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Abstract

Asymptotic approximations to the zeros of Hermite and Laguerre poly-
nomials are given, together with methods for obtaining the coefficients
in the expansions. These approximations can be used as a standalone
method of computation of Gaussian quadratures for high enough degrees,
with Gaussian weights computed from asymptotic approximations for the
orthogonal polynomials. We provide numerical evidence showing that for
degrees greater than 100 the asymptotic methods are enough for a double
precision accuracy computation (15-16 digits) of the nodes and weights of
the Gauss–Hermite and Gauss–Laguerre quadratures.

1 Introduction

As is well known, the nodes xi, i = 1, . . . , n of Gaussian quadrature rules are
the roots of the (for instance monic) orthogonal polynomial satisfying

∫ b

a

xipn(x)w(x)dx = 0, i = 0, . . . , n− 1. (1)

∗Former address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG
Amsterdam, The Netherlands
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Among the Gauss quadrature rules, the most popular are those for which the
associated orthogonal polynomials are the so-called classical orthogonal polyno-
mials, namely:

1. Gauss–Hermite: w(x) = e−x2

; a = −∞, b = +∞. Orthogonal polynomi-
als: Hermite polynomials (Hn(x));

2. Gauss–Laguerre: w(x) = xαe−x, α > −1; a = 0, b = +∞. Orthogonal

polynomials: Laguerre polynomials (L
(α)
n (x));

3. Gauss-Jacobi: w(x) = (1 − x)α(1 + x)β , α, β > −1; a = −1, b = 1.

Orthogonal polynomials: Jacobi polynomials (P
(α,β)
n (x)).

The weights for the n-point Gauss quadrature based on the nodes {xi}ni=1

can be written in terms of the derivatives of the orthogonal polynomials at the
nodes as follows:

1. Gauss–Hermite:

wi =

√
π2n+1n!

[H ′

n(xi)]
2
, (2)

2. Gauss–Laguerre:

wi =
Γ(n+ α+ 1)

n!xi[L
(α)′
n (xi)]

2
, (3)

3. Gauss-Jacobi:

wi =
Mn,α,β

(1− x2
i )[P

(α,β)′
n (xi)]

2
, (4)

where

Mn,α,β = 2α+β+1
Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
.

Iterative algorithms are interesting methods of computation of Gaussian
nodes and weights, very clearly outperforming matrix methods (Golub-Welsch
[10]) for high degrees. They are based on the computation of the roots of the
orthogonal polynomial by an iterative method and the subsequent computation
of the weights by using function relations like those in Eqs. (2)-(4). Most
iterative methods for the computation of the Gaussian nodes (with the exception
of [19]) require accurate enough first approximations in order to ensure the
convergence of the iterative method (typically the Newton method); for two
recent examples, see [11, 24]. An alternative approach [9], although less efficient
for high degrees than iterative methods with asymptotic first approximations
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[11, 24], consists in guessing these first approximations by integrating a Prufer-
transformed ODE with a Runge-Kutta method, and then refining these guesses
by the Newton method (however, asymptotic approximations were also used
in this reference for the particular case of Gauss-Legendre quadrature). More
recently, non-iterative methods based on asymptotic approximations for the
computation of Gauss-Legendre nodes and weights were developed in [1], which
were shown to outperform iterative approaches.

In this paper, our aim is to provide asymptotic approximations for the ac-
curate computation of the nodes and weights of Gauss–Hermite and Gauss–
Laguerre quadrature. These approximations provide a fast and accurate method
of computation which can be used for arbitrarily large degree, but which also
provide accurate results for not so large degrees (n ≥ 100). The methods are
able to compute both the nodes and the weights with nearly double precision
accuracy, improving the accuracy of the available fixed precision iterative meth-
ods.

As we will discuss in a subsequent paper, a fully non-iterative approach is
also possible for the case of Gauss-Jacobi quadrature [7], similarly as was shown
for the particular case of Legendre polynomials [1].

2 Hermite polynomials

In [24] first estimates of the zeros of Hermite polynomials are based on work of
Tricomi for the middle zeros; these first guesses follow from expansions in terms
of elementary functions. For the remaining zeros near the positive endpoint√
2n+ 1 of the zeros interval the first estimates are taken from the work of

Gatteschi, and are in terms of the zeros of the Airy functions.
In this section we give an expansion of the zeros based on the asymptotic

expansion in terms of Airy functions. The expansion can be used for all positive
zeros, however, the approximations are less accurate for the small zeros. For
these we give an approximation based on an asymptotic expansion in terms of
elementary functions. We start discussing this expansion.

2.1 Expansions in terms of elementary functions

An expansion in terms of elementary functions for the Hermite polynomials is
given in [13, §18.15(v)] with a limited number of coefficients. However, we prefer
an expansion for the parabolic cylinder function derived in [16]; these results
are summarized in [22, §12.10(iv)] and [23, §30.2.3].

The relation between the parabolic cylinder function U(a, z) and the Hermite
polynomial Hn(z) is

U
(
−n− 1

2
, z
)
= 2−n/2e−

1

4
z2

Hn

(
z/

√
2
)
, n = 0, 1, 2, . . . . (5)

We use the notations

µ =
√
2n+ 1, t = x/µ, η(t) = 1

2
arccos t− 1

2
t
√
1− t2, (6)
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and we have the asymptotic representation

Hn(x) =
2

1

2
n+1e

1

2
x2

g(µ)

(1 − t2)
1

4

×
(
cos
(
µ2η − 1

4π
)
Aµ(t)− sin

(
µ2η − 1

4π
)
Bµ(t)

)
,

(7)

with expansions

Aµ(t) ∼
∞∑

s=0

(−1)su2s(t)

(1− t2)3sµ4s
, Bµ(t) ∼

∞∑

s=0

(−1)su2s+1(t)

(1− t2)3s+
3

2µ4s+2
, (8)

uniformly for −1+ δ ≤ t ≤ 1− δ, where δ is an arbitrary small positive number.
The first few coefficients are

u0(t) = 1, u1(t) =
t(t2 − 6)

24
, u2(t) =

−9t4 + 249t2 + 145

1152
, (9)

and more us(t) follow from the recurrence relations

(t2 − 1)u′
s(t)− 3stus(t) = rs−1(t),

8rs(t) = (3t2 + 2)us(t)− 12(s+ 1)trs−1(t) + 4(t2 − 1)r′s−1(t).
(10)

The quantity g(µ) is only known in the form of an asymptotic expansion

g(µ) ∼ h(µ)

(
1 + 1

2

∞∑

k=0

γk(
1
2µ

2
)k

)
, (11)

where the coefficients γk are defined by

Γ
(

1
2
+ z
)
∼

√
2π e−z zz

∞∑

k=0

γk
zk

, z → ∞. (12)

The first ones are

γ0 = 1, γ1 = − 1
24
, γ2 = 1

1152
, γ3 = 1003

414720
, γ4 = − 4027

39813120
. (13)

For h(µ) we have

h(µ) = 2−
1

4
µ2

−
1

4 e−
1

4
µ2

µ
1

2
µ2

− 1
2 = 2−

1

2

(
n+ 1

2

) 1

2
n

e−
1

2
n− 1

4 . (14)

2.1.1 Expansions of the zeros

Next we discuss expansions for the zeros of Hn(x), xk, 1 ≤ k ≤ n (x1 < x2 <
· · · < xn). We introduce a function W (η) (see (7))

W (η) = cos
(
µ2η − 1

4
π
)
Aµ(t)− sin

(
µ2η − 1

4
π
)
Bµ(t), (15)
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and try to solve the equation W (η) = 0 for large values of n. We define a
first approximation η0 such that the cosine term vanishes and η0 and the corre-
sponding t and x-values are (in first-order approximation) related to a zero of
Hn(x).

The small zeros are around x = 0 and t = 0, that is, for η near η(0) = 1
4π.

We define

η0 =
n− k + 3

4

µ2
π, k = 1, 2, . . . , n. (16)

In this way, cos
(
µ2η0 − 1

4π
)
= 0, and this choice of η0 follows from the location

of the zeros of the cosine function and those of Hn(x). Observe that, when n is
odd and k = 1

2 (n + 1), that is, xk = 0, it follows that η0 = 1
4π. If η = 1

4π we
have t = 0 and x = 0.

We assume that the equation W (η) = 0 has a solution η that can be ex-
panded in the form

η = η0 + ε, ε ∼ η1
µ2

+
η2
µ4

+
η3
µ6

+
η4
µ8

+ . . . , (17)

and consider the Taylor expansion and equation

W (η) +
ε

1!

d

dη
W (η) +

ε2

2!

d2

dη2
W (η) +

ε3

3!

d2

dη3
W (η) + . . . = 0, (18)

where W (η) and its derivatives are taken at η = η0. Because the expansions in
(8) are in terms of t, we need dt/dη = −1/

√
1− t2.

When we have found η, the corresponding t-value is obtained by inverting
the relation for η(t) in (6). For this purpose we use the expansion

t = −η̃ − 1
6 η̃

3 − 13
120 η̃

5 − 493
5040 η̃

7 + · · · ,
η̃ = η − 1

4π = − 1
2 arcsin t− 1

2 t
√
1− t2

(19)

It is also possible to invert the relation (19) by using an iterative method.
For this purpose it is convenient to write t = sin 1

2θ. Then the equation to be
solved for θ ∈ (−π, π) reads

4η̃ + θ + sin θ = 0. (20)

A Newton or related procedure can be used to solve this equation, but in our
algorithms we prefer to use the series shown in (19), which is faster (and of more
restricted applicability, but sufficient for our purposes).

After a few symbolic manipulations we find that η2k+1 = 0, k = 0, 1, 2, . . .,
and that the first nonzero coefficients are

η2 = − t
(
t2 − 6

)

24 (1− t2)
3

2

,

η4 = − t
(
56t8 − 252t6 + 351t4 + 2340t2 + 3780

)

5760 (1− t2)
9

2

,

η6 = −t
(
3968t14 − 29760t12 + 95544t10 − 173232t8 + 231237t6 −

1890882t4 − 6068580t2 − 1690920
)
/
(
322560(1− t2

) 15

2 ).

(21)
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Because we have a recurrence relation for the coefficients us(t) in (10), it is quite
easy to generate many us(t) and also much more coefficients ηj than given in
(21).

Algorithm For the computation of the approximations of the zeros xk we
summarize the procedure as follows.

1. To approximate the zero xk, compute the starting value η0, given in (16).

2. Compute the corresponding t-value from (19) (with η = η0).

3. With these values η0 and t, compute the coefficients ηk in (21).

4. Next, compute η from (17).

5. Then the better value of t again follows from (19).

6. Finally, the approximation for the requested zero is xk ∼ µt, see (6).

2.2 Expansions in terms of Airy functions

For the large zeros we shall use the Airy-type expansion of the Hermite polyno-
mials. We write (see [22, Section 12.10(vii)])

Hn(x) =
√
π 2

1

2
n+1µ

1

3χ(ζ)e
1

2
x2

g(µ)
(
Ai
(
µ

4

3 ζ
)
A(ζ) + µ−

8

3Ai′
(
µ

4

3 ζ
)
B(ζ)

)
,

(22)
with expansions

A(ζ) ∼
∞∑

s=0

As(ζ)

µ4s
, B(ζ) ∼

∞∑

j=0

Bs(ζ)

µ4s
, µ → ∞, (23)

where µ =
√
2n+ 1, t = x/µ, and g(µ) is the function with asymptotic expan-

sion given in (11). For ζ we have the definition

2
3ζ

3

2 = 1
2 t
√
t2 − 1− 1

2arccosh t, t ≥ 1,

2
3 (−ζ)

3

2 = η(t), −1 < t ≤ 1,

(24)

where η(t) is defined in (6); χ(ζ) is defined by

χ(ζ) =

(
ζ

t2 − 1

) 1

4

. (25)

The variable ζ is analytic in a neighborhood of t = 1. We have the differential
equation

ζ

(
dζ

dt

)2

= t2 − 1, (26)
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and we have the following expansions in powers of t− 1 and ζ the expansions

2−
1

3 ζ = (t− 1) + 1
10
(t− 1)2 − 2

175
(t− 1)3 + · · ·,

t = 1 + ζ̃ − 1
10
ζ̃2 + 11

350
ζ̃3 + · · · , ζ̃ = 2−

1

3 ζ.
(27)

The relation between t and ζ is singular at t = −1, ζ(−1) = −(3π/4)2/3 =
−1.770 · · · , and the series in the second line converges for |ζ| < 1.770 · · · .

The coefficients are given by

As(ζ) = ζ−3s
2s∑

m=0

βm (χ(ζ))
6(2s−m)

u2s−m(t),

Bs(ζ) = −ζ−3s−2
2s+1∑

m=0

αm (χ(ζ))
6(2s−m+1)

u2s−m+1(t),

(28)

where us(t) are as in §2.1, and

αm =
(2m+ 1)(2m+ 3) · · · (6m− 1)

m! (144)m
, α0 = 1,

βm = −6m+ 1

6m− 1
αm.

(29)

A recursion for αm reads

αm+1 = αm
(6m+ 5)(6m+ 3)(6m+ 1)

144(m+ 1)(2m+ 1)
, m = 0, 1, 2, . . . . (30)

The first few coefficients of the expansions in (23) are given by:

A0(ζ) = 1, B0(ζ) = −48χ6u1(t) + 5

48 ζ2
,

A1(ζ) =
4608χ12u2(t)− 672χ6u1(t)− 455

4608 ζ3
,

B1(ζ) = −663552χ18u3(t) + 69120χ12u2(t) + 55440χ6u1(t) + 85085

6635528 ζ5
.

(31)

Here χ = χ(ζ) is given by (25). To avoid numerical cancellations when ζ is
small in the above representations, we can expand the coefficients, which are
analytic at ζ = 0, in powers of ζ.

2.2.1 Expansions of the zeros

An expansion for the zeros is obtained as follows. First we determine the zeros
in terms of ζ.

For the first-order approximation of a zero xn−k+1 of Hn(x) we compute

ζ0 = µ−
4

3 ak, where ak is a zero of the Airy function Ai(x). Because of the
symmetry of the Hermite polynomial, we assume that 1 ≤ k ≤ ⌊ 1

2n⌋.

7



We introduce an expansion of ζ corresponding to the zero ofHn(x) by writing

ζ = ζ0 + ε, ε ∼ ζ1
µ4

+
ζ2
µ8

+ . . . , (32)

and we try to obtain the ζj , j ≥ 1. We introduce a function W (ζ) by writing
(see (22))

W (ζ) = Ai
(
µ

4

3 ζ
)
A(ζ) + µ−

8

3Ai′
(
µ

4

3 ζ
)
B(ζ), (33)

and expand W (ζ) at ζ = ζ0, writing ζ = ζ0 + ε, which gives

W (ζ0) +
ε

1!
W ′(ζ0) +

ε2

2!
W ′′(ζ0) + . . . = 0. (34)

In this equation we substitute the expansion given in (32) and those in (23),
compare equal powers of µ and obtain the first few coefficients

ζ1 = −B0(ζ0),

ζ2 = − 1
3

(
3B1(ζ0)− 3B0(ζ0)A1(ζ0)− 3B0(ζ0)B

′
0(ζ0) + ζ0B0(ζ0)

3
)
,

(35)

where the derivative is with respect to ζ and the coefficients are given in (28).
To obtain the derivative of B0(ζ) we need

dt

dζ
= χ2(ζ),

dχ

dζ
=

1− 2tχ6(ζ)

4ζ
χ(ζ), (36)

which follow from (25) and (26). This gives

d

dζ
B0(ζ) =

χ6t3 + 6χ12t4 − 6tχ6 − 36t2χ12 − 6χ8ζt2 + 12χ8ζ + 10

48ζ3
. (37)

For small values of ζ we have expansions of the form

ζ1 = 2
1

3

(
9

280 − 7
450 ζ̃ +

1359
134750 ζ̃

2 + . . .
)
, ζ̃ = 2−

1

3 ζ,

ζ2 = 2
1

3

(
− 1539

130000 + 1550191
138915000 ζ̃ − 193351

16362500 ζ̃
2 + . . .

)
.

(38)

Algorithm When we have obtained a value ζ that corresponds to a zero of
the Hermite polynomial, the corresponding t-value should be obtained from
the second equation in (24). This equation has to be solved by a numerical
procedure. A first estimate, when ζ is small, can be obtained from the second
line in (27), and more terms of that expansion can easily be obtained by a
symbolic package.

For an iterative procedure it is convenient to substitute t = cos 1
2θ, with

θ ∈ [0, 2π). Then the equation to be solved for θ reads 8
3 (−ζ)

3

2 = θ − sin θ
and we can use, for instance, the Newton method for this purpose. However, in
our algorithms we prefer to invert using enough terms in (27), which is a faster
method.

We proceed as follows for computing approximations for the zeros.

8



1. To approximate the zero xn−k+1, define the starting value ζ0 = µ−
4

3 ak,
1 ≤ k ≤ 1

2n, where ak is a zero of the Airy function.

2. Compute t from the second line of (27).

3. With these values ζ0 and t, compute the coefficients ζj in (35) and χ(ζ0)
from (25).

4. Next, compute ζ from (32).

5. Then the better value of t again follows from the second line of (27).

6. Finally, xn−k+1 ∼ tµ.

2.3 Numerical performance of the expansions

The approximation (17) (obtained from the expansion in terms of elementary
functions) is accurate for large n and particularly for the small zeros. As a first
numerical example of the accuracy, even for quite small n, we take n = 11, k = 7
(the smallest positive zero). Then, η0 = 0.648807 and the corresponding t and
x-values are 0.137021 and 0.657129. The seventh zero of H11(x) is 0.656810 . . .,
and the relative error is 0.00048. With the shown coefficients in (21) we obtain
η = 0.6488732440401913 and x = 0.6568095658827670, with relative error 1.52×
10−9. The computations are done with Maple, with Digits= 16. With n = 51
and k = 27 (the smallest positive zero), the relative error becomes 10−15.

The expansions in (8) are uniformly valid for −1 + δ ≤ t ≤ 1 − δ, where δ
is an arbitrary small positive number. Hence, for the large zeros this method is
not reliable, and we need to restrict the number of zeros that we can compute.
For example, we can request that |t| ≤ 1

2 , the corresponding η-value satisfies

|η− 1
4π| ≤ 1

12π+
1
8

√
3 = 0.478. When we use the first estimate η0 given in (16) in

the equation |η0− 1
4π| ≤ 0.478, we find for k the bound | 12n−k| . 0.478

π (2n+1) =
0.304n+0.152. This says that roughly 0.3n of the positive zeros can be computed
by using the asymptotic approximations of §2.1, when we request |t| ≤ 1

2 . In
practice, as we will see later, the expansions in terms of elementary functions can
be used for larger values of |t| and when they are accurate, they are preferable
to the expansions in terms of Airy functions because the algorithm is faster.

More extensive tests of the expansions have been performed using finite
precision implementations coded in Fortran 90. In these implementations only
non-iterative methods (power series) are used for the inversion of the variables.

Figure 1 shows the performance of the expansion in terms of elementary func-
tions. In this figure, the relative accuracy obtained for computing the positive
zeros of Hn(x) for n = 100, 1000, 10000 is plotted. The label i in the abscissa
represents the order of the zero (starting from i = 1 for the smallest positive
zero). The algorithm for testing the accuracy of the zeros has been implemented
in finite precision arithmetic using the first 6 non-zero terms in the expansion.
We compare the asymptotic expansions against an extended precision accuracy
(close to 32 digits) iterative algorithm which uses the global fixed point method
of [19], with orthogonal polynomials computed by local Taylor series.

9
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Figure 1: Relative accuracy obtained with the asymptotic expansion (17) for
computing the positive zeros of Hn(x) for n = 100, 1000, 10000. The label i in
the abscissa represents the order of the zero (starting from i = 1 for the smallest
positive zero). The points not shown in the plots correspond to values with all
digits correct in double precision accuracy.

As can be seen, a very large number of the zeros for the three values of n
tested can be computed with the expansion with a relative accuracy near full
double precision. Actually, the points not shown in the plot correspond to values
with all digits correct in double precision accuracy. However, the expansion fails
for the largest zeros, as expected.

As for the asymptotic expansion in terms of the zeros of Airy functions (32),
the situation is the reverse: the further we are from the turning point at t = 1
(ζ = 0), the larger the relative errors become. Therefore, for n fixed the maxi-
mum errors in the computation are obtained for the small zeros. For example,
using Maple with Digits= 16, we take n = 11 and 6 coefficients in (32). Then

we have for the zero x6 at the origin ζ0 = µ−
4

3 a6 = −1.115618210110694, t =
−0.1668495251592333× 10−3, and the better values ζ = −1.115460237225190
and t = 1.746192313216916×10−13. This gives x6

.
= 8.374444141492045×10−13

and for the largest zero x11 the relative accuracy is 10−15. A test of the expan-
sion for very large values of n using a finite precision arithmetic implementation
is shown in Figure 2. In this figure, we show the relative accuracy obtained with
the asymptotic expansion (32) for computing the largest 1000 positive zeros of
Hn(x) for n = 10000, 100000, 1000000. As can be seen, an accuracy near 10−16

can be obtained in all cases. The zeros ak of the Airy function have been com-

puted using ak = −T
(

3
8π(4k − 1)

)
, where T (t) has the Poincaré’s expansion

(see [17, §9.9(iv)])

T (t) ∼ t2/3
(
1 +

5

48
t−2 − 5

36
t−4 +

77125

82944
t−6 − 108056875

6967296
t−8 + · · ·

)
. (39)
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Figure 2: Relative accuracy obtained with the asymptotic expansion (32) for
computing the last 1000 positive zeros ofHn(x) for n = 10000, 100000, 1000000.
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Figure 3: Relative accuracy obtained with the asymptotic expansions (17)
and (32) for computing the positive zeros of Hn(x) for n = 100. The points not
shown in the plot correspond to values with all digits correct in double precision
accuracy.

This expansion is valid for moderate/large values of k. In our implementation
we use pre-computed values for the first 10 zeros of the Airy function and the
Poincaré’s expansion for the rest.

The accuracy of the two expansions (17) and (32) for approximating the
zeros of Hermite polynomials for n = 100 is compared in Figure 3. As can be
seen, the combined use of both expansions allow the computation of all the zeros
with a double precision accuracy of 15-16 digits.

In Table 1 we illustrate the efficiency of the expansions for approximating the
zeros of Hermite polynomials for n = 100, 10000. In particular, the first 0.6n
zeros of the Hermite polynomials have been computed with the asymptotic
expansion in terms of elementary functions and the last 0.4n zeros with the
asymptotic expansion in terms of the zeros of Airy functions. With this splitting
and by taking enough terms, it is possible to use the series (19) and (27) for
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Table 1: Hermite expansions: average CPU times per node. The algorithms
have been implemented in Fortran 90. The nodes are computed with 15 − 16
digits accuracy.

Expansion 2 terms ≥ 2 terms

n = 100

Elementary 0.56µs 0.65µs

Airy 1.0µs 1.24µs

n = 10000

Elementary 0.5µs 0.5µs

Airy 0.78µs 0.78µs

computing the t-values in the expansions instead of using an iterative method
for solving the non-linear equations. In the table we show average CPU times
(obtained using an Intel Core i54310U 2.6GHz processor under Windows) per
node. The second column shows the CPU times when the number of terms
required (no more than five or six depending on the expansion) for a double
precision accuracy for the zeros is considered, while the first column shows the
CPU times for only two terms. For n = 10000 this is the number of terms
needed in the expansions to obtain double precision accuracy. For n = 100
we observe that there is not much difference in speed between the more simple
(2 terms) and the more accurate approximation; this favors the use of accurate
asymptotic approximations with no ulterior iterative refinements. The table also
shows that the computation of the expansion in terms of elementary functions
is more efficient than the expansion in terms of zeros of Airy functions although
for n = 10000 the difference in speed is not very significant.

Once the nodes (the zeros of Hn(x)) of the Gauss–Hermite quadrature have
been computed, approximations to the weights given in (2) can be also obtained
by using the asymptotic results in §2.1 (elementary functions) and §2.2 (Airy
functions).

For the computation of the weights, one needs to be careful in order to
avoid overflows in the computation both as a function of n and as a function
of the values of the nodes. With respect to the dependence on n, we observe
that the large factor 2nn! in (2) can be cancelled out by the factors in front
of the expansions (7) and (22). This is as expected because using the first
approximations from the elementary asymptotic expansions as n → ∞ we obtain
the estimate for the weights:

wi ∼
π

√
2n

e−x2

i . (40)

This estimation shows that underflow may occur for computing the large zeros.
In this case the range of computation of the weights can be enlarged by scaling

12



the factor ex
2/2 in the asymptotic approximations and computing scaled weights

given by

w̃i = wie
x2

i . (41)

With this, the overflow/underflow limitations are eliminated.
Using (2) this scaled weight can be written as

w̃i =

√
π2n+1n!

y′(xi)
2

, y(x) = e−x2/2Hn(x) . (42)

This expression does not have overflow/underflow limitations neither with re-
spect to x nor with respect to n. Using (7) or (22) we observe that the dominant

factors e−x2/2 and 2n+1n! can be explicitly cancelled out.
Another interesting property of this expression is that it is well conditioned

with respect to the values of the nodes. Indeed, we have w̃i = W (xi), where
we define the function W (x) =

√
π2n+1n!/y′(x)2. Now, it is straightforward to

check that W ′(xi) = 0 which means that, at the nodes x = xi, the value of the
weight is little affected by variations on the actual value of the node. This, as
we will show, will allow us to compute scaled weights with nearly full double
precision in all the range.

For computing the scaled weights in this way, we need to compute y′(x) from
the asymptotic expansions (7) or (22). This is a straightforward computation
and, for instance, starting from (7) we have that

y′(x) =
2

1

2
n+1g(µ)

µ (1− t2)
5/4

[
cos
(
µ2η − 1

4
π
)
Cµ(t)− sin

(
µ2η − 1

4
π
)
Dµ(t)

]
, (43)

where

Cµ(t) ∼
∞∑

s=0

(−1)sas

(1− t2)3sµ4s
, Dµ(t) ∼

∞∑

s=−1

(−1)sbs

(1 − t2)3s+3/2µ4s+2
(44)

and

as =
(
1
2 + 6s

)
tu2s + u2s+1 + (1 − t2)u̇2s,

b−1 = 1, bs =
(
7
2 + 6s

)
tu2s+1 + u2s+2 + (1− t2)u̇2s+1, s ≥ 0.

(45)

The dots mean derivative with respect to t.
Two examples of computation of the scaled weights (for n = 1000, 10000)

using the expansion in terms of elementary functions are shown in Figure 4. As
can be seen, most of the scaled weights can be computed with almost double
precision accuracy. Also, as expected, there is some loss of accuracy for the
weights corresponding to the largest nodes (as discussed, for these values one
has to use the expansion for the Hermite polynomials in terms of Airy functions).

13



i
0 50 100 150 200 250 300 350 400 450 500

R
el

at
iv

e 
E

rr
or

10-16

10-14

10-12

Scaled weights

i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
el

at
iv

e 
E

rr
or

10-16

10-15

10-14

Scaled weights

n=1000

n=10000

Figure 4: Relative accuracy obtained for the computation of the scaled weights
(42) for n = 1000, 10000 using the asymptotic expansion for the Hermite poly-
nomials in terms of elementary functions.

Typically, the additional computation of the weights requires about 70%
more CPU time than when using the asymptotic expansion in terms of elemen-
tary functions and about 133% more CPU time than when using the asymptotic
expansion in terms of Airy functions (due to the computation of these functions).
This shows that, when possible, the direct computation of nodes and weights
using asymptotics will be more efficient than computing more crude first ap-
proximations and then refining with an iterative method which uses values of
the orthogonal polynomial. Each time the function (and its derivative when
we use Newton’s method) is computed, the CPU time increases by this same
amount, and only when one iteration is needed the speed would be comparable.

3 Laguerre polynomials

We consider asymptotic expansions for the Laguerre polynomials L
(α)
n (x) in

terms of Bessel functions, Airy functions and Hermite polynomials. Some of
these expansions have been used to build an efficient scheme for computing the
Laguerre polynomials for large values of n and small values of α (−1 < α ≤ 5)
[8]. We discuss how to use the expansions to obtain approximations to the zeros
of Laguerre polynomials. Later, in Section 3.5 we give expansions valid for large
n and α.

For a survey of the work of several authors on inequalities and asymptotic

formulas for the zeros of L
(α)
n (x) as n or α or ν = 4n + 2α + 2 → ∞, we

refer to [5]. See also [12], were an alternative method, based on nonlinear
steepest descent analysis of Riemann–Hilbert problems, is given for Laguerre-
type Gaussian quadrature (and in particular Gauss–Laguerre).
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3.1 A simple Bessel-type expansion

We have the following representation1

L(α)
n (x) =

(x
n

)− 1

2
α

e
1

2
x

(
Jα
(
2
√
nx
)
A(x) −

√
x

n
Jα+1

(
2
√
nx
)
B(x)

)
, (46)

with expansions

A(x) ∼
∞∑

k=0

(−1)k
ak(x)

nk
, B(x) =

∞∑

k=0

(−1)k
bk(x)

nk
n → ∞, (47)

valid for bounded values of x and α.
The coefficients ak(x) and bk(x) follow from the expansion of the function

f(z, s) = exg(s)
(

s

1− e−s

)α+1

, g(s) =
1

s
− 1

es − 1
− 1

2
. (48)

The function f is analytic in the strip |ℑs| < 2π and it can be expanded for
|s| < 2π into

f(x, s) =

∞∑

k=0

ck(x)s
k. (49)

The coefficients ck(x) are combinations of Bernoulli numbers and Bernoulli poly-
nomials, the first ones being (with c = α+ 1)

c0(x) = 1, c1(x) =
1
12 (6c− x) ,

c2(x) =
1

288

(
−12c+ 36c2 − 12xc+ x2

)
,

c3(x) =
1

51840

(
−5x3 + 90x2c+ (−540c2 + 180c+ 72)x+ 1080c2(c− 1)

)
.

(50)

The coefficients ak(x) and bk(x) are in terms of the ck(x) given by

ak(x) =

k∑

m=0

(
k
m

)
(m+ 1− c)k−mxmck+m(x),

bk(x) =

k∑

m=0

(
k
m

)
(m+ 2− c)k−mxmck+m+1(x),

(51)

k = 0, 1, 2, . . ., and the first relations are

a0(x) = c0(x) = 1, b0(x) = c1(x),

a1(x) = (1− c)c1(x) + xc2(x), b1(x) = (2− c)c2(x) + xc3(x),

a2(x) = (c2 − 3c+ 2)c2(x) + (4x− 2xc)c3(x) + x2c4(x),

b2(x) = (c2 − 5c+ 6)c3(x) + (6x− 2xc)c4(x) + x2c5(x),

(52)

again with c = α+ 1.

1We summarize the results of [23, §10.3.4].
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3.1.1 Expansions of the zeros

Approximations of the zeros of L
(α)
n (x) can be obtained from (46) and expressed

in terms of zeros of the Bessel function Jα(x). Because the expansion is valid
for bounded values of x, the approximation can only be used for the small zeros.
For example, in Table 2 we show the results for the first 10 zeros when n = 100,
and for these early zeros the approximations are satisfactory.

We write (see (46))

W (x) = Jα
(
2
√
nx
)
A(x) −

√
x

n
Jα+1

(
2
√
nx
)
B(x), (53)

A first approximation to the zero xk of L
(α)
n (x) follows from writing 2

√
nxk = jk,

where jk is the kth zero of Jα(x). A further approximation will be obtained by
writing

xk = ξ + ε, ξ =
1

4n
j2k. (54)

By expanding W (x) at the zero x = ξ + ε, assuming that ε is small, we find

W (ξ) +
ε

1!
W ′(ξ) +

ε2

2!
W ′′(ξ) + . . . = 0, (55)

and substituting an expansion of the form

ε ∼ ξ1
n

+
ξ2
n2

+
ξ3
n3

+ . . . , (56)

we find the following first few values

ξ1 =
ξ

12
(ξ − 6(α+ 1)),

ξ2 =
ξ

720
(150− 90ξ + 11ξ2 + 360α+ 210α2 − 90ξα),

ξ3 =
ξ

20160
(2121ξ − 770ξ2 + 73ξ3 − 6300α− 8820α2+

5040ξα− 3780α3 − 770ξ2α+ 2751ξα2 − 1260),

(57)

where ξ is defined in (54).

Algorithm and first numerical examples for the zeros The algorithm for
computing the asymptotic approximation of the zeros runs in the same way as
described for the Hermite polynomials, but is quite simple now. First compute
ξ from (54) and the ξj given in (57), then compute ε from (56), and finally xk

from (54).
In Table 2 we show the results of a first numerical verification for the expan-

sion. We take n = 100, α = 1
3 , and compute the first 10 zeros by using Maple

with Digits = 32. We show the relative errors in our approximations when we
take 2, 4 and 6 terms in the expansion (56). As can be seen in the table, it is
possible to obtain an accuracy near double precision (10−16) in the computation

of the first two zeros of L
(1/3)
100 (x) using just the expansion with 6 terms.
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Table 2: Relative errors in the computation of the zeros xk (see (54)) by using
the expansion (56) with 2, 4 and 6 terms. We take n = 100, α = 1

3 .

k 2 terms 4 terms 6 terms

1 0.22× 10−6 0.42× 10−11 0.21× 10−15

2 0.20× 10−6 0.34× 10−11 0.13× 10−15

3 0.18× 10−6 0.22× 10−11 0.84× 10−15

4 0.15× 10−6 0.96× 10−12 0.22× 10−14

5 0.12× 10−6 0.11× 10−13 0.10× 10−14

6 0.82× 10−7 0.43× 10−12 0.67× 10−14

7 0.47× 10−7 0.29× 10−12 0.24× 10−13

8 0.16× 10−7 0.28× 10−12 0.48× 10−13

9 0.87× 10−8 0.95× 10−12 0.72× 10−13

10 0.24× 10−7 0.13× 10−11 0.87× 10−13

3.2 An expansion in terms of Airy functions

We start with the representation2

L(α)
n (νσ) = (−1)n

e
1

2
νσχ(ζ)

2αν
1

3

(
Ai
(
ν2/3ζ

)
A(ζ) + ν−

4

3Ai′
(
ν2/3ζ

)
B(ζ)

)
(58)

with expansions

A(ζ) ∼
∞∑

j=0

α2j

ν2j
, B(ζ) ∼

∞∑

j=0

β2j+1

ν2j
, n → ∞, (59)

uniformly for bounded α and σ ∈ (σ0,∞], where σ0 ∈ (0, 1), a fixed number.
Here

ν = 4κ, κ = n+ 1
2
(α+ 1), χ(ζ) = 2

1

2σ−
1

4
−

1

2
α

(
ζ

σ − 1

) 1

4

, (60)

and 




2
3
(−ζ)

3

2 = 1
2

(
arccos

√
σ −

√
σ − σ2

)
if 0 < σ ≤ 1,

2
3
ζ

3

2 = 1
2

(√
σ2 − σ − arccosh

√
σ
)

if σ ≥ 1.
(61)

We have the relation

ζ
1

2

dζ

dσ
=

√
σ − 1

2
√
σ

. (62)

2We summarize results of [4]; see also [26, §VII.5].
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For the derivative we can use the relation

d

dx
L(α)
n (x) = L(α)

n (x) − L(α+1)
n (x). (63)

The first coefficients of the expansions in (59) are

α0 = 1, β1 = − 1

4b3
(f1 − bf2) , (64)

where b =
√
ζ if ζ ≥ 0 and b = i

√
−ζ when ζ ≤ 0, and

f1 = i
(σ + 3α(σ − 1))σ2a31 − 2

3a21σ
√
σ(1 − σ)

,

f2 =
−4− 8σ2(σ + 3σα− 3α)a31 + σ4(12σ − 3− 4σ2 + 12α2(σ − 1)2)a61

12σ3a41(σ − 1)
,

a1 =

(
4ζ

σ3(σ − 1)

) 1

4

.

(65)
More coefficients can be obtained by the method described in [23, §23.2]. Start-
ing point in this case is the integral (see [26, §VII.5, (5.11)])

1

2πi

∫

L

f(u)eν(
1

3
u3

−ζu) du, (66)

where L is an Airy-type contour and f(u) is given by

f(u) = (1 − z2)
1

2
(α−1) dz

du
. (67)

The relation between z and u follows in this case from the cubical transformation

1
2
arctanh z − 1

2
zσ = 1

3
u3 − ζu,

dz

du
=

2(u2 − ζ)(1 − z2)

1− σ + σz2
. (68)

The function f(u) can be expanded in a two-point Taylor series

f(u) =

∞∑

k=0

(ck + udk)
(
u2 − ζ

)k
, (69)

in which the coefficients can be expressed in terms of the derivatives of f(u) at
u = ±√

ζ. An integration by parts procedure then gives the coefficients α2j and
β2j+1 of (59).

In §3.3.1 we describe in detail this method for a Bessel-type expansion.

3.2.1 Expansions of the zeros

We write
W (ζ) = Ai

(
ν2/3ζ

)
A(ζ) + ν−

4

3Ai′
(
ν2/3ζ

)
B(ζ), (70)
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where A(ζ) and B(ζ) have the expansions shown in (59).

Similarly as in §2 we write the zeros xj of L
(α)
n (x) in terms of the zeros ak

of the Airy function. These zeros are negative, and a1 will correspond the nth

zero of L
(α)
n (x), a2 with the (n− 1)th zero, and so on.

A zero of L
(α)
n (x) is a zero of W (ζ) and it can be written in terms of ζ in

the form
ζ = ζ0 + ε, ζ0 = ν−

2

3 aj , (71)

and we assume that we can expand

ε ∼ ζ1
ν2

+
ζ2
ν4

+
ζ3
ν6

+ . . . . (72)

By expanding W (ζ) at ζ0 we have

W (ζ0) +
ε

1!
W ′(ζ0) +

ε2

2!
W ′′(ζ0) + . . . = 0, (73)

and substituting the expansions shown in (59) we can obtain the coefficients ζj .
We obtain

ζ1 = −β1, ζ2 = −
(
β3 +

1
6
ζ0ζ

3
1 + ζ1α2 + ζ1

d

dζ
β1 +

1
2
ζ0β3ζ

2
1

)
, (74)

where β1 given in (64). The coefficients are evaluated at ζ0.

Algorithm and first numerical examples for the zeros In §2.2.1 we
have described the algorithm for computing the asymptotic approximation of
the zeros for the Airy case. The present algorithm runs in the same way. For
the zero xn+1−j , j = 1, 2, . . ., first compute ζ0, from (71). Then compute σ0 by
inverting the first relation in (61). This is done by using the expansion

σ = 1 + ζ̃ + 1
5
ζ̃2 − 3

175
ζ̃3 + 23

7875
ζ̃4 + . . . , ζ̃ = 2

2

3 ζ. (75)

An alternative would be to use an iterative method. In that case it is convenient
to write σ = cos2 θ, and the equation to be solved for θ becomes 8

3 (−ζ)
3

2 =
θ − sin θ, 0 ≤ θ < π.

With σ = σ0 we compute the coefficients in (74), then ε and ζ from (72) and
(71). A final inversion of the relation in the first line of (61) gives the σ, and
then xn+1−j ∼ νσ.

For example, we take n = 100, α = 1
3 , and we compute the zero x100 =

375.635158667 · · · by using Maple. We compute (see (71))

ζ0 = −2.3381074105ν−2/3 = −0.0428779491924. (76)

Upon solving the first equation in (61) for σ, we obtain σ0 = 0.9328675228515.
With this value, a first approximation of the zero is x100 ∼ νσ0

.
= 375.634655868,

with a relative accuracy of 1.34× 10−6.
Finally, we compute ζ1 = 0.131145197575, compute ζ ∼ ζ + ζ1/ν

2, in-
vert again the first relation in (61), giving σ = 0.932868771534 and x100

.
=

375.635158671, a relative accuracy of 1.08× 10−11. For the halfway zero x51 we
found the relative accuracies 6.71× 10−6 and 1.52× 10−10.
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3.3 Another expansion in terms of Bessel functions

After substituting t = e−s in the integral representation3

L(α)
n (z) =

1

2πi

∫

L

(1− t)−α−1e−tz/(1−t) dt

tn+1
, (77)

we obtain the representation

e−νρL(α)
n (2νρ) =

2−α

2πi

∫ (0+)

−∞

eνh(s,ρ)
(
sinh s

s

)−α−1
ds

sα+1
, (78)

where ν = 2n+α+1 and h(s, ρ) = s−ρ coth s. The contour starts at −∞ with
phu = −π, encircles the origin anti-clockwise, and returns to −∞ with phu = π.
The transformation to a standard form for this case is h(s, ρ) = u − ζ/u, with
result

2αe−νρL(α)
n (2νρ) =

1

2πi

∫ (0+)

−∞

eν(u−ζ/u)f(u)
du

uα+1
, (79)

where

f(u) =
( u

sinh s

)α+1 ds

du
. (80)

By using an integration by parts procedure (see §3.3.1), we can obtain the
representation

L(α)
n (2νρ) =

eνρχ(ζ)

2αζ
1

2
α

(
Jα
(
2ν
√
ζ
)
A(ζ) − 1√

ζ
Jα+1

(
2ν
√
ζ
)
B(ζ)

)
, (81)

with expansions

A(ζ) ∼
∞∑

j=0

A2j(ζ)

ν2j
, B(ζ) ∼

∞∑

j=0

B2j+1(ζ)

ν2j+1
, ν → ∞, (82)

uniformly for ρ ≤ 1− δ, where δ ∈ (0, 1) is a fixed number. Here,

ν = 2n+ α+ 1, χ(ζ) = (1− ρ)−
1

4

(
ζ

ρ

) 1

2
α+ 1

4

, ρ < 1, (83)

with ζ given by






√
−ζ = 1

2

(√
ρ2 − ρ+ arcsinh

√−ρ
)
, if ρ ≤ 0,

√
ζ = 1

2

(√
ρ− ρ2 + arcsin

√
ρ
)
, if 0 ≤ ρ < 1.

(84)

We have the relation
1

ζ
1

2

dζ

dρ
=

√
1− ρ

ρ
, ρ < 1. (85)

3We summarize the results of [4]; see also [26, §VII.7].
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The first coefficients are

A0(ζ) = 1,

B1(ζ) =
1

48ξ

(
5ξ4b+ 6ξ2b+ 3ξ + 12a2(b − ξ)− 3b

)
,

(86)

where

ξ =

√
ρ

1− ρ
, b =

√
ζ. (87)

More coefficients can be obtained by using the method described in §3.3.1.
To remove in (81) the singularities due to the Bessel functions at ζ = 0, it

is convenient to use the function Eν(z) introduced by Tricomi; see [25, p. 34].
We have

Eν(z) = z−
1

2
νJν

(
2
√
z
)
=

∞∑

k=0

(−1)k
zk

k! Γ(ν + k + 1)
. (88)

It is an analytic function of z. In terms of the modified Bessel function we can
write

Eν(−z) = z−
1

2
νIν

(
2
√
z
)
=

∞∑

k=0

zk

k! Γ(ν + k + 1)
. (89)

The representation in (81) can be written in the form

L(α)
n (2νρ) =

(
1
2
ν
)α

eνρχ(ζ)
(
Eα

(
ζν2
)
A(ζ) − Eα+1

(
ζν2
)
B(ζ)

)
, (90)

and we can use this representation also for ζ < 0, i.e., ρ < 0.
For more details about the coefficients Aj(ζ) and Bj(ζ) of the expansions in

(82), see [8].

3.3.1 A general method for the coefficients in Bessel-type expansions

We describe a general method for evaluating the coefficients Ak(ζ) and Bk(ζ)
used in (82).

We consider the standard form

Fζ(ν) =
1

2πi

∫

C

eν(u−ζ/u)f(u)
du

uα+1
, (91)

where the contour C starts at −∞ with phu = −π, encircles the origin anti-
clockwise, and returns to −∞ with phu = π. The f(u) is assumed to be analytic
in a neighborhood of C, and in particular in a domain that contains the saddle
points ±ib, where b =

√
ζ.

When we replace f by unity, we obtain the Bessel function:

Fζ(ν) = ζ−
1

2
αJα

(
2ν
√
ζ
)
. (92)
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The coefficients of the expansions in (82) follow from the recursive scheme

fj(u) = Aj(ζ) +Bj(ζ)/u +
(
1 + b2/u2

)
gj(u),

fj+1(u) = g′j(u)−
α+ 1

u
gj(u),

Aj(ζ) =
fj(ib) + fj(−ib)

2
, Bj(ζ) = i

fj(ib)− fj(−ib)

2b
,

(93)

with f0(u) = f(u), the coefficient function.
Using this scheme and integration by parts, we can obtain the asymptotic

expansion

Fη(ν) ∼ ζ−
1

2
αJα

(
2ν
√
ζ
) ∞∑

j=0

(−1)j
Aj(ζ)

νj
+ζ−

1

2
(α+1)Jα+1

(
2ν
√
ζ
) ∞∑

j=0

(−1)j
Bj(ζ)

νj
.

(94)
The coefficients Aj(ζ) and Bj(ζ) can all be expressed in terms of the deriva-

tives f (k)(±ib) of f(u) at the saddle points ±ib; we will need these for 0 ≤ k ≤ 2j
(see (98)).

We expand the functions fj(u) in two-point Taylor expansions

fj(u) =

∞∑

k=0

C
(j)
k (u2 − b2)k + u

∞∑

k=0

D
(j)
k (u2 − b2)k. (95)

Using (79), we derive the following recursive scheme for the coefficients

C
(j+1)
k = (2k − α)D

(j)
k + b2(α − 4k − 2)D

(j)
k+1 + 2(k + 1)b4D

(j)
k+2,

D
(j+1)
k = (2k + 1− α)C

(j)
k+1 − 2(k + 1)b2C

(j)
k+2,

(96)

for j, k = 0, 1, 2, . . ., and the coefficients Aj and Bj follow from

Aj(ζ) = C
(j)
0 , Bj(ζ) = −b2D

(j)
0 , j ≥ 0. (97)

In the present case of the Laguerre polynomials the functions f2j are even
and f2j+1 are odd, and we have A2j+1(ζ) = 0 and B2j(ζ) = 0. A few non–
vanishing coefficients are

A0(ζ) = f(ib),

B1(ζ) = − 1
4b
(
(2α− 1)if (1)(ib) + bf (2)(ib)

)
,

A2(ζ) = − 1
32b

(
3i(42α− 1)f (1)(ib)− (3− 16α+ 4α2)bf (2)(ib) +

2i(2α− 3)b2f (3)(ib)b2 + b3f (4)(ib)
)
,

B3(ζ) = − 1
384b

(
3(4α2 − 1)(2α− 3)(if (1)(ib) + bf (2)(ib)) +

2i(α− 7)(2α− 1)(2α− 3)b2f (3)(ib) +

3(19− 20α+ 4α2))b3f (4)(ib)− 3i(2α− 5)b4f (5)(ib)− b5f (6)(ib)
)
.
(98)
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To have A0(ζ) = 1 in the first expansion in (82) we have scaled all A and
B-coefficients with respect to A0(ζ) = χ(ζ); see (83).

Remark 3.1. The main step for obtaining the coefficients Aj(ζ) and Bj(ζ) is
the evaluation of those for j = 0 in (95) and we summarize the method described
in [15]. We rewrite the two-point Taylor expansion in the form

f(u) =

∞∑

k=0

(
ak(u1, u2)(u− u1) + ak(u2, u1)(u − u2)

)
(u− u1)

k(u− u2)
k, (99)

where, in the present case, u1 = −b and u2 = b. Then,

C
(0)
k = −u1ak(u1, u2)− u2ak(u2, u1), D

(0)
k = ak(u1, u2) + ak(u2, u1). (100)

We have a0(u1, u2) = f(b)/(2b) and a0(u2, u1) = −f(−b)/(2b), and, for k =
1, 2, 3, ...,

ak(u1, u2) =

k∑

j=0

(k + j − 1)!

j!(k − j)!

(−1)k+1kf (k−j)(b) + (−1)jjf (k−j)(−b)

k!(−2b)k+j+1
, (101)

ak(u2, u1) follows from ak(u1, u2) by replacing b by −b. △

3.3.2 Expansions of the zeros

From the Bessel-type expansion we derive expansions of the first half of the
zeros of the Laguerre polynomial. We write

W (ζ) = Jα
(
2ν
√
ζ
)
A(ζ) − 1√

ζ
Jα+1

(
2ν
√
ζ
)
B(ζ). (102)

A zero of L
(α)
n (2νx) is a zero of W (ζ) and it can be written in terms of ζ in the

form

ζ = ζ0 + ε, ζ0 =
j2k
4ν2

, (103)

where jk is a zero of Jα(z). By expanding W (ζ) we have with the zero ζ in this
form

W (ζ0) +
ε

1!
W ′(ζ0) +

ε2

2!
W ′′(ζ0) + . . . = 0. (104)

We assume that ε can be expanded in the form

ε ∼ ζ1
ν2

+
ζ2
ν4

+
ζ3
ν6

+ . . . , (105)

and substituting this expansion, we obtain ζ1 = −B1(ζ) (see (86)) and

6ζζ2 = 2B1(ζ)
3 − 3(α+ 1)B1(ζ)

2 + 6ζB1(ζ) (B
′

1(ζ) +A2(ζ))− 6ζB3(ζ), (106)

In the algorithm we use ζ = ζ0.
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Algorithm and first numerical examples for the zeros As in the pre-
vious cases we describe how the asymptotic approximations for the zeros can
be obtained. For the zero xk, k = 1, 2, . . ., first compute ζ0, from (103). Then
compute ρ0 by inverting the second relation in (84). This is done by using the
expansion

ρ = ζ + 1
3
ζ2 + 11

45
ζ3 + 73

315
ζ4 + . . . . (107)

An alternative is solving with an iterative method. In that case it is convenient
to write ρ = sin2 1

2θ, and the equation to be solved for θ becomes 8
√
ζ = θ+sin θ,

0 ≤ θ < π. With ρ = ρ0 we compute the coefficients ζj in (105), see also (86).
Compute ζ from (103) and perform a final inversion of the relation in the second
line of (84). This gives the ρ, and then xk ∼ 2νρ.

Because the expansions in (82) become useless when ρ → 1, we should use
the present result for a limited number of zeros, say, only for k = 1, 2, 3, . . . , 1

2n;
the remaining zeros can be obtained by using the Airy-type expansion.

When we take n = 100, α = 1
3 , and use the approximation ζ ∼ ζ0 with the

first zero x1 = 0.02092331638663936 computed by Maple with Digits=16, we
found a relative accuracy of 3.65×10−6; with the term ζ1/ν

2 included we found
6.68×10−11 and when included up to the term ζ3/ν

6, the accuracy is 2×10−16.
For the zero x50 we found the relative errors 4.91 × 10−6, 1.57 × 10−10 and 0
(full double accuracy), respectively.

In the next section we analyze in more detail the performance of the different
expansions for the zeros and we also discuss the stable computation of the
weights.

3.4 Numerical performance of the expansions for α small

In Figures 5, 6 and 7 we show the accuracy obtained with the asymptotic ex-
pansions (54), (75), (103), respectively, for the zeros of the Laguerre polynomial

L
(1/4)
n (x) for different values of n. An implementation of the expansions in fi-

nite precision arithmetic (coded in Fortran 90) has been considered for testing.
As for the Hermite case, in these implementations only non-iterative methods
(power series) are used for the inversion of the variables. For computing the
first zeros of Bessel functions we use the algorithm describe in [6]. For large
zeros we use the MacMahon’s expansion (see [18, §10.21(vi)])

jν,m ∼ a− µ− 1

8a
− 4(µ− 1)(7µ− 31)

3(8a)3
− 32(µ− 1)(83µ2 − 982µ+ 3779)

15(8a)5
− · · · , .
(108)

where µ = 4ν2, a = (m+ ν/2− 1/4)π.
As can be seen in Figure 5, the validity of the first asymptotic expansion

in terms of zeros of Bessel functions (56) is limited to the first zeros. On the
contrary, Figure 7 shows that the other Bessel expansion (103) works very well
for approximating a large number of zeros of the Laguerre polynomial but fails
for the last zeros. For these zeros, the Airy expansion (75) should be used.
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Figure 5: Relative accuracy obtained with the asymptotic expansion (54) for

computing the first zeros of L
(1/4)
n (x) for n = 100, 1000, 10000, 100000. The

label i in the abscissa represents the order of the zero (starting from i = 1 for
the smallest zero). The points not shown in the plots correspond to values with
all digits correct in double precision accuracy.

The accuracy of the Bessel and Airy expansions for n = 100 is illustrated in
Figure 8. As in the case of the Hermite approximations, the combined use of
the expansions allow the computation of the zeros of Laguerre polynomials for
n = 100 with an accuracy of 15-16 digits.

The efficiency of the expansions is compared in Table 3. As in the case of
the zeros of Hermite polynomials, in order to improve the speed of the methods
we apply the expansions only in the regions where the inversion of the variables
can be done accurately by using the series expansions (75) and (107) in the
case of the Airy expansion and the second Bessel expansion (103), respectively:
the first 0.75n zeros for the Bessel expansion and the last 0.25n zeros for the
Airy expansion. For these two expansions, we observe in the Table that there
is no much difference in speed between using 2 terms and the more accurate
approximation (for clarity the Table includes the number of terms needed for
the three different expansions). With respect to the comparison between the
different expansions, we observe that the computation of the first expansion
in terms of Bessel functions is, as expected, extremely efficient in its range of
validity. On the other hand, the expansion (103) in terms of Bessel functions is
slightly more efficient than the Airy expansion.

As in the case of the Gauss–Hermite quadrature, overflow/underflow limita-
tions in the computation of the weights can be eliminated by balancing the large
terms as a function of n in the expressions and by scaling out the dependence
on the weights. A first estimation of the weights as n → ∞ is given by

wi ∼
π
√
n
x
α+1/2
i e−xi . (109)

The range of computation of the weights of Gauss–Laguerre quadrature can be
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Figure 6: Relative accuracy obtained with the asymptotic expansion (75) for

computing the large zeros of L
(1/4)
n (x) for n = 1000, 10000, 100000.
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Figure 7: Relative accuracy obtained with the asymptotic expansion (103) for

computing the zeros of L
(1/4)
n (x) for n = 1000, 10000, 100000.
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the plot correspond to values with all digits correct in double precision accuracy.

Table 3: Laguerre expansions, α small: average CPU times per node. In this
table α = 1/4. The algorithms have been implemented in Fortran 90. The
nodes are computed with 15− 16 digits accuracy.

Expansion 2 terms ≥ 2 terms

n = 100

Bessel1 0.03µs 0.16µs (5 terms)

Bessel2 0.55µs 0.78µs (4 terms)

Airy 0.75µs 1.1µs (3 terms)

n = 10000

Bessel1 0.03µs 0.07µs (3 terms)

Bessel2 0.53µs 0.53µs (2 terms)

Airy 0.84µs 0.84µs (2 terms)
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enlarged by simply scaling out the dominant factor in the asymptotic expansions
for Laguerre polynomials. When α is small, this factor is given by ex/2. With
this, one can define the scaled weights by

w̃i = wie
xix

α+1/2
i . (110)

These normalized weights do not overflow/underflow as a function of n, α
and xi. In addition, similarly as we did for the Hermite case, we can compute
this scaled weights in a numerically stable way. We notice that the weights (3)
can be written as

wi =
4Γ(n+ α+ 1)

n!

[
d

dz
L(α)
n (z2i )

]2 , (111)

where z =
√
x, and therefore zi =

√
xi. Now, in the new variable z, the scaled

weights can be expressed as

w̃i =
4Γ(n+ α+ 1)

n!(ẏ(zi))
2

, (112)

where the dots mean differentiation with respect to z and

y(z) = zα+1/2e−z2/2L(α)
n (z2). (113)

Now, we define W (z) = 4Γ(n+ α + 1)/(n!(ẏ(z))2) and with this we have that
wi = W (zi), and it is straightforward to check that we have again the desirable
property d

dzW (zi) = 0. This means that the computation is well conditioned in
the sense that the error for the weights will be approximately proportional to
the square of the error for the nodes. As a consequence, as we will shown, the
weights can can be computed with almost no accuracy loss.

All that is left for computing the nodes is to use the expansions for the
Laguerre polynomials in order to compute ẏ(z) by differentiation. In particular,
starting from (81) we have

ẏ(z) =
(ν
2

)α−1

2

(
2νζρ2

1− ρ

)1/4
[
Jα

(
2ν
√
ζ
)
C(ζ) −

1
√
ζ
Jα+1

(
2ν
√
ζ)
)
D(ζ)

]
,

(114)
where in this expression x is the variable defined in Section (3.3) and

C(ζ) =

{
1

4(1− ρ)
+
(
1
2 + α

)
ϕ

}
A+A′ − 2νϕB,

D(ζ) =

{
1

4(1− ρ)
−
(
3
2 + α

)
ϕ

}
B +B′ + 2νζϕA,

(115)

and in these equations prime denotes the derivative with respect to ρ.
Similarly as we did for the Hermite case, we show in Figure 9 two examples

of computation of the scaled weights (112) for n = 1000, 10000 (with α = 1/4).
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Figure 9: Relative accuracy obtained for the computation of the scaled weights
(42) for n = 1000, 10000 (with α = 1/4) using the asymptotic expansion for the
Laguerre polynomials (81) in terms of Bessel functions.

We use the expansion in terms of Bessel functions (81). As can be seen, the
accuracy for the scaled weights is better than 10−15 in most cases. There is some
loss of accuracy for the weights corresponding to the largest nodes (as discussed,
for these values one has to use the expansion for the Laguerre polynomials in
terms of Airy functions).

3.5 Expansions for large values of α

3.5.1 An expansion for large values of α and fixed degree n

From the well-known limit

lim
α→∞

α−nL(α)
n (αt) =

(1− t)n

n!
, (116)

it follows that the zeros of L
(α)
n (αt) coalesce at t = 1 when α is large and n ≪ α.

The limit gives limited information when t = 1, and in this section we give more

details about the behavior of L
(α)
n (αt) for small values of |t − 1|. We consider

an asymptotic representation in terms of Hermite polynomials, which has been
derived in [14].

We have

L(α)
n (x) = (−1)n zn

n∑

k=0

ck
zk

Hn−k(ζ)

(n− k)!
, (117)

where

z =
√
x− (α+ 1)/2, ζ =

x− α− 1

2z
. (118)

The representation in (117) holds for n = 0, 1, 2, . . ., and all complex values of x
and α and has an asymptotic character for large values of |α|+ |x|; the degree n
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should be fixed. It is not difficult to verify that the limit given in (116) follows
from (117).

The coefficients ck are defined by

c0 = 1, c1 = c2 = 0, c3 = 1
3
(3x− α− 1), c4 = 1

4
(−4x+ α+ 1), (119)

and the recursion relation

kck = −2(k−1)ck−1− (k−2)ck−2+(3x−α−1)ck−3+(2x−α−1)ck−4. (120)

An approximation of the zeros of L
(α)
n (x) can be found in [2], and in [14] it

is shown that it can be derived from the expansion given in (117). Calogero’s
result is

ℓn,m = α+
√
2αhn,m + 1

3
(1 + 2n+ 2h2

n,m) +O
(
α−

1

2

)
, α → ∞, (121)

where ℓn,m and hn,m denote the corresponding zeros of the Laguerre and Her-
mite polynomials.

For example, with n = 10 and α = 1000, the relative error is not larger than
0.85 × 10−3 (for the first zero). For the fifth and sixth zero the relative errors
are about 0.65× 10−4.

3.5.2 An expansion for large values of n and α

In [20] we have given expansions for large n in which α = O(n) is allowed; for a
summary see [21]. The results follow also from uniform expansions of Whittaker
functions obtained by using differential equations; see [3]. These expansions
include the J-Bessel function, and are valid in the parameter domain where
order and argument of the Bessel function are equal, that is, in the turning
point domain. In this section, explicit expressions for the first few coefficients
of the expansion are given.

By using an integral we can derive the following asymptotic representation

L(α)
n (4κx) = e−κAχ(b)

(
b

2κx

)α
Γ(n+ α+ 1)

n!
(Jα(4κb)A(b)− 2bJ ′

α(4κx)B(b)) ,

(122)
with expansions

A(b) ∼
∞∑

k=0

Ak(b)

κk
, B(b) ∼

∞∑

k=0

Bk(b)

κk
, (123)

where

κ = n+ 1
2
(α+ 1), χ(b) =

(
4b2 − τ2

4x− 4x2 − τ2

) 1

4

, τ =
α

2κ
. (124)
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We assume that τ < 1. The quantity b is a function of x and follows from the
relation

2W − 2τ arctan
W

τ
=

2R− arcsin
1− 2x√
1− τ2

− τ arcsin
x− 1

2τ
2

x
√
1− τ2

+ 1
2
π(1 − τ),

(125)

where

R = 1
2

√
4x− 4x2 − τ2 =

√
(x2 − x)(x − x1), W =

√
4b2 − τ2, (126)

and
x1 = 1

2

(
1−

√
1− τ2

)
, x2 = 1

2

(
1 +

√
1− τ2

)
. (127)

The relation in (125) can be used for x ∈ [x1, x2], in which case b ≥ 1
2τ . In

this interval the zeros of L
(α)
n (4κx) occur. For x outside this interval we refer

to [21, §3.1].
The first coefficients of the expansions in (123) are

A0(b) = 1, B0(b) = 0,

A1 =
τ

24(τ2 − 1)
, B1 =

PR3 +QW 3

192R3W 4(τ2 − 1)
,

P = 4(2τ2 + 12b2)(1− τ2),

Q = 2τ4 − 12x2τ2 − τ2 − 8x3 + 24x2 − 6x,

B2(b ) = A1(b)B1(b).

(128)

3.5.3 Expansions of the zeros

A zero of L
(α)
n (4κx) is a zero of U(b) defined by

U(b) = Jα(4κb)A(b)− 2bJ ′

α(4κx)B(b), (129)

where the relation between b and x is given in (125). We write a zero in terms
of b in the form

b = b0 + ε, b0 =
jk
4κ

(130)

where jk is a zero of the Bessel function Jα(z). We assume for ε an expansion
in the form

ε ∼ b1
κ

+
b2
κ2

+
b3
κ3

+ . . . . (131)

By expanding U(b) at b0 we have

U(b0) +
ε

1!
U ′(b0) +

ε2

2!
U ′′(b0) + . . . = 0. (132)
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Using the representation of U(b) given in (129), substituting the expansion of
ε, those of A(b) and B(b) given in (123), and comparing equal powers of κ, we
can obtain the coefficients bj of (133).

The first coefficients are

b1 = 0, b2 = 1
2bB1(b), b3 = 1

2b (B2(b)−A1(b)B1(b)) = 0,

b4 = 1
24b
(
12B3(b)− 16b2B3

1(b) + 6bB′
1(b)B1(b)− 12A2(b)B1(b) + 3B2

1(b)
)
,

(133)
with b = b0 given in (130).

For example, when we take n = 100, α = 75, then we obtain for the first
zero b0 = 0.1504907582034649. We find with this value for b from (125) a first
approximation x = 0.0231157462791716, with a relative error 2.45× 10−5. We
compute with this x and b = b0 the coefficient b2 and find from b ∼ b0+b2/κ

2 the
value b = 0.1504905751793771. Again inverting (125) to find the corresponding
x-value, we find x = 0.0231156896044437, now with relative error 3.01618 ×
10−11.
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