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ABSTRACT 

 

The evolution of the social media and the e-commerce sites produces a massive 

amount of unstructured text data on the internet. Thus, there is a high demand to 

develop an intelligent model to process it and extract a useful information from it.  Text 

classification plays an important task for many Natural Language Processing (NLP) 

applications such as, sentiment analysis, web search, spam filtering, and information 

retrieval, in which we need to assign single or multiple predefined categories to a 

sequence of text. 

In Neural Network Language Models learning long-term dependencies with 

gradient descent is difficult due to the vanishing gradient problem. Recently researchers 

started to increase the depth of the network in order to overcome the limitations of the 

existing techniques. However, increasing the depth of the network means increasing the 

number of the parameters, which makes the network computationally expensive, and 

more prone to overfitting. Furthermore, NLP systems traditionally treat words as 

discrete atomic symbols; the model can leverage small amounts of information 

regarding the relationship between the individual symbols. 

In recent years, deep learning models such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) have been applied to language 
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modeling with comparative, remarkable results. CNNs are a noble approach to extract 

higher-level features invariant to local translation. However, this method requires the 

stacking of multiple convolutional layers in order to capture long-term dependencies 

because of the locality of the convolutional and pooling layers.  

In this dissertation, we introduce a joint CNN-RNN framework to overcome the 

problems in the existing deep learning models. Briefly, we applied an unsupervised 

neural language model to train initial word embeddings that are further tuned by our 

deep learning network, then the pre-trained parameters of the network are used to 

initialize the model. At a final stage, the proposed framework combines former 

information with a set of feature maps learned by a convolutional layer with long-term 

dependencies learned via Long-Short-Term Memory (LSTM). Empirically, we show 

that our approach, with slight hyperparameter tuning and static vectors, achieves 

outstanding results on multiple sentiment analysis benchmarks. Our approach 

outperforms several existing approaches in term of accuracy; our results are also 

competitive with the state-of-the-art results on the Stanford Large Movie Review 

(IMDB) dataset, and the Stanford Sentiment Treebank (SSTb) dataset. Our approach 

has a significant role in reducing the number of parameters and constructing the 

convolutional layer followed by the recurrent layer with no pooling layers. Our results 

show that we were able to reduce the loss of detailed, local information and capture 

long-term dependencies with an efficient framework that has fewer parameters and a 

high level of performance. 
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CHAPTER 1: INRTODUCTION 

Natural Language Processing (NLP) is a field at the intersection of computer 

science, artificial intelligence, and linguistics. The objective of NLP is for computer to 

process or understand natural language in order to perform tasks that are useful (e.g., 

making appointments, buying things, question answering).  

Text classification is an essential, and plays an important role for many NLP 

applications, such as sentiment analysis, information retrieval, web search, ranking and 

spam filtering, in which we need to assign single or multiple predefined categories to 

sequence of text. The classic approach of text classification typically starts with feature 

extraction stage then is followed by a classifier stage. Perhaps one of the popular 

technique for feature extraction is to represent a sentence as TF-IDF, then train a linear 

classifier, (e.g., a logistic regression or SVM) [1, 2]. 

Deep Neural Networks (DNNs) based model has shown very good results for 

several tasks in NLP [3-12].Despite the good performance of these models, in practice 

they are relatively slow at training and testing time; which restrain them for the use of a 

large scale of data, and it requires to stack many neural network layers in order to 

capture long-term dependencies in sequence of texts.  

Deep learning approaches for NLP start with an input sentence is denoted as a 

sequence of word, each word is presented as a one-hot vector, and then each word in the 



 
 

2 

sequence is projected into a continuous vector space by being multiplied with a weight 

matrix, forming a sequence of dense, and these sequence then fed into deep neural 

network, which processes the sequence in multiple layer. Resulting in a prediction 

probability. This whole network is tuned jointly to maximize the classification accuracy 

on a training set. However, one-hot-vector makes no assumption about the similarity of 

words, moreover it is very high dimensional [13, 14]. Most of the recent deep neural 

network approaches typically require the text input to be represented as a fixed-length 

vector. 

 Perhaps the most common fixed-length representation for texts is the bag-of-

words or n-gram [15, 16], because of it is simplicity, efficiency and often surprising 

accuracy. However, the bag-of-words has many disadvantages such as: first it is ignore 

the semantics of words, second the word order is lost, and therefore different sentences 

can have exactly the same representation, as long as the same words are used. N-grams 

consider the word order in short context. However, n-grams models suffers from data 

sparsity and high dimensionality. Bag-of-words and n-grams models have very small 

sense about the semantics of the words, more formally the distance between the words. 

Recently, models based on Neural Networks have become increasingly popular 

[1, 4, 5, 9, 12-14, 17-30]; it has become possible to train more complex models on much 

larger dataset. They typically outperform the simple models. Perhaps the most efficient 

model is to use distributed representation of word [31, 32]. For instance neural network 

language models outperform n-gram models [13, 20, 33-35]. Currently for text 

classification problems a linear classifiers are considered to be the conventional 

approach and strong Baselines [1, 15, 36]. Regardless of their simplicity, the linear 
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classifier often obtains the state-of-the-art performances especially when the correct 

features are selected. 

Deep neural network methods jointly implement feature extraction and 

classification for document classification [3, 4, 8, 17, 37]. The deep neural network 

based approach convention, in most cases, is an input document represented as a 

sequence of words, and each sequence is then represented as one-hot-vector, each word 

in the sequence is projected into a continuous vector space by multiplying it with weight 

matrix, forming a sequence of dense, real valued vector. This sequence is then fed into a 

deep neural network, which processes the sequence in multiple layers, finally resulting 

in prediction probability. This pipeline is tuned jointly to maximize the classification 

accuracy on training set [8, 11, 12, 17, 29, 30, 38-41].  

Convolutional Neural Network (CNN) has recently accomplished a remarkable 

performance on the essentially significant task of sentence classification [17, 42, 43]. 

However, these models require professionals to specify an exact model architecture and 

set accompanying hyper-parameters, including the filter region size. 

 Recent work by [30] consists of multi layers of CNN and max pooling, similar 

to the architecture proposed by [41] in computer vision. In the first stage, each layer 

will extract features from small overlapping windows of the input sequence and pools 

over small non-overlapping windows by taking the maximum activation in the window. 

This is applied recursively for many times. The final convolutional layers are then 

flattened to form a vector, which feeds into a small number of fully connected layers 

followed by a classification layer.  

We observed that that network requires many convolutional and pooling layers 
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in order to capture long-term dependencies, because of the locality of the convolutional 

and pooling. As the length of the input grows, this become crucial; that was the 

motivation behind [30] to investigate deep convolutional network to overcome these 

issues. [29] Investigated the combination of neural network architecture of CNN and 

Recurrent Neural Network (RNN) in order to encode character input, which was 

implemented to learn high-level feature input sequences of character level to capture 

sub word information. However, this model performs better only when a large number 

of classes are available. Another successful model applied RNN for NLP was 

introduced by [18, 44]; it confirmed that RNN is able to capture long-term dependencies 

even in the case of a single layer.  

Today RNN is the lead approach for many NLP applications. Recursive Neural 

Network was applied to sentence classification [45]; configuration function is defined in 

this model and recursively applied at each node of the parse tree of an input sentence. In 

order to extract a feature vector of the sentence, the model relies on an external parser. 

NLP is a vast area of computer science that is concerned with the interaction 

between computers and human language. Language modeling is a fundamental task in 

artificial intelligence and NLP. A language model is formalized as a probability 

distribution over a sequence of words. Recently, deep learning models have achieved 

remarkable results in speech recognition [22] and computer vision [41].  

Text classification plays an important role in many NLP applications, such as 

sentiment analysis, spam filtering, email categorization, information retrieval, web 

search, ranking , and document classification [46, 47], in which one needs to assign 

predefined categories to a sequence of text. A popular and common method to represent 
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texts is bag-of-words. However, the bag-of-words method loses the words order and 

ignores the semantics of words. N-gram models are popular for statistical language 

modeling and usually perform the best [1, 34, 35]. However, an n-gram model suffers 

from data sparsity [13].   

Neural Networks have become increasingly popular [13, 20, 26]; it has become 

possible to train more complex models on a much larger dataset. They outperform n-

gram models and overcome the data sparsity problem [13]; semantically similar words 

are close in vector space. The embedding of rare words is poorly estimated, which leads 

to higher perplexities for rare words. With the progress of machine learning in recent 

years, it has become possible to train more complex models on much larger data sets 

[14, 17, 22, 26, 41]. The distributed representation of words is one of the most 

successful concepts, and it helps learning algorithms achieve better performance [26]. 

Convolutional Neural Networks (CNN) [48] recently achieved very successful 

results in computer vision [41]. A CNN considers feature extraction and classification 

as one joint task. This idea has been improved by stacking multiple convolutional and 

pooling layers, which sequentially extract a hierarchical representation of the input [6, 

43, 48].  

We investigate Recurrent Neural Networks (RNNs) as an alternative for pooling 

layers in deep neural network language models to perform a sentiment analysis of a 

short text. Most of the deep learning architectures for NLP require stacking many layers 

to capture long-term dependences due to the locality of the convolutional and pooling 

layers [30]. Our architecture was inspired by the recent success of RNNs in NLP 

applications and the fact that RNNs can capture long-term dependencies even with one 



 
 

6 

single layer [44]. We were also inspired by the successful work proposed in [17], where 

a single layer of CNN was applied for sentence classification. 

It turns out that providing the network with good initialization parameters can 

have a significant impact on the accuracy of the trained model and capturing the long-

term dependencies more efficiently. In this paper, we present a joint CNN and RNN 

architecture that takes the local features extracted by a CNN as the input for an RNN for 

a sentiment analysis of short texts. We propose a new framework that exploits and 

combines convolutional and recurrent layers into one single model on top of pre-trained 

word vectors. We utilize long short-term memory (LSTM) as a substitute for pooling 

layers in order to reduce the loss of detailed, local information and capture long-term 

dependencies across the input sequence.  

In this dissertation, I propose a neural language model that leverages both 

convolutional and recurrent layers to efficiently perform text classification tasks. Based 

on our observation from the work proposed in [3, 6, 30, 43] CNN architecture must 

have many layers to capture long-term dependencies in an input sentence. Our work is 

also inspired from the fact that recurrent layers are able to capture long-term 

dependences with one single layer [44]. In our model, we utilize a recurrent layer 

LSTM as substitutes for the pooling layer in order to reduce the loss of detailed local 

information and capture long-term dependencies. Surprisingly, our model achieved 

comparable results on two sentiment analysis benchmarks with less number of 

parameters. We show that it is possibly to use a much smaller model to achieve the 

same level of classification performance when recurrent layer combined with 

convolutional layer. 
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1.1 Research Problem and Motivation 

Sentiment analysis for short texts becomes a challenge because of the limit 

amount of the contextual information they usually contain. Furthermore, learning good 

vector representations for sentences is a challenging task and an ongoing research area. 

Moreover, learning long-term dependencies with gradient descent is difficult in neural 

network language model because of the vanishing gradients problem, and natural 

language processing systems traditionally treat words as discrete atomic symbols; the 

model can leverage small amounts of information regarding the relationship between 

the individual symbols.  

Recently, it became more common to use a deep neural network for natural 

language processing systems. Within NLP much of the work with deep leering method 

has involved learning word vector representation through neural language models and 

performing composition over the learned word vectors for classification. 

 In the input sequence it is possible for the gap between the relevant information 

to become very large, and this becomes more complex as the length of the input 

sequence grows. Furthermore, we observed that most of the existing deep learning 

models for NLP has increased the depth of the network in order to capture long-term 

dependencies. However increasing the depth of the network lead to increasing the 

number of the parameters. Moreover, it will causes the problem of vanishing gradients, 

the network will be more prone to overfitting and difficult to optimize.   

Convolutional Neural Network (CNN) recently achieved a remarkable results in 
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NLP systems. The objective of using the convolutional layer in the CNN based model is 

for it to learn to extract higher-level features that are invariant to local translation, and, 

by assembling multiple convolutional layers, the model can extract higher-level 

translation invariant features from the input sequence. Regardless of this advantage, we 

observed that most of the existing deep models require multiple layers of convolutional 

to capture long-term dependencies, and that is because of the locality of the 

convolutional and pooling layers. This issue becomes more crucial as the length of the 

input sequence grows.   

Contrary to the convolutional layer, in Recurrent Neural Network (RNN) based 

model the recurrent layer is able to capture long-term dependencies even when there is 

only a single layer, because of the hidden state is computed in the whole input 

sequence. However, the recurrent layer is computationally more expensive, the 

computational complexity grows linearly with respect to the input sequence, and most 

of the computations need to be done sequentially, this in contrast to the convolutional 

layer for which computations can be efficiently done in parallel.  

Based on these observation, in this dissertation I proposed a deep neural network 

language model that can capture long-term dependencies in the document more 

efficiently for the task of classification. Most of the combination CNN-RNN models 

applied several types of pooling. We argue that the pooling layer is the reason for lost 

details in local information, because the pooling layer only captures the most important 

feature in a sentence; therefore, we exclude the pooling layer and utilized a recurrent 

layer to capture long-term dependencies more efficiently and reduce the number of the 

parameters in the architecture. 
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          1.2 Contributions  
In this dissertation we proposed a novel deep neural network language model 

that employs a Convolutional Neural Network (CNN) and Recurrent Neural Network 

Long Short-Term Memory (RNN-LSTM) over pre-trained word vectors word2vec to 

perform text classification tasks. We exploit LSTM as a substitute of pooling layer in 

CNN to reduce the loss of detailed local information and capture long term 

dependencies in sequence of sentences.  

We introduced an architecture that focuses on parameter reduction in the 

network, while also capturing long-term dependencies more efficiently in terms of 

accuracy. Our contributions are as follow; In order to capture semantics and syntactic of 

subword information. Word embeddings are initialized with unsupervised pre-trained 

word vectors [14, 26], which is trained on a large unsupervised collection of words. We 

constructed a customized single convolutional layer with multiple filter size to extract 

higher-level features from the pre-trained word vectors. 

 We employed a CNN to further refine the embeddings on a distance-supervised 

dataset, word embedding served as the input to our model in which windows of 

different length and various weight matrices are applied to generate a number of feature 

maps. The word embeddings and other parameters of the network obtained at the 

previous stage are used to initialize the same framework.  After the convolutional 

operations, we removed the pooling layer and take the encoded feature maps as an input 

to Long Sort-Tern Memory Recurrent Neural Network (LSTM-RNN) to asset the 

proposed model to capture long-term dependencies.  
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The deep learning framework takes advantage of the encoded local features 

extracted from the CNN model and the long-term dependencies captured by the RNN 

model. Our results demonstrated that the proposed framework achieves competitive 

performance with fewer parameters. The proposed model is simple and efficient with 

significantly fewer parameters, which means less memory consumption. The proposed 

model is more compact, and less prone to overfitting.  
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CHAPTER 2: LITERATURE SURVEY 

Text classification is a classic topic in Natural Language Processing (NLP), in 

which one needs to assign predefined categories to free-text documents. The range of 

text classification research goes from designing the best features to choosing the best 

possible machine learning classifiers. To date, almost all techniques of text 

classification are based on words, in which simple statics of some ordered word 

combinations (such as n-grams) usually perform the best [1].  

The goal of NLP is to process text with computers in order to analyze it, to 

extract information and eventually to represent the same information differently. We 

may want to associate categories to part of the text (e.g. POS tagging or sentiment 

analysis). Structure text differently (e.g. parsing), or convert it to some other form 

which preserves all or part of the content (e.g. machine translation, summarization). 

2.1 Traditional Methods for Natural Language Processing  

Text classification is significant for NLP systems, where there has been an 

enormous amount of research on sentence classification tasks, specifically on sentiment 

analysis. NLP systems classically treat words as discrete, atomic symbols where the 

model leverages a small amount of information regarding the relationship between the 

individual symbols.  
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A simple and efficient baseline method for a sentence structure is to represent 

the sentence as a bag-of-words and then train a linear classifier (e.g., a logistic 

regression). However, the bag-of-words approach omits all of the information about the 

semantics and ordering of words [4, 49]. N-gram models are another popular method to 

represent a sentence. This method usually performs the best [1].  

Words are projected to a high-dimensional space, and then the embedding is 

combined to obtain a fixed-size representation of the input sentence, which later is used 

as an input to the classifier. Despite the fact that n-gram models take into account word 

ordering in short sentences, they do still suffer from data sparsity.  

Overall, all simple techniques have limitations for certain tasks. Furthermore, 

linear classifiers do not share parameters among features and classes that might limit 

their generalization in the context of a large output, where some classes have few 

examples.  

A popular solution for this problem is to use multilayer neural networks [4, 30], 

or to factorize the linear classifier into low-rank matrices [14, 36]. 

Text classification is an important task in Natural Language Processing (NLP), 

there is an enormous research activities on sentence classification tasks specifically on 

sentiment analysis. 

 NLP systems classically treat words as discrete atomic symbols; the model 

leverage small amount of information regarding the relationship between the individual 

symbols.  

Simple and efficient baseline for sentence is to represent sentence as (bag-of-

words), then train a linear classifier (e.g., a logistic regression). However, bag-of-words 
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omitted all the information’s about words such as semantics and words ordering [1, 13].  

2.1.1 N-gram Models  

N-grams models is another popular method to represent sentence, it is usually 

perform the best [1], word are projected to high dimensional space, and then the 

embedding combined to acquire a fixed-size representation of input sentence, which 

later use as input to the classifier.  

However, n-grams take in account the word ordering in short sentence, but it 

suffers from data sparsity and high dimensionality [13]. The probability of a sequence 

of symbols (usually words) is computed using a chain rule as 

𝑝𝑝(𝑤𝑤) = ∑ 𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤1 …𝑤𝑤𝑖𝑖−1)𝑁𝑁
𝑖𝑖=1                                    (2.1) 

The model frequently used language models are based on the n-gram statistics, 

which are basically word co-occurrence frequencies. The maximum likelihood estimate 

of probability of word 𝐴𝐴 in context 𝐻𝐻 is then compute as 

𝑃𝑃(𝐴𝐴|𝐻𝐻) = 𝐶𝐶(𝐻𝐻𝐻𝐻)
𝐶𝐶(𝐻𝐻)

                                                        (2.2) 

Where 𝐶𝐶(𝐻𝐻𝐻𝐻) is the number of times that the 𝐻𝐻 𝐴𝐴 sequence of words has 

occurred in the training data? The context 𝐻𝐻 can consist of several words, for the usual 

trigram models |𝐻𝐻| = 12 for 𝐻𝐻 = 𝜃𝜃, the model is called unigram, and it does not take 

into account history. As many of these probability estimates are going to be zero (for all 

words that were not seen in the training data in a particular context 𝐻𝐻), smoothing needs 

to be applied.  

This works by redistributing probabilities between seen and unseen (zero-
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frequency) events, by exploiting the fact that some estimates, mostly those based on 

single observations, are greatly over-estimated detailed overview of common smoothing 

techniques and empirical evaluation can be found in  [50].  

Simple techniques usually has limitation for some certain tasks. Furthermore, 

linear classifiers do not share parameters among features and class, perhaps that might 

limits their generalization in the context of large output where some classes have few 

examples. 

 Popular solution for this problem are to use multilayer neural networks or to 

factorize the linear classifier into low rank matrices [14, 30]. 

2.1.2 Structured Language Models  

The statistical language modeling was criticized greatly by the linguists from the 

first days of its existence. There are many exampled showing that words in a sentence 

are often related, even if they do not lie next to each other.  

It can be shown that such patterns cannot be effectively encoded using a finite 

state machine (n-gram models belong to this family of computational models). 

However, these pattern can be often effectively described while using for example 

context free grammars.  

This was the motivation for the structured language models that attempt to 

bridge differences between the linguistic theories and the statistical models of the 

natural languages.  

The sentence is viewed as a tree structure generated by a context free grammar, 

where leafs are individual words and nodes are non-terminal symbols. The statistical 
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approach is employed when constructing the tree: the derivations have assigned 

probabilities that are estimated from the training data, thus every new sentence can be 

assigned probability of being generated by the given grammar.   

The advantage of these models is in their theoretical ability to represent patters 

in a sentence across many words. However there are many disadvantages of the 

structures language models: computational complexity and sometimes unstable 

behavior, ambiguity, questionable performance when applied to spontaneous speech, 

large amount of manual work that has to be done by expert linguists is often required. 

2.1.3 Word Vector Representations   

The majority of rule-based and statistical language processing algorithms regard 

word as atomic symbols. This translates to a very sparse vector representation of the 

size of the vocabulary and with a single 1 at the index location of the current word.  

This so called “one-hot” representations has the problem that it does not capture 

any type of similarity between two words. So if a model sees “cat” in a surrounding 

context it cannot use this information when it sees “dog” at the same location during 

test time.  

[4] induced a model to compute an embedding, the idea is to construct a neural 

network that outputs high scores for windows that occur in a large unlabeled corpus and 

low scores for windows where one word is replaced by a random word.  

When such a network is optimized via gradient ascent the derivatives 

backpropagated into a word embedding matrix 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑉𝑉, where V is the size of the 

vocabulary. 
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 [3, 5] adapted neural network architecture for training a language task.  By 

leveraging a large amount of unlabeled text data, and induced word embedding which 

were shown to boost generalization performance on all tasks.  

[51] Proposed a related language model approach inspired from Restricted 

Boltzmann Machines. However, word representations are perhaps more commonly 

inferred from n-gram language modelling rather than smoothed language models.  

One popular approach is the Brown clustering algorithm [52] which builds 

hierarchical word clusters by maximizing the bigram’s mutual information.  

The induced word representation has been used with success in a wide variety of 

natural language processing tasks, including  part of speech (POS) [53], Name Entity 

Recognition (NER) [54, 55], or parsing [56]. Other related approaches exist, like phrase 

clustering [57] which has been shown to work well for NER.  

Finally, [58] Have recently proposed a smoothed language modelling approach 

based on a Hidden Markov Model, with success on POS and Chunking tasks. 

2.2 Neural Networks: Basics and Definitions  

In this section I will give a basic introduction to neural networks. Fig 2.1 show a 

single neurons which consists of input, an activation function and the output. Let the 

inputs be some n-dimensional vector 𝑥𝑥 ∈ ℝ𝑛𝑛. The output is computed by the following 

function:  

𝑎𝑎 = 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏),                                                     (2.3) 

Where 𝑓𝑓defines the activation function. This function is also called a 

nonlinearity and commonly used examples are the sigmoid function: 
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𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

,                                           (2.4) 

Or the hyperbolic tangent function: 

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 1−𝑒𝑒−2𝑥𝑥

1+𝑒𝑒−2𝑥𝑥
,                                           (2.5) 

 

 

 

 

 

 

 

Figure 2.1. Definition of a single neuron with inputs, activation function and outputs [59]. 

The sigmoid activation function maps any real member to the [0, 1] interval. 

With this unit, the activation can be interpreted as the probability for the “neural unit” 

parameterized by 𝑤𝑤 and the bias 𝑏𝑏 to be on. Despite the loss of a probabilistic 

interpretation, the tanh function is often preferred in practice due to better empirical 

performance. Both nonlinearities are shown in Fig.2.2. 

Various other recent nonlinearities exist such as the hard tanh or rectified linear: 

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥), which does not suffer from the vanishing gradient problem. The 

choice of nonlinearity should largely by selected by cross-validation over a 

development set. 

While the clustering algorithms used for constructing class based language 

models are quite specific for the language modeling field, artificial neural networks can 
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be successful used for dimensionality reduction as well as for clustering, while being a 

very general machine learning technique. Therefore, it is a bit surprising that neural 

network based language models have gained attention only after [60], and not much 

earlier. Although a lot of interesting work on language modeling using neural networks 

was done much earlier [61]. 

 

 

 

 

 

 

 

 

Figure 2.2. These are two commonly used nonlinearities [59]. 

Although it has been very surprising the NNLMs while very general and simple, 

have outperformed many of the competing techniques, including those that were 

developed specifically for modeling the language. 

Neural network language models today are among the-state-of-the-art 

techniques. The main advantage of NNLMs over n-grams is that history is no longer 

seen as exact sequence of 𝑛𝑛 − 1 words 𝐻𝐻, but rather as a project of 𝐻𝐻 into some lower 

dimensional space.  

This reduces number of parameters in the model that have to be trained, 

resulting in automatic clustering of similar history.  
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This might sound the same as the motivation for class based models, the main 

difference is that NNLMs project all words into the same low dimensional space, and 

there can be many degrees of similarity between words. 

The disadvantage of this models is very large computational complexity, which 

usually prohibits to train these models on full training set, using the full vocabulary.  

2.2.1 Neural Network Language Models (NNLMs) 

The use of artificial neural networks for sequence prediction is as the neural 

network techniques themselves. One of the first widely known attempts to describe 

language using neural networks was performed by [61], who applied recurrent neural 

network for modeling sentences of words generated by an artificial grammar.  

The first serious attempt to build a statistical neural network based language 

model of real natural language, together with an empirical comparison of performance 

to standard techniques, n-gram models and class based models was done by [20], 

followed by [35], who did show that Neural Network Language Models (NNLMs) work 

very well in a state of the art in speech recognition systems, and are complementary to 

standard n-gram models [62]. 

However, no techniques or modifications of the original model that would 

significantly improve the ability of the model to capture patterns in the language were 

published. 

 [63, 64] investigated the integration of traditional features into the NNLM 

framework such as, part of speech tags or morphology information, the accuracy of the 

NNLM still the same until [65, 66] recently have shown that recurrent neural network 
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architecture can work actually better than the feedforward one. 

Most of the research work did focus on overcoming practical problems when 

using these attractive models: the computational complexity was originally too high for 

real world tasks.  

It was reported by [60] that training of the original neural net language model 

took almost a week using 40 CPUs for just single training epoch, and 10 to 20 epochs 

were needed for reaching optimal results.  

Despite the limitations, the model provide 20% reduction of perplexity over a 

baseline n-gram model, after 5 training epochs.  

 Clearly, better results could have been expected if the computational 

complexity was not so restrictive, and most of the future research focused on this topic. 

The author proposed parallel training parallel training of the model on several CPUs, 

which was later repeated and extended by [62].  

A very successful extension reduced computation between the hidden layer and 

the output layer in the model, using a trick that was originally proposed by Joshua 

Goodman for speeding up maximum entropy models [67]. 

2.2.2 Feedforward Neural Network Based Language Models 

(FFNNLMs) 

The model was proposed by [20] start with input of the n-gram NNLM is 

formed by using a fixed length history of  𝑛𝑛 − 1 words, where each of the previous 𝑛𝑛 −

1 words is encoded using 1-of-V coding, where V is size of the vocabulary.  

Thus, every word from the vocabulary is associated with a vector with length V, 
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where only one value corresponding to the index of given word in the vocabulary is 1 

and all other values are 0. 

This 1-of-V orthogonal representation of words is projected linearly to a lower 

dimensional space, using a shared matrix P, called also a projection matrix.  

The matrix P is shared among words at different positions in the history, thus the 

matrix is the same when projecting word 𝑤𝑤𝑡𝑡−1,𝑤𝑤𝑡𝑡−2 etc. after the projection layer, a 

hidden layer with non-linear activation function (usually hyperbolic tangent or a logistic 

sigmoid) is used, with a dimensional of 100-300.  

An output layer follows, with the size equal to the size of full vocabulary. After 

the network is trained, the output layer of n-gram NNLM represents probability 

distribution 𝑃𝑃(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−4,𝑤𝑤𝑡𝑡−3,𝑤𝑤𝑡𝑡−2,𝑤𝑤𝑡𝑡−1).  

[68] Proposed an alternative feedforward architecture of the NNLM. The 

problem of learning n-gram NNLM is decomposed into two steps: learning a bigram 

NNLM with only the previous word from the history encoded in the input layer. And 

then training an n-gram NNLM that projects words from the n-gram history into the 

lower dimensional space by using the already trained bigram NNLM. 

 Both models are simple feedforward neural networks with one hidden layer, 

thus this solution is simpler for implementation and for understanding than the original 

models [13, 20, 60]. It provides almost identical results as the original model.  

2.3 Deep Learning Background  

Most of current machine learning methods work well because of human-

designed representations and inputs features. However, handcrafting feature is time-



 
 

22 

consuming and features are often both over-specified an incomplete. If machine 

learning could learn features automatically, the entire process could be automated more 

efficiently and many task could be solved [3, 5, 21, 22, 41, 69].  

When machine learning is applied only to the input features it relies on the 

optimizing weights to make the best final prediction.   

Deep learning can be seen as putting back together representation learning with 

machine learning. It attempts to jointly learn good features, across multiple levels of 

increasing complexity and abstraction, and the final prediction.  

2.4 Deep Learning for Natural Language Processing  

After couple of pioneer works [3-5, 13, 60], the use of neural networks for NLP 

applications is attracting huge interest in the research community and they are 

systematically applied to all NLP tasks. However, while the use of deep neural 

networks in NLP has shown very good results for many tasks, it seems that they have 

not reached the level to outperform the state-of-the-art by a large margin. As it was 

observed in computer vision and speech recognition. 

Deep learning can be perceived as putting back together representation learning 

with machine learning. It efforts to jointly learn good features, across multiple levels of 

increasing complexity and abstraction, and the final prediction. 

 Deep Learning achieved significant results in computer vision [41] and speech 

recognition [21, 22]. It has become more common to use deep neural methods in NLP 

applications; much of the work has involved learning word vector representations 

through neural language models, then performing composition over the learned word 
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vectors for classification [3, 6, 8, 17, 20, 38, 70-77]. 

  Deep Neural Networks (DNNs) and representation learning approaches have 

led to new methods for solving the data sparsity problem. Several neural network based 

models for learning word representations followed this approach.  

Word embedding is the neural representation of a word and is a real vector [13, 

26]. Word embedding allows us to measure similarity between words by simply using 

the distance between two embedded vectors [14, 26].  

Recently, researchers observed that is not necessary for deep neural network to 

perform at word level [29, 30]. 

 As long as the document represented as one-hot-vector, the model could work 

without any change, regardless if each one-hot vector corresponds to a word [6, 30]. 

Character sequence proposed as an alternative to the one-hot vector [29].  

Similar ideas also applied to dependency parsing in [28]. Deep Convolution 

Neural Network for NLP by [4] composed numerous of layers of convolutional and 

max pooling, it is identical to the convolutional architecture in the computer vision.  

Several neural sentence models have been described. A general class of basic 

sentence models is that of Neural Bag-of-Words (NBoW) models. These generally 

consist of a projection layer that maps words, sub-word units or n-grams to high 

dimensional embeddings; the latter are then combined component-wise with an 

operation such as summation. The resulting combined vector is classified through one 

or more fully connected layers. 

A model that adopts a more general structure provided by an external parse tree 

is the Recursive Neural Network (RecNN) [78-81]. At every node in the tree the 
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contexts at the left and right children of the node are combined by a classical layer. The 

weights of the layer are shared across all nodes in the tree. The layer computed at the 

top node gives a representation for the sentence. 

 The Recurrent Neural Network (RNN) is a special case of the recursive network 

where the structure that is followed is a simple linear chain [66, 82]. The RNN is 

primarily used as a language model, but may also be viewed as a sentence model with a 

linear structure. 

 The layer computed at the last word represents the sentence. Finally, a further 

class of neural sentence models is based on the convolution operation and the TDNN 

architecture [4, 83]. Certain concepts used in these models are central to the DCNN and 

we describe them next. 

2.4.1 Windows-Based Neural Networks  

DNNs have achieved significant results in computer vision [5] and speech 

recognition [21, 22]. Recently, it has become more common to use DNNs in NLP 

applications, where much of the work involves learning word representations through 

neural language models and then performing a composition over the learned word 

vectors for classification [5, 6, 8, 17, 21, 28, 40, 45, 76, 80].  

These approaches have led to new methods for solving the data sparsity 

problem. Consequently, several neural network-based methods for learning word 

representations followed these approaches [71, 73-77]. 

DNNs jointly implement feature extraction and classification for text 

classification [5, 6, 23, 36]. DNN-based approaches usually start with an input text, 
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represented as a sequence of words, where each sequence is represented as one-hot 

vector; then, each word in the sequence is projected into a continuous vector space.  

This happens by multiplying it with a weight matrix, which leads to the creation 

of a sequence of dense, actual, valued vectors [18, 84]. 

 This sequence then feeds into a DNN, which processes the sequence in multiple 

layers, resulting in prediction probability. This pipeline is tuned jointly to maximize the 

classification accuracy on the training sets [14, 17, 18, 26, 30, 44]. However, one-hot 

vector makes no assumption about the similarity of words, and it is also very high-

dimensional [3, 24]. 

RNNs improve time complexity and analyze texts word-by-word, then preserve 

the semantic of all of the previous text in a fixed-sized hidden layer [61].  

The capability to capture superior, appropriate statistics could be valuable to 

capture the semantics of a long text in an RNN. However, an RNN is a biased model; 

recent words are more significant than earlier words. Therefore, they key components 

could appear anywhere across the document, not only at the end.  

This might reduce the efficiency when used to capture the semantics of a whole 

document. Therefore, the long short-term memory (LSTM) model was introduced to 

overcome the difficulties of the RNN [60, 85].  

A standard RNN makes predictions based only on considering the past words for 

a specific task. This technique is suitable for predicting the next word in context. 

However, for some tasks, it would be efficient if we could use both past and future 

words in tagging a task, as part-of-speech tagging, where we need to assign a tag to 

each word in a sentence [28].   
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In this case we already know the sequence of the words, and for each word we 

want to take both words to the left (past) and to the right (future) into consideration 

when making a prediction. That is exactly what the Bidirectional Neural Network 

(BNN) does; it consists of two LSTMs. One runs forward from left to right, and the 

other runs backward from right to left. This technique is successful in tagging tasks and 

for embedding a sequence into a fixed-length vector [30]. 

2.5 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) were initially designed for computer 

vision [41, 48]. CNNs exploit layers with convolving filters that are applied to local 

features, as shown in Figure 2.3. 

CNNs reached outstanding results in computer vision where handcrafted 

features were used, e.g. scale-invariant features transform (SIFT) followed by a 

classifier; the main idea is to consider feature extractors and classifiers as one jointly 

trained task [6, 17]. The use of neural networks inspired many researchers after the 

successful approaches in [4, 5, 13].  

This area has been investigated in recent years, especially by using multi-

convolutional and pooling layers in CNNs and then sequentially extracting hierarchical 

representations of the input. CNN models for NLP achieved excellent results in 

semantic parsing [38], sentence modeling [43], search query retrieval [37], and other 

NLP tasks [5].  

Recently, the DNN-based model has shown very good results for several tasks 

in NLP [6, 10, 17, 29, 30]. Despite the good performance of these models, in practice 
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they are relatively slow at training and testing, which restrains them from using a large 

scale of data, and it requires stacking many convolutional layers in order to capture 

long-term dependencies.  

 

 

 

 

 

 

 

Figure 2.3. The standard structure of a CNN. 

2.5.1 Pooling Layer 

The pooling layers are a key aspect of the CNNs, typically applied after the 

convolutional layers. Pooling layers subsampling their input. Max-pooling is one of the 

most common way to apply pooling to the feature maps which are the result of each 

filter [48].  

By performing max pooling in CNN NLP tasks, we are keeping information 

about whether the most important feature appeared in the sentence or not. However, we 

are losing global information about locality, and where in sentence something happened 

[29, 30].  

Pooling provides fixed size output, which is essential for classification. Pooling 

usually decreases the output dimensionality and preserve most relevant feature.  



 
 

28 

The drawbacks of applying the pooling layers in CNN for NLP tasks, by 

performing the max pooling we are only keeping information about the most important 

feature appeared in the sentence, and we are losing information about where exactly it 

appeared.  

 

 

 

 

 

 

 

 

Figure 2.4. Max pooling in CNN [48]. 

The information locality is very important and that is similar to what a bag of n-

grams model is doing.  We lose global information about locality, and where in 

sentence something happens, but we are keeping local information captured by our 

filters. 

It is common to periodically insert a Pooling layer in-between successive Conv 

layers in a ConvNet architecture. Its function is to progressively reduce the spatial size 

of the representation to reduce the amount of parameters and computation in the 

network, and hence to also control overfitting. The Pooling Layer operates 

independently on every depth slice of the input and resizes it spatially, using the MAX 

operation as in Figure 3.4. 
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General pooling. In addition to max pooling, the pooling units can also perform 

other functions, such as average pooling or even L2-norm pooling. Average pooling 

was often used historically but has recently fallen out of favor compared to the max 

pooling operation, which has been shown to work better in practice. 

2.6 Convolution Neural Networks for Natural Language Processing 

(CNNs-NLP) 

Convolutional Neural Networks (CNNs) initially designed for computer vision 

[41, 48]. CNNs exploit layers with convolving filters that applied to local features, 

CNNs reached an outstanding results in computer vision where handcrafted features 

were used, e.g. scale-invariant features transform (SIFT) followed by classifier; the 

main idea is to consider features extractors and classifier as one jointly trained task.  

The use of neural network inspired many researchers after success approach in 

[5], and this area has been investigated in the recent years, especially by using multi 

convolutional and pooling layers, then sequentially extract hierarchical representation of 

the input.  

CNNs models for NLP achieved excellent results in semantic parsing [38], 

sentence modeling [43], search query retrieval [44], and other NLP tasks [5]. Recently 

CNNs were applied to NLP systems and accomplished very interesting results [17, 29, 

44]; convolutional layers are similar to a sliding window over a matrix. CNNs are 

numerous layers of convolutions with nonlinear activation functions, such as ReLU or 

tanh, applied to the results [86]. As shown in Figure 2.5. 
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Figure 2.5. Convolutional Neural Network Architecture for NLP [86]. 

 In a classical, feed-forward neural network, each input of a neuron is attached to 

each output in the next layer. This is called a fully connected or affine layer. However, 

CNNs have different approaches where they use convolutions over the input layer to 

compute the output. Local connections compute the output over the input layer, and 

then each layer applies different kernels, usually hundreds or thousands of filters, to 

then combine their results. During pooling or subsampling layers and during the 

training stage. 

CNNs learn the values of their filter size based on the tasks. For instance, in 

image classification [41] a CNN might learn to detect edges from raw pixels in the first 

layer, then use the edges to detect simple shapes in the second layer, and then use these 

shapes to detect higher-level features, such as facial shapes, in higher layers. The layer 

is then fed to a classifier that uses these high-level features. However, how does this 

apply to NLP?  
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As an alternative to image pixels, the input to most NLP tasks consists of 

sentences and documents represented as a matrix.  Additionally, each row of the matrix 

matches up to one token, usually a word or character. Each row is a vector that 

represents a word.  

Typically, this vector is a word-embedded, low-dimensional representation (e.g. 

word2vec, one-hot vectors) that indexes the word into a vocabulary (e.g. a ten word 

sentence using a 100-dimensional embedding, 10*100 matrix) as our input. In NLP, a 

filter slides over full words of the matrix. Therefore, the width of the filters is same as 

the width of the input matrix. Moreover, the region size may vary, but it is usually a 

sliding window over two to five words at a time. 

2.7 GoogLeNet: Inception Convolution Neural Networks  

The objective of the Inception architecture is created on finding out how an 

optimal local sparse structure in a convolutional vision network can be estimated and 

covered by readily available dense components. Note that assuming translation 

invariance means that our network will be built from convolutional building blocks. All 

we need is to find the optimal local construction and to repeat it spatially.  

[87] Proposed a layer-by layer construction in which one should analyze the 

correlation statistics of the last layer and cluster them into groups of units with high 

correlation.  

These clusters form the units of the next layer and are connected to the units in 

the previous layer. We assume that each unit from the earlier layer corresponds to some 

region of the input image and these units are grouped into filter banks.  
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Figure 2.6.(a) Inception module, naïve version [88]. 

 

 

 

 

 

 

 

 

Figure 2.6.(b) Inception module with dimension reductions [88]. 

In the lower layers (the ones close to the input) correlated units would 

concentrate in local regions. This means, we would end up with a lot of clusters 

concentrated in a single region and they can be covered by a layer of 1×1 convolutions 

in the next layer, as suggested in [89]. However, one can also expect that there will be a 
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smaller number of more spatially spread out clusters that can be covered by 

convolutions over larger patches, and there will be a decreasing number of patches over 

larger and larger regions. 

 In order to avoid patch alignment issues, current incarnations of the Inception 

architecture are restricted to filter sizes 1×1, 3×3 and 5×5, however this decision was 

based more on convenience rather than necessity.  

 It also means that the suggested architecture is a combination of all those 

layers with their output filter banks concatenated into a single output vector forming the 

input of the next stage. Additionally, since pooling operations have been essential for 

the success in current state of the art convolutional networks, it suggests that adding an 

alternative parallel pooling path in each such stage should have additional beneficial 

effect, too, see Figure 2.6.(a). 

As these “Inception modules” are stacked on top of each other, their output 

correlation statistics are bound to vary: as features of higher abstraction are captured by 

higher layers, their spatial concentration is expected to decrease suggesting that the ratio 

of 3×3 and 5×5 convolutions should increase as we move to higher layers. 

One big problem with the above modules, at least in this naıve form, is that even 

a modest number of 5×5 convolutions can be prohibitively expensive on top of a 

convolutional layer with a large number of filters. This problem becomes even more 

pronounced once pooling units are added to the mix: their number of output filters 

equals to the number of filters in the previous stage. 

 The merging of the output of the pooling layer with the outputs of convolutional 

layers would lead to an inevitable increase in the number of outputs from stage to stage. 
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Even while this architecture might cover the optimal sparse structure, it would do it 

very inefficiently, leading to a computational blow up within a few stages.  

This leads to the second idea of the proposed architecture: carefully applying 

dimension reductions and projections wherever the computational requirements would 

increase too much otherwise.  

This is based on the success of embeddings: even low dimensional embeddings 

might contain a lot of information about a relatively large image patch. However, 

embeddings represent information in a dense, compressed form and compressed 

information is harder to model. We would like to keep our representation sparse at most 

places as required by the conditions of [87], and compress the signals only whenever 

they have to be aggregated.  

That is, 1×1 convolutions are used to compute reductions before the expensive 

3×3 and 5×5 convolutions. Besides being used as reductions, they also include the use 

of rectified linear activation which makes them dual-purpose. The final result is 

depicted in Figure 2.6. (b). 

In general, an Inception network is a network consisting of modules of the above 

type stacked upon each other, with occasional max-pooling layers with stride 2 to halve 

the resolution of the grid. For technical reasons (memory efficiency during training), it 

seemed beneficial to start using Inception modules only at higher layers while keeping 

the lower layers in traditional convolutional fashion. 

This is not strictly necessary, simply reflecting some infrastructural 

inefficiencies in our current implementation. 

One of the main beneficial aspects of this architecture is that it allows for 
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increasing the number of units at each stage significantly without an uncontrolled blow-

up in computational complexity. 

 The ubiquitous use of dimension reduction allows for shielding the large 

number of input filters of the last stage to the next layer, first reducing their dimension 

before convolving over them with a large patch size. Another practically useful aspect 

of this design is that it aligns with the intuition that visual information should be 

processed at various scales and then aggregated so that the next stage can abstract 

features from different scales simultaneously. 

 The improved use of computational resources allows for increasing both the 

width of each stage as well as the number of stages without getting into computational 

difficulties. Another way to utilize the inception architecture is to create slightly 

inferior, but computationally cheaper versions of it.  

We have found that all the included the knobs and levers allow for a controlled 

balancing of computational resources that can result in networks that are 2 − 3× faster 

than similarly performing networks with non-Inception architecture, however this 

requires careful manual design at this point. 

2.8 Recurrent Neural Networks (RNNs) 

Recurrent neural network (RNN) improved time complexity; in this model text 

is analyzes word by word then preserve the semantic of all the previous text in a fixed-

sized hidden layer [61]. As shown in Figure 2.7. The capability to capture superior 

appropriate statistics could be valuable to capture semantics of long text in recurrent 

network. However, recurrent network is biased model, because recent words more 
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significant than earlier words. Therefore, the key components could appear anywhere 

across the document not only at the end.  

 

 

 

 

 

 

 

Figure 2.7. Recurrent Neural Network Vs Traditional Neural Network [90]. 

This might reduce the efficiency when used to capture the semantic of whole 

document. Long short-term Memory (LSTM) model introduced to overcome the 

difficulties of the RNN [60, 85]. 

 A standard RNN makes prediction based only on considering the past word into 

account for specific task this technique is create for predicting the next word in context. 

However, for some task it would be efficient if we could use both past and future for 

instance, tagging task, like part-of-speech tagging, where we need to assign a tag to 

each word in a sentence [91]. 

 In this case we know already all the sequence of the words, and for each word 

we want to take both words to the left (past) and words to the right (future) in 

consideration when we want our prediction.  

That is exactly what Bidirectional neural network does; it consist of two LSTM 

one runs forward from left to right, and the other one run backward from right to left. 



 
 

37 

This technique is success in tagging tasks and for embedding a sequence into a fixed-

length vector [29, 90]. 

 

 

 

 

 

 

Figure 2.8. Recurrent Neural Network with loops. 

The intuition of RNNs is that human’s do not start their thinking from scratch 

every second, the objective of the recurrent RNNs is to make use of sequential 

information, the output is based on the previous computation.  

In traditional RNNs all input are independent of each other; while this approach 

is inefficient for many task in NLP (e.g. predicting the next word in a sentence) in this 

case it is important to know the previous word in order to predict the next word in the 

context. RNNs have shown great success in many NLP tasks [22, 44, 85, 91, 92].  

RNNs have a memory which captures information in arbitrary long sequences. 

In Figure 2.8, a chunk of neural network, looks at input   and outputs a value. A loop 

allows information to be passes from one step of the network to the next step. 

 RNNs is a type of deep neural networks that are deep in temporal dimension 

and it has been used widely in time sequence modeling.  

The objective behind RNNs for sentence embedding is to find a dense and low 

dimensional semantic representation by recurrently and sequentially processing each 
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word in a sentence, and mapping it into a low dimensional vector.  

The global contextual feature of the whole text will be in the semantic 

representation of the last word in the sequence [21, 22, 93]. We also can think of RNNs 

as multiple copies of the same network, where each one is passing a message to 

inheritor. What will happens if we unroll the loop, as shown in Figure 2.9.  

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.9. An unrolled RNNs. 

We can compute the output 𝑜𝑜𝑡𝑡 as follows in simple RNN:  

𝑜𝑜𝑡𝑡 = 𝑓𝑓(𝑊𝑊𝑜𝑜ℎ𝑡𝑡)                                                       (2.6) 

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡)                                                    (2.7) 

Where   𝑊𝑊𝑜𝑜 ,𝑊𝑊ℎ, and  𝑊𝑊𝑥𝑥 are the matrices for hidden layer output ℎ𝑡𝑡, past hidden 

layer activity ℎ𝑡𝑡−1 and the input 𝑥𝑥𝑡𝑡.  

The time recurrence is presented in Eq. (2) which conveys the present hidden 

layer activity ℎ𝑡𝑡with its past hidden layer activity ℎ𝑡𝑡−1. this reliance is nonlinear due to 

using of logistic function 𝜎𝜎(. ). 
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2.8.1 Recurrent Neural Networks Based Language Models 

(RNNLMs) 

Recurrent neutral network language model (RNNLM) proposed in [65] and 

extension in [66]. The main difference between feedforward and the recurrent 

architecture is in representation of history, while for feedforward NNLM, the history is 

still just previous several words, for the recurrent model an effective representation of 

history is learned from the data during training. 

 The hidden layer of RNN represents all previous history and not just 𝑛𝑛 − 1 

previous words, thus the model can theoretically represent long context patterns.  

Another important advantage of the recurrent architecture over the feedforward 

one is the possibility to represent more advanced patterns in the sequential data. For 

example, patterns that rely on words that could have occurred at variable position in the 

history can be encoded much more efficiently with the recurrent architecture - the 

model can simply remember some specific word in the state of the hidden layer, while 

the feedforward architecture would need to use parameters for each specific position of 

the word in the history; this not only increases the total amount of parameters in the 

model, but also the number of training examples that have to be seen to learn the given 

pattern [60, 85, 94-96]. 

The architecture of RNNLM is shown in Figure 2.10. The input layer consist of 

a vector 𝑤𝑤(𝑡𝑡) that represents the current word 𝑤𝑤𝑡𝑡 encoded as 1 of V (thus size of 𝑤𝑤(𝑡𝑡) 

is equal to the size of the vocabulary), and of vector 𝑠𝑠(𝑡𝑡 − 1) that represents output 

values in the hidden layer from the previous time step. After the network is trained, the 
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output layer 𝑦𝑦(𝑡𝑡) represents𝑃𝑃(𝑤𝑤𝑡𝑡+1|𝑤𝑤𝑡𝑡, 𝑠𝑠(𝑡𝑡 − 1)). The network is trained by stochastic 

gradient decent using either usual backpropagation (BP) algorithm, or backpropagation 

through time (BPTT) [65]. 

 

 

 

 

 

 

 

 

Figure 2.10. Simple recurrent neural network [66]. 

The network is represented by input, hidden and output layers and 

corresponding weight matrices; matrices 𝑈𝑈 and 𝑊𝑊 between the input and the hidden 

layer, and matrix 𝑉𝑉 between the hidden and the output layer.  

2.8.2 The Problem of Long-Term Dependencies  

One of the appeals of RNNs is the idea that they might be able to connect 

precious information to the present task, such as using previous video frames might 

inform the understanding of the present frame. 

 If the RNNs could do this, they would be extremely useful. But can they? It 

depends. Some time we only need to look at recent information to perform the present 

task. For instance, consider a language model trying to predict the next word based on 
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the previous one. If we are trying to predict the last word we do not need any further 

context. Sometime the gap between the relevant information and the place that it is 

needed is small, RNNs can learn to use the past information.  

In classic RNNs during the gradient back propagation stage, the gradient signal 

can end up being multiplied multiple of times (as many as the number of the time steps) 

by the weight matrix; that linked with the connection between the neurons of the 

recurrent hidden layer. As shown in Figure 2.11. 

Which means that, the volume of weights in the transition matrix can have a 

significant impact on the learning process. If the weights matrix are small meaning that 

the leading eigenvalue of the weight matrix is smaller than one, then it can cause the 

vanishing gradients problem, where the gradient signal become very small then learning 

become very slow or stops working. 

Furthermore, it can make the task of learning long-term dependencies more 

difficult in the data. On the other hand, if the weights in this matrix are larger meaning 

the leading eigenvalue of the weight matrix is larger than one, then it can lead to 

situation where the gradient signal is very large, and then that can cause learning to 

swerve; this called exploding gradients problem [92].  

RNNs consider as deep neural networks across many time instance, the gradient 

of a sentence may not be able to back-propagate to the beginning of a sentence, and that 

is due to many of nonlinearity transformations [29, 61, 70]. 

 RNNs might be able to link previous information to the present task, such as 

using the earlier video frames might inform the understanding of the current frame. 

Sometimes we need to look at a latest information to perform the current task. It is 



 
 

42 

possible for the gap between the relevant information and the point where is needed to 

become very large. And if that gap grows, then RNNs become unable to learn to 

connect the information. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.11. Long-term dependences problem in RNNs. 

LSTM is an extension of RNN [33, 97] instead of using the nonlinear 

connection between the past hidden activity and the current layer hidden activity, it uses 

a linear dependence to relate its past memory to the current memory. Most important, in 

LSTM the forget gate was presented to restrain each element of the past memory to be 

contributed to the current memory cell. 

2.8.3 Vanishing and Exploding Gradients  

By the early 1990s, the vanishing gradient problem emerged as a major obstacle 

to recurrent network performance [92]. 

Just as a straight line expresses a change in x alongside a change in y, the 

gradient expresses the change in all weights with regard to the change in error. If we 

cannot know the gradient, then we cannot adjust the weights in a direction that will 

decrease error, and our network stops to learn. 
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Recurrent nets looking for to establish connections between a final output and 

events many time steps before were hobbled, because it is very difficult to know how 

much importance to accord to remote inputs [48, 60]. 

This is partially because the information flowing through neural nets passes 

through many stages of multiplication, and because the layers and time steps of deep 

neural networks relate to each other through multiplication, derivatives are susceptible 

to vanishing or exploding. 

Exploding gradients treat every weight as though it were the proverbial butterfly 

whose flapping wings cause a distant hurricane. Those weights’ gradients become 

saturated on the high end; i.e. they are presumed to be too powerful. But exploding 

gradients can be solved relatively easily, because they can be truncated or squashed. 

Vanishing gradients can become too small for computers to work with or for networks 

to learn – a harder problem to solve. The data is flattened until, for large stretches, it has 

no detectable slope. This is analogous to a gradient vanishing as it passes through many 

layers. 

2.9 Long Short-Term Memory (LSTM) 

Long Short Term Memory network, usually called (LSTM), are special kind of 

RNN, capable of capturing learning long-term dependencies [85]. The memory cell is 

consist of four main components: Input gate, Memory cell, Forget gate, Output gate.  

The self-recurrent connection has a weight of one, the state of the memory cell can 

remain constant from one time-step to another.  

The gates assist to control the interfaces between the memory cell itself and its 
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environment, input gate can allow incoming signal to alter the state of the memory cell 

or block it, the output gate can allow the state of the memory cell to have an effect on 

other neurons or prevent it. Finally, the forget gate can control the memory cell’s self-

recurrent connection, allowing the cell to remember or forget its previous state as 

needed [60]. 

The traditional RNN we described above is hard to train due to the gradient 

vanishing and exploding problems, which is due to the nonlinear relation between ℎ𝑡𝑡 

and ℎ𝑡𝑡−1, LSTM introduces a linear dependence between the memory cell 𝑐𝑐𝑡𝑡  and its 

past 𝑐𝑐𝑡𝑡−1 . Furthermore, LSTM has input and output gates applied on non-linear 

function. LSTM is describe as follows: 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1)                                                (2.8) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1)                                              (2.9) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀tanh (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1)                                 (2.10) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡)                                                 (2.12) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡⨀tanh (𝑐𝑐𝑡𝑡)                                                                            (2.13) 

 

Where 𝑖𝑖𝑡𝑡, 𝑓𝑓𝑡𝑡 and  𝑜𝑜𝑡𝑡 are the input gate, forget and output gate. The core idea of 

LSTM is the cell state, it run straight down the entire chain. 

 LSTM able to add and remove information to the cell state regulated by gates, 

which are composed of sigmoid layer, the sigmoid layer produce numbers between zero 

and one, zero means “stop anything to go through”, while one means “let everything 

through”. 
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Figure 2.12. Detailed Schematic of Recurrent Network Long Short-Term Memory block [96]. 

LSTM allows preservation of gradients. The memory cell remembers the first 

inputs as long as the forget gate is open and the input gate is closed. The output gate 

provides finer control to switch the output layer on or off without altering the cell 

contents. As described in Figure 2.12. 

2.10 Bidirectional Recurrent Neural Networks (BRNNs) 

Bidirectional Recurrent Neural Networks (BRNNs) [98, 99] do not require their 

input data to be fixed and their future input information is reachable from the current 

state. One property of the recurrent layer is that there is imbalance in the amount of 

information seen by the hidden states at different time steps. 

 The objective is to connect two hidden layers of opposite directions to the same 

output. The output layer can get information from past and future states. The earlier 

hidden states only observe a few vectors from the lower layer, while the later ones are 

computed based on most of the lower-layer vectors.  
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BRNN is composed of two recurrent layers working in opposite directions, 

which will return two sequences of hidden states from the forward and reverse recurrent 

layers, respectively. 

𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (ℎ1→,ℎ2→, … , ℎ𝑇𝑇′
→ )              (2.14) 

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (ℎ1←,ℎ2←, … ,ℎ𝑇𝑇′
← )                 (2.15) 

Then we take the last hidden states of both directions and concatenate them to 

form a fixed-dimensional vector: 

ℎ = [ℎ𝑇𝑇′
→ ;ℎ1←]                                                     (2.16) 

Finally, the fixed-dimensional vector h is fed into the classification layer to 

compute the predictive probabilities 𝑝𝑝(𝑦𝑦 = 𝑘𝑘|𝑋𝑋) of all the categories 𝑘𝑘 = 1, … ,𝐾𝐾 given 

the input sequence 𝑋𝑋. 

2.11 Gated Recurrent Unite (GRU) 

Gated Recurrent Unit (GRU) is a RNNs variant proposed in [18], the network 

combines the forget and input gates into a single update gate, also merge cell state and 

hidden state, it is similar to LSTM using gating functions, the GRU does not have a 

memory cell, GRU operation can be describe as following: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡)ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡ℎ�𝑡𝑡                                                 (2.17) 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 − 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1)                                                   (2.18) 

ℎ𝑡𝑡� = tanh (𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟𝑡𝑡⨀ℎ𝑡𝑡−1))                                         (2.19) 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1)                                                   (2.20) 

Where the output from GRU is tt zh ,  and tr  are the update gate and rest gate. 
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~
h  is the candidate output.  ,,,, zrhz UWWW And rU are the matrices in GRU. 

2.12 Vector Representations of Words 

Word2vec model proposed by [14, 26]. This model is used for learning vector 

representations of words, called (word embedding). Natural language processing 

systems traditionally treat words as discrete atomic symbols, and therefore 'cat' may be 

represented as Id537 and 'dog' as Id143. These encodings are arbitrary, and provide no 

useful information to the system regarding the relationships that may exist between the 

individual symbols.  

This means that the model can leverage very little of what it has learned about 

'cats' when it is processing data about 'dogs' (such that they are both animals, four-

legged, pets, etc.). Representing words as unique, discrete ids furthermore leads to data 

sparsity, and usually means that we may need more data in order to successfully train 

statistical models. Using vector representations can overcome some of these obstacles. 

Vector space models (VSMs) represent words in a continuous vector space 

where semantically similar words are mapped to nearby points, and embedded nearby 

each other. VSMs have a long, rich history in NLP, but all methods depend in some 

way or another on the Distributional Hypothesis, which states that words that appear in 

the same contexts share semantic meaning.  

The different approaches that leverage this principle can be divided into two 

categories: count-based methods (e.g. Latent Semantic Analysis) [100], and predictive 

methods (e.g. neural probabilistic language models) [20]. 



 
 

48 

 

 

 

 

 

 

 

 

Figure 2.13. The CBOW and Skip-gram models [14]. 

This distinction is elaborated in much more detail by [101], but in a nutshell: 

Count-based methods compute the statistics of how often some word co-occurs with its 

neighbor words in a large text corpus, and then map these count-statistics down to a 

small, dense vector for each word.  

Predictive models directly try to predict a word from its neighbors in terms of 

learned small, dense embedding vectors (considered parameters of the model). 

Word2vec is a particularly computationally-efficient predictive model for 

learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-

of-Words model (CBOW) and the Skip-Gram model [14]. Algorithmically, these 

models are similar, except that CBOW predicts target words (e.g. 'mat') from source 

context words ('the cat sits on the'), while the skip-gram does the inverse and predicts 

source context-words from the target words.as illustrated in Figure 2.13. 

 This inversion might seem like an arbitrary choice, but statistically it has the 

effect that CBOW smoothest over a lot of the distributional information (by treating an 
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entire context as one observation).  

For the most part, this turns out to be a useful thing for smaller datasets. 

However, skip-gram treats each context-target pair as a new observation, and this tends 

to do better when we have larger datasets.  

2.13 Combination of Convolution Neural Networks and Recurrent Neural 

Networks (CNNs-RNNs)  

The combination of both CNNs and RNNs is explored for speech recognition 

[27], and a similar approach was applied to image classification [41]. [29] Investigated 

the combination of CNN-RNN to encode character input, and implemented a high-level 

feature input sequence of character level to capture sub-word information. However, 

this model performs best when a large number of classes are available.  

[69] Outlined structured attention networks, which incorporate graphical models 

to generalize simple attention, describe the technical machinery and computational 

techniques for backpropagation through models of this form.  

[77] aimed to improve representation efficiency, and the model employed 

Differential State Framework (DSF). DSF models maintain longer-term memory by 

learning to interpolate between a fast-changing, data-driven representation and a slowly 

changing, implicitly stable state.  

[11] Investigated an approach to advance the accuracy of the deep learning 

method for sentiment analysis by incorporating domain knowledge; this paper 

combined domain knowledge with deep learning, using sentiment scores learnt by 

regression to augment the training data. They also utilized weighting across entropy 
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with a penalty matrix as an enhanced loss function. 

We observed that the use of a vanilla CNN for text classification has one 

drawback. In [29] the network must have many layers in order to capture long-term 

dependencies in an input sentence. Perhaps that might be the motivation behind [6], 

which utilized a very deep convolutional network with several convolutional layers 

followed by two fully connected layers. 
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CHAPTER 3: RESEARCH PLAN 

3.1 Deep Neural Network Language Model for Text Classification 

In this section, we present the details of the proposed model is shown in Figure 

3.1, which consists of convolutional and recurrent neural networks. Our model’s 

architecture uses word embeddings as inputs and takes them to a convolutional neural 

network to learn to extract high-level features, whose outputs are then given to a long 

short-term memory recurrent neural network language model to assets the model to 

capture long term dependencies, then finally followed by a classifier layer. 

 

 

  

 

 

 

 

Figure 3.1.  The proposed CNN-LSTM architecture  

3.2 The Embedding Layer 

The first layer of the network transforms words into real-valued feature vectors 
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that capture semantic and syntactic information. Our model’s input is a sequence of 

words [𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑠𝑠],  with each word being derived from vocabulary 𝑉𝑉. Words are 

denoted by distributed vector 𝑊𝑊 ∈ 𝑅𝑅1∗𝑑𝑑 and looked up in a word embedding 

matrix 𝑊𝑊 ∈ 𝑅𝑅1∗|𝑉𝑉| . This is formed by simply concatenating embeddings of all words in 

V.  

 
 

 

 

 

 

 

 

 

Figure 3.2. Architecture for the CBOW and Skip-gram [14]. 

 
We initialized the model using word vectors obtained from unsupervised neural 

language model which is a popular method to improve performance in the absence of a 

large supervised training set. We exploits word2vec that were trained on 100 billion 

words from Google News [14, 26].  

Words not existent are initialized randomly; initializing the word vectors with 

pre-trained vectors obtained from an unsupervised neural language model is a very 

successful method [17].   

It can capture syntactic and semantic information, which are very important for 

sentiment analysis task. In our work, we preform unsupervised learning of word-level 
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embeddings using word2vec tool [14], that implement skip-gram and continuous bag-

of-words architectures for computing vector representations of words as shown in 

Figure 3.2. 

3.3 The Convolutional layer 

The model shown in Figure 3.3 is a slight variant of the CNN architecture of [5]. 

Let 𝑥𝑥𝑖𝑖 ∈ ℝ𝑘𝑘 to be the k-dimensional word vector corresponding to the 𝑖𝑖𝑖𝑖ℎ word in the 

sentence of length 𝑛𝑛, which is represented as: 

𝑥𝑥1:𝑛𝑛 = 𝑥𝑥1⨁𝑥𝑥2 … ⨁𝑥𝑥𝑛𝑛,                                        (3.1) 

Where ⨁ is the concatenation operator, overall let 𝑥𝑥𝑖𝑖∷𝑖𝑖+𝑗𝑗 refer to the 

concatenation of words 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … 𝑥𝑥𝑖𝑖+𝑗𝑗. The convolutional operational consists of a 

filter𝑤𝑤 ∈ ℝℎ𝑘𝑘, which is applied to a windows of ℎ words to produce a new features. For 

instance, a feature is 𝑐𝑐𝑖𝑖 is generated from a window of words 𝑥𝑥𝑖𝑖:𝑖𝑖+ℎ−1 by: 

𝑐𝑐𝑖𝑖 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥𝑖𝑖:𝑖𝑖+ℎ−1 + 𝑏𝑏).                                                          (3.2) 

Where 𝑏𝑏 ∈ ℝ a bias is term and 𝑓𝑓 is a non-linear function such as the hyperbolic 

tangent. This filter is applied to each possible window of words in the sentence 

{𝑥𝑥1:ℎ, 𝑥𝑥2:ℎ+1, … , 𝑥𝑥𝑛𝑛−ℎ+1:𝑛𝑛} to produce a feature map of: 

𝑐𝑐 = [𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−ℎ+1],                                                            (3.3) 

With 𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛−ℎ+1. Then, we fed the feature maps to a recurrent layer LSTM in 

order to capture long-term dependencies. This technique will reduce the number of 

parameters in the proposed model. 

Max-over-time pooling operation was not applied, we argue that the pooling 
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layer is the reason for lost details in local information, because the pooling layer only 

captures the most important feature in a sentence and ignored the others; therefore, we 

attempt to exclude the pooling layer and utilize it with a recurrent layer to assist the 

model to capture long-term dependencies more efficiently and reduce the number of the 

parameters in the proposed architecture; we fed the feature map into single layer of 

LSTM. 

 

 

 

 

 

 

 

Figure 3.3. Conv-Lstm Model for NLP 

3.4 The Recurrent Layer  

The objective of the RNN is to make use of sequential information, and the 

output is based on the previous computation. All inputs are independent of each other in 

traditional neural network, while this approach is inefficient for many tasks in NLP (e.g. 

predicting the next word in a sentence) in this case it is important to know the previous 

word. RNN has a memory that capture information in arbitrary long sequences, which is 

illustrated in Fig 3.4. 
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ℎ𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡,ℎ𝑡𝑡−1),                                                                  (3.4) 

 
Where 𝑥𝑥𝑡𝑡 ∈ ℝ𝑑𝑑  one time step from the input sequence, (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇).ℎ𝑜𝑜 ∈

ℝ𝑑𝑑  often initialized as an all-zero vector. 

Recursive neural networks proved to be efficient for constructing sentence 

representations. The model has a tree structure which is able to capture the semantic of 

sentence. However, this is a time-consuming task due to constructing the textual tree 

complexity [28].  

 

 

 

 

 

 

 
Figure 3.4. RNN unfold framework [73]. 

Recurrent neural network has enhanced time complexity. In this model, text is 

analyzed word by word and then preserves the semantic of all the previous text in a 

fixed-sized hidden layer [61]. 

 The capability to capture superior appropriate statistics could be valuable for 

capture semantics of long text in recurrent networks. However, recurrent networks is 

biased model, because recent words are more significant than earlier words. Therefore, 

the key components could appear anywhere across the document and not only at the 

end; this might reduce the efficiency when used to capture the semantic of the whole 
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document. The LSTM model was introduced to overcome these difficulties.  

The most naïve recursive function is known to be suffer from the problem of 

vanishing gradient. More recently it is common to use Long Short-Term Memory 

LSTM [85, 94]. RNN in Figure 3.4 is a type of neural network architecture specially 

used for sequence modeling. At each time step 𝑡𝑡, a recurrent layer takes the input vector 

𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑛𝑛 and hidden state ℎ𝑡𝑡 by applying the recursive operation: 

 

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊𝑥𝑥𝑥𝑥 + 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏)                                                          (3.5) 

 

Where 𝑊𝑊 ∈ 𝑅𝑅𝑚𝑚∗𝑛𝑛, 𝑏𝑏 ∈ 𝑅𝑅𝑚𝑚∗𝑚𝑚, 𝑏𝑏 ∈ 𝑅𝑅𝑚𝑚 parameters, and 𝑓𝑓 is an element-wise 

nonlinearity. Learning long-term dependencies with a vanilla RNN is difficult because 

of the vanishing and exploding gradient [92].  

The Long short-term memory LSTM [60, 85] overcomes the deficiencies of the 

vanilla RNNs by augmenting the RNNs with a memory cell that takes as an 

input𝑥𝑥𝑡𝑡,ℎ𝑡𝑡−1, 𝑐𝑐𝑡𝑡−1, and produces ℎ𝑡𝑡 , 𝑐𝑐𝑡𝑡 by the following: 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)                                                   (3.6) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)                                                  (3.7) 

𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)                                                  (3.8) 

𝕘𝕘𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝕘𝕘𝑥𝑥𝑡𝑡 + 𝑈𝑈𝕘𝕘ℎ𝑡𝑡−1 + 𝑏𝑏𝕘𝕘)                                                   (3.9) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡⨀𝕘𝕘𝑡𝑡                                                        (3.10) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh (𝑐𝑐𝑡𝑡)                                                           (3.11) 
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Where 𝜎𝜎, and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ are the element-wise sigmoid and hyperbolic tangent 

function and 𝑖𝑖𝑡𝑡,𝑓𝑓𝑡𝑡, 𝑜𝑜𝑡𝑡 are referred to as input, forget, and output gates. At 𝑡𝑡 = 1,ℎ0, 𝑐𝑐0 

are initialized to zero vector. ⨀  The element-wise multiplication operator. Parameters 

of the LSTM are preservative with respect to time.  

LSTM outperforms vanilla RNNs on many tasks, including language modeling 

[44]. It is easy to extend LSTM to more than one layer, having multiple layers is critical 

for attaining competitive performance on various tasks [21]. 

3.5 LSTM Layer 

LSTM is more complicated function that learns to control the flow of 

information, to prevent the vanishing gradient and to allow the recurrent layer to more 

easily capture long-term dependencies. LSTM was initially proposed in [60, 85] and 

later modified in [21].  

RNN has problems of gradient vanishing or explosion. Meanwhile, RNNs are 

considered as deep neural networks across many time instances. The gradient at the end 

of the sentence may not be able to back-propagate to the beginning of the sentence, 

because of the nonlinearity transformation [41, 61]. These problems are the main 

motivation behind the LSTM model, which introduces a new structure called a memory 

cell in Figure 3.5. The memory cell is consist of four main components: input, output, 

forget gates and candidate memory cell. The following equations describe how the 

memory cells layer are updated at every timestep 𝑡𝑡. First, we compute the values for 𝑖𝑖𝑡𝑡, 

the input gate, and 𝑐̃𝑐𝑡𝑡 the candidate value for the states of the memory cells at time 𝑡𝑡: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖                                           (3.12) 
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𝑐̃𝑐𝑡𝑡 = tanh (𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)                                                (3.13)      

 
Given the new value of the input gate activation 𝑖𝑖𝑡𝑡, the forget gate activation 𝑓𝑓𝑡𝑡 

and the candidate state value 𝑐̃𝑐𝑡𝑡, we can compute 𝑐𝑐𝑡𝑡 the memory cells new state at 

time 𝑡𝑡: 

𝑐𝑐𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∗ 𝑐̃𝑐 + 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1                                                            (3.14) 

 
With the new state of the memory cells, we compute the value of their output 

gates and, subsequently, their outputs 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑜𝑜)                                (3.15) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝑐𝑐𝑡𝑡)                                                      (3.16) 

  
Where 𝑥𝑥𝑡𝑡 is the input to the memory cell layer at time 𝑡𝑡. 

 𝑊𝑊𝑖𝑖,𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑐𝑐,𝑊𝑊𝑜𝑜,𝑈𝑈𝑖𝑖,𝑈𝑈𝑓𝑓 ,𝑈𝑈𝑐𝑐,𝑈𝑈𝑜𝑜, and 𝑉𝑉𝑜𝑜 are weight matrices. 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑓𝑓 ,𝑏𝑏𝑐𝑐, 𝑏𝑏𝑜𝑜, are bias vectors. 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5. LSTM. Shown the five key architecture elements of LSTM [21]. 

3.6 Back Propagation through Time (BPTT) 

Back propagation through time (BPTT) is the key algorithm that makes training 
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deep models computationally controllable, and it is a way of computing gradients of 

expression through the recursive application of the chain rule. The core issue we are 

given is some function 𝑓𝑓(𝑥𝑥) were 𝑥𝑥 is the vector of inputs, and we are interested in 

computing the gradient of 𝑓𝑓 at 𝑥𝑥(𝑖𝑖. 𝑒𝑒∇𝑓𝑓(𝑥𝑥)).  

Error can be even backpropagated further [31]. BPTT is a simple extension of 

the backpropagation algorithm for recurrent neural network; with BPTT the error is 

broadcasted via recurrent connection back in time for specific time steps. Therefore, the 

network absorbs and remembers information for numerous time steps in the hidden 

layer when it is learned by BPTT. More details about the implementation described can 

be found in [102].  

3.7 Classification Layer  

The classification layer is in principle, a logistic regression classifier. It gives a 

fixed-dimensional input from the lower layer; the classification layer affine transforms 

it, followed by a softmax activation function to compute the predictive probabilities for 

all the categories [102].  This done by: 

 

𝑝𝑝(𝑦𝑦 = 𝑘𝑘|𝑋𝑋) = exp (𝑤𝑤𝑘𝑘
𝑇𝑇𝑥𝑥+𝑏𝑏𝑘𝑘)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇𝑥𝑥+𝑏𝑏𝑘𝑘)𝑘𝑘

𝑘𝑘=1
                                  (3.17) 

 
Where 𝑤𝑤𝑘𝑘 and 𝑏𝑏𝑘𝑘 are the weight and bias vectors. We assume there are 𝑘𝑘 

categories. This classification layer takes as input a fixed-dimensional vector, while the 

recurrent layer or convolutional layer returns a variable-length sequence of vectors, this 

can be addressed by wither simply ,max-pooling the vector  as over time dimension for 
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convolutional and recurrent [17] . 

3.8 Unsupervised Learning of Word-Level Embedding 

Initializing word vectors with those obtained from an unsupervised neural 

language model is a popular method to improve performance in the absence of a large, 

supervised training set [3, 80]. 

 It has been recently shown that improvements in model accuracy can be 

obtained by performing unsupervised, pre-trained word embeddings. In our 

experiments, we utilized the publicly available word2vec vectors that were trained on 

100 billion words from Google news. 

 The vectors were trained using a continuous bag-of-words algorithm [26]. 

While the word embeddings are obtained, the model captures syntactic and semantic 

aspects of the words they represent; however, they have no notion about their sentiment 

behavior.  

Word embeddings play an important role in our neural language model. They 

are able to capture syntactic and semantic information, which are very significant to 

sentiment analysis. 
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CHAPTER 4: IMPLEMENTATION AND RESULTS 

4.1  SENTIMENT ANALYSIS DATASETS 

The performance of the proposed model was evaluated on two benchmark 

sentiment analysis datasets: the Stanford Large Movie Review dataset (IMDB) and the 

Stanford Sentiment Treebank dataset (SSTb) [40], derived from Rotten Tomatoes 

movie reviews [103]. As shown in Table 4.1. 

4.1.1  STANFORD LARGE MOVIE REVIEW DATASET 

(IMDB) 

The Stanford Large Movie Review (IMDB) dataset was first proposed by [104] 

as a benchmark for sentiment analysis. It consists of 50,000 binary labeled reviews; the 

reviews are divided into 50:50 training and testing sets.  

The distribution of labels with each subset of data is balanced. We used 15% of 

the labeled training documents as a validation set. One key aspect of this dataset is that 

each review has several sentences. .   

The average length of each document is 241 tokens, with standard deviation of 

198.8 tokens; the maximum length of a document is 2,526 words.  
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Dataset 

 

Set 

 

Sentence 

 

Binary 

    

SSTb Train 8544 2, 5 

 Dev 1101 2,5 

 Test 2210 2, 5 

IMDB Train 2210 2 

 Dev 4k 2 

 Test 25k 2 

    

 
 

Table 4.1 Sentiment Analysis Datasets. 

 

4.1.2 STANFORD SENTIMENT TREEBANK DATASET 

(SSTb) 

The Stanford Sentiment Treebank (SSTb) dataset was first proposed by [103] 

and extended by [40] as a benchmark for sentiment analysis. It consists of 11,855 

reviews taken from the movie review site Rotten Tomatoes, with one sentence for each 

review.  

The SSTb was split into three sets: 8544 sentences for training, 2210 sentences 



 
 

63 

for testing, and 1101 sentences for validation (or development). The SSTb also includes 

fine-grained sentiment labels. In Table 4.1, we present additional details about the two 

benchmark datasets. 

 

4.2 EXPERIMENTAL SETUP 

4.2.1 HYPERPARAMETERS AND TRAINNIG 

We used stochastic gradient descent (SGD) to train the network and the back-

propagation algorithm to compute the gradient. We believe that by adding a recurrent 

layer to the model as an alternative to the pooling layer, we can effectively reduce the 

number of the convolutional layers needed to capture long-term dependencies. 

Therefore, we consider merging a convolutional and recurrent layer into one single 

model. 

 

 

 

 

 

 

 

 
Figure 4.1. Graphical illustration of (a) the convolutional network and (b) the proposed convolutional-

lstm Model for text classification 
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 Our architecture goal is to reduce the need for stacking multiple convolutional 

and pooling layers in the network, as shown in Figure 4.1 in order to reduce the depth of 

the network and the loss of detailed, local information. Thus, in the proposed model. 

We consider convolutional layers with only one layer that has 𝑑𝑑 = 256 filters and a 

receptive field size of 𝑟𝑟 (3,3,5). For an activation function we use rectifier linear units 

in the convolutional layer (ReLU).  

The recurrent layer is fixed to a single layer of LSTM. The hidden state 

dimension is 𝑑𝑑 = 128. For both datasets, the number of training epochs varies between 

(5, 20).  

We compared the proposed model with methods using word embedding and 

convolutional architecture and different deep learning and traditional methods.  

We also focused on the regularization, the learning rate, and dropout parameters; 

we then extracted sentence features with the convolutional layer.  

The recurrent layer provides an indication of the robustness of our approach in 

multiple domains. In Table 4.2, we show the selected hyperparameter value for the 

proposed architecture. 

4.2.2  REGULARZATION      

For regularization we employ dropout as an effective method to regularize deep 

neural networks and neural networks. 

 Dropout prevents co-adaption of hidden units. We apply it with constraint on 

the L2-norms of the weight vectors [105]; we insert dropout modules in between CNN 

and LSTM layers to regularize them i.e., setting zero a proportion 𝑝𝑝 of the hidden units 
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during forward-backpropagation.  

That is, given the penultimate layer 𝑧𝑧 = [𝑐̂𝑐1, … , 𝑐̂𝑐𝑚𝑚] (here we have m filters). 

 

Parameter CNN 
 

RNN-LSTTM 

Word-Embedding-
Dimension 

300 300 

Word Context Units 5 5 
Hidden Units - - 
Learning rate    

0.01 
0.01 

Dropout 0.5 0.5 
   

 
Table 4.2. Hyperparameter initialization ranges. 

4.2.3 OPTIMIZATION 

Training was done through stochastic gradient descent over shuffled mini-

batches. For training and validation, we randomly split the full training examples. The 

size of the validation set is the same as the corresponding test size and is balanced in 

each class.  

We trained the model by minimizing the negative log-likelihood or cross 

entropy loss. Early stopping was utilized to prevent overfitting. In our work, we 

employed unsupervised learning of word-level embedding using the word2vec, which 

implemented the continuous bag-of-words and skip-gram architectures for computing 

vector representations of a word.  

We validated the proposed model on two datasets, considering the difference in 

the number of parameters. However, the accuracy of the model does not increase with 

the number of convolutional layers.  
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More pooling layers typically leads to the loss of long-term dependencies. 

Therefore, in our model we removed the pooling layer from the convolutional network 

and replaced it with a recurrent layer to reduce the loss of local information.  

One recurrent layer is enough to capture long-term dependencies in the input 

sequence. 

4.3 RESULTS AND ANALYSIS  

4.3.1  ANALYSIS OF THE STANFORD SENTIMENT 

TREEBANK DATASET (SSTb) 

For the Stanford Sentiment Analysis dataset (SSTb), we performed several 

experiments to offer a fair comparison with competitive models. We followed the 

experimental protocols as described in [40].  

To make use of the available labeled data, our model treats each sub-phrase as 

an independent sentence, and we learn the representation for all of the sub-phrases in 

the training set.  

We initialized the word vectors with the unsupervised learning of word-level 

embedding using the word2vec algorithm, which implements continuous bag-of-words 

and skip-gram architectures for computing vector representations of a word.  

The (Positive, Negative) presents results for the binary classification of 

sentences, and the fine-grained analysis predicts results for the case where five 

sentiment classes are used (positive, very positive, negative, very negative, and neutral). 

We report the accuracy of different methods in Table 4.3.  
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Figure 4.2.  Accuracy on SSTb dataset for binary predictions 

 

 

 

 

 

 

 

Figure 4.3.  Accuracy on SSTb dataset for fine-grained (5-classes)  

The primary highlight of our result on the SSTb benchmark dataset is that 

traditional methods (SVV, NB, BiNB) with bag-of-words perform poorly compared to 

our proposed deep learning language model. We observed 4%-12% absolute 

improvement in terms of accuracy with the baseline methods proposed in [15]. 

Initializing word-embeddings using unsupervised, pre-trained vectors gives the model 

an absolute accuracy that increased around 8% when compared to randomly initializing 

the vector with a CNN-only architecture [17]. Our model does not require pooling 
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layers, which leads to the more efficient capture of local information compared to the 

networks proposed in [6, 29]. The best previous result was reported by [40, 45] for 

SSTb. Our approach provides a 4% improvement in accuracy over the RNTN method. 

We also reported an 8% performance enhancement over the matrix-vector-RNN. 

 
 

Parameter Fine-Grained 
 

Binary 

RNTN [40] 45.7% 85.4% 

MV-RNN [45] 44.4% 82.9% 

RAE [80] 43.2% 82.4% 

NB [40] 43.2% 82.4% 

SVM [40] 41.0% 79.4% 

CNN-Multi-channel [17] 47.1% 88.1% 

CNN-rand [17] 45.0% 82.7% 

CNN-static [17] 45.5% 86.8% 

CNN-non-static [17] 48.0% 87.2% 

DCNN [43] 48.5% 87.8% 

Paragraph-Vec [24] 48.7% 87.8% 

CNN-GRU-word2vec [12] 50.6% 89.9% 

CNN-LSTM-word2vec [12] 51.5% 89.5% 

Our approach 48.8% 89.2% 

 
Table 4.3. The Performance of our approach compared to other approaches on SSTb dataset. The 

accuracy of fine-grained and binary predications are reported in the Table. 
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Figure 4.4. Predictions of positive and negative on SSTb. 

 

 

Figure 4.5. Prediction of fine-grained on SSTb. 

In fine-grained classification tasks, our method has an absolute improvement of 

7% in terms of accuracy. Figures 4.1 and 4.2 show that SSTb (binary and fine-grained), 

bag-of-n-words model, and (NB, SVM, BiNB) perform poorly on the dataset.  

A similar model was proposed in [12] and achieved better performance in terms 

of accuracy; however these models have more hyperparameter and require subsampling 
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layers.  On the other hand, our proposed model performed very competitively and came 

close to matching other state-of-the-art algorithms on both the binary and fine-grained 

sentiment analyses on the SSTb dataset with fewer parameters. 

 

 

Figure 4.6.  Results on SSTb dataset for binary predictions 

 
 

Figure 4.7.  Results on SSTb dataset for fine-grained (5-classes)  
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4.3.2  ANALYSIS OF STANFORD LARGE MOVIE REVIEW 

DATASET (IMDB) 

Beyond one sentence, each movie review consists of several sentences in the 

IMDB dataset. The results of our method are reported in Table 4.4 on the IMDB 

benchmark dataset compared to other approaches.  

[40] Applied several methods on the IMDB dataset and found that their 

Recursive Neural Tensor Network worked much better than a bag-of-words model; 

however, this model required parsing and took into account the compositionality. 

 Our method performs better than all of the baselines reported in [15]: MNB-uni, 

MNB-bi, SVM-uni, SVM-bi, NBSVM-uni, and NBSVM-bi, with an approximate 

improvement of 2-12% in terms of accuracy.  

When we compared the proposed model with a combined Restricted Boltzmann 

Machines model [106], bag-of-words, and WRRMB+ BoW (bnc), we achieved 4%-7% 

relative improvement and 1%-6% compared with Bow (bnc), Full+ Unlabeled + BoW, 

and paragraph vector [24]. 

 The paragraph vectors proposed in [107] achieved a state-of-the-art result on 

the IMDB dataset; however the model has a reputation for being extremely difficult to 

tune and requires a downsampling parameter to reduce the feature map dimensionality 

for computational efficiency. We found that our proposed architecture, with no 

downsampling layer, achieved competitive results on the IMDB dataset as shown in 

Figure 4.3.  

 



 
 

72 

Parameter Binary 

MNB-uni [15] 83.5% 

MNB-bi [15] 86.6% 

SVM-uni [15] 86.9% 

SVM-bi [15] 89.2% 

NBSVM-uni [15] 88.3% 

NBSVM-bi [15] 91.2% 

WEEBM +Bow [106] 87.8% 

WRBB + Bow (bnc) [106] 89.2% 

BoW (bnc) [104] 87.8% 

Full +Bow [104] 88.3% 

Full +Unlabeled +Bow [104] 88.9% 

Paragraph Vector [24] 92.5% 

Paragraph Vector (LogReg) [23] 94.4% 

Paragraph Vector (2-Layer MLP) [23] 94.5% 

Our approach 93.2% 

 
Table 4.4. The performance of our approach compared to other approaches on IMDB dataset. The 

accuracy of binary prediction. 

The CNN-RNN with max-pooling loses detailed, local features due to the 

pooling layers in the architecture.  

Compared with the existing methods and experiment results, we found that the 

approach takes advantage of both CNN and RNN models on the sentiment classification 

of short texts.  
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Figure 4.8.  Accuracy for 2-classes on IMDB. 

 

Figure 4.9. Prediction of positive and negative on IMDB. 

Our experimental results suggest that by using a LSTM layer on top of a CNN 

architecture, one can effectively reduce the number of convolutional layers needed in 

order to capture long-term dependencies. Furthermore, we observed that many factors 

affect the performance of deep learning models, such as: the dataset size, vanishing and 

exploding of the gradients, and choosing the best feature extractors and classifiers, 

which are all still open research areas. However, there is no specific model for all types 

of datasets. 
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Figure 4.10.  Results on IMDB dataset for binary predictions. 

 

4.4 OVERVIEW  

The challenge in NLP is to develop an architecture that can learn the hierarchal 

representation of the whole sentence jointly with the task. Convolutional neural 

networks consider feature extraction and classification as one jointly trained task.  

The idea of CNNs has been improved upon recently [4, 5, 17, 29, 30] by using 

multiple layers of convolutional and pooling to sequentially extract hierarchal 

representation of input. Reducing the network size has been the interest of several 

works. More compact layers are also used, likely by replacing the fully connected layers 

with average pooling [49].  

In [4] the weights are constrained by binary, which considerably reduces the 

memory consumption. To design a simpler network, [49] removed redundant 
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connections and allowed weight sharing.  In our work we conducted a series of 

experiments with both deep learning and traditional methods to offer a fair comparison 

to competitive models on sentiment analysis benchmark datasets. Figure 4.4 show the 

proposed model compared to similar model.  

 

 

 

 

 

 

 

 

 

Figure 4.11. The proposed CNN-LSTM architecture compare to traditional CNN-RNN with max-pooling 
architecture. 

We did our best to select the architectures that would deliver comparable and 

competitive results. Despite the fact that the CNN-RNN proposed in [12] has a slightly 

higher classification accuracy compared to our proposed model.  

We argue that this result is due to the use of max pooling on adjacent words. 

However, our proposed architecture is simple and efficient in term of layers. Moreover, 

our model has significantly fewer parameters, which means less memory consumption.  

We reported very competitive results in terms of accuracy in comparison to the 

model proposed in [12]. The reported result shows that, compared to the currently most 
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popular LSTM, CNN, and CNN-LSTM methods, our proposed framework can achieve 

similar or even better performance on sentiment analysis tasks. 
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CHAPTER 5: CONCLUSTION 

 
Convolutional neural networks (CNN) learn to extract higher-level features that 

are invariant to local translation. Despite this advantage, it requires many layers of 

convolution to capture long-term dependencies, due to the locality of the convolutional 

and pooling. This becomes more severe as the length of the input sequence grows. 

Ultimately, this leads to the need for a very deep network with many convolutional 

layers. In this dissertation, we presented a new framework to overcome this problem. In 

particular, we aimed to capture the sub-word information and reduce the number of the 

parameters in the architecture. 

Our framework jointly combines CNN and recurrent neural networks (RNN) on 

top of unsupervised, pre-trained word vectors; recurrent layers are expected to preserve 

ordering information even with one single layer. Thus, we exploited a recurrent layer as 

a substitute for the pooling layer to hypothetically reduce the loss of details in local 

information and capture long-term dependencies more efficiently. Our approach 

performed well on two benchmark datasets and achieved a competitive classification 

accuracy while outperforming several other methods. Our results demonstrated that it is 

possible to use a much smaller architecture to achieve the same level of classification 

performance.  
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