellitus, n (%) 25 (83) 26 (87) 0.65

Dyslipidemia, n (%) 16 (53) 18 (60) 0.62

Current smoker, n (%) 20 (67) 21 (70) 0.80

Scan parameters

  Total DLP, mGy×cm 362.00  
(356.00–367.00)

358.20  
(253.20–367.00)

0.42

  Pixel spacing, mm
0.41 (0.39–0.43)

0.43  
(0.39–0.45)

0.30

Data are presented as median with interquartile ranges or frequency and 
percentage as appropriate. BMI indicates body mass index; DLP, dose length 
product; and NRS, napkin-ring sign.
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Bonferroni correction assumes that the examined parameters are 
independent of each other; thus, the question is not how many 
parameters are being tested but how many independent statistical 
comparisons will be made. Therefore, based on methods used in 
genome-wide association studies, we calculated the number of in-
formative parameters accounting for 99.5% of the variance using 
principal component analysis.23,24 Overall, 42 principal components 
were identified; therefore, P values <0.0012 (0.05/42) were consid-
ered significant. All calculations were done in the R environment.25

Results
Descriptive Results
There was no significant difference between the NRS and non-
NRS groups regarding patient characteristics and scan parame-
ters (Table 1). Furthermore, we did not observe any significant 

difference in qualitative plaque characteristics and image qual-
ity parameters (Table 2) implying successful matching of the 
2 groups. Median number of voxels contributing to the NRS 
coronary plaques (1928; IQR, 1413–2560) did not show sta-
tistical difference compared with the number of voxels in the 
non-NRS group (1286; IQR, 1001–1768; P=0.0041).

Statistical Significance and Diagnostic Accuracy 
of Conventional Quantitative Parameters
Among conventional quantitative imaging parameters, there 
was no significant difference between NRS and non-NRS 
plaques (Table 2). Furthermore, none of the conventional 
parameters had an AUC value >0.8 (Table 3).

Table 2. Plaque and Image Quality Characteristics

 NRS Group (n=30) Non-NRS Group (n=30) P Value

Plaque composition, n (%)   1.00

  Noncalcified 19 (63) 19 (63)  

  Partially calcified 11 (37) 11 (37)  

  Calcified 0 (0) 0 (0)  

Luminal stenosis   1.00

  Minimal (1% to 24%) 11 (37) 11 (37)  

  Mild (25% to 49%) 11 (37) 11 (37)  

  Moderate (50% to 69%) 6 (20) 6 (20)  

  Severe (70% to 99%) 2 (7) 2 (7)  

Stenosis localization, n (%)   1.00

  Left main 2 (7) 2 (7)  

  Left anterior descending 20 (66) 20 (66)  

  Left circumflex 2 (7) 2 (7)  

  Right coronary 6 (20) 6 (20)  

Image quality    

  Contrast-to-noise ratio 21.94 (18.61 to 28.80) 23.42 (18.64 to 26.57) 0.70

  Signal-to-noise ratio 18.69 (15.84 to 24.13) 20.52 (16.33 to 22.53) 0.59

High-risk plaque features    

  Napkin-ring sign, n (%) 30 (100) 0 (0) <0.0001

  Low attenuation, n (%) 26 (87) 19 (63) 0.06

  Spotty calcification, n (%) 10 (33) 9 (30) 0.99

Conventional quantitative metrics    

  Lesion length, mm 13.62 (10.42 to 17.02) 13.48 (10.99 to 17.71) 0.70

  Lesion volume, mm3 134.88 (105.68 to 190.76) 88.88 (70.02 to 143.98) 0.02

Mean plaque burden 0.59 (0.52 to 0.66) 0.51 (0.44 to 0.59) 0.003

Lumen area stenosis 0.41 (0.15 to 0.53) 0.28 (0.19 to 0.49) 0.38

Vessel wall remodeling index 1.03 (0.92 to 1.46) 1.09 (0.97 to 1.20) 0.55

Mean plaque attenuation, HU 114.67 (85.54 to 148.99) 156.75 (138.46 to 208.37) 0.002

Minimal plaque attenuation, HU −83.00 (−101.75 to −58.00) −60.00 (−84.75 to −47.00) 0.10

Maximal plaque attenuation, HU 523.00 (451.00 to 794.50) 634.50 (454.00 to 898.00) 0.63

Data are presented as median with interquartile ranges or frequency and percentage as appropriate. HU indicates Hounsfield unit; 
and NRS, napkin-ring sign.

 by guest on July 12, 2018
http://circim

aging.ahajournals.org/
D

ow
nloaded from

 

http://circimaging.ahajournals.org/


4  Kolossváry et al  Radiomic Features of Napkin-Ring Plaques

Statistical Significance and Diagnostic Accuracy of 
Radiomic Parameters
Overall, 4440 radiomic parameters were calculated for each 
atherosclerotic lesion. Of all calculated radiomic parameters, 
20.6% (916/4440) showed a significant difference between 
plaques with or without NRS (all P<0.0012). Of the 44 cal-
culated first-order statistics, 25.0% (11/44) was significant. Of 
the 3585 calculated gray-level co-occurrence matrix (GLCM) 
statistics, 20.7% (742/3585) showed a significant difference 
between the 2 groups. Among the 55 gray-level run-length 
matrix (GLRLM) parameters, 54.5% (30/55) were significant, 
whereas 17.6% (133/756) of the calculated 756 geometry-
based parameters had a P<0.0012. A Manhattan plot of the P 
values of the calculated radiomic parameters is shown in Fig-
ure 2. Detailed statistics of the assessed radiomic parameters 
can be found in Table I in the Data Supplement.

Among all 4440 radiomic parameters, 9.9% (440/4440) had 
an AUC value >0.80. Of the 44 calculated first-order statistics, 
18.2% (8/44) had an AUC value >0.80. Of the 3585 calculated 
GLCM parameters, 9.7% (348/3585) of the AUC values was 
>0.80. Among the 55 GLRLM parameters, 54.5% (30/55) had 
an AUC value >0.80, whereas of the calculated 756 geometry-
based parameters, 7.1% (54/756) had an AUC value >0.80. Of 
all radiomic parameters, short-run low-gray-level emphasis, 
long-run low-gray-level emphasis, surface ratio of component 
2 to total surface, long-run emphasis, and surface ratio of com-
ponent 7 to total surface had the 5 highest AUC values (0.918; 
0.894; 0.890; 0.888, and 0.888, respectively). Detailed diagnos-
tic accuracy statistics of conventional quantitative features and 
of the 5 best radiomic features for each group are shown in Table 
3, whereas detailed diagnostic accuracy results of radiomic 
parameters can be found in Table I in the Data Supplement.

Cluster Analysis of Radiomic Parameters
Results of the linear regression analysis conducted between 
all pairs of the calculated 4440 radiomic metrics are sum-
marized using a heatmap (Figure 3). Hierarchical clustering 
showed several different clusters where parameters are highly 
correlated with each other (represented by the red areas in Fig-
ure 3) but only have minimal relationship with other radiomic 

features (represented by the black areas in Figure 3). Cluster 
analysis revealed that the optimal number of clusters among 
radiomic features in our data set is 44.

Cross-Validation Results
Five-fold cross-validation using 10 000 repeats was used to 
simulate the discriminatory power of the 3 best radiomic and 
conventional parameter. Average receiver-operating charac-
teristics curves of the cross-validated results are shown in 
Figure 4. Radiomic parameters had higher AUC values and 
identified lesions showing the NRS significantly better com-
pared to conventional metrics. Detailed results are shown in 
Table 4.

Discussion
We demonstrated that coronary plaques consist of sufficient 
number of voxels to conduct radiomic analysis, and 20.6% 
of radiomic parameters showed a significant difference 
between plaques with or without NRS, whereas conventional 
parameters did not show any difference. Furthermore, several 
radiomic parameters had a higher diagnostic accuracy in iden-
tifying NRS plaques than conventional quantitative measures. 
Cluster analysis revealed that many of these parameters are 
correlated with each other; however, there are several distinct 
clusters, which imply the presence of various features that 
hold unique information on plaque morphology. Cross-vali-
dation simulations indicate that our results are robust when 
assessing the discriminatory value of radiomic parameters, 
implying the generalizability of our results.

Radiomics uses voxel values and their relationship to 
each other to quantify image characteristics. On the basis of 
our results, it seems not only do radiomic features outperform 
conventional quantitative imaging markers but also param-
eters incorporating the spatial distribution of voxels (GLCM, 
GLRLM, and geometry-based parameters) have a better 
predictive value than first-order statistics, which describe 
the statistical distribution of the intensity values. Among 
GCLM parameters, the interquartile range, the lower notch, 
the median absolute deviation from the mean of the GLCM 
probability distribution, Gauss right focus, and sum energy 

Figure 1. Representative images of 
plaques with or without the napkin-ring 
sign (NRS). Volume-rendered and cross-
sectional images of plaques with NRS 
in the top (A, C, and E) and their corre-
sponding matched plaques in the bottom 
(B, D, and E) are shown. Green dashed 
lines indicate the location of cross-
sectional planes. Colors indicate different 
computed tomographic attenuation val-
ues. NCP indicates noncalcified plaque.
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had the 5 highest AUC values. NRS plaques have many 
low-value voxels next to each other in a group surrounded 
by higher density voxels. This heterogeneous morphology 
results in an unbalanced GLCM and therefore higher inter-
quartile rank values, which also means smaller lower notch 

values and bigger deviations from the mean. Gauss right 
focus and sum energy both give higher weights to elements 
in the lower right of the GLCM, which represents the prob-
ability of high-density voxels occurring next to each other. 
Because NRS plaques do not have many high-value voxels 

Table 3. Diagnostic Performance of Conventional Quantitative Parameters and Novel Radiomic Parameters 
to Identify Plaques With the Napkin-Ring Sign

 AUC CI Sensitivity Specificity PPV NPV

Conventional quantitative metrics

  Mean plaque attenuation 0.770 (0.643–0.880) 0.533 0.933 0.889 0.667

  Mean plaque burden 0.702 (0.563–0.826) 0.700 0.667 0.677 0.690

  Lesion volume 0.683 (0.543–0.817) 0.700 0.700 0.700 0.700

  Minimal plaque attenuation 0.647 (0.498–0.788) 0.700 0.700 0.700 0.700

  Maximal plaque attenuation 0.553 (0.408–0.696) 0.700 0.500 0.583 0.625

  Remodeling index 0.547 (0.398–0.700) 0.633 0.633 0.633 0.633

  Lumen area stenosis 0.539 (0.389–0.687) 0.567 0.667 0.630 0.606

  Lesion length 0.508 (0.359–0.654) 0.933 0.133 0.519 0.667

First-order statistics

  30th decile 0.827 (0.716–0.921) 0.833 0.733 0.758 0.815

  First quartile 0.826 (0.712–0.922) 0.767 0.800 0.793 0.774

  Harmonic mean 0.823 (0.708–0.922) 0.767 0.800 0.793 0.774

  Trimean 0.812 (0.696–0.910) 0.867 0.667 0.722 0.833

  Geometric mean 0.803 (0.684–0.902) 0.633 0.900 0.864 0.711

GLCM

  Interquartile range* 0.867 (0.769–0.948) 0.700 0.900 0.875 0.750

  Lower notch* 0.866 (0.763–0.948) 0.967 0.633 0.725 0.950

  Gauss right focus† 0.859 (0.759–0.940) 0.767 0.867 0.852 0.788

  Median absolute deviation from the mean* 0.856 (0.744–0.946) 0.867 0.767 0.788 0.852

  Sum energy‡ 0.848 (0.740–0.937) 0.967 0.633 0.725 0.950

GLRLM

  Short-run low gray-level emphasis* 0.918 (0.822–0.996) 1.000 0.867 0.882 1.000

  Long-run low gray-level emphasis§ 0.894 (0.799–0.970) 1.000 0.733 0.789 1.000

  Long-run emphasis§ 0.888 (0.791–0.962) 0.933 0.767 0.800 0.920

  Run percentage§ 0.871 (0.771–0.951) 1.000 0.667 0.750 1.000

  Short-run emphasis‡ 0.853 (0.747–0.942) 1.000 0.633 0.732 1.000

Geometry-based parameters

  Surface ratio of component 2 to total surface§ 0.890 (0.801–0.960) 0.833 0.833 0.833 0.833

  Surface ratio of component 7 to total surface‖ 0.888 (0.796–0.958) 0.933 0.733 0.778 0.917

  Surface ratio of component 22 to total surface‡ 0.883 (0.787–0.959) 0.767 0.900 0.885 0.794

  Surface ratio of component 14 to total surface† 0.882 (0.790–0.954) 0.833 0.833 0.833 0.833

  Surface ratio of component 3 to total surface* 0.864 (0.767–0.943) 0.867 0.767 0.788 0.852

Component numbers of the geometric-based parameters refer to the specific attenuation bins created by discretizing the attenuation 
values to a given number of bins. AUC indicates area under the curve; CI, confidence interval; GLCM, gray-level co-occurrence matrix; 
GLRLM, gray-level run-length matrix; NPV, negative predictive value; and PPV, positive predictive value.

*Based on discretizing to 4 equally probable bins.
†Based on discretizing to 16 equally probable bins.
‡Based on discretizing to 32 equally probable bins.
§Based on discretizing to 2 equally probable bins.
‖Based on discretizing to 8 equally probable bins
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next to each other, they received smaller values, whereas non-
NRS plaques have higher values, which resulted in excellent 
diagnostic accuracy.

Among GLRLM statistics, long- and short-run low-gray-level 
emphasis, long- and short-run emphasis, and run percentage had 
the best predictive value. Run percentage and long-run emphasis 
give high values to lesions, where there are many similar value 
voxels in 1 direction, whereas long-run low-gray-level emphasis 
adds a weight to the previous parameter by giving higher weights 
when these voxel runs contain low Hounsfield unit values. NRS 
plaques’ low-density core has many low CT number voxels next 
to each other in 1 direction; therefore, NRS plaques have higher 
values compared with non-NRS plaques, which results in excel-
lent diagnostic accuracy. In case of short-run emphasis and short-
run low-gray-level emphasis, the contrary is true, which results 
in NRS plaques receiving low values, whereas non-NRS plaque 
have higher values also leading to high AUC values.

Among geometry-based parameters, the first 5 with the 
best diagnostic accuracy all represent the surface ratio of a 
specific subcomponent to the whole surface of the plaque. In 
all cases, the ratio of high-density subcomponents (eg, sub-
component 2 when the plaque was divided into 2 compo-
nents) to the whole surface had excellent diagnostic accuracy. 
Because each subcomponent is composed of equal number of 
voxels because of the equally probable binning, the difference 
in surfaces is a result of how the high-intensity voxels are situ-
ated to each other. In case of NRS plaques, extraction of low 
attenuation voxels leaves a hollow cylindrical shape of high 
CT number voxels, which has a relatively large surface. Non-
NRS plaques on the contrary do not have such voxel com-
plexes; therefore, the surface of the high attenuation voxels 

is smaller, and, therefore, the ratio compared with the whole 
surface is also smaller.

This kind of transition from qualitative to quantitative 
image assessment was initiated by oncoradiology. Because 
studies showed that morphological descriptors correlate with 
later outcomes,26 reporting guidelines such as the Breast 
Imaging Reporting and Data System started implementing 
qualitative morphological characteristics into clinical prac-
tice.27 However, despite all the efforts of standardization, the 
variability of image assessment based on human interpreta-
tion is still substantial.28 Radiomics, the process of extract-
ing thousands of different morphological descriptors from 
medical images, has been shown to reach the diagnostic accu-
racy of clinical experts in identifying malignant lesions.10 
Furthermore, radiomics can not only classify abnormalities 
to proper clinical categories but also discriminate between 
responders and nonresponders to clinical therapy and predict 
long-term outcomes.12,15 However, there are major concerns on 
the generalizability of radiomics. Several studies have shown 
that imaging parameters, reconstruction settings, segmentation 
algorithms, etc, all affect the radiomic signature of lesions.29–32 
Furthermore, it has been shown that the variability caused by 
these changeable parameters is in the range or even greater than 
the variability of radiomic features of tumor lesions.33 Little is 
known about cardiovascular radiomics. Several studies will be 
needed to replicate these results in the cardiovascular domain. 
The potential of radiomics is extensive; however, the problem 
of standardized imaging protocols and radiomic analysis need 
to be solved to achieve robust and generalizable results.

Despite our encouraging results, our study has some limi-
tations that should be acknowledged. All of our examinations 

Figure 2. Manhattan plot of all 4440 calculated P values. The Manhattan plot shows all 4440 calculated P values comparing napkin-ring 
sign (NRS) vs non-NRS plaques and their distribution among the different classes of radiomic parameters. Radiomic features are lined up 
on the x axis, whereas the -log2(P) values are plotted on the y axis. The red horizontal line indicates the Bonferroni-corrected P value of 
0.0012. Radiomic parameters above the red line were considered statistically significant.
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were done using the same scanner and reconstruction set-
tings. It is yet unknown how these settings might affect 
radiomic parameters and therefore influence the applicability 
of radiomics in daily clinical care. Furthermore, our results 
are based on a case–control study design. The true prevalence 
of the NRS is considerably smaller compared with non-NRS 
plaques in a real population. Therefore, our observed posi-
tive predictive values might be higher, whereas our negative 
predictive values might be smaller than that expected in a 
real-world setting. Moreover, our limited sample sizes might 
not allow the accurate assessment of the diagnostic accuracy 
of the different parameters. However, we performed Monte 
Carlo simulations and cross-validated our results to achieve 
robust estimates.

Radiomics is a promising new tool to identify qualita-
tive plaque features such as the NRS. Because the number of 
CT examinations increases, we are in dire need of new tech-
niques that increase the accuracy of our examinations without 
increasing the workload of imaging specialists. We demon-
strated that radiomics has the potential to identify a qualita-
tive high-risk plaque feature that currently only experts are 
capable of. Furthermore, our findings indicate that radiomics 
can quantitatively describe qualitative plaque morphologies 

and therefore have the potential to decrease intra- and interob-
server variability by objectifying plaque assessment. In addi-
tion, we observed several different clusters of information 
present in our data set, implying that radiomics might be able 
to identify new image markers that are currentlyt unknown. 
These new radiomic characteristics might provide a more 
accurate plaque risk stratification than the currently used high-
risk plaque features. Radiomics could easily be implemented 
into currently used standard clinical workstations and become 
a computer-aided diagnostic tool, which seamlessly integrates 
into the clinical workflow and could increase the reproduc-
ibility and the accuracy of diagnostic image interpretation in 
the future. Further studies are needed to explore the potential 
of cardiovascular radiomics.
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Figure 3. Heatmap and clustering dendrogram of all 4440 calculated radiomic parameters. Each parameter was compared with all other 
parameters using linear regression analysis. Features were clustered based on R2 values of the corresponding regression models and 
plotted along both axes. R2 values <0.5 are black, whereas greater values are shown in red with increasing intensity. The 1−R2 values was 
used as a distance measure between parameters and used for hierarchical clustering. The resulting clustering dendrogram can be seen 
on the right of the image. Cluster analysis indicated that the optimal number of clusters is 44 based on our radiomics data set.
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CLINICAL PERSPECTIVE
Napkin-ring sign is an independent prognostic imaging marker of major adverse cardiac events. However, being a solely 
qualitative marker, identification of such coronary plaques mainly depends on the readers’ experience. Therefore, a more 
quantitative approach would be desirable. Radiomics is the process of obtaining quantitative parameters from radiological 
examinations, to create big-data data sets, where each abnormality is characterized by hundreds of thousands of different 
parameters. Radiomics is an emerging field in oncoradiology; however, to date, there is limited information on the clinical 
applicability of radiomics to cardiovascular imaging. We compared napkin-ring sign plaques with matched non–napkin-ring 
sign plaques. Although none of the conventional metrics differed between the 2 groups, >20% of radiomic features were sig-
nificantly different, of which almost half had an area under the curve value >0.80, suggesting good discriminatory potential 
in clinical practice. We demonstrated that radiomics has the potential to identify a qualitative high-risk plaque feature that 
currently only experts are capable of. With the transformation of visual characteristics into distinct quantitative information, 
radiological examinations could become more standardized and less dependent on reader’s experience. Radiomics could 
easily be implemented into current clinical software packages and, therefore, become a computer-aided diagnostic tool for 
clinicians in assessing coronary plaque morphology. Furthermore, cardiovascular radiomics has the potential to identify new 
imaging biomarkers, which might be more specific to rupture-prone plaques and, therefore, could guide clinical treatment of 
patients with nonobstructive coronary artery disease.
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SUPPLEMENTAL MATERIAL 

 

Supplemental Methods 1 

Image quality measurements 

To assess image quality, we measured the signal-to-noise ratio defined as the mean coronary 

luminal CT attenuation in Hounsfield units (HU) adjacent to the plaque in a healthy segment 

divided by the standard deviation of the CT attenuation in the aorta measured in a region of interest 

at least 2 cm2 at the level of the left main trunk. Contrast-to-noise ratio was calculated as the mean 

luminal HU minus the perivascular HU at the site of the plaque divided by the standard deviation 

of the aortic HU. All measurements were performed on a clinical workstation (IntelliSpace portal, 

Philips Healthcare, Best, The Netherlands). Detailed information regarding image quality can be 

found in table 2. 

 

Image acquisition 

Images were acquired using 256-slice scanner (Brilliance iCT 256, Philips Healthcare, Best, The 

Netherlands) with prospective ECG-triggered acquisition mode. If the initial heart rate was above 

65 beats per minutes we administered heart rate lowering medication (beta blocker or ivabradine, 

if beta blocker was contraindicated) orally and intravenous to the patients. To ensure optimal 

visualization of the coronary vessels 0.8 mg of sublingual nitroglycerin was given to all patients 2 

minutes before the image acquisition. Images were acquired in cranio-caudal direction during a 

single breath-hold in inspiration. Four-phasic injection protocol with 90-100 ml of Iomeprol 

contrast agent was used (Iomeron 400, Bracco Ltd, Milan, Italy) for the coronary CTA 

examinations.1 Examinations were performed using 128×0.625 mm detector collimation, 270 ms 

gantry rotation time, 120 kV, mAs 250-300 depending on patient’s body mass index and chest 

size. All images were reconstructed to a 512×512 matrix with a slice thickness of 0.8 mm and 0.4 

mm spacing between slices using an iterative image reconstruction algorithm (iDOSE4 level 5, 

Philips Healthcare, Best, The Netherlands). 

 



Calculation of radiomic features 

Using Radiomics Image Analysis (RIA) software package, we calculated 44 first-order statistics, 

3585 gray level co-occurrence matrix (GLCM) based parameters, 55 gray level run length matrix 

(GLRLM) based metrics and 756 geometry based statistics. For first-order statistics 3D arrays 

containing the HU values were transformed to a 1D vector, from which the statistics were 

calculated. For GLCM, GLRLM and geometry based analysis images were discretized by dividing 

the voxel values into 2, 4, 8, 16 and 32 equally probable bins each containing the same number of 

voxels. This resulted in 5 replicas of the images. The different bin sizes significantly affect the 

calculated radiomic feature values. Fewer bins mean more robust values, however result in 

information loss, while more bins are susceptible to noise, but preserve more information.2 We 

conducted our analysis hypothesis free, in a data driven manner by calculating statistics for each 

discretized image. 

GLCM calculations were done based on the concept proposed by Halarick et al.3 GLCM are 

matrices, where the element in the ith row and jth column represents the probability of finding a 

voxel with value j next to a voxel of value i in a given direction and distance. Each statistic was 

calculated for each of the 26 possible directions in 3D space and then averaged to receive 

rotationally independent measures. All statistics were calculated for distances 1, 2 and 3 voxels.  

GLRLM calculations were done as proposed by Galloway.4 In the GLRLM matrix the element in 

the ith row and jth column represents how many times i value voxels occur next to each other j times 

in a given direction. Each statistic was calculated for each possible run direction in 3D space and 

then averaged to obtain rotationally independent measures.  

Geometry-based statistics were done on raw data as well as discretized images. Surfaces, volumes 

and radiomic parameters were calculated from the dimensions of the raw image, where the voxels 

in-plane dimensions were equal to pixel spacing, while the cross-plane dimension was equal to the 

spacing between the slices. Fractal dimensions were calculated by padding the lesion into an 

isovolumetric cube with sides equal to the next greatest power of two of the longest dimension of 

the lesion. Consecutively smaller and smaller cubes were used to cover the lesion and calculate 

the given statistic. Detailed description of statistical parameters can be found in supplemental 

methods 2.  



Supplemental Methods 2 

 

Radiomic features calculated using Radiomics Image Analysis (RIA) 

Toolbox for Grayscale Images 

 

First-order statistics 

 

First-order statistics discard all spatial information and analyze the data points only considering 

their values. 

For all proceeding first-order statistics let: 

x:  ordered data points from smallest to largest 

xi: ith data point, indexing starts from 1 

n: number of elements in x 

 

 

Statistics describing the average and spread of the data 

 

MEAN 

 

 

MEDIAN 

 

 

 

MODE 

Most frequent value in a data set 

 

HARMONIC MEAN 

For all cases if xi = 0, then xi = 1. 

 

 

GEOMETRIC MEAN 1 

Since the geometric mean of data sets 

containing negative numbers is not trivial, 

different geometric means have been 

proposed. For all cases if xi = 0, then xi = 1. 

 



GEOMETRIC MEAN 2 

 

 

GEOMETRIC MEAN 3 

 

 

 

TRIMMED MEAN 

If d = 50%, then the trimmed mean is also 

called interquartile mean 

 

 

TRIMEAN 

 

 

MEAN ABSOLUTE DEVIATION FROM 

THE MEDIAN 

 

 

MEDIAN ABSOLUTE DEVIATION 

FROM THE MEDIAN 

 

 

MEAN ABSOLUTE DEVIATION FROM 

THE MEAN 

 

 

MEDIAN ABSOLUTE DEVIATION 

FROM THE MEAN 

 

MEDIAN ABSOLUTE DEVIATION 

(MAD) 

 

MAXIMUM ABSOLUTE DEVIATION 

FROM THE MEDIAN 

 

 

MAXIMUM ABSOLUTE DEVIATION 

FROM THE MEAN 

 

 

ROOT MEAN SQUARE (RMS) 

 

 

MINIMUM 

Lowest value in a data set 

 

MAXIMUM 

Highest value in a data set 

 

QUARTILES 

 

 

 

INTERQUARTILE RANGE (IQR) 

 

 

LOWER-NOTCH 

 

 



UPPER-NOTCH 

 

 

RANGE 

 

 

DECILES 

 

 

 

Statistics describing the shape of the distribution of data points 

 

VARIANCE 

 

 

STANDARD DEVIATION (SD) 

 

 

 

SKEWNESS 

 

 

KURTOSIS 

 

 

 

 

Statistics describing the diversity of the data points 

 

ENERGY 

 

 

UNIFORMITY 

 

 

ENTROPY 

 

 

 

  



Gray level co-occurrence matrices (GLCM) 

 

Many statistics calculated from GLCMs are a function (f) of the elements in the GLCM (glcm) 

matrix multiplied by a weighing matrix (w). Using mathematical notation, we can write: 

w*f(glcm) 

These modified values are then summed to receive the statistic. By choosing different weights and 

functions, we can emphasize specific elements of the glcm over others, depending on what attribute 

of heterogeneity we wish to highlight. Basic concepts which help to understand the information 

stored in the glcm are: 

 glcm[i,j]: the probability of a value j occurring next to value i at a given angle and direction. 

 The main diagonal elements of the glcm store the probabilities of identical voxel occurring 

next to each other at given distance and direction. 

 The further away we move perpendicular to the main diagonal we receive probabilities of 

voxel occurring next to each other with increasingly different values. 

 The upper left quadrant of the matrix holds probabilities of low attenuations voxels 

occurring next to each other. 

 The lower left and the upper right quadrant of the matrix hold probabilities of low 

attenuations voxels occurring next to high attenuation voxels. 

 The lower right quadrant of the matrix holds probabilities of high attenuations voxels 

occurring next to each other. 

For all proceeding glcm statistics let: 

g: the number of gray levels the image has been discretized into 

gl: the values of the discretized gray levels, usually gl = [1, g] 

glcm: the gray level co-occurrence matrices matrix, with g number of rows and columns 

f: function of the elements in the glcm 

w: the weighing matrix, with g number of rows and columns 

i: the ith row 

j: the jth row 

 

For all calculated statistics the following functions of the glcm are considered: 

f(x)=x: glcm is unchanged 



f(x)=x2: all elements of the glcm are squared 

f(x)=-xlog2(x): elements of the glcm are replaced by entropy 

 

The following glcm matrix is used for calculations: 

 

 

For all statistics, the w matrix is given.  



CONTRAST 

 

 

 

Contrast gives higher weights in cases where 

the neighboring voxels have different values. 

The higher the Contrast of an image, the 

bigger the differences in voxel values of 

neighboring voxels. 

 

HOMOGENEITY2 

 

 

 

Homogeneity2 is the counterpart of Contrast. 

It takes the same weights, but takes the 

reciprocal value of them. Therefore, higher 

weights are given to elements close to the 

main diagonal, which decreases 

perpendicular to the main diagonal. The 

higher the Homoheneity2 of an image, the 

more similar voxels are next to each other. 

 

HOMOGENEITY2 NON-DIAGONAL 

 

 

 

Homogeneity2 non-diagonal is similar to 

Homogeneity2 except that the diagonal 

elements of w are 0, therefore same value 

voxel pairs are not considered in the statistic. 

 

DISSIMILARITY 

 

 

 

Dissimilarity gives higher weights in cases 

where the neighboring voxels have different 

values. It differs from Contrast, in that the 

weights grow linearly perpendicular to the 

main diagonal, as opposed to Contrast, where 

the weights grow as a quadratic function. 

 

 

HOMOGENEITY 

 

 

 

Homogeneity is the counterpart of 

Dissimilarity. It takes the same weights, but 

takes the reciprocal value of them. Therefore, 

higher weights are given to elements close to 

the main diagonal, which decreases 

perpendicular to the main diagonal. It differs 

from Homogeneity2, in that the weights 

decrease linearly perpendicular to the main 

diagonal, as opposed to Contrast, where the 

weights decrease as a quadratic function. 

 

 



HOMOGENEITY NON-DIAGONAL 

 

 

 

Homogeneity non-diagonal is similar to 

Homogeneity except that the diagonal 

elements of w are 0, therefore same value 

voxel pairs are not considered in the statistic. 

 

DIFFERENCE MOMENTUM 

NORMALIZED (DMN) 

 

 

 

DMN is very similar to Contrast, except in 

that it normalizes the weights by the square 

of the number of gray levels in the image. 

This results in different weights, where they 

increase at a slower rate further away from 

the main diagonal, as compared to Contrast. 

 

INVERSE DIFFERENCE MOMENTUM 

NORMALIZED (IDMN) 

 

 

 

IDMN is very similar to Homogeneity2, 

except in that it normalizes the weights by 

square of the number of gray levels in the 

image. This results in different weights, 

where they decline at a slower rate further 

away from the main diagonal, as compared to 

Homogeneity2. 

 

IDMN NON-DIAGONAL 

 

 

 

IDMN non diagonal is very similar to IDMN 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

DIFFERENCE NORMALIZED (DN) 

 

 

 

DN is very similar to Dissimilarity, except in 

that it normalizes the weights by the number 

of gray levels in the image. This results in 

different weights, where they increase at a 

slower rate further away from the main 

diagonal, as compared to Dissimilarity. 

 

INVERSE DIFFERENCE NORMALIZED 

(IDN) 

 

 

 

IDN is very similar to Homogeneity, except 

in that it normalizes the weights by the 

number of gray levels in the image. This 



results in different weights, where they 

decline at a slower rate further away from the 

main diagonal, as compared to Homogeneity. 

 

INVERSE DIFFERENCE NORMALIZED 

(IDN) NON-DIAGONAL 

 

 

 

IDN non-diagonal is very similar to IDN 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

AUTOCORRELATION 

 

 

 

Autocorrelation uses weights which increase 

in the direction of the lower right quadrant, 

therefore emphasizing the lower right 

quadrant of the glcm, where we have the 

probabilities of high intensity value voxels 

occurring next to similarly high value voxels. 

 

AUTOCORRELATION NON-DIAGONAL 

 

 

 

Autocorrelation non-diagonal is very similar 

to Autocorrelation except that the diagonal 

elements of w are 0, therefore same value 

voxel pairs are not considered in the statistic. 

 

INVERSE AUTOCORRELATION 

 

 

 

Inverse autocorrelation is the counterpart of 

autocorrelation, it uses weights which are the 

reciprocal value of the autocorrelation 

weights and thus increase in the direction of 

the upper left quadrant, therefore 

emphasizing the upper left quadrant of the 

glcm, where we have the probabilities of low 

intensity value voxels occurring next to 

similarly low value voxels. 

 

INVERSE AUTOCORRELATION NON-

DIAGONAL 

 

 

 

Inverse autocorrelation non-diagonal is very 

similar to Inverse autocorrelation except that 

the diagonal elements of w are 0, therefore 

same value voxel pairs are not considered in 

the statistic. 

 

 

 



GAUSSIAN 

 

 

 

 

 

Gaussian uses a 2 dimensional Gaussian 

distribution as weights. Elements in the 

middle of the glcm which represent voxels 

with intermediate values next to each other 

receive the highest weights. The degree of the 

weights decreases in all directions 

exponentially. 

 

GAUSSIAN NON-DIAGONAL 

 

 

 

 

 

Gaussian non-diagonal is very similar to 

Gaussian except that the diagonal elements 

of w are 0, therefore same value voxel pairs 

are not considered in the statistic. 

 

INVERSE GAUSSIAN 

 

 

 

 

 

Inverse Gaussian uses the reciprocal values 

of a 2 dimensional Gaussian distribution as 

weights. Elements in the middle of the glcm 

which represent voxels with intermediate 

values next to each other receive the smallest 

weights. The degree of the weights increases 

in all directions exponentially, therefore 

elements in the four corners of the glcm 

receive higher weights as compared to the 

center. 

 

INVERSE GAUSSIAN NON-DIAGONAL 

 

 

 

 

 

Inverse Gaussian non-diagonal is very 

similar to Inverse Gaussian except that the 

diagonal elements of w are 0, therefore same 

value voxel pairs are not considered in the 

statistic. 

 

GAUSSIAN LEFT POLAR 

 

 

 

 

 

Gaussian left polar uses a 2 dimensional 

Gaussian distribution as weights similar to 



the simple Gaussian, except that the center of 

the distribution is in the top felt of the w 

matrix, therefore the probability of low value 

voxels occurring next to each other is 

emphasized. 

 

GAUSSIAN LEFT POLAR NON-

DIAGONAL 

 

 

 

 

 

Gaussian left polar non-diagonal is very 

similar to the Gaussian left polar except that 

the diagonal elements of w are 0, therefore 

same value voxel pairs are not considered in 

the statistic. 

 

INVERSE GAUSSIAN LEFT POLAR 

 

 

 

 

 

Inverse Gaussian left polar uses the 

reciprocal values of a 2 dimensional 

Gaussian distribution as weights. It is very 

similar to the Inverse Gaussian, except that 

the center of the distribution is in the top left, 

therefore elements in the top left of the glcm 

which represent voxels with low values next 

to each other receive the smallest weights. 

 

INVERSE GAUSSIAN LEFT POLAR 

NON-DIAGONAL 

 

 

 

 

 

 

 

Inverse Gaussian left polar non-diagonal is 

very similar to Inverse Gaussian left polar 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

GAUSSIAN LEFT FOCUS 

 

 

 

 

 

Gaussian left focus uses a 2 dimensional 

Gaussian distribution as weights similar to 

the simple Gaussian, except that the center of 

the distribution is in the middle of the upper 

left quadrant of the w matrix, therefore the 

probability of low-intermediate value voxels 

occurring next to each other is emphasized. 



GAUSSIAN LEFT FOCUS NON-

DIAGONAL 

 

 

 

 

 

Gaussian left focus non-diagonal is very 

similar to the Gaussian left focus except that 

the diagonal elements of w are 0, therefore 

same value voxel pairs are not considered in 

the statistic. 

 

INVERSE GAUSSIAN LEFT FOCUS 

 

 

 

 

 

Inverse Gaussian left focus uses the 

reciprocal values of a 2 dimensional 

Gaussian distribution as weights. It is very 

similar to the Inverse Gaussian, except that 

the center of the distribution is in the middle 

of the upper left quadrant of the w matrix, 

therefore elements in the upper left of the 

glcm which represent voxels with low-

intermediate values next to each other receive 

the smallest weights. 

 

 

INVERSE GAUSSIAN LEFT FOCUS 

NON-DIAGONAL 

 

 

 

 

 

Inverse Gaussian left focus non-diagonal is 

very similar to Inverse Gaussian left focus 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

GAUSSIAN RIGHT FOCUS 

 

 

 

 

 

Gaussian right focus uses a 2 dimensional 

Gaussian distribution as weights similar to 

the simple Gaussian, except that the center of 

the distribution is in the middle of the lower 

right quadrant of the w matrix, therefore the 

probability of intermediate-high value voxels 

occurring next to each other is emphasized. 

 

 

 

 

 



GAUSSIAN RIGHT FOCUS NON-

DIAGONAL 

 

 

 

 

 

Gaussian right focus non-diagonal is very 

similar to the Gaussian right focus except 

that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

INVERSE GAUSSIAN RIGHT FOCUS 

 

 

 

 

 

Inverse Gaussian right focus uses the 

reciprocal values of a 2 dimensional 

Gaussian distribution as weights. It is very 

similar to the Inverse Gaussian, except that 

the center of the distribution is in the middle 

of the lower right quadrant of the w matrix, 

therefore elements in the lower right of the 

glcm which represent voxels with 

intermediate-high values next to each other 

receive the smallest weights. 

 

 

INVERSE GAUSSIAN RIGHT FOCUS 

NON-DIAGONAL 

 

 

 

 

 

Inverse Gaussian right focus non-diagonal is 

very similar to Inverse Gaussian right focus 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

GAUSSIAN RIGHT POLAR 

 

 

 

 

 

Gaussian right polar uses a 2 dimensional 

Gaussian distribution as weights similar to 

the simple Gaussian, except that the center of 

the distribution is in the lower right of the w 

matrix, therefore the probability of high value 

voxels occurring next to each other is 

emphasized. 

 

 

 

 

 



GAUSSIAN RIGHT POLAR NON-

DIAGONAL 

 

 

 

 

 

Gaussian right polar non-diagonal is very 

similar to the Gaussian right polar except 

that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

INVERSE GAUSSIAN RIGHT POLAR 

 

 

 

 

 

Inverse Gaussian right polar uses the 

reciprocal values of a 2 dimensional 

Gaussian distribution as weights. It is very 

similar to the Inverse Gaussian, except that 

the center of the distribution is in the lower 

right of the w matrix, therefore elements in 

the lower right of the glcm which represent 

voxels with high values next to each other 

receive the smallest weights. 

 

 

 

INVERSE GAUSSIAN RIGHT POLAR 

NON-DIAGONAL 

 

 

 

 

 

Inverse Gaussian right polar non-diagonal is 

very similar to Inverse Gaussian right polar 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

GAUSSIAN 2 FOCUS 

 

 

 

 

 

 

Gaussian 2 focus uses two Gaussian 

functions. One is centered in the middle of 

the upper left quadrant, while the other is 

centered at the lower right quadrant. The 

resulting w is the sum of the two Gaussians. 

Elements in the top left and lower right (low 

value voxels with low value neighbors and 

high value voxels with high value neighbors) 

are emphasized over voxels where low value 

voxels occur next to high value ones 

 



GAUSSIAN 2 FOCUS NON-DIAGONAL 

 

 

 

 

 

 

Gaussian 2 focus non-diagonal is very 

similar to Gaussian 2 focus except that the 

diagonal elements of w are 0, therefore same 

value voxel pairs are not considered in the 

statistic. 

 

INVERSE GAUSSIAN 2 FOCUS 

 

 

 

 

 

 

Inverse Gaussian 2 focus uses the reciprocal 

value of two Gaussian functions. One is 

centered in the middle of the upper left 

quadrant, while the other is centered at the 

lower right quadrant. The resulting w is the 

sum of the two Gaussians. Elements on the 

perimeter of the matrix are emphasized over 

values in the middle of the matrix in a way, 

that elements closer to the main diagonal 

receive higher weights. 

 

INVERSE GAUSSIAN 2 FOCUS NON-

DIAGONAL 

 

 

 

 

 

 

 

Inverse Gaussian 2 focus non-diagonal is 

very similar to Inverse Gaussian 2 focus 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

GAUSSIAN 2 POLAR 

 

 

 

 

 

Inverse Gaussian 2 polar uses two Gaussian 

functions. One is centered in the top left, the 

other is centered in the bottom right. The 

resulting w is the sum of the two Gaussians. 

Elements in the top left and lower right (low 

value voxels with low value neighbors and 

high value voxels with high value neighbors) 

are emphasized over voxels where low value 

voxels occur next to high value ones. 

 



GAUSSIAN 2 POLAR NON-DIAGONAL 

 

 

 

 

 

 

Inverse Gaussian 2 polar non-diagonal is 

very similar to Inverse Gaussian 2 polar 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

INVERSE GAUSSIAN 2 POLAR 

 

 

 

 

 

Inverse Gaussian 2 polar uses the reciprocal 

value of two Gaussian functions. One is 

centered in the top left, the other is centered 

in the bottom right. The resulting w is the sum 

of the two Gaussians. Elements on the 

perimeter of the matrix are emphasized over 

values in the middle of the matrix in a way, 

that elements closer to the main diagonal 

receive higher weights. 

 

 

 

INVERSE GAUSSIAN 2 POLAR NON-

DIAGONAL 

 

 

 

 

 

Inverse Gaussian 2 polar non-diagonal is 

very similar to Inverse Gaussian 2 polar 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

CLUSTER PROMINENCE 

 

 

 

 

 

Cluster prominence multiplies the elements 

of the glcm with a w matrix where the 

elements are equal to the values of the two 

compared voxels, minus the average value 

we expect next to a i value voxel and the 

average value we expect to a j value voxel. 

This difference is then taken to the fourth 

power. 

 

 

 

 



CLUSTER PROMINENCE NON-

DIAGONAL 

 

 

 

 

Cluster prominence non-diagonal is very 

similar to Cluster prominence except that the 

diagonal elements of w are 0, therefore same 

value voxel pairs are not considered in the 

statistic. 

 

INVERSE CLUSTER PROMINENCE 

 

 

 

 

Inverse cluster prominence takes the 

reciprocal value of the weights of Cluster 

prominence. 

 

INVERSE CLUSTER PROMINENCE 

NON-DIAGONAL 

 

 

 

 

Inverse cluster prominence non-diagonal is 

very similar to Inverse cluster prominence 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

CLUSTER SHADE 

 

 

 

 

Cluster shade multiplies the elements of the 

glcm with a w matrix where the elements are 

equal to the values of the two compared 

voxels, minus the average value we expect 

next to a i value voxel and the average value 

we expect to a j value voxel. This difference 

is then taken to the third power. 

 

CLUSTER SHADE NON-DIAGONAL 

 

 

 

 

Cluster shade non-diagonal is very similar to 

Cluster shade except that the diagonal 

elements of w are 0, therefore same value 

voxel pairs are not considered in the statistic. 

 

INVERSE CLUSTER SHADE 

 

 

 



Inverse cluster shade takes the reciprocal 

value of the weights of Cluster shade. 

 

INVERSE CLUSTER SHADE NON-

DIAGONAL 

 

 

 

 

Inverse cluster shade non-diagonal is very 

similar to Inverse cluster shade except that 

the diagonal elements of w are 0, therefore 

same value voxel pairs are not considered in 

the statistic. 

 

CLUSTER TENDENCY 

 

 

 

 

Cluster tendency multiplies the elements of 

the glcm with a w matrix where the elements 

are equal to the values of the two compared 

voxels, minus the average value we expect 

next to a i value voxel and the average value 

we expect to a j value voxel. This difference 

is then taken to the second power. 

 

 

CLUSTER TENDENCY NON-

DIAGONAL 

 

 

 

 

Cluster tendency non-diagonal is very 

similar to Cluster tendency except that the 

diagonal elements of w are 0, therefore same 

value voxel pairs are not considered in the 

statistic. 

 

INVERSE CLUSTER TENDENCY 

 

 

 

 

Inverse cluster tendency takes the reciprocal 

value of the weights of Cluster tendency. 

 

INVERSE CLUSTER TENDENCY NON-

DIAGONAL 

 

 

 

 

Inverse cluster tendency non-diagonal is very 

similar to Inverse cluster tendency except 

that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 



CLUSTER DIFFERENCE 

 

 

 

 

 

Cluster difference multiplies the elements of 

the glcm with a w matrix where the elements 

are equal to the values of the two compared 

voxels, minus the average value we expect 

next to a i value voxel and the average value 

we expect to a j value voxel. 

 

CLUSTER DIFFERENCE NON-

DIAGONAL 

 

 

 

 

Cluster difference non-diagonal is very 

similar to Cluster difference except that the 

diagonal elements of w are 0, therefore same 

value voxel pairs are not considered in the 

statistic. 

 

INVERSE CLUSTER DIFFERENCE 

 

 

  

 

 

Inverse cluster difference takes the reciprocal 

value of the weights of Cluster difference. 

 

INVERSE CLUSTER DIFFERENCE NON-

DIAGONAL 

 

 

 

 

 

Inverse cluster difference non-diagonal is 

very similar to Inverse cluster difference 

except that the diagonal elements of w are 0, 

therefore same value voxel pairs are not 

considered in the statistic. 

 

MEAN 

 

 

 

Mean is a measure of the average f(glcm) 

values. Since the elements of the glcm are 

symmetrical, therefore calculations based on 

rows (i) are equivalent if calculations were 

done on columns (j). 

 

VARIANCE 

 

 

 

 



Variance is a measure of the variation of the 

elements in the glcm. Since the elements of 

the glcm are symmetrical, therefore 

calculations based on rows (i) are equivalent 

if calculations were done on columns (j). 

 

CORRELATION 

 

 

 

 

 

Correlation is a measure of the linear 

dependency of neighboring voxels. As 

opposed to previous cases, here the weight 

matrix is a function of f(glcm), therefore for 

each statistical measure we have a separate 

weight matrix.

 

 

Previous statistics used different weights for emphasizing specific elements of the glcm. The 

following statistics aggregate the glcm values based on some equation to prioritize given glcm 

elements over others.  

 

Sum 

Sum statistics groups the glcm elements based on which row and column they are in. Values where 

i+j is the same are combined together. This results in aggregating together elements of the glcm 

which are on one-line perpendicular to the main diagonal. This is indicated in the mask matrix (m), 

where same value elements will be grouped together in the glcm to calculate the statistic. Each of 

the statistics takes a function (f) of these combined values and multiplies these values with given 

weights (we). 

 

 

 SUM AVERAGE 

 

 

 

 



 SUM ENERGY 

 

 

 

 

 SUM ENTROPY 

 

 

 

 

 SUM VARIANCE 

 

 

 

 

 

 

Difference 

Difference statistics groups the glcm elements based on which row and column they are in. Values 

where |i-j| is the same are combined together. This results in aggregating together elements of the 

glcm which are parallel to the main diagonal. This is indicated in the mask matrix (m), where same 

value elements will be grouped together in the glcm to calculate the statistic. Each of the statistics 

takes a function (f) of these combined values and multiplies these values with given weights (we). 

 

 

 DIFFERENCE AVERAGE 

 

 

 

 



 DIFFERENCE ENERGY 

 

 

 

 

 DIFFERENCE ENTROPY 

 

 

 

 

 DIFFERENCE VARIANCE 

 

 

 

 

 

 

Inverse sum 

Inverse statistics groups the glcm elements based on which row and column they are in. Values 

where i+j is the same are combined together. This results in aggregating together elements of the 

glcm which are on one-line perpendicular to the main diagonal. This is indicated in the mask matrix 

(m), where same value elements will be grouped together in the glcm to calculate the statistic. Each 

of the statistics takes a function (f) of these combined values and multiplies these values with given 

weights (we). Inverse sum is similar to sum statistics, except that it uses the reciprocal values of 

the weights, therefore the opposite elements are emphasized as compared to sum statistics. Entropy 

does not use weights proportional to the row or column value, it would be equal to sum entropy, 

therefore it is undefined. 

 

 



 INVERSE SUM AVERAGE 

 

 

 

 

 INVERSE SUM ENERGY 

 

 

 

 

 INVERSE SUM VARIANCE 

 

 

 

 

 

 

 

Inverse difference 

Inverse difference statistics groups the glcm elements based on which row and column they are in. 

Values where |i-j| is the same are combined together. This results in aggregating together elements 

of the glcm which are parallel to the main diagonal. This is indicated in the mask matrix (m), where 

same value elements will be grouped together in the glcm to calculate the statistic. Each of the 

statistics takes a function (f) of these combined values and multiplies these values with given 

weights (we). Inverse difference is similar to difference statistics, except that it uses the reciprocal 

values of the weights, therefore the opposite elements are emphasized as compared to sum 

statistics. Since division by 0 is undefined, main diagonal elements are considered to be 0. Entropy 

does not use weights proportional to the row or column value, it would be equal to difference 

entropy, therefore it is undefined. 

 

 



 INVERSE DIFFERENCE AVERAGE 

 

 

 

 

 INVERSE DIFFERENCE ENERGY 

 

 

 

 

 INVERSE DIFFERENCE VARIANCE 

 

 

 

 

 

 

 

Further glcm functions 

 

The following metrics cannot be grouped into either of the previous cases. These metrics are 

standalone functions of the elements of the glcm. 

 

 INFORMATION MEASURE OF CORRELATION 1 (IMC1) 

 

 

 

 

 

 



 INFORMATION MEASURE OF CORRELATION 2 (IMC2) 

 

 

 

 

 

 ENERGY 

 

 

 

 

 ENTROPY 

 

 

 

 

First-order statistics of GLCM 

 

All GLCMs can be seen as an array of probability values, and therefore first-order statistics can be 

used to describe different aspects of the distribution.  



Gray level run length matrix (GLRLM) 

 

Many statistics calculated from GLRLMs are a sum of: the elements in the GLRLM (glrlm) matrix 

multiplied by a weighing matrix (w). Using mathematical notation, we can write: 

w*glrlm 

By choosing different weights, we can emphasize specific elements of the glrlm over others, 

depending on what attribute of the run lengths we wish to highlight. Basic concepts which help to 

understand the information stored in the glrlm are: 

 glrlm[i,j]: the number of times i value voxels are next to each other j times 

 The first column stores the number of times voxels do not have same value neighbors 

 The upper left quadrant of the matrix holds frequencies of how many times low attenuation 

voxels have few same value neighbors 

 The lower left quadrant of the matrix stores frequencies of how many times high 

attenuation voxels have few same value neighbors 

 The upper right quadrant of the matrix holds frequencies of how many times low 

attenuation voxels have many same value neighbors 

 The lower right quadrant of the matrix stores frequencies of how many times high 

attenuation voxels have many same value neighbors 

For all proceeding glcm statistics let: 

dim: the maximum number of voxels present in the given direction 

g:  the number of gray levels the image has been discretized into 

glrlm: the gray level run length matrix, with g number of rows and dim number columns 

w:  the weighing matrix, with g number of rows and dim number columns  

i:  the ith row 

j:  the jth row 

nr: number of run lengths 

nv: number of voxels 

 

For all statistics, the examples will be given for the following 4x5 glrlm matrix 



 

 

 

To achieve comparable results between different images, the results can be divided by nr, which 

is a normalizing factor. 

For all statistics, the w matrix is given. 

  



Weighed matrix statistics 

SHORT RUN EMPHASIS (SRE) 

 

 

 

 

 

SRE gives higher weights to short run 

lengths, therefore images where intensity 

values change quickly in the given direction 

have higher values, while images with many 

same value voxels next to each other receive 

lower values. 

 

LONG RUN EMPHASIS (LRE) 

 

 

 

 

LRE gives higher weights to long run 

lengths, therefore images where intensity 

values change slowly in the given direction 

have higher values, while images with many 

different value voxels next to each other 

receive lower values. 

 

LOW GRAY LEVEL RUN EMPHASIS 

(LGLRE) 

 

 

 

 

LGLRE gives higher weights low value 

voxels, therefore images with predominantly 

low attenuation values will receive higher 

values as compared to images with higher 

attenuation voxels. 

 

HIGH GRAY LEVEL RUN EMPHASIS 

(HGLRE) 

 

 

 

 

HGLRE gives higher weights to voxels with 

high attenuation values, therefore images 

with predominantly high voxel values will 

receive higher values as compared to images 

with lower attenuation voxels. 

 

SHORT RUN LOW GRAY LEVEL 

EMPHASIS (SRLGLE) 

 

 

 

 

SRLGLE gives higher weights low value and 

low run lengths, therefore images with 

predominantly low attenuation values which 

do not occur repeatedly will receive higher 

values as compared to images with higher 



attenuation voxels frequently occurring next 

to each other. 

 

LONG RUN HIGH GRAY LEVEL 

EMPHASIS (LRHGLE) 

 

 

 

 

LRHGLE gives higher weights high value 

and long run lengths, therefore images with 

predominantly high attenuation values which 

occur repeatedly next to each other will 

receive higher values as compared to images 

where low attenuation voxels occur randomly 

next to each other. 

 

SHORT RUN HIGH GRAY LEVEL 

EMPHASIS (SRHGLE) 

 

 

 

 

 

SRHGLE gives higher weights high value 

and low run lengths, therefore images with 

predominantly high attenuation values which 

do not occur repeatedly will receive higher 

values as compared to images with lower 

attenuation voxels frequently occurring next 

to each other. 

 

LONG RUN LOW GRAY LEVEL 

EMPHASIS (LRLGLE) 

 

 

 

 

 

LRLGLE gives higher weights low value and 

long run lengths, therefore images with 

predominantly low attenuation values which 

occur repeatedly will receive higher values as 

compared to images with higher attenuation 

voxels which do not occur frequently next to 

each other. 

 

RUN PERCENTAGE (RP) 

 

 

 

RP weighs all elements equally. The more 

short run lengths there are in the image, the 

higher the value. 

 

 

 

 



Summed matrix statistics 

The following statistics are calculated by summing the values of the glrlm either by rows or 

columns. 

 

GRAY LEVEL NONUNIFORMITY (GLN) 

 

 

 

GLN first add up the elements of the glrlm by 

row and then squares them and sums them. 

When runs are equally distributed for all gray 

levels, then it takes up its minimum. 

 

RUN LENGTH NONUNIFORMITY (RLN) 

 

 

 

RLN first add up the elements of the glrlm by 

columns and then squares them and sums 

them. When run lengths for all lengths, then 

it takes up its minimum 

  



Shape-based metrics 

 

Shape-based measures derive parameters from the geometrical properties of the lesion.  

 

1-, 2-, 3-dimensional statistics 

These metrics are calculated from the space occupied by the abnormality 

 

VOLUME (V) 

 

 

 

VOLUME RATIO 

 

 

SURFACE (A) 

 

 

 

 

 

SURFACE RATIO 

 

 

 

SURFACE TO VOLUME RATIO 

 

 

 

COMPACTNESS1 

 

 

 

COMPACTNESS2 

 

 

 

SPHERICAL DISPROPORTION 

 

 

 

SPHERICITY 

 

 

 

MAXIMUM DIAMETER 

 

 

 

 

 



Fractal dimensions 

 

Fractal dimensions enumerate the self-symmetry of an object. The lesions are padded to a 

isovolumetric cube with sides equal to the next greatest power of two of the longest dimension of 

the lesion. Smaller and smaller bounding boxes are used to cover the lesion. Limits are 

approximated by the slope of the regression line through the points at each given scale on a log-

log plot. 

 

 

BOX-COUNTING DIMENSION 

 

 

 

 

INFORMATION DIMENSION 

 

 

 

 

CORRELATION DIMENSION 

 

 

 

Correlation dimension is strictly calculated from distances of the data points. A generalization of 

the Rényi entropy is used to approximate the correlation dimension. 

 



Supplemental Table 

 

Supplemental table 1. Diagnostic performance of radiomic parameters with AUC values above 0.8 

 

Variable Case IQR Control IQR p AUC 95% CI (AUC) Sensitivity Specificity PPV NPV 

First order statistics            

Deciles30__orig 53.50 [36.50; 74.08] 93.70 [75.50; 135.75] 0.00054425 0.827 [0.716; 0.921] 0.833 0.733 0.758 0.815 

Quartiles25__orig 40.00 [29.25; 62.06] 82.50 [65.50; 122.00] 0.00062135 0.826 [0.712; 0.922] 0.767 0.800 0.793 0.774 

Deciles20__orig 31.00 [15.50; 53.30] 71.00 [56.00; 106.25] 0.00087011 0.826 [0.713; 0.924] 0.800 0.767 0.774 0.793 

Har_mean__orig 65.79 [53.74; 80.10] 106.27 [85.37; 141.20] 0.00283237 0.823 [0.708; 0.922] 0.767 0.800 0.793 0.774 

Tri_mean__orig 67.88 [47.25; 95.88] 111.00 [88.62; 155.25] 0.00071495 0.812 [0.696; 0.910] 0.867 0.667 0.722 0.833 

Deciles40__orig 70.50 [50.50; 99.35] 119.00 [93.75; 165.75] 0.00054393 0.812 [0.695; 0.909] 0.867 0.667 0.722 0.833 

Geo_mean__orig 524.51 [342.84; 884.73] 1000.31 [736.51; 1516.67] 0.00160946 0.803 [0.684; 0.902] 0.633 0.900 0.864 0.711 

IQ_mean__orig 100.96 [71.20; 131.57] 146.32 [121.76; 190.18] 0.00075437 0.802 [0.684; 0.902] 0.600 0.933 0.900 0.700 

GLCM            

IQR__ep_b4_d1_avg 0.05 [0.05; 0.06] 0.04 [0.04; 0.05] 0.00012117 0.867 [0.769; 0.948] 0.700 0.900 0.875 0.750 

Low_notch__ep_b4_d1_avg -0.06 [-0.07; -0.05] -0.03 [-0.05; -0.01] 0.00012017 0.866 [0.763; 0.948] 0.967 0.633 0.725 0.950 

Gauss_rf_s_nd__ep_b16_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00045383 0.859 [0.759; 0.940] 0.767 0.867 0.852 0.788 

Md_AD_mn__ep_b4_d1_avg 0.04 [0.03; 0.04] 0.03 [0.02; 0.03] 0.00019997 0.856 [0.744; 0.946] 0.867 0.767 0.788 0.852 

Gauss_rf_s__ep_b32_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00134475 0.851 [0.743; 0.936] 0.667 0.933 0.909 0.737 

Gauss_rf_s_nd__ep_b32_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00128411 0.849 [0.743; 0.936] 0.600 1.000 1.000 0.714 

Sum_energy__ep_b32_d1_avg 0.53 [0.51; 0.54] 0.58 [0.54; 0.62] 0.00006803 0.848 [0.740; 0.937] 0.967 0.633 0.725 0.950 

IMC1__ep_b2_d1_avg -2.23 [-2.27; -2.20] -2.15 [-2.18; -2.12] 0.00028174 0.847 [0.736; 0.939] 0.933 0.700 0.757 0.913 



Autocorrelation_s_nd__ep_b16_d3_avg 0.28 [0.26; 0.34] 0.38 [0.32; 0.51] 0.00045426 0.847 [0.738; 0.931] 0.667 0.933 0.909 0.737 

Cluster_t_s__ep_b16_d3_avg 1.42 [1.33; 1.76] 1.96 [1.60; 2.71] 0.00033289 0.847 [0.741; 0.930] 0.667 0.900 0.870 0.730 

Gauss_rp_s_nd__ep_b32_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00056330 0.847 [0.740; 0.929] 0.633 0.933 0.905 0.718 

Inv_Cluster_d_e_nd__ep_b2_d1_avg 0.31 [0.30; 0.33] 0.35 [0.34; 0.37] 0.00021110 0.846 [0.734; 0.939] 1.000 0.600 0.714 1.000 

Dif_variance__ep_b2_d1_avg 0.47 [0.44; 0.50] 0.52 [0.51; 0.53] 0.00044666 0.846 [0.737; 0.937] 0.933 0.733 0.778 0.917 

Inv_Cluster_d_e__ep_b32_d2_avg 0.45 [0.43; 0.48] 0.41 [0.38; 0.43] 0.00003623 0.846 [0.734; 0.934] 0.900 0.733 0.771 0.880 

Gauss_rp_s__ep_b32_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00055069 0.846 [0.740; 0.929] 0.567 0.967 0.944 0.690 

Cluster_p_s__ep_b32_d3_avg 3816.59 [3315.39; 5643.63] 7016.05 [5387.94; 11777.20] 0.00053153 0.846 [0.743; 0.930] 0.667 0.867 0.833 0.722 

Inv_Cluster_t_e_nd__ep_b2_d1_avg 0.14 [0.13; 0.14] 0.15 [0.15; 0.16] 0.00016112 0.844 [0.736; 0.933] 0.800 0.767 0.774 0.793 

Gauss_rf_s__ep_b16_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00039954 0.844 [0.740; 0.930] 0.700 0.867 0.840 0.743 

Cluster_t_s__ep_b32_d3_avg 2.00 [1.83; 2.84] 3.37 [2.72; 5.37] 0.00102218 0.844 [0.739; 0.936] 0.667 0.933 0.909 0.737 

Contrast_e__ep_b2_d1_avg 0.71 [0.68; 0.75] 0.79 [0.77; 0.83] 0.00030475 0.843 [0.733; 0.936] 0.933 0.733 0.778 0.917 

Homogeneity2_e_nd__ep_b2_d1_avg 0.36 [0.34; 0.38] 0.40 [0.39; 0.42] 0.00030475 0.843 [0.727; 0.939] 0.933 0.733 0.778 0.917 

Dissimilarity_e__ep_b2_d1_avg 0.71 [0.68; 0.75] 0.79 [0.77; 0.83] 0.00030475 0.843 [0.730; 0.939] 0.933 0.733 0.778 0.917 

Homogeneity1_e_nd__ep_b2_d1_avg 0.36 [0.34; 0.38] 0.40 [0.39; 0.42] 0.00030475 0.843 [0.729; 0.939] 0.933 0.733 0.778 0.917 

DMN_e__ep_b2_d1_avg 0.18 [0.17; 0.19] 0.20 [0.19; 0.21] 0.00030475 0.843 [0.731; 0.938] 0.933 0.733 0.778 0.917 

IDMN_e_nd__ep_b2_d1_avg 0.57 [0.55; 0.60] 0.63 [0.62; 0.67] 0.00030475 0.843 [0.729; 0.938] 0.933 0.733 0.778 0.917 

DN_e__ep_b2_d1_avg 0.36 [0.34; 0.38] 0.40 [0.39; 0.42] 0.00030475 0.843 [0.730; 0.936] 0.933 0.733 0.778 0.917 

IDN_e_nd__ep_b2_d1_avg 0.48 [0.46; 0.50] 0.53 [0.51; 0.56] 0.00030475 0.843 [0.729; 0.937] 0.933 0.733 0.778 0.917 

Autocorrelation_e_nd__ep_b2_d1_avg 1.43 [1.37; 1.50] 1.59 [1.54; 1.67] 0.00030475 0.843 [0.730; 0.937] 0.933 0.733 0.778 0.917 

Inv_autocorrelation_e_nd__ep_b2_d1_avg 0.36 [0.34; 0.38] 0.40 [0.39; 0.42] 0.00030475 0.843 [0.731; 0.936] 0.933 0.733 0.778 0.917 

Gauss_e_nd__ep_b2_d1_avg 0.43 [0.41; 0.46] 0.48 [0.47; 0.51] 0.00030475 0.843 [0.732; 0.937] 0.933 0.733 0.778 0.917 

Gauss_lp_e_nd__ep_b2_d1_avg 0.26 [0.25; 0.28] 0.29 [0.28; 0.31] 0.00030475 0.843 [0.729; 0.938] 0.933 0.733 0.778 0.917 

Gauss_lf_e_nd__ep_b2_d1_avg 0.26 [0.25; 0.28] 0.29 [0.28; 0.31] 0.00030475 0.843 [0.730; 0.936] 0.933 0.733 0.778 0.917 

Gauss_rf_e_nd__ep_b2_d1_avg 0.26 [0.25; 0.28] 0.29 [0.28; 0.31] 0.00030475 0.843 [0.732; 0.938] 0.933 0.733 0.778 0.917 



Gauss_rp_e_nd__ep_b2_d1_avg 0.26 [0.25; 0.28] 0.29 [0.28; 0.31] 0.00030475 0.843 [0.731; 0.937] 0.933 0.733 0.778 0.917 

Inv_Gauss_e_nd__ep_b2_d1_avg 1.18 [1.13; 1.24] 1.31 [1.27; 1.37] 0.00030475 0.843 [0.729; 0.937] 0.933 0.733 0.778 0.917 

Inv_Gauss_lp_e_nd__ep_b2_d1_avg 1.94 [1.86; 2.04] 2.16 [2.10; 2.26] 0.00030475 0.843 [0.730; 0.936] 0.933 0.733 0.778 0.917 

Inv_Gauss_lf_e_nd__ep_b2_d1_avg 1.94 [1.86; 2.04] 2.16 [2.10; 2.26] 0.00030475 0.843 [0.731; 0.937] 0.933 0.733 0.778 0.917 

Inv_Gauss_rf_e_nd__ep_b2_d1_avg 1.94 [1.86; 2.04] 2.16 [2.10; 2.26] 0.00030475 0.843 [0.730; 0.937] 0.933 0.733 0.778 0.917 

Inv_Gauss_rp_e_nd__ep_b2_d1_avg 1.94 [1.86; 2.04] 2.16 [2.10; 2.26] 0.00030475 0.843 [0.729; 0.936] 0.933 0.733 0.778 0.917 

Gauss_2f_e_nd__ep_b2_d1_avg 0.53 [0.50; 0.55] 0.58 [0.57; 0.61] 0.00030475 0.843 [0.730; 0.937] 0.933 0.733 0.778 0.917 

Inv_Gauss_2f_e_nd__ep_b2_d1_avg 3.88 [3.71; 4.09] 4.31 [4.19; 4.53] 0.00030475 0.843 [0.732; 0.938] 0.933 0.733 0.778 0.917 

Gauss_2p_e_nd__ep_b2_d1_avg 0.53 [0.50; 0.55] 0.58 [0.57; 0.61] 0.00030475 0.843 [0.731; 0.936] 0.933 0.733 0.778 0.917 

Inv_Gauss_2p_e_nd__ep_b2_d1_avg 3.88 [3.71; 4.09] 4.31 [4.19; 4.53] 0.00030475 0.843 [0.731; 0.937] 0.933 0.733 0.778 0.917 

Inv_Cluster_t_nd__ep_b2_d1_avg 0.05 [0.04; 0.05] 0.05 [0.05; 0.06] 0.00018844 0.843 [0.734; 0.936] 0.967 0.633 0.725 0.950 

Dif_entropy__ep_b2_d1_avg 0.77 [0.74; 0.81] 0.85 [0.83; 0.89] 0.00032424 0.843 [0.731; 0.938] 0.933 0.733 0.778 0.917 

Inv_Cluster_s_nd__ep_b2_d1_avg 0.02 [0.02; 0.02] 0.02 [0.02; 0.03] 0.00016416 0.842 [0.728; 0.933] 1.000 0.600 0.714 1.000 

Md_AD_md__ep_b4_d1_avg 0.03 [0.03; 0.04] 0.02 [0.02; 0.03] 0.00020597 0.842 [0.734; 0.930] 0.967 0.567 0.690 0.944 

MAD__ep_b4_d1_avg 0.05 [0.05; 0.05] 0.03 [0.03; 0.05] 0.00020597 0.842 [0.733; 0.932] 0.967 0.567 0.690 0.944 

Gauss_2f__ep_b8_d1_avg 0.87 [0.87; 0.88] 0.85 [0.83; 0.86] 0.00033525 0.842 [0.728; 0.936] 0.933 0.667 0.737 0.909 

Cluster_t_s_nd__ep_b16_d3_avg 1.27 [1.17; 1.57] 1.72 [1.43; 2.26] 0.00044625 0.842 [0.738; 0.929] 0.667 0.967 0.952 0.744 

Inv_Cluster_d_e_nd__ep_b32_d2_avg 0.41 [0.40; 0.43] 0.38 [0.36; 0.40] 0.00004454 0.842 [0.734; 0.928] 0.800 0.767 0.774 0.793 

Autocorrelation_s__ep_b32_d3_avg 0.45 [0.41; 0.64] 0.75 [0.61; 1.22] 0.00088436 0.842 [0.738; 0.929] 0.667 0.900 0.870 0.730 

Cluster_s_s_nd__ep_b32_d3_avg 74.87 [68.25; 111.77] 131.20 [101.02; 226.78] 0.00072906 0.842 [0.731; 0.930] 0.633 0.967 0.950 0.725 

Inv_Cluster_p_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.01 [0.01; 0.01] 0.00014653 0.841 [0.728; 0.931] 0.767 0.800 0.793 0.774 

Inv_Cluster_s_e_nd__ep_b2_d1_avg 0.06 [0.06; 0.06] 0.07 [0.06; 0.07] 0.00013362 0.841 [0.734; 0.929] 0.767 0.800 0.793 0.774 

Inv_Cluster_d_nd__ep_b2_d1_avg 0.10 [0.09; 0.11] 0.12 [0.12; 0.14] 0.00022209 0.841 [0.728; 0.933] 0.967 0.633 0.725 0.950 

Variance_s__ep_b16_d3_avg 0.40 [0.37; 0.50] 0.55 [0.46; 0.73] 0.00030695 0.841 [0.736; 0.928] 0.667 0.933 0.909 0.737 

Inv_Cluster_p_s_nd__ep_b2_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00018653 0.840 [0.727; 0.931] 0.967 0.633 0.725 0.950 



Har_mean__ep_b2_d1_avg 0.17 [0.16; 0.18] 0.20 [0.19; 0.21] 0.00028717 0.840 [0.730; 0.933] 0.933 0.667 0.737 0.909 

Md_AD_mn__ep_b8_d1_avg 0.01 [0.01; 0.01] 0.01 [0.01; 0.01] 0.00065296 0.840 [0.728; 0.936] 0.967 0.633 0.725 0.950 

Cluster_d_s_nd__ep_b16_d2_avg 0.07 [0.07; 0.07] 0.08 [0.07; 0.09] 0.00059495 0.840 [0.732; 0.928] 0.667 0.967 0.952 0.744 

Autocorrelation_s__ep_b16_d3_avg 0.32 [0.29; 0.38] 0.45 [0.35; 0.61] 0.00038264 0.840 [0.734; 0.926] 0.933 0.567 0.683 0.895 

Gauss_lf_e__ep_b32_d2_avg 4.09 [3.81; 4.23] 3.54 [3.13; 3.93] 0.00006457 0.840 [0.733; 0.923] 1.000 0.533 0.682 1.000 

Gauss_rf_s_nd__ep_b32_d2_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00040025 0.840 [0.731; 0.928] 0.767 0.767 0.767 0.767 

Autocorrelation_s_nd__ep_b32_d3_avg 0.40 [0.37; 0.56] 0.69 [0.56; 1.10] 0.00093074 0.840 [0.730; 0.930] 0.600 1.000 1.000 0.714 

Cluster_p_s_nd__ep_b32_d3_avg 3279.61 [2994.39; 5170.88] 5975.60 [4631.04; 10723.84] 0.00058442 0.840 [0.730; 0.927] 0.667 0.900 0.870 0.730 

Inv_Cluster_p_e_nd__ep_b2_d1_avg 0.03 [0.03; 0.03] 0.03 [0.03; 0.03] 0.00011863 0.839 [0.730; 0.928] 0.733 0.833 0.815 0.758 

Inv_Cluster_d_e__ep_b32_d1_avg 0.48 [0.47; 0.50] 0.45 [0.43; 0.47] 0.00004147 0.839 [0.727; 0.934] 1.000 0.600 0.714 1.000 

Sum_energy__ep_b32_d2_avg 0.58 [0.54; 0.62] 0.66 [0.61; 0.73] 0.00012438 0.839 [0.730; 0.928] 0.900 0.633 0.711 0.864 

Cluster_s_s__ep_b32_d3_avg 83.34 [74.55; 125.21] 146.22 [119.65; 246.32] 0.00067158 0.839 [0.728; 0.927] 0.667 0.900 0.870 0.730 

Variance_s__ep_b32_d3_avg 0.56 [0.51; 0.81] 0.96 [0.76; 1.47] 0.00111326 0.839 [0.729; 0.927] 0.600 1.000 1.000 0.714 

Contrast__ep_b2_d1_avg 0.23 [0.21; 0.26] 0.28 [0.27; 0.32] 0.00026917 0.838 [0.723; 0.934] 0.867 0.767 0.788 0.852 

Homogeneity2__ep_b2_d1_avg 0.88 [0.87; 0.89] 0.86 [0.84; 0.86] 0.00026917 0.838 [0.723; 0.933] 0.867 0.767 0.788 0.852 

Homogeneity2_nd__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00026917 0.838 [0.724; 0.931] 0.867 0.767 0.788 0.852 

Dissimilarity__ep_b2_d1_avg 0.23 [0.21; 0.26] 0.28 [0.27; 0.32] 0.00026917 0.838 [0.724; 0.931] 0.867 0.767 0.788 0.852 

Homogeneity1__ep_b2_d1_avg 0.88 [0.87; 0.89] 0.86 [0.84; 0.86] 0.00026917 0.838 [0.722; 0.932] 0.867 0.767 0.788 0.852 

Homogeneity1_nd__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00026917 0.838 [0.726; 0.933] 0.867 0.767 0.788 0.852 

DMN__ep_b2_d1_avg 0.06 [0.05; 0.06] 0.07 [0.07; 0.08] 0.00026917 0.838 [0.723; 0.933] 0.867 0.767 0.788 0.852 

IDMN__ep_b2_d1_avg 0.95 [0.95; 0.96] 0.94 [0.94; 0.95] 0.00026917 0.838 [0.722; 0.934] 0.867 0.767 0.788 0.852 

IDMN_nd__ep_b2_d1_avg 0.19 [0.17; 0.20] 0.23 [0.22; 0.25] 0.00026917 0.838 [0.723; 0.931] 0.867 0.767 0.788 0.852 

DN__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00026917 0.838 [0.724; 0.932] 0.867 0.767 0.788 0.852 

IDN__ep_b2_d1_avg 0.92 [0.91; 0.93] 0.91 [0.89; 0.91] 0.00026917 0.838 [0.722; 0.932] 0.867 0.767 0.788 0.852 

IDN_nd__ep_b2_d1_avg 0.16 [0.14; 0.17] 0.19 [0.18; 0.21] 0.00026917 0.838 [0.722; 0.931] 0.867 0.767 0.788 0.852 



Autocorrelation_nd__ep_b2_d1_avg 0.47 [0.43; 0.51] 0.57 [0.54; 0.63] 0.00026917 0.838 [0.724; 0.931] 0.867 0.767 0.788 0.852 

Inv_autocorrelation_nd__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00026917 0.838 [0.727; 0.933] 0.867 0.767 0.788 0.852 

Gauss_nd__ep_b2_d1_avg 0.14 [0.13; 0.15] 0.17 [0.16; 0.19] 0.00026917 0.838 [0.721; 0.933] 0.867 0.767 0.788 0.852 

Gauss_lp_nd__ep_b2_d1_avg 0.09 [0.08; 0.09] 0.10 [0.10; 0.12] 0.00026917 0.838 [0.724; 0.937] 0.867 0.767 0.788 0.852 

Gauss_lf_nd__ep_b2_d1_avg 0.09 [0.08; 0.09] 0.10 [0.10; 0.12] 0.00026917 0.838 [0.724; 0.933] 0.867 0.767 0.788 0.852 

Gauss_rf_nd__ep_b2_d1_avg 0.09 [0.08; 0.09] 0.10 [0.10; 0.12] 0.00026917 0.838 [0.726; 0.934] 0.867 0.767 0.788 0.852 

Gauss_rp_nd__ep_b2_d1_avg 0.09 [0.08; 0.09] 0.10 [0.10; 0.12] 0.00026917 0.838 [0.727; 0.931] 0.867 0.767 0.788 0.852 

Inv_Gauss_nd__ep_b2_d1_avg 0.39 [0.35; 0.42] 0.47 [0.45; 0.52] 0.00026917 0.838 [0.723; 0.933] 0.867 0.767 0.788 0.852 

Inv_Gauss_lp_nd__ep_b2_d1_avg 0.64 [0.58; 0.69] 0.77 [0.73; 0.86] 0.00026917 0.838 [0.724; 0.932] 0.867 0.767 0.788 0.852 

Inv_Gauss_lf_nd__ep_b2_d1_avg 0.64 [0.58; 0.69] 0.77 [0.73; 0.86] 0.00026917 0.838 [0.723; 0.934] 0.867 0.767 0.788 0.852 

Inv_Gauss_rf_nd__ep_b2_d1_avg 0.64 [0.58; 0.69] 0.77 [0.73; 0.86] 0.00026917 0.838 [0.721; 0.934] 0.867 0.767 0.788 0.852 

Inv_Gauss_rp_nd__ep_b2_d1_avg 0.64 [0.58; 0.69] 0.77 [0.73; 0.86] 0.00026917 0.838 [0.721; 0.932] 0.867 0.767 0.788 0.852 

Gauss_2f__ep_b2_d1_avg 1.04 [1.03; 1.05] 1.02 [1.01; 1.03] 0.00026917 0.838 [0.727; 0.934] 0.867 0.767 0.788 0.852 

Gauss_2f_nd__ep_b2_d1_avg 0.17 [0.16; 0.19] 0.21 [0.20; 0.23] 0.00026917 0.838 [0.726; 0.933] 0.867 0.767 0.788 0.852 

Inv_Gauss_2f__ep_b2_d1_avg 7.70 [7.64; 7.76] 7.55 [7.46; 7.59] 0.00026917 0.838 [0.723; 0.933] 0.867 0.767 0.788 0.852 

Inv_Gauss_2f_nd__ep_b2_d1_avg 1.27 [1.16; 1.39] 1.55 [1.47; 1.71] 0.00026917 0.838 [0.721; 0.933] 0.867 0.767 0.788 0.852 

Gauss_2p__ep_b2_d1_avg 1.04 [1.03; 1.05] 1.02 [1.01; 1.03] 0.00026917 0.838 [0.726; 0.933] 0.867 0.767 0.788 0.852 

Gauss_2p_nd__ep_b2_d1_avg 0.17 [0.16; 0.19] 0.21 [0.20; 0.23] 0.00026917 0.838 [0.724; 0.933] 0.867 0.767 0.788 0.852 

Inv_Gauss_2p__ep_b2_d1_avg 7.70 [7.64; 7.76] 7.55 [7.46; 7.59] 0.00026917 0.838 [0.721; 0.933] 0.867 0.767 0.788 0.852 

Inv_Gauss_2p_nd__ep_b2_d1_avg 1.27 [1.16; 1.39] 1.55 [1.47; 1.71] 0.00026917 0.838 [0.726; 0.933] 0.867 0.767 0.788 0.852 

Inv_Cluster_d_e__ep_b2_d1_avg 0.87 [0.85; 0.88] 0.91 [0.90; 0.92] 0.00036272 0.838 [0.727; 0.931] 0.933 0.667 0.737 0.909 

Dif_average__ep_b2_d1_avg 0.23 [0.21; 0.26] 0.28 [0.27; 0.32] 0.00026917 0.838 [0.723; 0.931] 0.867 0.767 0.788 0.852 

Inv_dif_average__ep_b2_d1_avg 0.23 [0.21; 0.26] 0.28 [0.27; 0.32] 0.00026917 0.838 [0.723; 0.934] 0.867 0.767 0.788 0.852 

Mode__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00026917 0.838 [0.723; 0.932] 0.867 0.767 0.788 0.852 

High_notch__ep_b4_d1_avg 0.11 [0.10; 0.11] 0.10 [0.09; 0.10] 0.00030923 0.838 [0.721; 0.932] 0.833 0.833 0.833 0.833 



IQR__ep_b8_d1_avg 0.02 [0.02; 0.02] 0.01 [0.01; 0.02] 0.00074011 0.838 [0.723; 0.933] 0.900 0.700 0.750 0.875 

Sum_energy__ep_b16_d1_avg 0.54 [0.52; 0.55] 0.57 [0.55; 0.62] 0.00007671 0.838 [0.726; 0.929] 0.967 0.667 0.744 0.952 

Cluster_t_s_nd__ep_b32_d3_avg 1.82 [1.69; 2.62] 3.18 [2.56; 4.90] 0.00109577 0.838 [0.729; 0.927] 0.600 1.000 1.000 0.714 

Inv_Cluster_d_e_nd__ep_b32_d3_avg 0.39 [0.37; 0.41] 0.35 [0.32; 0.37] 0.00005582 0.838 [0.732; 0.923] 0.667 0.833 0.800 0.714 

Inv_Cluster_s_s_nd__ep_b2_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00019995 0.837 [0.724; 0.931] 0.967 0.633 0.725 0.950 

Geo_mean3__ep_b2_d1_avg 0.21 [0.20; 0.21] 0.22 [0.22; 0.23] 0.00027511 0.837 [0.719; 0.930] 0.800 0.767 0.774 0.793 

Mn_AD_md__ep_b2_d1_avg 0.13 [0.12; 0.14] 0.11 [0.09; 0.11] 0.00028230 0.837 [0.719; 0.931] 0.867 0.767 0.788 0.852 

Md_AD_mn__ep_b2_d1_avg 0.13 [0.12; 0.14] 0.11 [0.09; 0.11] 0.00028230 0.837 [0.722; 0.934] 0.867 0.767 0.788 0.852 

Inv_autocorrelation_e__ep_b2_d1_avg 1.01 [0.99; 1.02] 1.05 [1.03; 1.07] 0.00025896 0.836 [0.723; 0.926] 0.800 0.767 0.774 0.793 

Geo_mean__ep_b2_d1_avg 0.10 [0.10; 0.11] 0.11 [0.11; 0.12] 0.00026838 0.836 [0.727; 0.930] 0.767 0.800 0.793 0.774 

Geo_mean2__ep_b2_d1_avg 0.10 [0.10; 0.11] 0.11 [0.11; 0.12] 0.00026838 0.836 [0.723; 0.930] 0.767 0.800 0.793 0.774 

Gauss_2f__ep_b4_d1_avg 0.92 [0.92; 0.93] 0.90 [0.89; 0.91] 0.00034678 0.836 [0.721; 0.933] 0.767 0.833 0.821 0.781 

Gauss_2f__ep_b16_d1_avg 0.85 [0.84; 0.86] 0.82 [0.80; 0.84] 0.00034530 0.836 [0.720; 0.933] 0.767 0.800 0.793 0.774 

Inv_Cluster_t_s_nd__ep_b2_d1_avg 0.01 [0.00; 0.01] 0.01 [0.01; 0.01] 0.00021605 0.834 [0.719; 0.930] 0.833 0.767 0.781 0.821 

Mn_AD_mn__ep_b2_d1_avg 0.13 [0.12; 0.14] 0.11 [0.09; 0.12] 0.00026282 0.834 [0.720; 0.929] 0.900 0.700 0.750 0.875 

Inv_Cluster_d_e__ep_b16_d2_avg 0.68 [0.65; 0.70] 0.63 [0.60; 0.65] 0.00004456 0.834 [0.723; 0.929] 0.867 0.700 0.743 0.840 

Cluster_s_s_nd__ep_b16_d3_avg 26.11 [23.20; 33.05] 36.59 [29.45; 50.76] 0.00041754 0.834 [0.727; 0.922] 0.633 0.900 0.864 0.711 

Correlation__ep_b2_d1_avg 0.52 [0.47; 0.56] 0.42 [0.36; 0.45] 0.00034132 0.833 [0.719; 0.931] 0.900 0.767 0.794 0.885 

Min__ep_b2_d1_avg 0.12 [0.11; 0.13] 0.14 [0.14; 0.16] 0.00030375 0.833 [0.719; 0.930] 0.867 0.767 0.788 0.852 

Low_notch__ep_b8_d1_avg -0.02 [-0.02; -0.02] -0.01 [-0.02; -0.01] 0.00080425 0.833 [0.718; 0.931] 0.933 0.700 0.757 0.913 

Sum_energy__ep_b16_d2_avg 0.58 [0.55; 0.61] 0.65 [0.61; 0.69] 0.00010014 0.833 [0.723; 0.924] 0.967 0.600 0.707 0.947 

Gauss_2f__ep_b32_d1_avg 0.84 [0.83; 0.85] 0.81 [0.79; 0.83] 0.00032886 0.833 [0.720; 0.931] 0.967 0.600 0.707 0.947 

Gauss_e__ep_b2_d1_avg 1.07 [1.04; 1.08] 1.11 [1.09; 1.14] 0.00024153 0.832 [0.717; 0.922] 0.767 0.800 0.793 0.774 

Inv_Gauss_e__ep_b2_d1_avg 2.90 [2.84; 2.95] 3.03 [2.96; 3.09] 0.00024153 0.832 [0.721; 0.926] 0.767 0.800 0.793 0.774 

Cluster_d_nd__ep_b2_d1_avg 0.53 [0.49; 0.59] 0.65 [0.61; 0.70] 0.00033591 0.831 [0.712; 0.930] 0.900 0.700 0.750 0.875 



Cluster_d_e_nd__ep_b2_d1_avg 1.63 [1.57; 1.73] 1.80 [1.74; 1.86] 0.00048968 0.831 [0.714; 0.930] 0.933 0.700 0.757 0.913 

Inv_Cluster_d_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.02 [0.02; 0.02] 0.00023539 0.831 [0.718; 0.929] 0.833 0.767 0.781 0.821 

Low_notch__ep_b2_d1_avg -0.24 [-0.27; -0.20] -0.14 [-0.18; -0.09] 0.00055495 0.831 [0.710; 0.931] 0.833 0.800 0.806 0.828 

Gauss_lp_e__ep_b32_d2_avg 2.04 [1.89; 2.25] 1.73 [1.55; 1.94] 0.00006297 0.831 [0.719; 0.922] 0.900 0.633 0.711 0.864 

Gauss_lp_e__ep_b2_d1_avg 0.86 [0.84; 0.87] 0.89 [0.87; 0.90] 0.00028006 0.830 [0.720; 0.921] 0.800 0.767 0.774 0.793 

Gauss_lf_e__ep_b2_d1_avg 0.86 [0.84; 0.87] 0.89 [0.87; 0.90] 0.00028006 0.830 [0.718; 0.922] 0.800 0.767 0.774 0.793 

Inv_Gauss_rf_e__ep_b2_d1_avg 6.33 [6.20; 6.40] 6.56 [6.45; 6.62] 0.00028006 0.830 [0.718; 0.922] 0.800 0.767 0.774 0.793 

Inv_Gauss_rp_e__ep_b2_d1_avg 6.33 [6.20; 6.40] 6.56 [6.45; 6.62] 0.00028006 0.830 [0.717; 0.924] 0.800 0.767 0.774 0.793 

Gauss_lf_e_nd__ep_b32_d2_avg 3.87 [3.62; 3.99] 3.38 [2.99; 3.70] 0.00007989 0.830 [0.720; 0.918] 1.000 0.533 0.682 1.000 

Inv_Cluster_d_e__ep_b32_d3_avg 0.42 [0.39; 0.44] 0.37 [0.34; 0.39] 0.00007517 0.830 [0.722; 0.921] 0.767 0.733 0.742 0.759 

Homogeneity2_s__ep_b2_d1_avg 0.31 [0.31; 0.33] 0.29 [0.27; 0.30] 0.00020625 0.829 [0.719; 0.921] 0.767 0.800 0.793 0.774 

Homogeneity1_s__ep_b2_d1_avg 0.31 [0.31; 0.33] 0.29 [0.27; 0.30] 0.00020625 0.829 [0.717; 0.922] 0.767 0.800 0.793 0.774 

IDMN_s__ep_b2_d1_avg 0.32 [0.32; 0.34] 0.30 [0.28; 0.31] 0.00021402 0.829 [0.713; 0.922] 0.900 0.633 0.711 0.864 

IDMN_e__ep_b2_d1_avg 1.62 [1.59; 1.64] 1.68 [1.64; 1.71] 0.00024368 0.829 [0.718; 0.921] 0.767 0.767 0.767 0.767 

Cluster_d_s_nd__ep_b2_d1_avg 0.07 [0.05; 0.08] 0.10 [0.08; 0.11] 0.00028662 0.829 [0.708; 0.928] 0.867 0.733 0.765 0.846 

Average_e__ep_b2_d1_avg 2.64 [2.58; 2.68] 2.75 [2.69; 2.81] 0.00024126 0.829 [0.714; 0.923] 1.000 0.567 0.698 1.000 

Gauss_lp_e__ep_b32_d3_avg 1.82 [1.61; 2.00] 1.48 [1.33; 1.65] 0.00010072 0.829 [0.717; 0.919] 0.967 0.533 0.674 0.941 

IDN_s__ep_b2_d1_avg 0.32 [0.31; 0.34] 0.29 [0.27; 0.31] 0.00020980 0.828 [0.716; 0.921] 0.767 0.767 0.767 0.767 

Gauss_2f_s__ep_b2_d1_avg 0.36 [0.35; 0.38] 0.33 [0.31; 0.35] 0.00020932 0.828 [0.716; 0.921] 0.767 0.767 0.767 0.767 

Inv_Gauss_2f_s__ep_b2_d1_avg 2.68 [2.61; 2.81] 2.45 [2.29; 2.59] 0.00020932 0.828 [0.713; 0.921] 0.767 0.767 0.767 0.767 

Gauss_2p_s__ep_b2_d1_avg 0.36 [0.35; 0.38] 0.33 [0.31; 0.35] 0.00020932 0.828 [0.718; 0.921] 0.767 0.767 0.767 0.767 

Inv_Gauss_2p_s__ep_b2_d1_avg 2.68 [2.61; 2.81] 2.45 [2.29; 2.59] 0.00020932 0.828 [0.717; 0.920] 0.767 0.767 0.767 0.767 

Cluster_s_s_nd__ep_b2_d1_avg 0.35 [0.29; 0.41] 0.50 [0.42; 0.57] 0.00036133 0.828 [0.709; 0.926] 0.900 0.700 0.750 0.875 

Variance_e__ep_b2_d1_avg 2.82 [2.48; 2.97] 3.38 [3.04; 3.76] 0.00022488 0.828 [0.714; 0.923] 0.767 0.800 0.793 0.774 

Contrast__ep_b4_d1_avg 0.87 [0.82; 0.98] 1.10 [1.04; 1.26] 0.00039608 0.828 [0.704; 0.934] 0.933 0.767 0.800 0.920 



DMN__ep_b4_d1_avg 0.05 [0.05; 0.06] 0.07 [0.06; 0.08] 0.00039608 0.828 [0.702; 0.934] 0.933 0.767 0.800 0.920 

Gauss_lf_e__ep_b32_d3_avg 3.77 [3.46; 4.04] 3.23 [2.84; 3.56] 0.00007833 0.828 [0.712; 0.917] 1.000 0.500 0.667 1.000 

Contrast_s__ep_b2_d1_avg 0.03 [0.02; 0.03] 0.04 [0.04; 0.05] 0.00025863 0.827 [0.708; 0.927] 0.867 0.733 0.765 0.846 

Homogeneity2_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.02] 0.02 [0.02; 0.03] 0.00025863 0.827 [0.710; 0.926] 0.867 0.733 0.765 0.846 

Dissimilarity_s__ep_b2_d1_avg 0.03 [0.02; 0.03] 0.04 [0.04; 0.05] 0.00025863 0.827 [0.709; 0.926] 0.867 0.733 0.765 0.846 

Homogeneity1_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.02] 0.02 [0.02; 0.03] 0.00025863 0.827 [0.708; 0.926] 0.867 0.733 0.765 0.846 

DMN_s__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.01 [0.01; 0.01] 0.00025863 0.827 [0.709; 0.926] 0.867 0.733 0.765 0.846 

IDMN_s_nd__ep_b2_d1_avg 0.02 [0.02; 0.03] 0.03 [0.03; 0.04] 0.00025863 0.827 [0.710; 0.927] 0.867 0.733 0.765 0.846 

DN_s__ep_b2_d1_avg 0.01 [0.01; 0.02] 0.02 [0.02; 0.03] 0.00025863 0.827 [0.711; 0.927] 0.867 0.733 0.765 0.846 

IDN_s_nd__ep_b2_d1_avg 0.02 [0.02; 0.02] 0.03 [0.02; 0.03] 0.00025863 0.827 [0.707; 0.923] 0.867 0.733 0.765 0.846 

Autocorrelation_s_nd__ep_b2_d1_avg 0.06 [0.05; 0.07] 0.08 [0.07; 0.10] 0.00025863 0.827 [0.711; 0.927] 0.867 0.733 0.765 0.846 

Inv_autocorrelation_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.02] 0.02 [0.02; 0.03] 0.00025863 0.827 [0.710; 0.927] 0.867 0.733 0.765 0.846 

Gauss_s_nd__ep_b2_d1_avg 0.02 [0.01; 0.02] 0.03 [0.02; 0.03] 0.00025863 0.827 [0.709; 0.924] 0.867 0.733 0.765 0.846 

Gauss_lp_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.02 [0.01; 0.02] 0.00025863 0.827 [0.711; 0.924] 0.867 0.733 0.765 0.846 

Gauss_lf_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.02 [0.01; 0.02] 0.00025863 0.827 [0.710; 0.926] 0.867 0.733 0.765 0.846 

Gauss_rf_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.02 [0.01; 0.02] 0.00025863 0.827 [0.710; 0.924] 0.867 0.733 0.765 0.846 

Gauss_rp_s_nd__ep_b2_d1_avg 0.01 [0.01; 0.01] 0.02 [0.01; 0.02] 0.00025863 0.827 [0.709; 0.926] 0.867 0.733 0.765 0.846 

Inv_Gauss_s_nd__ep_b2_d1_avg 0.05 [0.04; 0.06] 0.07 [0.06; 0.08] 0.00025863 0.827 [0.711; 0.923] 0.867 0.733 0.765 0.846 

Inv_Gauss_lp_s_nd__ep_b2_d1_avg 0.08 [0.06; 0.09] 0.11 [0.10; 0.14] 0.00025863 0.827 [0.708; 0.927] 0.867 0.733 0.765 0.846 

Inv_Gauss_lf_s_nd__ep_b2_d1_avg 0.08 [0.06; 0.09] 0.11 [0.10; 0.14] 0.00025863 0.827 [0.708; 0.923] 0.867 0.733 0.765 0.846 

Inv_Gauss_rf_s_nd__ep_b2_d1_avg 0.08 [0.06; 0.09] 0.11 [0.10; 0.14] 0.00025863 0.827 [0.707; 0.927] 0.867 0.733 0.765 0.846 

Inv_Gauss_rp_s_nd__ep_b2_d1_avg 0.08 [0.06; 0.09] 0.11 [0.10; 0.14] 0.00025863 0.827 [0.710; 0.923] 0.867 0.733 0.765 0.846 

Gauss_2f_s_nd__ep_b2_d1_avg 0.02 [0.02; 0.02] 0.03 [0.03; 0.04] 0.00025863 0.827 [0.708; 0.924] 0.867 0.733 0.765 0.846 

Inv_Gauss_2f_s_nd__ep_b2_d1_avg 0.16 [0.13; 0.18] 0.23 [0.20; 0.28] 0.00025863 0.827 [0.708; 0.924] 0.867 0.733 0.765 0.846 

Gauss_2p_s_nd__ep_b2_d1_avg 0.02 [0.02; 0.02] 0.03 [0.03; 0.04] 0.00025863 0.827 [0.707; 0.926] 0.867 0.733 0.765 0.846 



Inv_Gauss_2p_s_nd__ep_b2_d1_avg 0.16 [0.13; 0.18] 0.23 [0.20; 0.28] 0.00025863 0.827 [0.710; 0.924] 0.867 0.733 0.765 0.846 

Cluster_t_s_nd__ep_b2_d1_avg 0.15 [0.12; 0.18] 0.22 [0.19; 0.26] 0.00032041 0.827 [0.711; 0.928] 0.867 0.733 0.765 0.846 

Cluster_d_s_nd__ep_b16_d3_avg 0.07 [0.07; 0.08] 0.09 [0.08; 0.11] 0.00106986 0.827 [0.714; 0.921] 0.700 0.867 0.840 0.743 

Gauss_lp_e_nd__ep_b32_d3_avg 1.72 [1.51; 1.86] 1.40 [1.25; 1.56] 0.00009474 0.827 [0.717; 0.917] 0.967 0.533 0.674 0.941 

Dif_energy__ep_b2_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00032839 0.826 [0.710; 0.926] 0.900 0.667 0.730 0.870 

Inv_dif_energy__ep_b2_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00032839 0.826 [0.709; 0.926] 0.900 0.667 0.730 0.870 

Har_mean__ep_b8_d1_avg 0.00 [0.00; 0.01] 0.01 [0.01; 0.01] 0.00048208 0.826 [0.711; 0.920] 0.733 0.833 0.815 0.758 

High_notch__ep_b8_d1_avg 0.03 [0.03; 0.03] 0.03 [0.03; 0.03] 0.00093615 0.826 [0.709; 0.927] 0.767 0.833 0.821 0.781 

IMC2__ep_b8_d3_avg 0.30 [0.28; 0.33] 0.36 [0.33; 0.40] 0.00263154 0.826 [0.712; 0.924] 0.767 0.833 0.821 0.781 

Cluster_p_s_nd__ep_b16_d3_avg 588.24 [510.88; 724.90] 822.46 [655.98; 1218.28] 0.00054586 0.826 [0.712; 0.917] 0.633 0.867 0.826 0.703 

Gauss_lp_e_nd__ep_b32_d2_avg 1.90 [1.75; 2.08] 1.64 [1.45; 1.81] 0.00008702 0.826 [0.716; 0.918] 0.900 0.600 0.692 0.857 

Gauss_s__ep_b2_d1_avg 0.20 [0.19; 0.21] 0.19 [0.18; 0.19] 0.00022384 0.824 [0.710; 0.918] 1.000 0.500 0.667 1.000 

Inv_Gauss_s__ep_b2_d1_avg 0.54 [0.53; 0.56] 0.50 [0.48; 0.53] 0.00022384 0.824 [0.710; 0.919] 1.000 0.500 0.667 1.000 

Variance__ep_b2_d1_avg 0.03 [0.02; 0.03] 0.02 [0.01; 0.02] 0.00022384 0.824 [0.712; 0.917] 1.000 0.500 0.667 1.000 

Energy__ep_b2_d1_avg 0.33 [0.32; 0.34] 0.31 [0.29; 0.32] 0.00022384 0.824 [0.712; 0.918] 1.000 0.500 0.667 1.000 

Cluster_d_s__ep_b16_d3_avg 0.08 [0.08; 0.10] 0.10 [0.09; 0.13] 0.00070038 0.824 [0.710; 0.918] 0.667 0.900 0.870 0.730 

Average_s__ep_b16_d3_avg 0.04 [0.04; 0.05] 0.05 [0.05; 0.06] 0.00070354 0.824 [0.709; 0.918] 0.667 0.900 0.870 0.730 

Cluster_t_s_nd__ep_b32_d2_avg 1.70 [1.55; 2.21] 2.39 [2.06; 3.82] 0.00045036 0.824 [0.710; 0.916] 0.600 0.900 0.857 0.692 

Cluster_t_nd__ep_b2_d1_avg 1.22 [1.12; 1.34] 1.47 [1.36; 1.58] 0.00043194 0.823 [0.704; 0.926] 0.900 0.700 0.750 0.875 

RMS__ep_b2_d1_avg 0.29 [0.28; 0.29] 0.28 [0.27; 0.28] 0.00022007 0.823 [0.709; 0.918] 1.000 0.500 0.667 1.000 

IDMN__ep_b4_d1_avg 0.95 [0.95; 0.96] 0.94 [0.94; 0.95] 0.00043567 0.823 [0.697; 0.931] 0.933 0.733 0.778 0.917 

Sum_energy__ep_b8_d2_avg 0.62 [0.58; 0.64] 0.68 [0.63; 0.72] 0.00010531 0.823 [0.708; 0.920] 0.833 0.667 0.714 0.800 

Cluster_s_s__ep_b16_d3_avg 29.64 [26.79; 35.93] 42.62 [33.40; 60.35] 0.00038278 0.823 [0.709; 0.914] 0.533 0.967 0.941 0.674 

Gauss_lp_e__ep_b32_d1_avg 2.24 [2.16; 2.33] 2.03 [1.93; 2.16] 0.00008033 0.823 [0.712; 0.917] 0.933 0.600 0.700 0.900 

Cluster_p_s_nd__ep_b2_d1_avg 0.79 [0.66; 0.94] 1.13 [0.95; 1.32] 0.00041105 0.822 [0.703; 0.923] 0.900 0.700 0.750 0.875 



Dissimilarity_e__ep_b4_d1_avg 2.75 [2.64; 2.98] 3.21 [3.06; 3.45] 0.00055431 0.822 [0.690; 0.932] 0.933 0.767 0.800 0.920 

DN_e__ep_b4_d1_avg 0.69 [0.66; 0.74] 0.80 [0.76; 0.86] 0.00055431 0.822 [0.690; 0.933] 0.933 0.767 0.800 0.920 

Dif_entropy__ep_b4_d1_avg 1.39 [1.34; 1.46] 1.51 [1.49; 1.57] 0.00061625 0.822 [0.693; 0.934] 0.933 0.767 0.800 0.920 

Gauss_lf_e_nd__ep_b32_d3_avg 3.60 [3.31; 3.83] 3.11 [2.73; 3.41] 0.00007677 0.822 [0.709; 0.912] 1.000 0.500 0.667 1.000 

IDN_e__ep_b2_d1_avg 1.52 [1.50; 1.54] 1.57 [1.54; 1.60] 0.00025156 0.821 [0.708; 0.916] 1.000 0.500 0.667 1.000 

Cluster_d_e__ep_b2_d1_avg 4.00 [3.94; 4.08] 4.17 [4.10; 4.21] 0.00060619 0.821 [0.706; 0.922] 0.933 0.633 0.718 0.905 

Contrast_e__ep_b4_d1_avg 4.18 [3.80; 4.72] 5.25 [5.00; 5.74] 0.00041853 0.821 [0.692; 0.930] 0.933 0.767 0.800 0.920 

DMN_e__ep_b4_d1_avg 0.26 [0.24; 0.30] 0.33 [0.31; 0.36] 0.00041853 0.821 [0.696; 0.932] 0.933 0.767 0.800 0.920 

Sum_energy__ep_b4_d2_avg 0.72 [0.68; 0.73] 0.77 [0.73; 0.81] 0.00013942 0.821 [0.707; 0.917] 0.767 0.733 0.742 0.759 

Contrast__ep_b8_d1_avg 3.32 [3.01; 3.76] 4.28 [3.89; 4.84] 0.00051908 0.821 [0.693; 0.930] 1.000 0.667 0.750 1.000 

DMN__ep_b8_d1_avg 0.05 [0.05; 0.06] 0.07 [0.06; 0.08] 0.00051908 0.821 [0.693; 0.929] 1.000 0.667 0.750 1.000 

Dif_entropy__ep_b8_d1_avg 2.13 [2.06; 2.20] 2.28 [2.24; 2.35] 0.00087352 0.821 [0.688; 0.933] 0.933 0.767 0.800 0.920 

Homogeneity2_e_nd__ep_b16_d1_avg 1.25 [1.22; 1.29] 1.14 [1.09; 1.22] 0.00032285 0.821 [0.698; 0.921] 1.000 0.567 0.698 1.000 

Dif_variance__ep_b32_d1_avg 24.30 [20.92; 28.13] 32.58 [30.08; 36.90] 0.00049184 0.821 [0.690; 0.933] 0.933 0.767 0.800 0.920 

IDMN__ep_b8_d1_avg 0.96 [0.95; 0.96] 0.94 [0.94; 0.95] 0.00052552 0.820 [0.694; 0.928] 1.000 0.633 0.732 1.000 

Homogeneity1_nd__ep_b16_d1_avg 0.26 [0.25; 0.26] 0.24 [0.24; 0.25] 0.00029283 0.820 [0.702; 0.920] 1.000 0.567 0.698 1.000 

IDMN__ep_b16_d1_avg 0.96 [0.95; 0.96] 0.95 [0.94; 0.95] 0.00056161 0.820 [0.694; 0.929] 0.933 0.733 0.778 0.917 

Contrast__ep_b32_d1_avg 52.37 [46.05; 58.34] 67.21 [60.51; 76.13] 0.00053805 0.820 [0.693; 0.930] 1.000 0.633 0.732 1.000 

DMN__ep_b32_d1_avg 0.05 [0.04; 0.06] 0.07 [0.06; 0.07] 0.00053805 0.820 [0.693; 0.928] 1.000 0.633 0.732 1.000 

Gauss_rf_s__ep_b32_d2_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00038226 0.820 [0.707; 0.911] 0.833 0.633 0.694 0.792 

Cluster_d_s__ep_b32_d3_avg 0.06 [0.05; 0.08] 0.09 [0.07; 0.13] 0.00202400 0.820 [0.703; 0.916] 0.700 0.867 0.840 0.743 

Average_s__ep_b32_d3_avg 0.03 [0.02; 0.04] 0.05 [0.04; 0.07] 0.00202555 0.820 [0.704; 0.917] 0.700 0.867 0.840 0.743 

SD__ep_b2_d1_avg 0.16 [0.15; 0.17] 0.13 [0.11; 0.15] 0.00022934 0.819 [0.703; 0.912] 1.000 0.500 0.667 1.000 

Uniformity__ep_b4_d3_avg 0.12 [0.12; 0.12] 0.13 [0.13; 0.14] 0.00063803 0.819 [0.702; 0.921] 0.767 0.767 0.767 0.767 

Inv_Cluster_d_e_nd__ep_b8_d3_avg 0.70 [0.69; 0.71] 0.68 [0.66; 0.69] 0.00017600 0.819 [0.704; 0.914] 0.933 0.600 0.700 0.900 



Inv_dif_average__ep_b16_d1_avg 0.43 [0.42; 0.43] 0.39 [0.38; 0.42] 0.00036295 0.819 [0.698; 0.923] 0.767 0.800 0.793 0.774 

Gauss_rp_s_nd__ep_b16_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00075244 0.819 [0.707; 0.912] 0.900 0.567 0.675 0.850 

Inv_Cluster_d_e_nd__ep_b16_d3_avg 0.57 [0.55; 0.59] 0.53 [0.51; 0.56] 0.00006433 0.819 [0.704; 0.913] 0.567 0.933 0.895 0.683 

IDMN__ep_b32_d1_avg 0.96 [0.95; 0.96] 0.95 [0.94; 0.95] 0.00055927 0.819 [0.691; 0.929] 1.000 0.633 0.732 1.000 

Gauss_2f_e__ep_b2_d1_avg 1.71 [1.68; 1.73] 1.77 [1.73; 1.80] 0.00025348 0.818 [0.706; 0.914] 1.000 0.500 0.667 1.000 

Inv_Gauss_2f_e__ep_b2_d1_avg 12.65 [12.44; 12.82] 13.07 [12.82; 13.28] 0.00025348 0.818 [0.703; 0.916] 1.000 0.500 0.667 1.000 

Gauss_2p_e__ep_b2_d1_avg 1.71 [1.68; 1.73] 1.77 [1.73; 1.80] 0.00025348 0.818 [0.699; 0.912] 1.000 0.500 0.667 1.000 

Inv_Gauss_2p_e__ep_b2_d1_avg 12.65 [12.44; 12.82] 13.07 [12.82; 13.28] 0.00025348 0.818 [0.704; 0.913] 1.000 0.500 0.667 1.000 

Cluster_s_nd__ep_b2_d1_avg 2.78 [2.59; 3.08] 3.32 [3.09; 3.61] 0.00057232 0.818 [0.697; 0.921] 0.900 0.700 0.750 0.875 

Contrast__ep_b16_d1_avg 13.14 [11.62; 14.72] 16.84 [15.23; 19.14] 0.00054155 0.818 [0.689; 0.929] 1.000 0.633 0.732 1.000 

DMN__ep_b16_d1_avg 0.05 [0.05; 0.06] 0.07 [0.06; 0.07] 0.00054155 0.818 [0.688; 0.926] 1.000 0.633 0.732 1.000 

Inv_Gauss_lf_s_nd__ep_b32_d3_avg 0.02 [0.02; 0.04] 0.05 [0.03; 0.08] 0.00108584 0.818 [0.704; 0.910] 0.533 0.967 0.941 0.674 

IQR__ep_b2_d1_avg 0.23 [0.22; 0.26] 0.19 [0.17; 0.21] 0.00078649 0.817 [0.693; 0.921] 0.833 0.800 0.806 0.828 

Inv_Cluster_d_e__ep_b8_d2_avg 0.89 [0.88; 0.91] 0.85 [0.82; 0.88] 0.00008946 0.817 [0.702; 0.913] 0.900 0.633 0.711 0.864 

Gauss_lp_e__ep_b16_d2_avg 1.83 [1.69; 1.95] 1.56 [1.43; 1.76] 0.00010507 0.817 [0.703; 0.913] 0.867 0.667 0.722 0.833 

Autocorrelation_s_nd__ep_b32_d2_avg 0.39 [0.35; 0.49] 0.56 [0.46; 0.88] 0.00048820 0.817 [0.702; 0.910] 0.633 0.833 0.792 0.694 

Gauss_2f_e__ep_b32_d2_avg 7.08 [6.74; 7.22] 6.56 [6.22; 6.85] 0.00047812 0.817 [0.696; 0.914] 0.667 0.900 0.870 0.730 

Cluster_s_s_nd__ep_b32_d2_avg 71.09 [61.94; 93.19] 107.61 [82.91; 181.04] 0.00054312 0.817 [0.702; 0.910] 0.567 0.933 0.895 0.683 

Cluster_d_s_nd__ep_b32_d3_avg 0.05 [0.05; 0.07] 0.09 [0.07; 0.12] 0.00212885 0.817 [0.700; 0.914] 0.733 0.833 0.815 0.758 

Cluster_t_e_nd__ep_b2_d1_avg 3.72 [3.59; 3.93] 4.09 [3.95; 4.19] 0.00087824 0.816 [0.693; 0.921] 0.900 0.700 0.750 0.875 

Correlation_e__ep_b2_d1_avg 0.87 [0.86; 0.87] 0.88 [0.87; 0.89] 0.00031647 0.816 [0.698; 0.911] 1.000 0.500 0.667 1.000 

Mn_AD_md__ep_b4_d1_avg 0.04 [0.03; 0.04] 0.03 [0.03; 0.03] 0.00057022 0.816 [0.691; 0.923] 1.000 0.600 0.714 1.000 

Cluster_t_s_nd__ep_b8_d2_avg 1.01 [0.92; 1.08] 1.15 [1.06; 1.34] 0.00064150 0.816 [0.698; 0.913] 0.900 0.667 0.730 0.870 

Dif_variance__ep_b16_d1_avg 5.54 [5.20; 6.28] 6.83 [6.66; 7.78] 0.00057748 0.816 [0.690; 0.926] 0.900 0.767 0.794 0.885 

Sum_energy__ep_b32_d3_avg 0.65 [0.61; 0.70] 0.75 [0.71; 0.84] 0.00066772 0.814 [0.698; 0.914] 0.767 0.767 0.767 0.767 



Dif_entropy__ep_b16_d1_avg 2.97 [2.90; 3.06] 3.15 [3.09; 3.22] 0.00107351 0.813 [0.687; 0.927] 0.933 0.767 0.800 0.920 

Gauss_lf_e__ep_b16_d2_avg 3.36 [3.19; 3.46] 3.04 [2.73; 3.28] 0.00011152 0.813 [0.697; 0.907] 1.000 0.500 0.667 1.000 

Gauss_lp_e_nd__ep_b16_d3_avg 1.46 [1.29; 1.56] 1.24 [1.14; 1.36] 0.00014119 0.813 [0.696; 0.910] 0.533 0.967 0.941 0.674 

Inv_Cluster_d_e__ep_b16_d3_avg 0.64 [0.61; 0.67] 0.60 [0.56; 0.62] 0.00011185 0.813 [0.701; 0.912] 1.000 0.467 0.652 1.000 

Homogeneity2_e__ep_b2_d1_avg 1.40 [1.38; 1.42] 1.44 [1.42; 1.46] 0.00028432 0.812 [0.696; 0.910] 1.000 0.500 0.667 1.000 

Homogeneity1_e__ep_b2_d1_avg 1.40 [1.38; 1.42] 1.44 [1.42; 1.46] 0.00028432 0.812 [0.694; 0.912] 1.000 0.500 0.667 1.000 

Autocorrelation_e__ep_b2_d1_avg 4.04 [3.98; 4.10] 4.19 [4.11; 4.26] 0.00025560 0.812 [0.694; 0.910] 1.000 0.500 0.667 1.000 

Cluster_p_nd__ep_b2_d1_avg 6.34 [5.92; 6.98] 7.58 [7.02; 8.09] 0.00078079 0.812 [0.689; 0.920] 0.900 0.700 0.750 0.875 

Homogeneity2_e__ep_b8_d1_avg 2.56 [2.52; 2.64] 2.43 [2.32; 2.49] 0.00064257 0.812 [0.689; 0.919] 0.867 0.767 0.788 0.852 

Dissimilarity_e__ep_b8_d1_avg 8.19 [7.79; 8.92] 9.66 [8.91; 10.28] 0.00085316 0.812 [0.683; 0.923] 0.933 0.733 0.778 0.917 

DN_e__ep_b8_d1_avg 1.02 [0.97; 1.12] 1.21 [1.11; 1.28] 0.00085316 0.812 [0.682; 0.923] 0.933 0.733 0.778 0.917 

Dissimilarity__ep_b4_d1_avg 0.62 [0.60; 0.66] 0.72 [0.67; 0.79] 0.00069965 0.811 [0.683; 0.920] 0.967 0.667 0.744 0.952 

DN__ep_b4_d1_avg 0.16 [0.15; 0.16] 0.18 [0.17; 0.20] 0.00069965 0.811 [0.682; 0.919] 0.967 0.667 0.744 0.952 

Correlation__ep_b4_d1_avg 0.63 [0.59; 0.66] 0.53 [0.50; 0.59] 0.00089093 0.811 [0.682; 0.920] 1.000 0.633 0.732 1.000 

Dif_average__ep_b4_d1_avg 0.62 [0.60; 0.66] 0.72 [0.67; 0.79] 0.00069965 0.811 [0.680; 0.921] 0.967 0.667 0.744 0.952 

Contrast_e__ep_b8_d1_avg 21.94 [19.90; 25.56] 28.59 [25.80; 31.01] 0.00068670 0.811 [0.679; 0.924] 0.933 0.733 0.778 0.917 

DMN_e__ep_b8_d1_avg 0.34 [0.31; 0.40] 0.45 [0.40; 0.48] 0.00068670 0.811 [0.679; 0.926] 0.933 0.733 0.778 0.917 

Cluster_d_s_nd__ep_b8_d2_avg 0.11 [0.11; 0.12] 0.12 [0.12; 0.13] 0.00063538 0.811 [0.691; 0.913] 0.667 0.900 0.870 0.730 

Gauss_lf_e_nd__ep_b16_d3_avg 2.92 [2.70; 3.00] 2.56 [2.38; 2.82] 0.00010129 0.811 [0.690; 0.904] 1.000 0.500 0.667 1.000 

Contrast_s__ep_b32_d1_avg 0.06 [0.05; 0.07] 0.10 [0.07; 0.13] 0.00127562 0.811 [0.694; 0.911] 0.733 0.833 0.815 0.758 

DMN_s__ep_b32_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00127562 0.811 [0.693; 0.911] 0.733 0.833 0.815 0.758 

Gauss_lp_e__ep_b8_d2_avg 1.57 [1.48; 1.65] 1.39 [1.29; 1.52] 0.00014081 0.810 [0.698; 0.907] 0.900 0.567 0.675 0.850 

Contrast_e__ep_b16_d1_avg 108.91 [97.41; 126.40] 142.49 [125.01; 155.56] 0.00075693 0.810 [0.680; 0.923] 0.967 0.700 0.763 0.955 

Homogeneity2_nd__ep_b16_d1_avg 0.18 [0.17; 0.18] 0.16 [0.15; 0.17] 0.00047650 0.810 [0.686; 0.921] 0.867 0.733 0.765 0.846 

Homogeneity1_e_nd__ep_b16_d1_avg 1.86 [1.85; 1.89] 1.79 [1.75; 1.86] 0.00028835 0.810 [0.689; 0.908] 0.933 0.600 0.700 0.900 



DMN_e__ep_b16_d1_avg 0.43 [0.38; 0.49] 0.56 [0.49; 0.61] 0.00075693 0.810 [0.679; 0.922] 0.967 0.700 0.763 0.955 

Cluster_p_s__ep_b16_d3_avg 687.00 [608.33; 822.64] 1021.47 [752.03; 1522.02] 0.00059338 0.810 [0.694; 0.906] 0.867 0.600 0.684 0.818 

Dif_entropy__ep_b32_d1_avg 3.88 [3.81; 3.97] 4.07 [3.98; 4.14] 0.00154169 0.810 [0.680; 0.922] 0.933 0.733 0.778 0.917 

Dissimilarity__ep_b8_d1_avg 1.33 [1.25; 1.41] 1.54 [1.42; 1.67] 0.00074400 0.809 [0.680; 0.919] 0.967 0.667 0.744 0.952 

DN__ep_b8_d1_avg 0.17 [0.16; 0.18] 0.19 [0.18; 0.21] 0.00074400 0.809 [0.680; 0.921] 0.967 0.667 0.744 0.952 

Dif_average__ep_b8_d1_avg 1.33 [1.25; 1.41] 1.54 [1.42; 1.67] 0.00074400 0.809 [0.681; 0.920] 0.967 0.667 0.744 0.952 

Autocorrelation_s_nd__ep_b8_d2_avg 0.24 [0.22; 0.25] 0.26 [0.25; 0.31] 0.00138123 0.809 [0.693; 0.910] 0.900 0.667 0.730 0.870 

Gauss_lf_e_nd__ep_b8_d3_avg 1.99 [1.91; 2.08] 1.87 [1.76; 1.95] 0.00018147 0.809 [0.696; 0.906] 0.933 0.567 0.683 0.895 

Dissimilarity__ep_b16_d1_avg 2.71 [2.53; 2.87] 3.11 [2.87; 3.39] 0.00078434 0.809 [0.679; 0.920] 0.967 0.667 0.744 0.952 

DN__ep_b16_d1_avg 0.17 [0.16; 0.18] 0.19 [0.18; 0.21] 0.00078434 0.809 [0.684; 0.920] 0.967 0.667 0.744 0.952 

Dif_average__ep_b16_d1_avg 2.71 [2.53; 2.87] 3.11 [2.87; 3.39] 0.00078434 0.809 [0.679; 0.921] 0.967 0.667 0.744 0.952 

Dissimilarity__ep_b32_d1_avg 5.44 [5.08; 5.75] 6.24 [5.77; 6.81] 0.00074720 0.809 [0.681; 0.917] 0.967 0.667 0.744 0.952 

DN__ep_b32_d1_avg 0.17 [0.16; 0.18] 0.20 [0.18; 0.21] 0.00074720 0.809 [0.677; 0.920] 0.967 0.667 0.744 0.952 

Dif_average__ep_b32_d1_avg 5.44 [5.08; 5.75] 6.24 [5.77; 6.81] 0.00074720 0.809 [0.681; 0.922] 0.967 0.667 0.744 0.952 

Gauss_2f_e_nd__ep_b32_d2_avg 6.69 [6.44; 6.82] 6.24 [5.93; 6.52] 0.00059038 0.809 [0.691; 0.909] 0.733 0.800 0.786 0.750 

Homogeneity1_e__ep_b8_d1_avg 2.88 [2.84; 2.93] 2.79 [2.72; 2.84] 0.00063031 0.808 [0.689; 0.910] 0.767 0.767 0.767 0.767 

Inv_Cluster_t_e_nd__ep_b8_d3_avg 0.12 [0.12; 0.13] 0.11 [0.11; 0.12] 0.00023320 0.808 [0.691; 0.907] 0.967 0.500 0.659 0.938 

Dissimilarity_e__ep_b16_d1_avg 21.65 [20.42; 23.29] 25.13 [22.82; 26.55] 0.00113649 0.808 [0.679; 0.922] 1.000 0.633 0.732 1.000 

DN_e__ep_b16_d1_avg 1.35 [1.28; 1.46] 1.57 [1.43; 1.66] 0.00113649 0.808 [0.678; 0.919] 1.000 0.633 0.732 1.000 

Contrast_s__ep_b32_d2_avg 0.15 [0.12; 0.22] 0.23 [0.19; 0.32] 0.00307124 0.808 [0.682; 0.911] 0.700 0.933 0.913 0.757 

Homogeneity1_e_nd__ep_b32_d2_avg 1.52 [1.44; 1.57] 1.39 [1.31; 1.48] 0.00088722 0.808 [0.687; 0.908] 0.733 0.800 0.786 0.750 

DMN_s__ep_b32_d2_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00307124 0.808 [0.683; 0.914] 0.700 0.933 0.913 0.757 

Tri_mean__ep_b2_d1_avg 0.17 [0.16; 0.18] 0.18 [0.17; 0.19] 0.00025636 0.807 [0.688; 0.904] 0.867 0.667 0.722 0.833 

Mn_AD_mn__ep_b4_d1_avg 0.04 [0.03; 0.04] 0.03 [0.03; 0.03] 0.00078729 0.807 [0.678; 0.918] 1.000 0.600 0.714 1.000 

Gauss_rf_s_nd__ep_b8_d3_avg 0.00 [0.00; 0.00] 0.01 [0.00; 0.01] 0.00061390 0.807 [0.690; 0.903] 0.967 0.500 0.659 0.938 



Cluster_d_s__ep_b8_d3_avg 0.15 [0.14; 0.16] 0.17 [0.15; 0.18] 0.00082661 0.807 [0.693; 0.906] 0.567 0.933 0.895 0.683 

Contrast_s__ep_b16_d1_avg 0.05 [0.04; 0.05] 0.07 [0.05; 0.08] 0.00056312 0.807 [0.688; 0.907] 0.733 0.800 0.786 0.750 

DMN_s__ep_b16_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00056312 0.807 [0.689; 0.908] 0.733 0.800 0.786 0.750 

Gauss_lf_e__ep_b16_d3_avg 3.25 [2.96; 3.31] 2.80 [2.58; 3.08] 0.00013944 0.807 [0.689; 0.902] 1.000 0.500 0.667 1.000 

Cluster_d_s_nd__ep_b32_d2_avg 0.05 [0.04; 0.06] 0.06 [0.06; 0.09] 0.00087226 0.807 [0.691; 0.906] 0.700 0.833 0.808 0.735 

Cluster_s_e_nd__ep_b2_d1_avg 8.50 [8.19; 8.91] 9.26 [8.93; 9.54] 0.00174377 0.806 [0.681; 0.914] 0.867 0.733 0.765 0.846 

IDN__ep_b8_d1_avg 0.87 [0.87; 0.88] 0.86 [0.84; 0.87] 0.00093098 0.806 [0.677; 0.918] 0.933 0.700 0.757 0.913 

Gauss_2f_e__ep_b16_d2_avg 5.90 [5.77; 5.96] 5.63 [5.44; 5.85] 0.00063737 0.806 [0.684; 0.907] 0.667 0.833 0.800 0.714 

Gauss_lp_e__ep_b16_d3_avg 1.64 [1.46; 1.79] 1.40 [1.27; 1.53] 0.00018975 0.806 [0.692; 0.904] 0.933 0.533 0.667 0.889 

Homogeneity1_e_nd__ep_b32_d1_avg 1.81 [1.76; 1.86] 1.67 [1.57; 1.76] 0.00068272 0.806 [0.680; 0.908] 0.767 0.800 0.793 0.774 

Inv_Gauss_lf_s__ep_b32_d3_avg 0.04 [0.03; 0.04] 0.06 [0.05; 0.11] 0.00095605 0.806 [0.687; 0.906] 0.800 0.767 0.774 0.793 

Inv_dif_variance__ep_b2_d1_avg 11.71 [6.68; 18.45] 30.96 [17.65; 127.28] 0.31728832 0.804 [0.682; 0.911] 0.900 0.633 0.711 0.864 

Inv_Gauss_e_nd__ep_b4_d1_avg 4.12 [3.97; 4.36] 4.67 [4.36; 4.91] 0.00103725 0.804 [0.676; 0.919] 0.967 0.700 0.763 0.955 

Gauss_lp_e_nd__ep_b8_d3_avg 1.11 [1.03; 1.19] 1.00 [0.92; 1.07] 0.00020773 0.804 [0.688; 0.900] 0.967 0.467 0.644 0.933 

Gauss_lf_e__ep_b8_d3_avg 2.50 [2.31; 2.55] 2.22 [2.10; 2.41] 0.00026051 0.804 [0.684; 0.902] 1.000 0.500 0.667 1.000 

Average_s__ep_b8_d3_avg 0.07 [0.07; 0.08] 0.08 [0.08; 0.09] 0.00086817 0.804 [0.688; 0.904] 0.567 0.933 0.895 0.683 

IDN__ep_b4_d1_avg 0.88 [0.88; 0.89] 0.87 [0.86; 0.88] 0.00092975 0.803 [0.674; 0.916] 0.900 0.733 0.771 0.880 

Autocorrelation_s_nd__ep_b8_d3_avg 0.24 [0.22; 0.27] 0.29 [0.26; 0.32] 0.00107192 0.803 [0.684; 0.901] 0.900 0.567 0.675 0.850 

Cluster_t_s_nd__ep_b16_d2_avg 1.25 [1.14; 1.34] 1.51 [1.28; 1.81] 0.00082373 0.803 [0.684; 0.900] 0.933 0.600 0.700 0.900 

Gauss_e_nd__ep_b4_d1_avg 1.19 [1.15; 1.22] 1.27 [1.23; 1.32] 0.00162978 0.802 [0.672; 0.914] 0.900 0.733 0.771 0.880 

Gauss_lp_e__ep_b4_d2_avg 1.31 [1.26; 1.35] 1.21 [1.14; 1.30] 0.00014855 0.802 [0.684; 0.899] 1.000 0.467 0.652 1.000 

Gauss_lf_e__ep_b4_d3_avg 1.73 [1.64; 1.75] 1.61 [1.56; 1.69] 0.00044460 0.802 [0.680; 0.902] 0.967 0.533 0.674 0.941 

Cluster_t_s_nd__ep_b8_d3_avg 1.08 [0.99; 1.21] 1.26 [1.16; 1.48] 0.00070981 0.802 [0.684; 0.899] 0.600 0.867 0.818 0.684 

Gauss_rp_s__ep_b16_d3_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00079455 0.802 [0.684; 0.902] 0.900 0.633 0.711 0.864 

Sum_energy__ep_b16_d3_avg 0.65 [0.61; 0.69] 0.71 [0.68; 0.76] 0.00049550 0.802 [0.681; 0.904] 0.800 0.700 0.727 0.778 



Variance_s__ep_b32_d2_avg 0.52 [0.46; 0.68] 0.80 [0.64; 1.28] 0.00047100 0.802 [0.684; 0.899] 0.933 0.500 0.651 0.882 

Homogeneity2_e__ep_b4_d1_avg 2.34 [2.31; 2.35] 2.28 [2.24; 2.32] 0.00067366 0.801 [0.679; 0.907] 0.667 0.867 0.833 0.722 

Contrast_s__ep_b8_d1_avg 0.04 [0.04; 0.05] 0.05 [0.05; 0.07] 0.00045913 0.801 [0.677; 0.906] 0.833 0.700 0.735 0.808 

DMN_s__ep_b8_d1_avg 0.00 [0.00; 0.00] 0.00 [0.00; 0.00] 0.00045913 0.801 [0.676; 0.907] 0.833 0.700 0.735 0.808 

Uniformity__ep_b16_d2_avg 0.08 [0.06; 0.11] 0.13 [0.11; 0.17] 0.00114574 0.801 [0.680; 0.909] 0.733 0.800 0.786 0.750 

Gauss_lf_e__ep_b32_d1_avg 4.12 [4.01; 4.26] 3.93 [3.56; 4.07] 0.00017479 0.801 [0.681; 0.902] 0.967 0.533 0.674 0.941 

Cluster_p_s_nd__ep_b32_d2_avg 3297.66 [2815.16; 4243.05] 5156.04 [3688.72; 8551.98] 0.00091852 0.801 [0.681; 0.898] 0.533 0.933 0.889 0.667 

Homogeneity2__ep_b4_d1_avg 0.71 [0.70; 0.73] 0.68 [0.65; 0.70] 0.00103465 0.800 [0.669; 0.913] 0.933 0.667 0.737 0.909 

Cluster_d_e_nd__ep_b4_d1_avg 9.95 [9.37; 10.29] 10.85 [10.16; 11.50] 0.00143029 0.800 [0.671; 0.911] 0.933 0.633 0.718 0.905 

Tri_mean__ep_b4_d1_avg 0.04 [0.04; 0.04] 0.05 [0.04; 0.05] 0.00114398 0.800 [0.677; 0.910] 1.000 0.533 0.682 1.000 

Md_AD_md__ep_b8_d1_avg 0.01 [0.01; 0.01] 0.01 [0.01; 0.01] 0.00105766 0.800 [0.680; 0.901] 0.967 0.500 0.659 0.938 

MAD__ep_b8_d1_avg 0.01 [0.01; 0.01] 0.01 [0.01; 0.01] 0.00105766 0.800 [0.681; 0.904] 0.967 0.500 0.659 0.938 

Uniformity__ep_b8_d3_avg 0.06 [0.05; 0.08] 0.09 [0.08; 0.12] 0.00147930 0.800 [0.676; 0.903] 0.667 0.900 0.870 0.730 

IDN__ep_b32_d1_avg 0.87 [0.86; 0.87] 0.85 [0.84; 0.86] 0.00090753 0.800 [0.670; 0.912] 0.933 0.700 0.757 0.913 

Gauss_2f_e__ep_b32_d1_avg 7.61 [7.46; 7.71] 7.29 [6.99; 7.50] 0.00096657 0.800 [0.680; 0.901] 0.700 0.800 0.778 0.727 

GLRLM            

SRLGLE__ep_b4_avg 0.20 [0.19; 0.21] 0.23 [0.22; 0.27] 0.00001347 0.918 [0.822; 0.996] 1.000 0.867 0.882 1.000 

LRLGLE__ep_b2_avg 6.34 [5.35; 7.30] 3.56 [2.95; 4.32] 0.00005396 0.894 [0.799; 0.970] 1.000 0.733 0.789 1.000 

LRE__ep_b2_avg 9.15 [7.86; 10.58] 5.32 [4.78; 6.27] 0.00008797 0.888 [0.791; 0.962] 0.933 0.767 0.800 0.920 

LRLGLE__ep_b4_avg 1.65 [1.48; 1.74] 1.13 [0.99; 1.23] 0.00011617 0.888 [0.778; 0.974] 0.967 0.867 0.879 0.963 

SRLGLE__ep_b2_avg 0.29 [0.27; 0.31] 0.38 [0.33; 0.44] 0.00004815 0.881 [0.783; 0.957] 0.900 0.767 0.794 0.885 

SRLGLE__ep_b8_avg 0.12 [0.11; 0.13] 0.14 [0.13; 0.15] 0.00006380 0.879 [0.769; 0.968] 1.000 0.767 0.811 1.000 

LRE__ep_b4_avg 3.81 [3.51; 4.34] 2.75 [2.57; 3.21] 0.00034104 0.874 [0.772; 0.957] 1.000 0.733 0.789 1.000 

RP__ep_b2_avg 0.46 [0.42; 0.49] 0.57 [0.51; 0.60] 0.00006535 0.871 [0.771; 0.951] 1.000 0.667 0.750 1.000 

LRHGLE__ep_b2_avg 19.67 [16.78; 23.82] 12.46 [11.44; 14.13] 0.00019445 0.870 [0.768; 0.953] 0.933 0.767 0.800 0.920 



RP__ep_b4_avg 0.64 [0.60; 0.67] 0.73 [0.69; 0.76] 0.00014208 0.859 [0.751; 0.947] 0.900 0.767 0.794 0.885 

LRE__ep_b8_avg 2.14 [1.98; 2.30] 1.77 [1.66; 1.91] 0.00085685 0.854 [0.742; 0.944] 0.967 0.700 0.763 0.955 

LRLGLE__ep_b8_avg 0.53 [0.46; 0.56] 0.40 [0.37; 0.44] 0.00048520 0.854 [0.733; 0.957] 0.933 0.800 0.824 0.923 

SRE__ep_b32_avg 0.95 [0.95; 0.96] 0.97 [0.96; 0.97] 0.00029171 0.853 [0.747; 0.942] 1.000 0.633 0.732 1.000 

RP__ep_b8_avg 0.79 [0.76; 0.81] 0.83 [0.82; 0.86] 0.00032175 0.852 [0.740; 0.943] 0.967 0.733 0.784 0.957 

SRE__ep_b8_avg 0.85 [0.83; 0.86] 0.89 [0.87; 0.90] 0.00022819 0.851 [0.740; 0.939] 0.967 0.667 0.744 0.952 

SRE__ep_b4_avg 0.74 [0.70; 0.76] 0.81 [0.76; 0.83] 0.00017530 0.844 [0.737; 0.936] 0.967 0.633 0.725 0.950 

SRE__ep_b16_avg 0.91 [0.91; 0.93] 0.94 [0.93; 0.94] 0.00037202 0.844 [0.731; 0.938] 0.933 0.733 0.778 0.917 

LGLRE__ep_b8_avg 0.16 [0.16; 0.16] 0.17 [0.17; 0.18] 0.00035794 0.833 [0.710; 0.936] 0.933 0.767 0.800 0.920 

LGLRE__ep_b32_avg 0.04 [0.04; 0.04] 0.05 [0.04; 0.05] 0.00053183 0.833 [0.718; 0.930] 0.900 0.700 0.750 0.875 

SRE__ep_b2_avg 0.59 [0.53; 0.60] 0.68 [0.60; 0.71] 0.00022688 0.832 [0.719; 0.927] 0.900 0.700 0.750 0.875 

RP__ep_b32_avg 0.94 [0.93; 0.94] 0.95 [0.94; 0.96] 0.00053179 0.830 [0.714; 0.927] 1.000 0.567 0.698 1.000 

SRLGLE__ep_b32_avg 0.04 [0.03; 0.04] 0.04 [0.04; 0.04] 0.00041122 0.830 [0.714; 0.927] 0.933 0.667 0.737 0.909 

RP__ep_b16_avg 0.88 [0.87; 0.89] 0.91 [0.89; 0.92] 0.00063217 0.829 [0.712; 0.924] 0.967 0.600 0.707 0.947 

LRHGLE__ep_b4_avg 26.30 [23.66; 31.66] 19.99 [19.00; 23.42] 0.00191054 0.826 [0.711; 0.920] 0.900 0.667 0.730 0.870 

LRE__ep_b32_avg 1.22 [1.19; 1.27] 1.17 [1.14; 1.20] 0.00109687 0.822 [0.706; 0.919] 0.867 0.733 0.765 0.846 

SRLGLE__ep_b16_avg 0.07 [0.06; 0.07] 0.08 [0.07; 0.08] 0.00057258 0.820 [0.701; 0.924] 0.867 0.767 0.788 0.852 

LRE__ep_b16_avg 1.49 [1.42; 1.57] 1.35 [1.30; 1.41] 0.00147469 0.817 [0.701; 0.918] 0.800 0.767 0.774 0.793 

LRLGLE__ep_b16_avg 0.19 [0.17; 0.21] 0.16 [0.15; 0.18] 0.00067542 0.814 [0.693; 0.914] 0.933 0.633 0.718 0.905 

LRLGLE__ep_b32_avg 0.08 [0.07; 0.09] 0.07 [0.06; 0.08] 0.00061639 0.808 [0.689; 0.906] 0.700 0.833 0.808 0.735 

LGLRE__ep_b16_avg 0.08 [0.08; 0.09] 0.09 [0.09; 0.09] 0.00161389 0.802 [0.672; 0.912] 0.833 0.800 0.806 0.828 

Geometry based parameters            

s_ratio_to_all_2__ep_2 0.90 [0.85; 0.96] 0.80 [0.73; 0.84] 0.00006297 0.890 [0.801; 0.960] 0.833 0.833 0.833 0.833 

s_ratio_to_all_7__ep_8 0.40 [0.36; 0.46] 0.31 [0.27; 0.35] 0.00004832 0.888 [0.796; 0.958] 0.933 0.733 0.778 0.917 

s_ratio_to_all_22__ep_32 0.12 [0.11; 0.14] 0.09 [0.08; 0.10] 0.00005196 0.883 [0.787; 0.959] 0.767 0.900 0.885 0.794 



s_ratio_to_all_14__ep_16 0.22 [0.20; 0.25] 0.17 [0.14; 0.19] 0.00006811 0.882 [0.790; 0.954] 0.833 0.833 0.833 0.833 

s_ratio_to_all_16__ep_32 0.11 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00005204 0.882 [0.789; 0.957] 0.967 0.700 0.763 0.955 

s_ratio_to_all_11__ep_16 0.22 [0.20; 0.26] 0.17 [0.16; 0.19] 0.00006581 0.881 [0.787; 0.958] 0.767 0.867 0.852 0.788 

s_ratio_to_all_27__ep_32 0.11 [0.11; 0.13] 0.09 [0.08; 0.10] 0.00019188 0.876 [0.777; 0.954] 0.900 0.700 0.750 0.875 

s_ratio_to_all_25__ep_32 0.11 [0.11; 0.14] 0.09 [0.08; 0.10] 0.00004843 0.874 [0.780; 0.949] 0.667 0.933 0.909 0.737 

s_ratio_to_all_6__ep_8 0.40 [0.37; 0.46] 0.32 [0.29; 0.35] 0.00007621 0.871 [0.772; 0.950] 0.867 0.800 0.812 0.857 

s_ratio_to_all_8__ep_16 0.21 [0.19; 0.26] 0.17 [0.15; 0.18] 0.00008007 0.871 [0.777; 0.948] 0.867 0.767 0.788 0.852 

s_ratio_to_all_13__ep_16 0.22 [0.20; 0.27] 0.17 [0.15; 0.20] 0.00005517 0.870 [0.772; 0.947] 0.933 0.633 0.718 0.905 

s_ratio_to_all_28__ep_32 0.12 [0.11; 0.14] 0.09 [0.08; 0.10] 0.00004802 0.869 [0.774; 0.946] 0.800 0.800 0.800 0.800 

s_ratio_to_all_13__ep_32 0.11 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00008194 0.868 [0.764; 0.950] 0.800 0.833 0.828 0.806 

s_ratio_to_all_7__ep_16 0.21 [0.20; 0.26] 0.17 [0.15; 0.18] 0.00011391 0.867 [0.761; 0.952] 0.833 0.833 0.833 0.833 

s_ratio_to_all_3__ep_4 0.65 [0.61; 0.73] 0.54 [0.50; 0.59] 0.00008614 0.864 [0.767; 0.943] 0.867 0.767 0.788 0.852 

s_ratio_to_all_10__ep_16 0.21 [0.20; 0.26] 0.17 [0.15; 0.19] 0.00011581 0.861 [0.761; 0.944] 0.767 0.867 0.852 0.788 

s_ratio_to_all_29__ep_32 0.11 [0.10; 0.13] 0.08 [0.08; 0.10] 0.00009006 0.860 [0.760; 0.942] 0.833 0.767 0.781 0.821 

s_ratio_to_all_12__ep_16 0.23 [0.20; 0.26] 0.17 [0.15; 0.19] 0.00011572 0.858 [0.752; 0.940] 0.833 0.800 0.806 0.828 

s_ratio_to_all_15__ep_16 0.22 [0.19; 0.24] 0.16 [0.15; 0.18] 0.00010811 0.858 [0.751; 0.942] 0.833 0.800 0.806 0.828 

s_ratio_to_all_14__ep_32 0.12 [0.11; 0.13] 0.09 [0.08; 0.10] 0.00021378 0.858 [0.753; 0.948] 0.900 0.733 0.771 0.880 

s_ratio_to_all_24__ep_32 0.12 [0.11; 0.14] 0.09 [0.08; 0.10] 0.00016338 0.857 [0.754; 0.942] 0.867 0.767 0.788 0.852 

s_ratio_to_all_4__ep_8 0.37 [0.34; 0.45] 0.30 [0.28; 0.34] 0.00013644 0.856 [0.749; 0.940] 0.833 0.767 0.781 0.821 

s_ratio_to_all_5__ep_8 0.39 [0.36; 0.44] 0.31 [0.29; 0.35] 0.00015322 0.856 [0.754; 0.938] 0.800 0.767 0.774 0.793 

s_ratio_to_all_4__ep_4 0.59 [0.55; 0.65] 0.48 [0.41; 0.53] 0.00019620 0.854 [0.751; 0.938] 0.800 0.767 0.774 0.793 

s_ratio_to_all_9__ep_16 0.21 [0.19; 0.26] 0.17 [0.16; 0.19] 0.00028789 0.854 [0.747; 0.941] 0.833 0.767 0.781 0.821 

s_ratio_to_all_20__ep_32 0.11 [0.10; 0.14] 0.09 [0.07; 0.10] 0.00015859 0.854 [0.751; 0.939] 0.867 0.733 0.765 0.846 

s_ratio_to_all_30__ep_32 0.11 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00014978 0.853 [0.754; 0.936] 0.767 0.800 0.793 0.774 

s_ratio_to_all_21__ep_32 0.12 [0.10; 0.14] 0.09 [0.08; 0.10] 0.00021819 0.852 [0.749; 0.939] 0.833 0.767 0.781 0.821 



s_ratio_to_all_15__ep_32 0.12 [0.11; 0.14] 0.09 [0.08; 0.10] 0.00021498 0.850 [0.741; 0.937] 0.800 0.767 0.774 0.793 

s_ratio_to_all_19__ep_32 0.11 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00014215 0.849 [0.742; 0.934] 0.700 0.900 0.875 0.750 

s_ratio_to_all_26__ep_32 0.11 [0.10; 0.15] 0.09 [0.08; 0.10] 0.00013039 0.848 [0.742; 0.933] 0.967 0.567 0.690 0.944 

s_ratio_to_all_10__ep_32 0.11 [0.10; 0.14] 0.08 [0.08; 0.10] 0.00015899 0.844 [0.737; 0.927] 1.000 0.567 0.698 1.000 

s_ratio_to_all_3__ep_32 0.10 [0.10; 0.13] 0.08 [0.08; 0.09] 0.00014020 0.839 [0.730; 0.932] 0.767 0.867 0.852 0.788 

s_ratio_to_all_5__ep_32 0.11 [0.10; 0.13] 0.08 [0.08; 0.10] 0.00004671 0.839 [0.732; 0.930] 0.733 0.867 0.846 0.765 

s_ratio_to_all_2__ep_32 0.10 [0.09; 0.12] 0.08 [0.07; 0.09] 0.00023945 0.837 [0.729; 0.927] 0.933 0.600 0.700 0.900 

s_ratio_to_all_8__ep_32 0.12 [0.10; 0.14] 0.09 [0.08; 0.10] 0.00019267 0.837 [0.728; 0.927] 0.700 0.867 0.840 0.743 

s_ratio_to_all_31__ep_32 0.11 [0.10; 0.13] 0.08 [0.07; 0.10] 0.00025030 0.837 [0.726; 0.927] 0.800 0.767 0.774 0.793 

s_ratio_to_all_4__ep_16 0.20 [0.18; 0.25] 0.17 [0.15; 0.18] 0.00026688 0.832 [0.719; 0.927] 0.633 0.933 0.905 0.718 

s_ratio_to_all_5__ep_16 0.20 [0.19; 0.26] 0.16 [0.15; 0.19] 0.00017100 0.831 [0.717; 0.923] 0.967 0.567 0.690 0.944 

s_ratio_to_all_6__ep_16 0.22 [0.19; 0.26] 0.17 [0.15; 0.19] 0.00018603 0.831 [0.719; 0.926] 0.733 0.833 0.815 0.758 

s_ratio_to_all_23__ep_32 0.11 [0.10; 0.14] 0.09 [0.08; 0.10] 0.00035395 0.831 [0.718; 0.923] 0.800 0.767 0.774 0.793 

s_ratio_to_all_12__ep_32 0.11 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00039034 0.830 [0.717; 0.923] 0.667 0.867 0.833 0.722 

s_ratio_to_all_7__ep_32 0.11 [0.10; 0.12] 0.08 [0.08; 0.10] 0.00068719 0.829 [0.710; 0.928] 0.900 0.733 0.771 0.880 

s_ratio_to_all_6__ep_32 0.12 [0.10; 0.14] 0.08 [0.08; 0.09] 0.00029502 0.827 [0.712; 0.924] 0.800 0.767 0.774 0.793 

s_ratio_to_all_3__ep_16 0.21 [0.18; 0.24] 0.16 [0.14; 0.18] 0.00014313 0.823 [0.707; 0.919] 0.633 0.933 0.905 0.718 

s_ratio_to_all_17__ep_32 0.12 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00057304 0.820 [0.704; 0.919] 0.900 0.667 0.730 0.870 

fractal_bc_d_3__ep_32 1.11 [1.06; 1.18] 1.01 [0.96; 1.06] 0.00036927 0.817 [0.702; 0.913] 0.767 0.733 0.742 0.759 

s_ratio_to_all_18__ep_32 0.11 [0.10; 0.15] 0.09 [0.08; 0.10] 0.00037915 0.816 [0.700; 0.912] 0.833 0.700 0.735 0.808 

fractal_bc_d_8__ep_32 1.13 [1.07; 1.18] 1.03 [0.98; 1.07] 0.00051135 0.816 [0.696; 0.919] 0.667 0.933 0.909 0.737 

s_ratio_to_all_3__ep_8 0.36 [0.34; 0.45] 0.31 [0.28; 0.34] 0.00026422 0.814 [0.699; 0.914] 0.767 0.767 0.767 0.767 

s_ratio_to_all_11__ep_32 0.12 [0.10; 0.13] 0.09 [0.08; 0.10] 0.00017438 0.814 [0.694; 0.917] 0.767 0.800 0.793 0.774 

s_ratio_to_all_8__ep_8 0.35 [0.31; 0.38] 0.27 [0.22; 0.30] 0.00064242 0.811 [0.689; 0.917] 0.733 0.867 0.846 0.765 

s_ratio_to_all_9__ep_32 0.11 [0.10; 0.12] 0.09 [0.08; 0.10] 0.00039948 0.809 [0.688; 0.911] 0.767 0.767 0.767 0.767 



surface_volume_r_1__orig 3.49 [3.11; 4.03] 4.82 [4.01; 5.39] 0.00040076 0.807 [0.689; 0.911] 0.933 0.600 0.700 0.900 

 

 

Data is presented as median with interquartile ranges or frequency and percentage of the most frequent element, as appropriate.  

First-order statistical names are generated as: “statistic”_“orig” indicating calculation done on original images. 

GLCM statistical names are generated as: “statistic”_“X”_“ep”_“N”_“D”_“avg”. X is either empty indicating no manipulation done 

on the GLCM matrix, or s for squared, where the GLCM element were squared or e where the entropy of the elements was used.  

ep: equal probability binning. N: the number of bins used. D: the distance of the reference and the observed voxels. “avg” 

indicates that statistics were averaged using all directions. 

GLRLM statistical names are generated as: “statistic” _ “ep”_“N”_”avg”. ep: equal probability binning. N: the number 

of bins used. “avg” indicates that statistics were averaged using all directions. 

Geometry based statistical names were generated as: “statistic”_”S”_“ep”_“N”. S: subcomponent used, 1 if original image was used. 

ep: equal probability binning. N: the number of bins used. 
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