

DEEP NEURAL LANGUAGE MODEL FOR TEXT

CLASSIFICATION BASED ON CONVOLUTIONAL AND

RECURRENT NEURAL NETWORKS

Abdalraouf Hassan

Under the Supervision of Dr. Ausif Mahmood

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

May, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/160499974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

DEEP NEURAL LANGUAGE MODEL FOR TEXT

CLASSIFICATION BASED ON CONVOLUTIONAL AND

RECURRENT NEURAL NETWORKS

© Copyright by Abdalraouf Hassan 2018

iv

ABSTRACT

The evolution of the social media and the e-commerce sites produces a massive

amount of unstructured text data on the internet. Thus, there is a high demand to

develop an intelligent model to process it and extract a useful information from it. Text

classification plays an important task for many Natural Language Processing (NLP)

applications such as, sentiment analysis, web search, spam filtering, and information

retrieval, in which we need to assign single or multiple predefined categories to a

sequence of text.

In Neural Network Language Models learning long-term dependencies with

gradient descent is difficult due to the vanishing gradient problem. Recently researchers

started to increase the depth of the network in order to overcome the limitations of the

existing techniques. However, increasing the depth of the network means increasing the

number of the parameters, which makes the network computationally expensive, and

more prone to overfitting. Furthermore, NLP systems traditionally treat words as

discrete atomic symbols; the model can leverage small amounts of information

regarding the relationship between the individual symbols.

In recent years, deep learning models such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) have been applied to language

v

modeling with comparative, remarkable results. CNNs are a noble approach to extract

higher-level features invariant to local translation. However, this method requires the

stacking of multiple convolutional layers in order to capture long-term dependencies

because of the locality of the convolutional and pooling layers.

In this dissertation, we introduce a joint CNN-RNN framework to overcome the

problems in the existing deep learning models. Briefly, we applied an unsupervised

neural language model to train initial word embeddings that are further tuned by our

deep learning network, then the pre-trained parameters of the network are used to

initialize the model. At a final stage, the proposed framework combines former

information with a set of feature maps learned by a convolutional layer with long-term

dependencies learned via Long-Short-Term Memory (LSTM). Empirically, we show

that our approach, with slight hyperparameter tuning and static vectors, achieves

outstanding results on multiple sentiment analysis benchmarks. Our approach

outperforms several existing approaches in term of accuracy; our results are also

competitive with the state-of-the-art results on the Stanford Large Movie Review

(IMDB) dataset, and the Stanford Sentiment Treebank (SSTb) dataset. Our approach

has a significant role in reducing the number of parameters and constructing the

convolutional layer followed by the recurrent layer with no pooling layers. Our results

show that we were able to reduce the loss of detailed, local information and capture

long-term dependencies with an efficient framework that has fewer parameters and a

high level of performance.

vi

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God who has helped me all the way to

complete this work successfully. I owe a debt of gratitude to my family for

understanding and encouragement.

This dissertation would not have been possible without the support of many

people, I would like to thank my advisor and role model Prof. Ausif Mahmood for

providing me with the perfect balance of guidance and freedom and helped me see pros

and cons of so many decisions, small and large. I admire your ability to see the nuances

in everything.

I want to sincerely thank my committee members Dr. Shakour Abuzneid, Dr.

Xingguo Xiong, Dr. Maid Faezipour, and Dr. Minkyu Kim for being my dissertation

committee members and helping me with their valuable and helpful comments, also I

would like to thank Dr. Khaled Elleithy for his guidance and support through the

journey of my PhD.

I dedicate my dissertation to the memory of the soul of my late mother and to

my father. I wouldn’t be where I am today without the amazing support, encouragement

and love from my parents. It’s the passion for exploration and adventure combined with

determination and hard work that I learned from you. Those values are what led me

through my PhD and let me have fun in the process.

vii

TABLE OF CONTENTS

ABSTRACT .. iv
ACKNOWLEDGEMENTS .. vi
TABLE OF CONTENTS ... vii
LIST OF TABLES .. ix
LIST OF FIGURES ... x
CHAPTER 1: INRTODUCTION .. 1

1.1 Research Problem and Motivation ... 7
1.2 Contributions ... 9

CHAPTER 2: LITERATURE SURVEY ... 11
2.1 Traditional Methods for Natural Language Processing ... 11

2.1.1 N-gram Models ... 13
2.1.2 Structured Language Models .. 14
2.1.3 Word Vector Representations ... 15

2.2 Neural Networks: Basics and Definitions .. 16
2.2.1 Neural Network Language Models (NNLMs) .. 19
2.2.2 Feedforward Neural Network Based Language Models (FFNNLMs).......................... 20

2.3 Deep Learning Background ... 21
2.4 Deep Learning for Natural Language Processing .. 22

2.4.1 Windows-Based Neural Networks .. 24
2.5 Convolutional Neural Networks (CNNs) ... 26

2.5.1 Pooling Layer .. 27
2.6 Convolution Neural Networks for Natural Language Processing (CNNs-NLP) 29
2.7 GoogLeNet: Inception Convolution Neural Networks .. 31
2.8 Recurrent Neural Networks (RNNs) .. 35

2.8.1 Recurrent Neural Networks Based Language Models (RNNLMs) 39
2.8.2 The Problem of Long-Term Dependencies ... 40
2.8.3 Vanishing and Exploding Gradients ... 42

2.9 Long Short-Term Memory (LSTM) .. 43
2.10 Bidirectional Recurrent Neural Networks (BRNNs) ... 45
2.11 Gated Recurrent Unite (GRU) ... 46
2.12 Vector Representations of Words .. 47
2.13 Combination of Convolution Neural Networks and Recurrent Neural Networks (CNNs-
RNNs) .. 49

CHAPTER 3: RESEARCH PLAN .. 51
3.1 Deep Neural Network Language Model for Text Classification ... 51
3.2 The Embedding Layer .. 51

viii

3.3 The Convolutional layer .. 53
3.4 The Recurrent Layer .. 54
3.5 LSTM Layer .. 57
3.6 Back Propagation through Time (BPTT) ... 58
3.7 Classification Layer ... 59
3.8 Unsupervised Learning of Word-Level Embedding .. 60

CHAPTER 4: IMPLEMENTATION AND RESULTS ... 61
4.1 SENTIMENT ANALYSIS DATASETS ... 61

4.1.1 STANFORD LARGE MOVIE REVIEW DATASET (IMDB) 61
4.1.2 STANFORD SENTIMENT TREEBANK DATASET (SSTb) 62

4.2 EXPERIMENTAL SETUP .. 63
4.2.1 HYPERPARAMETERS AND TRAINNIG ... 63
4.2.2 REGULARZATION ... 64
4.2.3 OPTIMIZATION .. 65

4.3 RESULTS AND ANALYSIS .. 66
4.3.1 ANALYSIS OF THE STANFORD SENTIMENT TREEBANK DATASET (SSTb) 66
4.3.2 ANALYSIS OF STANFORD LARGE MOVIE REVIEW DATASET (IMDB) 71

4.4 OVERVIEW .. 74
CHAPTER 5: CONCLUSTION .. 77
REFERENCES .. 78

ix

LIST OF TABLES

Table 4.1 Sentiment Analysis Datasets 62

Table 4.2 Hyperparameter initialization ranges 65

Table 4.3 The Performance of our approach compared to other

approaches on SSTb dataset. The accuracy of fine-

grained and binary predications are reported in the Table

68

Table 4.4 The performance of our approach compared to other

approaches on IMDB dataset. The accuracy of binary

prediction.

72

x

LIST OF FIGURES

Figure 2.1 Figure 2.1. Definition of a single neuron with inputs,

activation function and outputs [59]

17

Figure 2.2 These are two commonly used nonlinearities 18

Figure 2.3 The standard structure of a CNN 27

Figure 2.4 Max pooling in CNN 28

Figure 2.5 Convolutional Neural Network Architecture for NLP [86] 30

Figure 2.6 a Inception module with dimension reductions [88] 32

Figure 2.6 b Inception module with dimension reductions [88] 32

Figure 2.7 Recurrent Neural Network Vs Traditional Neural Network 36

Figure 2.8 Recurrent Neural Network with loops 37

Figure 2.9 An unrolled RNNs. 38

Figure 2.10 Simple recurrent neural network [66] 40

Figure 2.11 Long-term dependencies problem in RNNs. 42

Figure 2.12 Detailed Schematic of Recurrent Network Long-term

Memory block [96]

45

Figure 2.13 The CBOW and Skip-gram models 48

Figure 3.1 The Proposed CNN-LSTM architecture 51

xi

Figure 3.2 The architecture of the CBOW and Skip-gram [14] 52

Figure 3.3 Conv-Lstm Model for NLP 54

Figure 3.4 RNN unfold framework [73] 55

Figure 3.5 LSTM Shows the five key architecture elements of LSTM

[21]

58

Figure 4.1 Graphical illustration of (a) the convolutional network and

(b) the proposed convolutional-lstm Model for text

classification

63

Figure 4.2 Accuracy on SSTb dataset for binary predictions 67

Figure 4.3 Accuracy on SSTb dataset for fine-grained 67

Figure 4.4 Prediction of positive and negative on SSTb 69

Figure 4.5 Prediction of fine-grained on SSTb 69

Figure 4.6 Results on SSTb dataset for binary predictions 70

Figure 4.7 Results on SSTb dataset for fine-grained (5-classes) 70

Figure 4.8 Accuracy for 2-classes on IMDB 73

Figure 4.9 Prediction of positive and negative on IMDB 73

Figure 4.10 Results on IMDB dataset for binary predictions 74

Figure 4.11 The proposed CNN-LSTM architecture compare to

traditional CNN-RNN with max-pooling architecture

75

CHAPTER 1: INRTODUCTION

Natural Language Processing (NLP) is a field at the intersection of computer

science, artificial intelligence, and linguistics. The objective of NLP is for computer to

process or understand natural language in order to perform tasks that are useful (e.g.,

making appointments, buying things, question answering).

Text classification is an essential, and plays an important role for many NLP

applications, such as sentiment analysis, information retrieval, web search, ranking and

spam filtering, in which we need to assign single or multiple predefined categories to

sequence of text. The classic approach of text classification typically starts with feature

extraction stage then is followed by a classifier stage. Perhaps one of the popular

technique for feature extraction is to represent a sentence as TF-IDF, then train a linear

classifier, (e.g., a logistic regression or SVM) [1, 2].

Deep Neural Networks (DNNs) based model has shown very good results for

several tasks in NLP [3-12].Despite the good performance of these models, in practice

they are relatively slow at training and testing time; which restrain them for the use of a

large scale of data, and it requires to stack many neural network layers in order to

capture long-term dependencies in sequence of texts.

Deep learning approaches for NLP start with an input sentence is denoted as a

sequence of word, each word is presented as a one-hot vector, and then each word in the

2

sequence is projected into a continuous vector space by being multiplied with a weight

matrix, forming a sequence of dense, and these sequence then fed into deep neural

network, which processes the sequence in multiple layer. Resulting in a prediction

probability. This whole network is tuned jointly to maximize the classification accuracy

on a training set. However, one-hot-vector makes no assumption about the similarity of

words, moreover it is very high dimensional [13, 14]. Most of the recent deep neural

network approaches typically require the text input to be represented as a fixed-length

vector.

 Perhaps the most common fixed-length representation for texts is the bag-of-

words or n-gram [15, 16], because of it is simplicity, efficiency and often surprising

accuracy. However, the bag-of-words has many disadvantages such as: first it is ignore

the semantics of words, second the word order is lost, and therefore different sentences

can have exactly the same representation, as long as the same words are used. N-grams

consider the word order in short context. However, n-grams models suffers from data

sparsity and high dimensionality. Bag-of-words and n-grams models have very small

sense about the semantics of the words, more formally the distance between the words.

Recently, models based on Neural Networks have become increasingly popular

[1, 4, 5, 9, 12-14, 17-30]; it has become possible to train more complex models on much

larger dataset. They typically outperform the simple models. Perhaps the most efficient

model is to use distributed representation of word [31, 32]. For instance neural network

language models outperform n-gram models [13, 20, 33-35]. Currently for text

classification problems a linear classifiers are considered to be the conventional

approach and strong Baselines [1, 15, 36]. Regardless of their simplicity, the linear

3

classifier often obtains the state-of-the-art performances especially when the correct

features are selected.

Deep neural network methods jointly implement feature extraction and

classification for document classification [3, 4, 8, 17, 37]. The deep neural network

based approach convention, in most cases, is an input document represented as a

sequence of words, and each sequence is then represented as one-hot-vector, each word

in the sequence is projected into a continuous vector space by multiplying it with weight

matrix, forming a sequence of dense, real valued vector. This sequence is then fed into a

deep neural network, which processes the sequence in multiple layers, finally resulting

in prediction probability. This pipeline is tuned jointly to maximize the classification

accuracy on training set [8, 11, 12, 17, 29, 30, 38-41].

Convolutional Neural Network (CNN) has recently accomplished a remarkable

performance on the essentially significant task of sentence classification [17, 42, 43].

However, these models require professionals to specify an exact model architecture and

set accompanying hyper-parameters, including the filter region size.

 Recent work by [30] consists of multi layers of CNN and max pooling, similar

to the architecture proposed by [41] in computer vision. In the first stage, each layer

will extract features from small overlapping windows of the input sequence and pools

over small non-overlapping windows by taking the maximum activation in the window.

This is applied recursively for many times. The final convolutional layers are then

flattened to form a vector, which feeds into a small number of fully connected layers

followed by a classification layer.

We observed that that network requires many convolutional and pooling layers

4

in order to capture long-term dependencies, because of the locality of the convolutional

and pooling. As the length of the input grows, this become crucial; that was the

motivation behind [30] to investigate deep convolutional network to overcome these

issues. [29] Investigated the combination of neural network architecture of CNN and

Recurrent Neural Network (RNN) in order to encode character input, which was

implemented to learn high-level feature input sequences of character level to capture

sub word information. However, this model performs better only when a large number

of classes are available. Another successful model applied RNN for NLP was

introduced by [18, 44]; it confirmed that RNN is able to capture long-term dependencies

even in the case of a single layer.

Today RNN is the lead approach for many NLP applications. Recursive Neural

Network was applied to sentence classification [45]; configuration function is defined in

this model and recursively applied at each node of the parse tree of an input sentence. In

order to extract a feature vector of the sentence, the model relies on an external parser.

NLP is a vast area of computer science that is concerned with the interaction

between computers and human language. Language modeling is a fundamental task in

artificial intelligence and NLP. A language model is formalized as a probability

distribution over a sequence of words. Recently, deep learning models have achieved

remarkable results in speech recognition [22] and computer vision [41].

Text classification plays an important role in many NLP applications, such as

sentiment analysis, spam filtering, email categorization, information retrieval, web

search, ranking , and document classification [46, 47], in which one needs to assign

predefined categories to a sequence of text. A popular and common method to represent

5

texts is bag-of-words. However, the bag-of-words method loses the words order and

ignores the semantics of words. N-gram models are popular for statistical language

modeling and usually perform the best [1, 34, 35]. However, an n-gram model suffers

from data sparsity [13].

Neural Networks have become increasingly popular [13, 20, 26]; it has become

possible to train more complex models on a much larger dataset. They outperform n-

gram models and overcome the data sparsity problem [13]; semantically similar words

are close in vector space. The embedding of rare words is poorly estimated, which leads

to higher perplexities for rare words. With the progress of machine learning in recent

years, it has become possible to train more complex models on much larger data sets

[14, 17, 22, 26, 41]. The distributed representation of words is one of the most

successful concepts, and it helps learning algorithms achieve better performance [26].

Convolutional Neural Networks (CNN) [48] recently achieved very successful

results in computer vision [41]. A CNN considers feature extraction and classification

as one joint task. This idea has been improved by stacking multiple convolutional and

pooling layers, which sequentially extract a hierarchical representation of the input [6,

43, 48].

We investigate Recurrent Neural Networks (RNNs) as an alternative for pooling

layers in deep neural network language models to perform a sentiment analysis of a

short text. Most of the deep learning architectures for NLP require stacking many layers

to capture long-term dependences due to the locality of the convolutional and pooling

layers [30]. Our architecture was inspired by the recent success of RNNs in NLP

applications and the fact that RNNs can capture long-term dependencies even with one

6

single layer [44]. We were also inspired by the successful work proposed in [17], where

a single layer of CNN was applied for sentence classification.

It turns out that providing the network with good initialization parameters can

have a significant impact on the accuracy of the trained model and capturing the long-

term dependencies more efficiently. In this paper, we present a joint CNN and RNN

architecture that takes the local features extracted by a CNN as the input for an RNN for

a sentiment analysis of short texts. We propose a new framework that exploits and

combines convolutional and recurrent layers into one single model on top of pre-trained

word vectors. We utilize long short-term memory (LSTM) as a substitute for pooling

layers in order to reduce the loss of detailed, local information and capture long-term

dependencies across the input sequence.

In this dissertation, I propose a neural language model that leverages both

convolutional and recurrent layers to efficiently perform text classification tasks. Based

on our observation from the work proposed in [3, 6, 30, 43] CNN architecture must

have many layers to capture long-term dependencies in an input sentence. Our work is

also inspired from the fact that recurrent layers are able to capture long-term

dependences with one single layer [44]. In our model, we utilize a recurrent layer

LSTM as substitutes for the pooling layer in order to reduce the loss of detailed local

information and capture long-term dependencies. Surprisingly, our model achieved

comparable results on two sentiment analysis benchmarks with less number of

parameters. We show that it is possibly to use a much smaller model to achieve the

same level of classification performance when recurrent layer combined with

convolutional layer.

7

1.1 Research Problem and Motivation

Sentiment analysis for short texts becomes a challenge because of the limit

amount of the contextual information they usually contain. Furthermore, learning good

vector representations for sentences is a challenging task and an ongoing research area.

Moreover, learning long-term dependencies with gradient descent is difficult in neural

network language model because of the vanishing gradients problem, and natural

language processing systems traditionally treat words as discrete atomic symbols; the

model can leverage small amounts of information regarding the relationship between

the individual symbols.

Recently, it became more common to use a deep neural network for natural

language processing systems. Within NLP much of the work with deep leering method

has involved learning word vector representation through neural language models and

performing composition over the learned word vectors for classification.

 In the input sequence it is possible for the gap between the relevant information

to become very large, and this becomes more complex as the length of the input

sequence grows. Furthermore, we observed that most of the existing deep learning

models for NLP has increased the depth of the network in order to capture long-term

dependencies. However increasing the depth of the network lead to increasing the

number of the parameters. Moreover, it will causes the problem of vanishing gradients,

the network will be more prone to overfitting and difficult to optimize.

Convolutional Neural Network (CNN) recently achieved a remarkable results in

8

NLP systems. The objective of using the convolutional layer in the CNN based model is

for it to learn to extract higher-level features that are invariant to local translation, and,

by assembling multiple convolutional layers, the model can extract higher-level

translation invariant features from the input sequence. Regardless of this advantage, we

observed that most of the existing deep models require multiple layers of convolutional

to capture long-term dependencies, and that is because of the locality of the

convolutional and pooling layers. This issue becomes more crucial as the length of the

input sequence grows.

Contrary to the convolutional layer, in Recurrent Neural Network (RNN) based

model the recurrent layer is able to capture long-term dependencies even when there is

only a single layer, because of the hidden state is computed in the whole input

sequence. However, the recurrent layer is computationally more expensive, the

computational complexity grows linearly with respect to the input sequence, and most

of the computations need to be done sequentially, this in contrast to the convolutional

layer for which computations can be efficiently done in parallel.

Based on these observation, in this dissertation I proposed a deep neural network

language model that can capture long-term dependencies in the document more

efficiently for the task of classification. Most of the combination CNN-RNN models

applied several types of pooling. We argue that the pooling layer is the reason for lost

details in local information, because the pooling layer only captures the most important

feature in a sentence; therefore, we exclude the pooling layer and utilized a recurrent

layer to capture long-term dependencies more efficiently and reduce the number of the

parameters in the architecture.

9

 1.2 Contributions
In this dissertation we proposed a novel deep neural network language model

that employs a Convolutional Neural Network (CNN) and Recurrent Neural Network

Long Short-Term Memory (RNN-LSTM) over pre-trained word vectors word2vec to

perform text classification tasks. We exploit LSTM as a substitute of pooling layer in

CNN to reduce the loss of detailed local information and capture long term

dependencies in sequence of sentences.

We introduced an architecture that focuses on parameter reduction in the

network, while also capturing long-term dependencies more efficiently in terms of

accuracy. Our contributions are as follow; In order to capture semantics and syntactic of

subword information. Word embeddings are initialized with unsupervised pre-trained

word vectors [14, 26], which is trained on a large unsupervised collection of words. We

constructed a customized single convolutional layer with multiple filter size to extract

higher-level features from the pre-trained word vectors.

 We employed a CNN to further refine the embeddings on a distance-supervised

dataset, word embedding served as the input to our model in which windows of

different length and various weight matrices are applied to generate a number of feature

maps. The word embeddings and other parameters of the network obtained at the

previous stage are used to initialize the same framework. After the convolutional

operations, we removed the pooling layer and take the encoded feature maps as an input

to Long Sort-Tern Memory Recurrent Neural Network (LSTM-RNN) to asset the

proposed model to capture long-term dependencies.

10

The deep learning framework takes advantage of the encoded local features

extracted from the CNN model and the long-term dependencies captured by the RNN

model. Our results demonstrated that the proposed framework achieves competitive

performance with fewer parameters. The proposed model is simple and efficient with

significantly fewer parameters, which means less memory consumption. The proposed

model is more compact, and less prone to overfitting.

11

CHAPTER 2: LITERATURE SURVEY

Text classification is a classic topic in Natural Language Processing (NLP), in

which one needs to assign predefined categories to free-text documents. The range of

text classification research goes from designing the best features to choosing the best

possible machine learning classifiers. To date, almost all techniques of text

classification are based on words, in which simple statics of some ordered word

combinations (such as n-grams) usually perform the best [1].

The goal of NLP is to process text with computers in order to analyze it, to

extract information and eventually to represent the same information differently. We

may want to associate categories to part of the text (e.g. POS tagging or sentiment

analysis). Structure text differently (e.g. parsing), or convert it to some other form

which preserves all or part of the content (e.g. machine translation, summarization).

2.1 Traditional Methods for Natural Language Processing

Text classification is significant for NLP systems, where there has been an

enormous amount of research on sentence classification tasks, specifically on sentiment

analysis. NLP systems classically treat words as discrete, atomic symbols where the

model leverages a small amount of information regarding the relationship between the

individual symbols.

12

A simple and efficient baseline method for a sentence structure is to represent

the sentence as a bag-of-words and then train a linear classifier (e.g., a logistic

regression). However, the bag-of-words approach omits all of the information about the

semantics and ordering of words [4, 49]. N-gram models are another popular method to

represent a sentence. This method usually performs the best [1].

Words are projected to a high-dimensional space, and then the embedding is

combined to obtain a fixed-size representation of the input sentence, which later is used

as an input to the classifier. Despite the fact that n-gram models take into account word

ordering in short sentences, they do still suffer from data sparsity.

Overall, all simple techniques have limitations for certain tasks. Furthermore,

linear classifiers do not share parameters among features and classes that might limit

their generalization in the context of a large output, where some classes have few

examples.

A popular solution for this problem is to use multilayer neural networks [4, 30],

or to factorize the linear classifier into low-rank matrices [14, 36].

Text classification is an important task in Natural Language Processing (NLP),

there is an enormous research activities on sentence classification tasks specifically on

sentiment analysis.

 NLP systems classically treat words as discrete atomic symbols; the model

leverage small amount of information regarding the relationship between the individual

symbols.

Simple and efficient baseline for sentence is to represent sentence as (bag-of-

words), then train a linear classifier (e.g., a logistic regression). However, bag-of-words

13

omitted all the information’s about words such as semantics and words ordering [1, 13].

2.1.1 N-gram Models

N-grams models is another popular method to represent sentence, it is usually

perform the best [1], word are projected to high dimensional space, and then the

embedding combined to acquire a fixed-size representation of input sentence, which

later use as input to the classifier.

However, n-grams take in account the word ordering in short sentence, but it

suffers from data sparsity and high dimensionality [13]. The probability of a sequence

of symbols (usually words) is computed using a chain rule as

𝑝𝑝(𝑤𝑤) = ∑ 𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤1 …𝑤𝑤𝑖𝑖−1)𝑁𝑁
𝑖𝑖=1 (2.1)

The model frequently used language models are based on the n-gram statistics,

which are basically word co-occurrence frequencies. The maximum likelihood estimate

of probability of word 𝐴𝐴 in context 𝐻𝐻 is then compute as

𝑃𝑃(𝐴𝐴|𝐻𝐻) = 𝐶𝐶(𝐻𝐻𝐻𝐻)
𝐶𝐶(𝐻𝐻)

 (2.2)

Where 𝐶𝐶(𝐻𝐻𝐴𝐴) is the number of times that the 𝐻𝐻 𝐴𝐴 sequence of words has

occurred in the training data? The context 𝐻𝐻 can consist of several words, for the usual

trigram models |𝐻𝐻| = 12 for 𝐻𝐻 = 𝜃𝜃, the model is called unigram, and it does not take

into account history. As many of these probability estimates are going to be zero (for all

words that were not seen in the training data in a particular context 𝐻𝐻), smoothing needs

to be applied.

This works by redistributing probabilities between seen and unseen (zero-

14

frequency) events, by exploiting the fact that some estimates, mostly those based on

single observations, are greatly over-estimated detailed overview of common smoothing

techniques and empirical evaluation can be found in [50].

Simple techniques usually has limitation for some certain tasks. Furthermore,

linear classifiers do not share parameters among features and class, perhaps that might

limits their generalization in the context of large output where some classes have few

examples.

 Popular solution for this problem are to use multilayer neural networks or to

factorize the linear classifier into low rank matrices [14, 30].

2.1.2 Structured Language Models

The statistical language modeling was criticized greatly by the linguists from the

first days of its existence. There are many exampled showing that words in a sentence

are often related, even if they do not lie next to each other.

It can be shown that such patterns cannot be effectively encoded using a finite

state machine (n-gram models belong to this family of computational models).

However, these pattern can be often effectively described while using for example

context free grammars.

This was the motivation for the structured language models that attempt to

bridge differences between the linguistic theories and the statistical models of the

natural languages.

The sentence is viewed as a tree structure generated by a context free grammar,

where leafs are individual words and nodes are non-terminal symbols. The statistical

15

approach is employed when constructing the tree: the derivations have assigned

probabilities that are estimated from the training data, thus every new sentence can be

assigned probability of being generated by the given grammar.

The advantage of these models is in their theoretical ability to represent patters

in a sentence across many words. However there are many disadvantages of the

structures language models: computational complexity and sometimes unstable

behavior, ambiguity, questionable performance when applied to spontaneous speech,

large amount of manual work that has to be done by expert linguists is often required.

2.1.3 Word Vector Representations

The majority of rule-based and statistical language processing algorithms regard

word as atomic symbols. This translates to a very sparse vector representation of the

size of the vocabulary and with a single 1 at the index location of the current word.

This so called “one-hot” representations has the problem that it does not capture

any type of similarity between two words. So if a model sees “cat” in a surrounding

context it cannot use this information when it sees “dog” at the same location during

test time.

[4] induced a model to compute an embedding, the idea is to construct a neural

network that outputs high scores for windows that occur in a large unlabeled corpus and

low scores for windows where one word is replaced by a random word.

When such a network is optimized via gradient ascent the derivatives

backpropagated into a word embedding matrix 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑉𝑉, where V is the size of the

vocabulary.

16

 [3, 5] adapted neural network architecture for training a language task. By

leveraging a large amount of unlabeled text data, and induced word embedding which

were shown to boost generalization performance on all tasks.

[51] Proposed a related language model approach inspired from Restricted

Boltzmann Machines. However, word representations are perhaps more commonly

inferred from n-gram language modelling rather than smoothed language models.

One popular approach is the Brown clustering algorithm [52] which builds

hierarchical word clusters by maximizing the bigram’s mutual information.

The induced word representation has been used with success in a wide variety of

natural language processing tasks, including part of speech (POS) [53], Name Entity

Recognition (NER) [54, 55], or parsing [56]. Other related approaches exist, like phrase

clustering [57] which has been shown to work well for NER.

Finally, [58] Have recently proposed a smoothed language modelling approach

based on a Hidden Markov Model, with success on POS and Chunking tasks.

2.2 Neural Networks: Basics and Definitions

In this section I will give a basic introduction to neural networks. Fig 2.1 show a

single neurons which consists of input, an activation function and the output. Let the

inputs be some n-dimensional vector 𝑥𝑥 ∈ ℝ𝑛𝑛. The output is computed by the following

function:

𝑎𝑎 = 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏), (2.3)

Where 𝑓𝑓defines the activation function. This function is also called a

nonlinearity and commonly used examples are the sigmoid function:

17

𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

, (2.4)

Or the hyperbolic tangent function:

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑥𝑥) = 1−𝑒𝑒−2𝑥𝑥

1+𝑒𝑒−2𝑥𝑥
, (2.5)

Figure 2.1. Definition of a single neuron with inputs, activation function and outputs [59].

The sigmoid activation function maps any real member to the [0, 1] interval.

With this unit, the activation can be interpreted as the probability for the “neural unit”

parameterized by 𝑤𝑤 and the bias 𝑏𝑏 to be on. Despite the loss of a probabilistic

interpretation, the tanh function is often preferred in practice due to better empirical

performance. Both nonlinearities are shown in Fig.2.2.

Various other recent nonlinearities exist such as the hard tanh or rectified linear:

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥), which does not suffer from the vanishing gradient problem. The

choice of nonlinearity should largely by selected by cross-validation over a

development set.

While the clustering algorithms used for constructing class based language

models are quite specific for the language modeling field, artificial neural networks can

18

be successful used for dimensionality reduction as well as for clustering, while being a

very general machine learning technique. Therefore, it is a bit surprising that neural

network based language models have gained attention only after [60], and not much

earlier. Although a lot of interesting work on language modeling using neural networks

was done much earlier [61].

Figure 2.2. These are two commonly used nonlinearities [59].

Although it has been very surprising the NNLMs while very general and simple,

have outperformed many of the competing techniques, including those that were

developed specifically for modeling the language.

Neural network language models today are among the-state-of-the-art

techniques. The main advantage of NNLMs over n-grams is that history is no longer

seen as exact sequence of 𝑡𝑡 − 1 words 𝐻𝐻, but rather as a project of 𝐻𝐻 into some lower

dimensional space.

This reduces number of parameters in the model that have to be trained,

resulting in automatic clustering of similar history.

19

This might sound the same as the motivation for class based models, the main

difference is that NNLMs project all words into the same low dimensional space, and

there can be many degrees of similarity between words.

The disadvantage of this models is very large computational complexity, which

usually prohibits to train these models on full training set, using the full vocabulary.

2.2.1 Neural Network Language Models (NNLMs)

The use of artificial neural networks for sequence prediction is as the neural

network techniques themselves. One of the first widely known attempts to describe

language using neural networks was performed by [61], who applied recurrent neural

network for modeling sentences of words generated by an artificial grammar.

The first serious attempt to build a statistical neural network based language

model of real natural language, together with an empirical comparison of performance

to standard techniques, n-gram models and class based models was done by [20],

followed by [35], who did show that Neural Network Language Models (NNLMs) work

very well in a state of the art in speech recognition systems, and are complementary to

standard n-gram models [62].

However, no techniques or modifications of the original model that would

significantly improve the ability of the model to capture patterns in the language were

published.

 [63, 64] investigated the integration of traditional features into the NNLM

framework such as, part of speech tags or morphology information, the accuracy of the

NNLM still the same until [65, 66] recently have shown that recurrent neural network

20

architecture can work actually better than the feedforward one.

Most of the research work did focus on overcoming practical problems when

using these attractive models: the computational complexity was originally too high for

real world tasks.

It was reported by [60] that training of the original neural net language model

took almost a week using 40 CPUs for just single training epoch, and 10 to 20 epochs

were needed for reaching optimal results.

Despite the limitations, the model provide 20% reduction of perplexity over a

baseline n-gram model, after 5 training epochs.

 Clearly, better results could have been expected if the computational

complexity was not so restrictive, and most of the future research focused on this topic.

The author proposed parallel training parallel training of the model on several CPUs,

which was later repeated and extended by [62].

A very successful extension reduced computation between the hidden layer and

the output layer in the model, using a trick that was originally proposed by Joshua

Goodman for speeding up maximum entropy models [67].

2.2.2 Feedforward Neural Network Based Language Models

(FFNNLMs)

The model was proposed by [20] start with input of the n-gram NNLM is

formed by using a fixed length history of 𝑡𝑡 − 1 words, where each of the previous 𝑡𝑡 −

1 words is encoded using 1-of-V coding, where V is size of the vocabulary.

Thus, every word from the vocabulary is associated with a vector with length V,

21

where only one value corresponding to the index of given word in the vocabulary is 1

and all other values are 0.

This 1-of-V orthogonal representation of words is projected linearly to a lower

dimensional space, using a shared matrix P, called also a projection matrix.

The matrix P is shared among words at different positions in the history, thus the

matrix is the same when projecting word 𝑤𝑤𝑡𝑡−1,𝑤𝑤𝑡𝑡−2 etc. after the projection layer, a

hidden layer with non-linear activation function (usually hyperbolic tangent or a logistic

sigmoid) is used, with a dimensional of 100-300.

An output layer follows, with the size equal to the size of full vocabulary. After

the network is trained, the output layer of n-gram NNLM represents probability

distribution 𝑃𝑃(𝑤𝑤𝑡𝑡|𝑤𝑤𝑡𝑡−4,𝑤𝑤𝑡𝑡−3,𝑤𝑤𝑡𝑡−2,𝑤𝑤𝑡𝑡−1).

[68] Proposed an alternative feedforward architecture of the NNLM. The

problem of learning n-gram NNLM is decomposed into two steps: learning a bigram

NNLM with only the previous word from the history encoded in the input layer. And

then training an n-gram NNLM that projects words from the n-gram history into the

lower dimensional space by using the already trained bigram NNLM.

 Both models are simple feedforward neural networks with one hidden layer,

thus this solution is simpler for implementation and for understanding than the original

models [13, 20, 60]. It provides almost identical results as the original model.

2.3 Deep Learning Background

Most of current machine learning methods work well because of human-

designed representations and inputs features. However, handcrafting feature is time-

22

consuming and features are often both over-specified an incomplete. If machine

learning could learn features automatically, the entire process could be automated more

efficiently and many task could be solved [3, 5, 21, 22, 41, 69].

When machine learning is applied only to the input features it relies on the

optimizing weights to make the best final prediction.

Deep learning can be seen as putting back together representation learning with

machine learning. It attempts to jointly learn good features, across multiple levels of

increasing complexity and abstraction, and the final prediction.

2.4 Deep Learning for Natural Language Processing

After couple of pioneer works [3-5, 13, 60], the use of neural networks for NLP

applications is attracting huge interest in the research community and they are

systematically applied to all NLP tasks. However, while the use of deep neural

networks in NLP has shown very good results for many tasks, it seems that they have

not reached the level to outperform the state-of-the-art by a large margin. As it was

observed in computer vision and speech recognition.

Deep learning can be perceived as putting back together representation learning

with machine learning. It efforts to jointly learn good features, across multiple levels of

increasing complexity and abstraction, and the final prediction.

 Deep Learning achieved significant results in computer vision [41] and speech

recognition [21, 22]. It has become more common to use deep neural methods in NLP

applications; much of the work has involved learning word vector representations

through neural language models, then performing composition over the learned word

23

vectors for classification [3, 6, 8, 17, 20, 38, 70-77].

 Deep Neural Networks (DNNs) and representation learning approaches have

led to new methods for solving the data sparsity problem. Several neural network based

models for learning word representations followed this approach.

Word embedding is the neural representation of a word and is a real vector [13,

26]. Word embedding allows us to measure similarity between words by simply using

the distance between two embedded vectors [14, 26].

Recently, researchers observed that is not necessary for deep neural network to

perform at word level [29, 30].

 As long as the document represented as one-hot-vector, the model could work

without any change, regardless if each one-hot vector corresponds to a word [6, 30].

Character sequence proposed as an alternative to the one-hot vector [29].

Similar ideas also applied to dependency parsing in [28]. Deep Convolution

Neural Network for NLP by [4] composed numerous of layers of convolutional and

max pooling, it is identical to the convolutional architecture in the computer vision.

Several neural sentence models have been described. A general class of basic

sentence models is that of Neural Bag-of-Words (NBoW) models. These generally

consist of a projection layer that maps words, sub-word units or n-grams to high

dimensional embeddings; the latter are then combined component-wise with an

operation such as summation. The resulting combined vector is classified through one

or more fully connected layers.

A model that adopts a more general structure provided by an external parse tree

is the Recursive Neural Network (RecNN) [78-81]. At every node in the tree the

24

contexts at the left and right children of the node are combined by a classical layer. The

weights of the layer are shared across all nodes in the tree. The layer computed at the

top node gives a representation for the sentence.

 The Recurrent Neural Network (RNN) is a special case of the recursive network

where the structure that is followed is a simple linear chain [66, 82]. The RNN is

primarily used as a language model, but may also be viewed as a sentence model with a

linear structure.

 The layer computed at the last word represents the sentence. Finally, a further

class of neural sentence models is based on the convolution operation and the TDNN

architecture [4, 83]. Certain concepts used in these models are central to the DCNN and

we describe them next.

2.4.1 Windows-Based Neural Networks

DNNs have achieved significant results in computer vision [5] and speech

recognition [21, 22]. Recently, it has become more common to use DNNs in NLP

applications, where much of the work involves learning word representations through

neural language models and then performing a composition over the learned word

vectors for classification [5, 6, 8, 17, 21, 28, 40, 45, 76, 80].

These approaches have led to new methods for solving the data sparsity

problem. Consequently, several neural network-based methods for learning word

representations followed these approaches [71, 73-77].

DNNs jointly implement feature extraction and classification for text

classification [5, 6, 23, 36]. DNN-based approaches usually start with an input text,

25

represented as a sequence of words, where each sequence is represented as one-hot

vector; then, each word in the sequence is projected into a continuous vector space.

This happens by multiplying it with a weight matrix, which leads to the creation

of a sequence of dense, actual, valued vectors [18, 84].

 This sequence then feeds into a DNN, which processes the sequence in multiple

layers, resulting in prediction probability. This pipeline is tuned jointly to maximize the

classification accuracy on the training sets [14, 17, 18, 26, 30, 44]. However, one-hot

vector makes no assumption about the similarity of words, and it is also very high-

dimensional [3, 24].

RNNs improve time complexity and analyze texts word-by-word, then preserve

the semantic of all of the previous text in a fixed-sized hidden layer [61].

The capability to capture superior, appropriate statistics could be valuable to

capture the semantics of a long text in an RNN. However, an RNN is a biased model;

recent words are more significant than earlier words. Therefore, they key components

could appear anywhere across the document, not only at the end.

This might reduce the efficiency when used to capture the semantics of a whole

document. Therefore, the long short-term memory (LSTM) model was introduced to

overcome the difficulties of the RNN [60, 85].

A standard RNN makes predictions based only on considering the past words for

a specific task. This technique is suitable for predicting the next word in context.

However, for some tasks, it would be efficient if we could use both past and future

words in tagging a task, as part-of-speech tagging, where we need to assign a tag to

each word in a sentence [28].

26

In this case we already know the sequence of the words, and for each word we

want to take both words to the left (past) and to the right (future) into consideration

when making a prediction. That is exactly what the Bidirectional Neural Network

(BNN) does; it consists of two LSTMs. One runs forward from left to right, and the

other runs backward from right to left. This technique is successful in tagging tasks and

for embedding a sequence into a fixed-length vector [30].

2.5 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) were initially designed for computer

vision [41, 48]. CNNs exploit layers with convolving filters that are applied to local

features, as shown in Figure 2.3.

CNNs reached outstanding results in computer vision where handcrafted

features were used, e.g. scale-invariant features transform (SIFT) followed by a

classifier; the main idea is to consider feature extractors and classifiers as one jointly

trained task [6, 17]. The use of neural networks inspired many researchers after the

successful approaches in [4, 5, 13].

This area has been investigated in recent years, especially by using multi-

convolutional and pooling layers in CNNs and then sequentially extracting hierarchical

representations of the input. CNN models for NLP achieved excellent results in

semantic parsing [38], sentence modeling [43], search query retrieval [37], and other

NLP tasks [5].

Recently, the DNN-based model has shown very good results for several tasks

in NLP [6, 10, 17, 29, 30]. Despite the good performance of these models, in practice

27

they are relatively slow at training and testing, which restrains them from using a large

scale of data, and it requires stacking many convolutional layers in order to capture

long-term dependencies.

Figure 2.3. The standard structure of a CNN.

2.5.1 Pooling Layer

The pooling layers are a key aspect of the CNNs, typically applied after the

convolutional layers. Pooling layers subsampling their input. Max-pooling is one of the

most common way to apply pooling to the feature maps which are the result of each

filter [48].

By performing max pooling in CNN NLP tasks, we are keeping information

about whether the most important feature appeared in the sentence or not. However, we

are losing global information about locality, and where in sentence something happened

[29, 30].

Pooling provides fixed size output, which is essential for classification. Pooling

usually decreases the output dimensionality and preserve most relevant feature.

28

The drawbacks of applying the pooling layers in CNN for NLP tasks, by

performing the max pooling we are only keeping information about the most important

feature appeared in the sentence, and we are losing information about where exactly it

appeared.

Figure 2.4. Max pooling in CNN [48].

The information locality is very important and that is similar to what a bag of n-

grams model is doing. We lose global information about locality, and where in

sentence something happens, but we are keeping local information captured by our

filters.

It is common to periodically insert a Pooling layer in-between successive Conv

layers in a ConvNet architecture. Its function is to progressively reduce the spatial size

of the representation to reduce the amount of parameters and computation in the

network, and hence to also control overfitting. The Pooling Layer operates

independently on every depth slice of the input and resizes it spatially, using the MAX

operation as in Figure 3.4.

29

General pooling. In addition to max pooling, the pooling units can also perform

other functions, such as average pooling or even L2-norm pooling. Average pooling

was often used historically but has recently fallen out of favor compared to the max

pooling operation, which has been shown to work better in practice.

2.6 Convolution Neural Networks for Natural Language Processing

(CNNs-NLP)

Convolutional Neural Networks (CNNs) initially designed for computer vision

[41, 48]. CNNs exploit layers with convolving filters that applied to local features,

CNNs reached an outstanding results in computer vision where handcrafted features

were used, e.g. scale-invariant features transform (SIFT) followed by classifier; the

main idea is to consider features extractors and classifier as one jointly trained task.

The use of neural network inspired many researchers after success approach in

[5], and this area has been investigated in the recent years, especially by using multi

convolutional and pooling layers, then sequentially extract hierarchical representation of

the input.

CNNs models for NLP achieved excellent results in semantic parsing [38],

sentence modeling [43], search query retrieval [44], and other NLP tasks [5]. Recently

CNNs were applied to NLP systems and accomplished very interesting results [17, 29,

44]; convolutional layers are similar to a sliding window over a matrix. CNNs are

numerous layers of convolutions with nonlinear activation functions, such as ReLU or

tanh, applied to the results [86]. As shown in Figure 2.5.

30

Figure 2.5. Convolutional Neural Network Architecture for NLP [86].

 In a classical, feed-forward neural network, each input of a neuron is attached to

each output in the next layer. This is called a fully connected or affine layer. However,

CNNs have different approaches where they use convolutions over the input layer to

compute the output. Local connections compute the output over the input layer, and

then each layer applies different kernels, usually hundreds or thousands of filters, to

then combine their results. During pooling or subsampling layers and during the

training stage.

CNNs learn the values of their filter size based on the tasks. For instance, in

image classification [41] a CNN might learn to detect edges from raw pixels in the first

layer, then use the edges to detect simple shapes in the second layer, and then use these

shapes to detect higher-level features, such as facial shapes, in higher layers. The layer

is then fed to a classifier that uses these high-level features. However, how does this

apply to NLP?

31

As an alternative to image pixels, the input to most NLP tasks consists of

sentences and documents represented as a matrix. Additionally, each row of the matrix

matches up to one token, usually a word or character. Each row is a vector that

represents a word.

Typically, this vector is a word-embedded, low-dimensional representation (e.g.

word2vec, one-hot vectors) that indexes the word into a vocabulary (e.g. a ten word

sentence using a 100-dimensional embedding, 10*100 matrix) as our input. In NLP, a

filter slides over full words of the matrix. Therefore, the width of the filters is same as

the width of the input matrix. Moreover, the region size may vary, but it is usually a

sliding window over two to five words at a time.

2.7 GoogLeNet: Inception Convolution Neural Networks

The objective of the Inception architecture is created on finding out how an

optimal local sparse structure in a convolutional vision network can be estimated and

covered by readily available dense components. Note that assuming translation

invariance means that our network will be built from convolutional building blocks. All

we need is to find the optimal local construction and to repeat it spatially.

[87] Proposed a layer-by layer construction in which one should analyze the

correlation statistics of the last layer and cluster them into groups of units with high

correlation.

These clusters form the units of the next layer and are connected to the units in

the previous layer. We assume that each unit from the earlier layer corresponds to some

region of the input image and these units are grouped into filter banks.

32

Figure 2.6.(a) Inception module, naïve version [88].

Figure 2.6.(b) Inception module with dimension reductions [88].

In the lower layers (the ones close to the input) correlated units would

concentrate in local regions. This means, we would end up with a lot of clusters

concentrated in a single region and they can be covered by a layer of 1×1 convolutions

in the next layer, as suggested in [89]. However, one can also expect that there will be a

33

smaller number of more spatially spread out clusters that can be covered by

convolutions over larger patches, and there will be a decreasing number of patches over

larger and larger regions.

 In order to avoid patch alignment issues, current incarnations of the Inception

architecture are restricted to filter sizes 1×1, 3×3 and 5×5, however this decision was

based more on convenience rather than necessity.

 It also means that the suggested architecture is a combination of all those

layers with their output filter banks concatenated into a single output vector forming the

input of the next stage. Additionally, since pooling operations have been essential for

the success in current state of the art convolutional networks, it suggests that adding an

alternative parallel pooling path in each such stage should have additional beneficial

effect, too, see Figure 2.6.(a).

As these “Inception modules” are stacked on top of each other, their output

correlation statistics are bound to vary: as features of higher abstraction are captured by

higher layers, their spatial concentration is expected to decrease suggesting that the ratio

of 3×3 and 5×5 convolutions should increase as we move to higher layers.

One big problem with the above modules, at least in this naıve form, is that even

a modest number of 5×5 convolutions can be prohibitively expensive on top of a

convolutional layer with a large number of filters. This problem becomes even more

pronounced once pooling units are added to the mix: their number of output filters

equals to the number of filters in the previous stage.

 The merging of the output of the pooling layer with the outputs of convolutional

layers would lead to an inevitable increase in the number of outputs from stage to stage.

34

Even while this architecture might cover the optimal sparse structure, it would do it

very inefficiently, leading to a computational blow up within a few stages.

This leads to the second idea of the proposed architecture: carefully applying

dimension reductions and projections wherever the computational requirements would

increase too much otherwise.

This is based on the success of embeddings: even low dimensional embeddings

might contain a lot of information about a relatively large image patch. However,

embeddings represent information in a dense, compressed form and compressed

information is harder to model. We would like to keep our representation sparse at most

places as required by the conditions of [87], and compress the signals only whenever

they have to be aggregated.

That is, 1×1 convolutions are used to compute reductions before the expensive

3×3 and 5×5 convolutions. Besides being used as reductions, they also include the use

of rectified linear activation which makes them dual-purpose. The final result is

depicted in Figure 2.6. (b).

In general, an Inception network is a network consisting of modules of the above

type stacked upon each other, with occasional max-pooling layers with stride 2 to halve

the resolution of the grid. For technical reasons (memory efficiency during training), it

seemed beneficial to start using Inception modules only at higher layers while keeping

the lower layers in traditional convolutional fashion.

This is not strictly necessary, simply reflecting some infrastructural

inefficiencies in our current implementation.

One of the main beneficial aspects of this architecture is that it allows for

35

increasing the number of units at each stage significantly without an uncontrolled blow-

up in computational complexity.

 The ubiquitous use of dimension reduction allows for shielding the large

number of input filters of the last stage to the next layer, first reducing their dimension

before convolving over them with a large patch size. Another practically useful aspect

of this design is that it aligns with the intuition that visual information should be

processed at various scales and then aggregated so that the next stage can abstract

features from different scales simultaneously.

 The improved use of computational resources allows for increasing both the

width of each stage as well as the number of stages without getting into computational

difficulties. Another way to utilize the inception architecture is to create slightly

inferior, but computationally cheaper versions of it.

We have found that all the included the knobs and levers allow for a controlled

balancing of computational resources that can result in networks that are 2 − 3× faster

than similarly performing networks with non-Inception architecture, however this

requires careful manual design at this point.

2.8 Recurrent Neural Networks (RNNs)

Recurrent neural network (RNN) improved time complexity; in this model text

is analyzes word by word then preserve the semantic of all the previous text in a fixed-

sized hidden layer [61]. As shown in Figure 2.7. The capability to capture superior

appropriate statistics could be valuable to capture semantics of long text in recurrent

network. However, recurrent network is biased model, because recent words more

36

significant than earlier words. Therefore, the key components could appear anywhere

across the document not only at the end.

Figure 2.7. Recurrent Neural Network Vs Traditional Neural Network [90].

This might reduce the efficiency when used to capture the semantic of whole

document. Long short-term Memory (LSTM) model introduced to overcome the

difficulties of the RNN [60, 85].

 A standard RNN makes prediction based only on considering the past word into

account for specific task this technique is create for predicting the next word in context.

However, for some task it would be efficient if we could use both past and future for

instance, tagging task, like part-of-speech tagging, where we need to assign a tag to

each word in a sentence [91].

 In this case we know already all the sequence of the words, and for each word

we want to take both words to the left (past) and words to the right (future) in

consideration when we want our prediction.

That is exactly what Bidirectional neural network does; it consist of two LSTM

one runs forward from left to right, and the other one run backward from right to left.

37

This technique is success in tagging tasks and for embedding a sequence into a fixed-

length vector [29, 90].

Figure 2.8. Recurrent Neural Network with loops.

The intuition of RNNs is that human’s do not start their thinking from scratch

every second, the objective of the recurrent RNNs is to make use of sequential

information, the output is based on the previous computation.

In traditional RNNs all input are independent of each other; while this approach

is inefficient for many task in NLP (e.g. predicting the next word in a sentence) in this

case it is important to know the previous word in order to predict the next word in the

context. RNNs have shown great success in many NLP tasks [22, 44, 85, 91, 92].

RNNs have a memory which captures information in arbitrary long sequences.

In Figure 2.8, a chunk of neural network, looks at input and outputs a value. A loop

allows information to be passes from one step of the network to the next step.

 RNNs is a type of deep neural networks that are deep in temporal dimension

and it has been used widely in time sequence modeling.

The objective behind RNNs for sentence embedding is to find a dense and low

dimensional semantic representation by recurrently and sequentially processing each

38

word in a sentence, and mapping it into a low dimensional vector.

The global contextual feature of the whole text will be in the semantic

representation of the last word in the sequence [21, 22, 93]. We also can think of RNNs

as multiple copies of the same network, where each one is passing a message to

inheritor. What will happens if we unroll the loop, as shown in Figure 2.9.

Figure 2.9. An unrolled RNNs.

We can compute the output 𝑠𝑠𝑡𝑡 as follows in simple RNN:

𝑠𝑠𝑡𝑡 = 𝑓𝑓(𝑊𝑊𝑜𝑜ℎ𝑡𝑡) (2.6)

ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡) (2.7)

Where 𝑊𝑊𝑜𝑜 ,𝑊𝑊ℎ, and 𝑊𝑊𝑥𝑥 are the matrices for hidden layer output ℎ𝑡𝑡, past hidden

layer activity ℎ𝑡𝑡−1 and the input 𝑥𝑥𝑡𝑡.

The time recurrence is presented in Eq. (2) which conveys the present hidden

layer activity ℎ𝑡𝑡with its past hidden layer activity ℎ𝑡𝑡−1. this reliance is nonlinear due to

using of logistic function 𝜎𝜎(.).

39

2.8.1 Recurrent Neural Networks Based Language Models

(RNNLMs)

Recurrent neutral network language model (RNNLM) proposed in [65] and

extension in [66]. The main difference between feedforward and the recurrent

architecture is in representation of history, while for feedforward NNLM, the history is

still just previous several words, for the recurrent model an effective representation of

history is learned from the data during training.

 The hidden layer of RNN represents all previous history and not just 𝑡𝑡 − 1

previous words, thus the model can theoretically represent long context patterns.

Another important advantage of the recurrent architecture over the feedforward

one is the possibility to represent more advanced patterns in the sequential data. For

example, patterns that rely on words that could have occurred at variable position in the

history can be encoded much more efficiently with the recurrent architecture - the

model can simply remember some specific word in the state of the hidden layer, while

the feedforward architecture would need to use parameters for each specific position of

the word in the history; this not only increases the total amount of parameters in the

model, but also the number of training examples that have to be seen to learn the given

pattern [60, 85, 94-96].

The architecture of RNNLM is shown in Figure 2.10. The input layer consist of

a vector 𝑤𝑤(𝑡𝑡) that represents the current word 𝑤𝑤𝑡𝑡 encoded as 1 of V (thus size of 𝑤𝑤(𝑡𝑡)

is equal to the size of the vocabulary), and of vector 𝑠𝑠(𝑡𝑡 − 1) that represents output

values in the hidden layer from the previous time step. After the network is trained, the

40

output layer 𝑦𝑦(𝑡𝑡) represents𝑃𝑃(𝑤𝑤𝑡𝑡+1|𝑤𝑤𝑡𝑡, 𝑠𝑠(𝑡𝑡 − 1)). The network is trained by stochastic

gradient decent using either usual backpropagation (BP) algorithm, or backpropagation

through time (BPTT) [65].

Figure 2.10. Simple recurrent neural network [66].

The network is represented by input, hidden and output layers and

corresponding weight matrices; matrices 𝑈𝑈 and 𝑊𝑊 between the input and the hidden

layer, and matrix 𝑉𝑉 between the hidden and the output layer.

2.8.2 The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect

precious information to the present task, such as using previous video frames might

inform the understanding of the present frame.

 If the RNNs could do this, they would be extremely useful. But can they? It

depends. Some time we only need to look at recent information to perform the present

task. For instance, consider a language model trying to predict the next word based on

41

the previous one. If we are trying to predict the last word we do not need any further

context. Sometime the gap between the relevant information and the place that it is

needed is small, RNNs can learn to use the past information.

In classic RNNs during the gradient back propagation stage, the gradient signal

can end up being multiplied multiple of times (as many as the number of the time steps)

by the weight matrix; that linked with the connection between the neurons of the

recurrent hidden layer. As shown in Figure 2.11.

Which means that, the volume of weights in the transition matrix can have a

significant impact on the learning process. If the weights matrix are small meaning that

the leading eigenvalue of the weight matrix is smaller than one, then it can cause the

vanishing gradients problem, where the gradient signal become very small then learning

become very slow or stops working.

Furthermore, it can make the task of learning long-term dependencies more

difficult in the data. On the other hand, if the weights in this matrix are larger meaning

the leading eigenvalue of the weight matrix is larger than one, then it can lead to

situation where the gradient signal is very large, and then that can cause learning to

swerve; this called exploding gradients problem [92].

RNNs consider as deep neural networks across many time instance, the gradient

of a sentence may not be able to back-propagate to the beginning of a sentence, and that

is due to many of nonlinearity transformations [29, 61, 70].

 RNNs might be able to link previous information to the present task, such as

using the earlier video frames might inform the understanding of the current frame.

Sometimes we need to look at a latest information to perform the current task. It is

42

possible for the gap between the relevant information and the point where is needed to

become very large. And if that gap grows, then RNNs become unable to learn to

connect the information.

Figure 2.11. Long-term dependences problem in RNNs.

LSTM is an extension of RNN [33, 97] instead of using the nonlinear

connection between the past hidden activity and the current layer hidden activity, it uses

a linear dependence to relate its past memory to the current memory. Most important, in

LSTM the forget gate was presented to restrain each element of the past memory to be

contributed to the current memory cell.

2.8.3 Vanishing and Exploding Gradients

By the early 1990s, the vanishing gradient problem emerged as a major obstacle

to recurrent network performance [92].

Just as a straight line expresses a change in x alongside a change in y, the

gradient expresses the change in all weights with regard to the change in error. If we

cannot know the gradient, then we cannot adjust the weights in a direction that will

decrease error, and our network stops to learn.

43

Recurrent nets looking for to establish connections between a final output and

events many time steps before were hobbled, because it is very difficult to know how

much importance to accord to remote inputs [48, 60].

This is partially because the information flowing through neural nets passes

through many stages of multiplication, and because the layers and time steps of deep

neural networks relate to each other through multiplication, derivatives are susceptible

to vanishing or exploding.

Exploding gradients treat every weight as though it were the proverbial butterfly

whose flapping wings cause a distant hurricane. Those weights’ gradients become

saturated on the high end; i.e. they are presumed to be too powerful. But exploding

gradients can be solved relatively easily, because they can be truncated or squashed.

Vanishing gradients can become too small for computers to work with or for networks

to learn – a harder problem to solve. The data is flattened until, for large stretches, it has

no detectable slope. This is analogous to a gradient vanishing as it passes through many

layers.

2.9 Long Short-Term Memory (LSTM)

Long Short Term Memory network, usually called (LSTM), are special kind of

RNN, capable of capturing learning long-term dependencies [85]. The memory cell is

consist of four main components: Input gate, Memory cell, Forget gate, Output gate.

The self-recurrent connection has a weight of one, the state of the memory cell can

remain constant from one time-step to another.

The gates assist to control the interfaces between the memory cell itself and its

44

environment, input gate can allow incoming signal to alter the state of the memory cell

or block it, the output gate can allow the state of the memory cell to have an effect on

other neurons or prevent it. Finally, the forget gate can control the memory cell’s self-

recurrent connection, allowing the cell to remember or forget its previous state as

needed [60].

The traditional RNN we described above is hard to train due to the gradient

vanishing and exploding problems, which is due to the nonlinear relation between ℎ𝑡𝑡

and ℎ𝑡𝑡−1, LSTM introduces a linear dependence between the memory cell 𝑐𝑐𝑡𝑡 and its

past 𝑐𝑐𝑡𝑡−1 . Furthermore, LSTM has input and output gates applied on non-linear

function. LSTM is describe as follows:

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡−1) (2.8)

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1) (2.9)

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑠𝑠𝑡𝑡⨀tanh (𝑊𝑊𝑥𝑥𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1) (2.10)

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑜𝑜𝑐𝑐𝑡𝑡) (2.12)

ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡⨀tanh (𝑐𝑐𝑡𝑡) (2.13)

Where 𝑠𝑠𝑡𝑡, 𝑓𝑓𝑡𝑡 and 𝑠𝑠𝑡𝑡 are the input gate, forget and output gate. The core idea of

LSTM is the cell state, it run straight down the entire chain.

 LSTM able to add and remove information to the cell state regulated by gates,

which are composed of sigmoid layer, the sigmoid layer produce numbers between zero

and one, zero means “stop anything to go through”, while one means “let everything

through”.

45

Figure 2.12. Detailed Schematic of Recurrent Network Long Short-Term Memory block [96].

LSTM allows preservation of gradients. The memory cell remembers the first

inputs as long as the forget gate is open and the input gate is closed. The output gate

provides finer control to switch the output layer on or off without altering the cell

contents. As described in Figure 2.12.

2.10 Bidirectional Recurrent Neural Networks (BRNNs)

Bidirectional Recurrent Neural Networks (BRNNs) [98, 99] do not require their

input data to be fixed and their future input information is reachable from the current

state. One property of the recurrent layer is that there is imbalance in the amount of

information seen by the hidden states at different time steps.

 The objective is to connect two hidden layers of opposite directions to the same

output. The output layer can get information from past and future states. The earlier

hidden states only observe a few vectors from the lower layer, while the later ones are

computed based on most of the lower-layer vectors.

46

BRNN is composed of two recurrent layers working in opposite directions,

which will return two sequences of hidden states from the forward and reverse recurrent

layers, respectively.

𝐻𝐻𝑥𝑥𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (ℎ1→,ℎ2→, … , ℎ𝑇𝑇′
→) (2.14)

𝐻𝐻𝑓𝑓𝑒𝑒𝑟𝑟𝑒𝑒𝑓𝑓𝑟𝑟𝑒𝑒 = (ℎ1←,ℎ2←, … ,ℎ𝑇𝑇′
←) (2.15)

Then we take the last hidden states of both directions and concatenate them to

form a fixed-dimensional vector:

ℎ = [ℎ𝑇𝑇′
→ ;ℎ1←] (2.16)

Finally, the fixed-dimensional vector h is fed into the classification layer to

compute the predictive probabilities 𝑝𝑝(𝑦𝑦 = 𝑘𝑘|𝑋𝑋) of all the categories 𝑘𝑘 = 1, … ,𝐾𝐾 given

the input sequence 𝑋𝑋.

2.11 Gated Recurrent Unite (GRU)

Gated Recurrent Unit (GRU) is a RNNs variant proposed in [18], the network

combines the forget and input gates into a single update gate, also merge cell state and

hidden state, it is similar to LSTM using gating functions, the GRU does not have a

memory cell, GRU operation can be describe as following:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡)ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡ℎ�𝑡𝑡 (2.17)

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 − 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1) (2.18)

ℎ𝑡𝑡� = tanh (𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟𝑡𝑡⨀ℎ𝑡𝑡−1)) (2.19)

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1) (2.20)

Where the output from GRU is tt zh , and tr are the update gate and rest gate.

47

~
h is the candidate output. ,,,, zrhz UWWW And rU are the matrices in GRU.

2.12 Vector Representations of Words

Word2vec model proposed by [14, 26]. This model is used for learning vector

representations of words, called (word embedding). Natural language processing

systems traditionally treat words as discrete atomic symbols, and therefore 'cat' may be

represented as Id537 and 'dog' as Id143. These encodings are arbitrary, and provide no

useful information to the system regarding the relationships that may exist between the

individual symbols.

This means that the model can leverage very little of what it has learned about

'cats' when it is processing data about 'dogs' (such that they are both animals, four-

legged, pets, etc.). Representing words as unique, discrete ids furthermore leads to data

sparsity, and usually means that we may need more data in order to successfully train

statistical models. Using vector representations can overcome some of these obstacles.

Vector space models (VSMs) represent words in a continuous vector space

where semantically similar words are mapped to nearby points, and embedded nearby

each other. VSMs have a long, rich history in NLP, but all methods depend in some

way or another on the Distributional Hypothesis, which states that words that appear in

the same contexts share semantic meaning.

The different approaches that leverage this principle can be divided into two

categories: count-based methods (e.g. Latent Semantic Analysis) [100], and predictive

methods (e.g. neural probabilistic language models) [20].

48

Figure 2.13. The CBOW and Skip-gram models [14].

This distinction is elaborated in much more detail by [101], but in a nutshell:

Count-based methods compute the statistics of how often some word co-occurs with its

neighbor words in a large text corpus, and then map these count-statistics down to a

small, dense vector for each word.

Predictive models directly try to predict a word from its neighbors in terms of

learned small, dense embedding vectors (considered parameters of the model).

Word2vec is a particularly computationally-efficient predictive model for

learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-

of-Words model (CBOW) and the Skip-Gram model [14]. Algorithmically, these

models are similar, except that CBOW predicts target words (e.g. 'mat') from source

context words ('the cat sits on the'), while the skip-gram does the inverse and predicts

source context-words from the target words.as illustrated in Figure 2.13.

 This inversion might seem like an arbitrary choice, but statistically it has the

effect that CBOW smoothest over a lot of the distributional information (by treating an

49

entire context as one observation).

For the most part, this turns out to be a useful thing for smaller datasets.

However, skip-gram treats each context-target pair as a new observation, and this tends

to do better when we have larger datasets.

2.13 Combination of Convolution Neural Networks and Recurrent Neural

Networks (CNNs-RNNs)

The combination of both CNNs and RNNs is explored for speech recognition

[27], and a similar approach was applied to image classification [41]. [29] Investigated

the combination of CNN-RNN to encode character input, and implemented a high-level

feature input sequence of character level to capture sub-word information. However,

this model performs best when a large number of classes are available.

[69] Outlined structured attention networks, which incorporate graphical models

to generalize simple attention, describe the technical machinery and computational

techniques for backpropagation through models of this form.

[77] aimed to improve representation efficiency, and the model employed

Differential State Framework (DSF). DSF models maintain longer-term memory by

learning to interpolate between a fast-changing, data-driven representation and a slowly

changing, implicitly stable state.

[11] Investigated an approach to advance the accuracy of the deep learning

method for sentiment analysis by incorporating domain knowledge; this paper

combined domain knowledge with deep learning, using sentiment scores learnt by

regression to augment the training data. They also utilized weighting across entropy

50

with a penalty matrix as an enhanced loss function.

We observed that the use of a vanilla CNN for text classification has one

drawback. In [29] the network must have many layers in order to capture long-term

dependencies in an input sentence. Perhaps that might be the motivation behind [6],

which utilized a very deep convolutional network with several convolutional layers

followed by two fully connected layers.

51

CHAPTER 3: RESEARCH PLAN

3.1 Deep Neural Network Language Model for Text Classification

In this section, we present the details of the proposed model is shown in Figure

3.1, which consists of convolutional and recurrent neural networks. Our model’s

architecture uses word embeddings as inputs and takes them to a convolutional neural

network to learn to extract high-level features, whose outputs are then given to a long

short-term memory recurrent neural network language model to assets the model to

capture long term dependencies, then finally followed by a classifier layer.

Figure 3.1. The proposed CNN-LSTM architecture

3.2 The Embedding Layer

The first layer of the network transforms words into real-valued feature vectors

52

that capture semantic and syntactic information. Our model’s input is a sequence of

words [𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑟𝑟], with each word being derived from vocabulary 𝑉𝑉. Words are

denoted by distributed vector 𝑊𝑊 ∈ 𝑅𝑅1∗𝑓𝑓 and looked up in a word embedding

matrix 𝑊𝑊 ∈ 𝑅𝑅1∗|𝑉𝑉| . This is formed by simply concatenating embeddings of all words in

V.

Figure 3.2. Architecture for the CBOW and Skip-gram [14].

We initialized the model using word vectors obtained from unsupervised neural

language model which is a popular method to improve performance in the absence of a

large supervised training set. We exploits word2vec that were trained on 100 billion

words from Google News [14, 26].

Words not existent are initialized randomly; initializing the word vectors with

pre-trained vectors obtained from an unsupervised neural language model is a very

successful method [17].

It can capture syntactic and semantic information, which are very important for

sentiment analysis task. In our work, we preform unsupervised learning of word-level

53

embeddings using word2vec tool [14], that implement skip-gram and continuous bag-

of-words architectures for computing vector representations of words as shown in

Figure 3.2.

3.3 The Convolutional layer

The model shown in Figure 3.3 is a slight variant of the CNN architecture of [5].

Let 𝑥𝑥𝑖𝑖 ∈ ℝ𝑘𝑘 to be the k-dimensional word vector corresponding to the 𝑠𝑠𝑡𝑡ℎ word in the

sentence of length 𝑡𝑡, which is represented as:

𝑥𝑥1:𝑛𝑛 = 𝑥𝑥1⨁𝑥𝑥2 … ⨁𝑥𝑥𝑛𝑛, (3.1)

Where ⨁ is the concatenation operator, overall let 𝑥𝑥𝑖𝑖∷𝑖𝑖+𝑗𝑗 refer to the

concatenation of words 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1, … 𝑥𝑥𝑖𝑖+𝑗𝑗. The convolutional operational consists of a

filter𝑤𝑤 ∈ ℝℎ𝑘𝑘, which is applied to a windows of ℎ words to produce a new features. For

instance, a feature is 𝑐𝑐𝑖𝑖 is generated from a window of words 𝑥𝑥𝑖𝑖:𝑖𝑖+ℎ−1 by:

𝑐𝑐𝑖𝑖 = 𝑓𝑓(𝑤𝑤. 𝑥𝑥𝑖𝑖:𝑖𝑖+ℎ−1 + 𝑏𝑏). (3.2)

Where 𝑏𝑏 ∈ ℝ a bias is term and 𝑓𝑓 is a non-linear function such as the hyperbolic

tangent. This filter is applied to each possible window of words in the sentence

{𝑥𝑥1:ℎ, 𝑥𝑥2:ℎ+1, … , 𝑥𝑥𝑛𝑛−ℎ+1:𝑛𝑛} to produce a feature map of:

𝑐𝑐 = [𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛−ℎ+1], (3.3)

With 𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛−ℎ+1. Then, we fed the feature maps to a recurrent layer LSTM in

order to capture long-term dependencies. This technique will reduce the number of

parameters in the proposed model.

Max-over-time pooling operation was not applied, we argue that the pooling

54

layer is the reason for lost details in local information, because the pooling layer only

captures the most important feature in a sentence and ignored the others; therefore, we

attempt to exclude the pooling layer and utilize it with a recurrent layer to assist the

model to capture long-term dependencies more efficiently and reduce the number of the

parameters in the proposed architecture; we fed the feature map into single layer of

LSTM.

Figure 3.3. Conv-Lstm Model for NLP

3.4 The Recurrent Layer

The objective of the RNN is to make use of sequential information, and the

output is based on the previous computation. All inputs are independent of each other in

traditional neural network, while this approach is inefficient for many tasks in NLP (e.g.

predicting the next word in a sentence) in this case it is important to know the previous

word. RNN has a memory that capture information in arbitrary long sequences, which is

illustrated in Fig 3.4.

55

ℎ𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡,ℎ𝑡𝑡−1), (3.4)

Where 𝑥𝑥𝑡𝑡 ∈ ℝ𝑓𝑓 one time step from the input sequence, (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇).ℎ𝑜𝑜 ∈

ℝ𝑓𝑓 often initialized as an all-zero vector.

Recursive neural networks proved to be efficient for constructing sentence

representations. The model has a tree structure which is able to capture the semantic of

sentence. However, this is a time-consuming task due to constructing the textual tree

complexity [28].

Figure 3.4. RNN unfold framework [73].

Recurrent neural network has enhanced time complexity. In this model, text is

analyzed word by word and then preserves the semantic of all the previous text in a

fixed-sized hidden layer [61].

 The capability to capture superior appropriate statistics could be valuable for

capture semantics of long text in recurrent networks. However, recurrent networks is

biased model, because recent words are more significant than earlier words. Therefore,

the key components could appear anywhere across the document and not only at the

end; this might reduce the efficiency when used to capture the semantic of the whole

56

document. The LSTM model was introduced to overcome these difficulties.

The most naïve recursive function is known to be suffer from the problem of

vanishing gradient. More recently it is common to use Long Short-Term Memory

LSTM [85, 94]. RNN in Figure 3.4 is a type of neural network architecture specially

used for sequence modeling. At each time step 𝑡𝑡, a recurrent layer takes the input vector

𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑛𝑛 and hidden state ℎ𝑡𝑡 by applying the recursive operation:

ℎ𝑡𝑡 = 𝑓𝑓(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑡𝑡−1 + 𝑏𝑏) (3.5)

Where 𝑊𝑊 ∈ 𝑅𝑅𝑚𝑚∗𝑛𝑛, 𝑏𝑏 ∈ 𝑅𝑅𝑚𝑚∗𝑚𝑚, 𝑏𝑏 ∈ 𝑅𝑅𝑚𝑚 parameters, and 𝑓𝑓 is an element-wise

nonlinearity. Learning long-term dependencies with a vanilla RNN is difficult because

of the vanishing and exploding gradient [92].

The Long short-term memory LSTM [60, 85] overcomes the deficiencies of the

vanilla RNNs by augmenting the RNNs with a memory cell that takes as an

input𝑥𝑥𝑡𝑡,ℎ𝑡𝑡−1, 𝑐𝑐𝑡𝑡−1, and produces ℎ𝑡𝑡 , 𝑐𝑐𝑡𝑡 by the following:

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (3.6)

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (3.7)

𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (3.8)

𝕘𝕘𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝕘𝕘𝑥𝑥𝑡𝑡 + 𝑈𝑈𝕘𝕘ℎ𝑡𝑡−1 + 𝑏𝑏𝕘𝕘) (3.9)

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡⨀𝑐𝑐𝑡𝑡−1 + 𝑠𝑠𝑡𝑡⨀𝕘𝕘𝑡𝑡 (3.10)

ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡 ⊙ tanh (𝑐𝑐𝑡𝑡) (3.11)

57

Where 𝜎𝜎, and 𝑡𝑡𝑎𝑎𝑡𝑡ℎ are the element-wise sigmoid and hyperbolic tangent

function and 𝑠𝑠𝑡𝑡,𝑓𝑓𝑡𝑡, 𝑠𝑠𝑡𝑡 are referred to as input, forget, and output gates. At 𝑡𝑡 = 1,ℎ0, 𝑐𝑐0

are initialized to zero vector. ⨀ The element-wise multiplication operator. Parameters

of the LSTM are preservative with respect to time.

LSTM outperforms vanilla RNNs on many tasks, including language modeling

[44]. It is easy to extend LSTM to more than one layer, having multiple layers is critical

for attaining competitive performance on various tasks [21].

3.5 LSTM Layer

LSTM is more complicated function that learns to control the flow of

information, to prevent the vanishing gradient and to allow the recurrent layer to more

easily capture long-term dependencies. LSTM was initially proposed in [60, 85] and

later modified in [21].

RNN has problems of gradient vanishing or explosion. Meanwhile, RNNs are

considered as deep neural networks across many time instances. The gradient at the end

of the sentence may not be able to back-propagate to the beginning of the sentence,

because of the nonlinearity transformation [41, 61]. These problems are the main

motivation behind the LSTM model, which introduces a new structure called a memory

cell in Figure 3.5. The memory cell is consist of four main components: input, output,

forget gates and candidate memory cell. The following equations describe how the

memory cells layer are updated at every timestep 𝑡𝑡. First, we compute the values for 𝑠𝑠𝑡𝑡,

the input gate, and �̃�𝑐𝑡𝑡 the candidate value for the states of the memory cells at time 𝑡𝑡:

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖 (3.12)

58

�̃�𝑐𝑡𝑡 = tanh (𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (3.13)

Given the new value of the input gate activation 𝑠𝑠𝑡𝑡, the forget gate activation 𝑓𝑓𝑡𝑡

and the candidate state value �̃�𝑐𝑡𝑡, we can compute 𝑐𝑐𝑡𝑡 the memory cells new state at

time 𝑡𝑡:

𝑐𝑐𝑡𝑡 = 𝑠𝑠𝑡𝑡 ∗ �̃�𝑐 + 𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 (3.14)

With the new state of the memory cells, we compute the value of their output

gates and, subsequently, their outputs

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑜𝑜) (3.15)

ℎ𝑡𝑡 = 𝑠𝑠𝑡𝑡 ∗ tanh (𝑐𝑐𝑡𝑡) (3.16)

Where 𝑥𝑥𝑡𝑡 is the input to the memory cell layer at time 𝑡𝑡.

 𝑊𝑊𝑖𝑖,𝑊𝑊𝑥𝑥 ,𝑊𝑊𝑐𝑐,𝑊𝑊𝑜𝑜,𝑈𝑈𝑖𝑖,𝑈𝑈𝑥𝑥 ,𝑈𝑈𝑐𝑐,𝑈𝑈𝑜𝑜, and 𝑉𝑉𝑜𝑜 are weight matrices. 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑥𝑥 ,𝑏𝑏𝑐𝑐, 𝑏𝑏𝑜𝑜, are bias vectors.

Figure 3.5. LSTM. Shown the five key architecture elements of LSTM [21].

3.6 Back Propagation through Time (BPTT)

Back propagation through time (BPTT) is the key algorithm that makes training

59

deep models computationally controllable, and it is a way of computing gradients of

expression through the recursive application of the chain rule. The core issue we are

given is some function 𝑓𝑓(𝑥𝑥) were 𝑥𝑥 is the vector of inputs, and we are interested in

computing the gradient of 𝑓𝑓 at 𝑥𝑥(𝑠𝑠. 𝑒𝑒∇𝑓𝑓(𝑥𝑥)).

Error can be even backpropagated further [31]. BPTT is a simple extension of

the backpropagation algorithm for recurrent neural network; with BPTT the error is

broadcasted via recurrent connection back in time for specific time steps. Therefore, the

network absorbs and remembers information for numerous time steps in the hidden

layer when it is learned by BPTT. More details about the implementation described can

be found in [102].

3.7 Classification Layer

The classification layer is in principle, a logistic regression classifier. It gives a

fixed-dimensional input from the lower layer; the classification layer affine transforms

it, followed by a softmax activation function to compute the predictive probabilities for

all the categories [102]. This done by:

𝑝𝑝(𝑦𝑦 = 𝑘𝑘|𝑋𝑋) = exp (𝑓𝑓𝑘𝑘
𝑇𝑇𝑥𝑥+𝑏𝑏𝑘𝑘)

∑ exp (𝑓𝑓𝑘𝑘
𝑇𝑇𝑥𝑥+𝑏𝑏𝑘𝑘)𝑘𝑘

𝑘𝑘=1
 (3.17)

Where 𝑤𝑤𝑘𝑘 and 𝑏𝑏𝑘𝑘 are the weight and bias vectors. We assume there are 𝑘𝑘

categories. This classification layer takes as input a fixed-dimensional vector, while the

recurrent layer or convolutional layer returns a variable-length sequence of vectors, this

can be addressed by wither simply ,max-pooling the vector as over time dimension for

60

convolutional and recurrent [17] .

3.8 Unsupervised Learning of Word-Level Embedding

Initializing word vectors with those obtained from an unsupervised neural

language model is a popular method to improve performance in the absence of a large,

supervised training set [3, 80].

 It has been recently shown that improvements in model accuracy can be

obtained by performing unsupervised, pre-trained word embeddings. In our

experiments, we utilized the publicly available word2vec vectors that were trained on

100 billion words from Google news.

 The vectors were trained using a continuous bag-of-words algorithm [26].

While the word embeddings are obtained, the model captures syntactic and semantic

aspects of the words they represent; however, they have no notion about their sentiment

behavior.

Word embeddings play an important role in our neural language model. They

are able to capture syntactic and semantic information, which are very significant to

sentiment analysis.

61

CHAPTER 4: IMPLEMENTATION AND RESULTS

4.1 SENTIMENT ANALYSIS DATASETS

The performance of the proposed model was evaluated on two benchmark

sentiment analysis datasets: the Stanford Large Movie Review dataset (IMDB) and the

Stanford Sentiment Treebank dataset (SSTb) [40], derived from Rotten Tomatoes

movie reviews [103]. As shown in Table 4.1.

4.1.1 STANFORD LARGE MOVIE REVIEW DATASET

(IMDB)

The Stanford Large Movie Review (IMDB) dataset was first proposed by [104]

as a benchmark for sentiment analysis. It consists of 50,000 binary labeled reviews; the

reviews are divided into 50:50 training and testing sets.

The distribution of labels with each subset of data is balanced. We used 15% of

the labeled training documents as a validation set. One key aspect of this dataset is that

each review has several sentences. .

The average length of each document is 241 tokens, with standard deviation of

198.8 tokens; the maximum length of a document is 2,526 words.

62

Dataset

Set

Sentence

Binary

SSTb Train 8544 2, 5

 Dev 1101 2,5

 Test 2210 2, 5

IMDB Train 2210 2

 Dev 4k 2

 Test 25k 2

Table 4.1 Sentiment Analysis Datasets.

4.1.2 STANFORD SENTIMENT TREEBANK DATASET

(SSTb)

The Stanford Sentiment Treebank (SSTb) dataset was first proposed by [103]

and extended by [40] as a benchmark for sentiment analysis. It consists of 11,855

reviews taken from the movie review site Rotten Tomatoes, with one sentence for each

review.

The SSTb was split into three sets: 8544 sentences for training, 2210 sentences

63

for testing, and 1101 sentences for validation (or development). The SSTb also includes

fine-grained sentiment labels. In Table 4.1, we present additional details about the two

benchmark datasets.

4.2 EXPERIMENTAL SETUP

4.2.1 HYPERPARAMETERS AND TRAINNIG

We used stochastic gradient descent (SGD) to train the network and the back-

propagation algorithm to compute the gradient. We believe that by adding a recurrent

layer to the model as an alternative to the pooling layer, we can effectively reduce the

number of the convolutional layers needed to capture long-term dependencies.

Therefore, we consider merging a convolutional and recurrent layer into one single

model.

Figure 4.1. Graphical illustration of (a) the convolutional network and (b) the proposed convolutional-

lstm Model for text classification

64

 Our architecture goal is to reduce the need for stacking multiple convolutional

and pooling layers in the network, as shown in Figure 4.1 in order to reduce the depth of

the network and the loss of detailed, local information. Thus, in the proposed model.

We consider convolutional layers with only one layer that has 𝑠𝑠 = 256 filters and a

receptive field size of 𝑟𝑟 (3,3,5). For an activation function we use rectifier linear units

in the convolutional layer (ReLU).

The recurrent layer is fixed to a single layer of LSTM. The hidden state

dimension is 𝑠𝑠 = 128. For both datasets, the number of training epochs varies between

(5, 20).

We compared the proposed model with methods using word embedding and

convolutional architecture and different deep learning and traditional methods.

We also focused on the regularization, the learning rate, and dropout parameters;

we then extracted sentence features with the convolutional layer.

The recurrent layer provides an indication of the robustness of our approach in

multiple domains. In Table 4.2, we show the selected hyperparameter value for the

proposed architecture.

4.2.2 REGULARZATION

For regularization we employ dropout as an effective method to regularize deep

neural networks and neural networks.

 Dropout prevents co-adaption of hidden units. We apply it with constraint on

the L2-norms of the weight vectors [105]; we insert dropout modules in between CNN

and LSTM layers to regularize them i.e., setting zero a proportion 𝑝𝑝 of the hidden units

65

during forward-backpropagation.

That is, given the penultimate layer 𝑧𝑧 = [�̂�𝑐1, … , �̂�𝑐𝑚𝑚] (here we have m filters).

Parameter CNN

RNN-LSTTM

Word-Embedding-
Dimension

300 300

Word Context Units 5 5
Hidden Units - -
Learning rate

0.01
0.01

Dropout 0.5 0.5

Table 4.2. Hyperparameter initialization ranges.

4.2.3 OPTIMIZATION

Training was done through stochastic gradient descent over shuffled mini-

batches. For training and validation, we randomly split the full training examples. The

size of the validation set is the same as the corresponding test size and is balanced in

each class.

We trained the model by minimizing the negative log-likelihood or cross

entropy loss. Early stopping was utilized to prevent overfitting. In our work, we

employed unsupervised learning of word-level embedding using the word2vec, which

implemented the continuous bag-of-words and skip-gram architectures for computing

vector representations of a word.

We validated the proposed model on two datasets, considering the difference in

the number of parameters. However, the accuracy of the model does not increase with

the number of convolutional layers.

66

More pooling layers typically leads to the loss of long-term dependencies.

Therefore, in our model we removed the pooling layer from the convolutional network

and replaced it with a recurrent layer to reduce the loss of local information.

One recurrent layer is enough to capture long-term dependencies in the input

sequence.

4.3 RESULTS AND ANALYSIS

4.3.1 ANALYSIS OF THE STANFORD SENTIMENT

TREEBANK DATASET (SSTb)

For the Stanford Sentiment Analysis dataset (SSTb), we performed several

experiments to offer a fair comparison with competitive models. We followed the

experimental protocols as described in [40].

To make use of the available labeled data, our model treats each sub-phrase as

an independent sentence, and we learn the representation for all of the sub-phrases in

the training set.

We initialized the word vectors with the unsupervised learning of word-level

embedding using the word2vec algorithm, which implements continuous bag-of-words

and skip-gram architectures for computing vector representations of a word.

The (Positive, Negative) presents results for the binary classification of

sentences, and the fine-grained analysis predicts results for the case where five

sentiment classes are used (positive, very positive, negative, very negative, and neutral).

We report the accuracy of different methods in Table 4.3.

67

Figure 4.2. Accuracy on SSTb dataset for binary predictions

Figure 4.3. Accuracy on SSTb dataset for fine-grained (5-classes)

The primary highlight of our result on the SSTb benchmark dataset is that

traditional methods (SVV, NB, BiNB) with bag-of-words perform poorly compared to

our proposed deep learning language model. We observed 4%-12% absolute

improvement in terms of accuracy with the baseline methods proposed in [15].

Initializing word-embeddings using unsupervised, pre-trained vectors gives the model

an absolute accuracy that increased around 8% when compared to randomly initializing

the vector with a CNN-only architecture [17]. Our model does not require pooling

68

layers, which leads to the more efficient capture of local information compared to the

networks proposed in [6, 29]. The best previous result was reported by [40, 45] for

SSTb. Our approach provides a 4% improvement in accuracy over the RNTN method.

We also reported an 8% performance enhancement over the matrix-vector-RNN.

Parameter Fine-Grained

Binary

RNTN [40] 45.7% 85.4%

MV-RNN [45] 44.4% 82.9%

RAE [80] 43.2% 82.4%

NB [40] 43.2% 82.4%

SVM [40] 41.0% 79.4%

CNN-Multi-channel [17] 47.1% 88.1%

CNN-rand [17] 45.0% 82.7%

CNN-static [17] 45.5% 86.8%

CNN-non-static [17] 48.0% 87.2%

DCNN [43] 48.5% 87.8%

Paragraph-Vec [24] 48.7% 87.8%

CNN-GRU-word2vec [12] 50.6% 89.9%

CNN-LSTM-word2vec [12] 51.5% 89.5%

Our approach 48.8% 89.2%

Table 4.3. The Performance of our approach compared to other approaches on SSTb dataset. The

accuracy of fine-grained and binary predications are reported in the Table.

69

Figure 4.4. Predictions of positive and negative on SSTb.

Figure 4.5. Prediction of fine-grained on SSTb.

In fine-grained classification tasks, our method has an absolute improvement of

7% in terms of accuracy. Figures 4.1 and 4.2 show that SSTb (binary and fine-grained),

bag-of-n-words model, and (NB, SVM, BiNB) perform poorly on the dataset.

A similar model was proposed in [12] and achieved better performance in terms

of accuracy; however these models have more hyperparameter and require subsampling

70

layers. On the other hand, our proposed model performed very competitively and came

close to matching other state-of-the-art algorithms on both the binary and fine-grained

sentiment analyses on the SSTb dataset with fewer parameters.

Figure 4.6. Results on SSTb dataset for binary predictions

Figure 4.7. Results on SSTb dataset for fine-grained (5-classes)

71

4.3.2 ANALYSIS OF STANFORD LARGE MOVIE REVIEW

DATASET (IMDB)

Beyond one sentence, each movie review consists of several sentences in the

IMDB dataset. The results of our method are reported in Table 4.4 on the IMDB

benchmark dataset compared to other approaches.

[40] Applied several methods on the IMDB dataset and found that their

Recursive Neural Tensor Network worked much better than a bag-of-words model;

however, this model required parsing and took into account the compositionality.

 Our method performs better than all of the baselines reported in [15]: MNB-uni,

MNB-bi, SVM-uni, SVM-bi, NBSVM-uni, and NBSVM-bi, with an approximate

improvement of 2-12% in terms of accuracy.

When we compared the proposed model with a combined Restricted Boltzmann

Machines model [106], bag-of-words, and WRRMB+ BoW (bnc), we achieved 4%-7%

relative improvement and 1%-6% compared with Bow (bnc), Full+ Unlabeled + BoW,

and paragraph vector [24].

 The paragraph vectors proposed in [107] achieved a state-of-the-art result on

the IMDB dataset; however the model has a reputation for being extremely difficult to

tune and requires a downsampling parameter to reduce the feature map dimensionality

for computational efficiency. We found that our proposed architecture, with no

downsampling layer, achieved competitive results on the IMDB dataset as shown in

Figure 4.3.

72

Parameter Binary

MNB-uni [15] 83.5%

MNB-bi [15] 86.6%

SVM-uni [15] 86.9%

SVM-bi [15] 89.2%

NBSVM-uni [15] 88.3%

NBSVM-bi [15] 91.2%

WEEBM +Bow [106] 87.8%

WRBB + Bow (bnc) [106] 89.2%

BoW (bnc) [104] 87.8%

Full +Bow [104] 88.3%

Full +Unlabeled +Bow [104] 88.9%

Paragraph Vector [24] 92.5%

Paragraph Vector (LogReg) [23] 94.4%

Paragraph Vector (2-Layer MLP) [23] 94.5%

Our approach 93.2%

Table 4.4. The performance of our approach compared to other approaches on IMDB dataset. The

accuracy of binary prediction.

The CNN-RNN with max-pooling loses detailed, local features due to the

pooling layers in the architecture.

Compared with the existing methods and experiment results, we found that the

approach takes advantage of both CNN and RNN models on the sentiment classification

of short texts.

73

Figure 4.8. Accuracy for 2-classes on IMDB.

Figure 4.9. Prediction of positive and negative on IMDB.

Our experimental results suggest that by using a LSTM layer on top of a CNN

architecture, one can effectively reduce the number of convolutional layers needed in

order to capture long-term dependencies. Furthermore, we observed that many factors

affect the performance of deep learning models, such as: the dataset size, vanishing and

exploding of the gradients, and choosing the best feature extractors and classifiers,

which are all still open research areas. However, there is no specific model for all types

of datasets.

74

Figure 4.10. Results on IMDB dataset for binary predictions.

4.4 OVERVIEW

The challenge in NLP is to develop an architecture that can learn the hierarchal

representation of the whole sentence jointly with the task. Convolutional neural

networks consider feature extraction and classification as one jointly trained task.

The idea of CNNs has been improved upon recently [4, 5, 17, 29, 30] by using

multiple layers of convolutional and pooling to sequentially extract hierarchal

representation of input. Reducing the network size has been the interest of several

works. More compact layers are also used, likely by replacing the fully connected layers

with average pooling [49].

In [4] the weights are constrained by binary, which considerably reduces the

memory consumption. To design a simpler network, [49] removed redundant

75

connections and allowed weight sharing. In our work we conducted a series of

experiments with both deep learning and traditional methods to offer a fair comparison

to competitive models on sentiment analysis benchmark datasets. Figure 4.4 show the

proposed model compared to similar model.

Figure 4.11. The proposed CNN-LSTM architecture compare to traditional CNN-RNN with max-pooling
architecture.

We did our best to select the architectures that would deliver comparable and

competitive results. Despite the fact that the CNN-RNN proposed in [12] has a slightly

higher classification accuracy compared to our proposed model.

We argue that this result is due to the use of max pooling on adjacent words.

However, our proposed architecture is simple and efficient in term of layers. Moreover,

our model has significantly fewer parameters, which means less memory consumption.

We reported very competitive results in terms of accuracy in comparison to the

model proposed in [12]. The reported result shows that, compared to the currently most

76

popular LSTM, CNN, and CNN-LSTM methods, our proposed framework can achieve

similar or even better performance on sentiment analysis tasks.

77

CHAPTER 5: CONCLUSTION

Convolutional neural networks (CNN) learn to extract higher-level features that

are invariant to local translation. Despite this advantage, it requires many layers of

convolution to capture long-term dependencies, due to the locality of the convolutional

and pooling. This becomes more severe as the length of the input sequence grows.

Ultimately, this leads to the need for a very deep network with many convolutional

layers. In this dissertation, we presented a new framework to overcome this problem. In

particular, we aimed to capture the sub-word information and reduce the number of the

parameters in the architecture.

Our framework jointly combines CNN and recurrent neural networks (RNN) on

top of unsupervised, pre-trained word vectors; recurrent layers are expected to preserve

ordering information even with one single layer. Thus, we exploited a recurrent layer as

a substitute for the pooling layer to hypothetically reduce the loss of details in local

information and capture long-term dependencies more efficiently. Our approach

performed well on two benchmark datasets and achieved a competitive classification

accuracy while outperforming several other methods. Our results demonstrated that it is

possible to use a much smaller architecture to achieve the same level of classification

performance.

78

REFERENCES

[1] T. Joachims, "Text categorization with support vector machines: Learning with many

relevant features," in European conference on machine learning, Berlin, Germany,

pp. 137-142, 1998.

[2] Y. Mu, Y. Fan, L. Mao, and S. Han, "Event-related theta and alpha oscillations

mediate empathy for pain," Brain research, vol. 1234, pp. 128-136, 2008.

[3] R. Collobert, "Deep Learning for Efficient Discriminative Parsing," in AISTATS, Fort

Lauderdale, FL, USA, vol. 15, pp. 224-232, 2011.

[4] R. Collobert and J. Weston, "A unified architecture for natural language processing:

Deep neural networks with multitask learning," in Proceedings of the 25th

international conference on Machine learning, Helsinki, Finland, pp. 160-167, 2008.

[5] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

"Natural language processing (almost) from scratch," Journal of Machine Learning

Research, vol. 12, pp. 2493-2537, 2011.

[6] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, "Very Deep Convolutional

Networks for Natural Language Processing," arXiv preprint arXiv:1606.01781, 2016.

[7] A. M. Dai and Q. V. Le, "Semi-supervised sequence learning," in Advances in Neural

Information Processing Systems, Montreal, Quebec, Canada, pp. 3079-3087, 2015.

79

[8] C. N. Dos Santos and M. Gatti, "Deep Convolutional Neural Networks for Sentiment

Analysis of Short Texts," in In Proceedings of COLING, the 25th International

Conference on Computational Linguistics, pp. 69-78., Dublin, Ireland, pp. 69-78,

2014.

[9] C. N. dos Santos and B. Zadrozny, "Learning Character-level Representations for

Part-of-Speech Tagging," in The 31st International Conference on Machine Learning,

Beijing, China, pp. 1818-1826, 2014.

[10] A. Hassan and A. Mahmood, "Convolutional Recurrent Deep Learning Model for

Sentence Classification," IEEE Access, vol. 6, pp. 13949-13957, 2018.

[11] K. Vo, D. Pham, M. Nguyen, T. Mai, and T. Quan, "Combination of Domain

Knowledge and Deep Learning for Sentiment Analysis," in International Workshop

on Multi-disciplinary Trends in Artificial Intelligence, Gadong, Brunei Darussalam,

pp. 162-173, 2017.

[12] X. Wang, W. Jiang, and Z. Luo, "Combination of Convolutional and Recurrent

Neural Network for Sentiment Analysis of Short Texts," in The 26th International

Conference on Computational Linguistic, Osaka, Japan, pp. 2428-2437, 2016.

[13] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain, "Neural

probabilistic language models," in Innovations in Machine Learning, pp. 137-186,

2006.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word

representations in vector space," arXiv preprint arXiv:1301.3781, 2013.

80

[15] S. Wang and C. D. Manning, "Baselines and bigrams: Simple, good sentiment and

topic classification," in Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics, Jeju Island, Korea, vol 2, pp. 90-94, 2012.

[16] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, "Large language models in

machine translation," in In Proceedings of the Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning, Prague, Czech Republic, 2007.

[17] Y. Kim, "Convolutional neural networks for sentence classification," arXiv

preprint arXiv:1408.5882, 2014.

[18] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly

learning to align and translate," arXiv preprint arXiv:1409.0473, 2014.

[19] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and

new perspectives," IEEE transactions on pattern analysis and machine intelligence,

vol. 35, no. 8, pp. 1798-1828, 2013.

[20] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, "A neural probabilistic

language model," journal of machine learning research, vol. 3, pp. 1137-1155, 2003.

[21] A. Graves, "Generating sequences with recurrent neural networks," arXiv preprint

arXiv:1308.0850, 2013.

[22] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech recognition with deep

recurrent neural networks," in International Conference on Acoustics, Speech and

Signal Processing, Vancouver, Canada, pp. 6645-6649, 2013

81

[23] J. Hong and M. Fang, "Sentiment analysis with deeply learned distributed

representations of variable length texts," Technical report, Stanford University, CA,

USA, pp. 655-665, 2015.

[24] Q. V. Le and T. Mikolov, "Distributed Representations of Sentences and

Documents," in The 31st International Conference on Machine Learning, Beijing,

China, vol. 14, pp. 1188-1196, 2014.

[25] G. LU, "Word representations: a simple and general method for semi-supervised

learning," in Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, Uppsala, Sweden, pp. 384-394, 2015.

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed

representations of words and phrases and their compositionality," in Advances in

neural information processing systems, Lake Tahoe, Nevada, USA, pp. 3111-3119,

2013.

[27] T. N. Sainath et al., "Deep convolutional neural networks for large-scale speech

tasks," Neural Networks, vol. 64, pp. 39-48, 2015.

[28] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, "Parsing natural scenes and

natural language with recursive neural networks," in Proceedings of the 28th

international conference on machine learning, Bellevue, Washington, USA, pp. 129-

136, 2011.

[29] Y. Xiao and K. Cho, "Efficient Character-level Document Classification by

Combining Convolution and Recurrent Layers," arXiv preprint arXiv:1602.00367,

2016.

82

[30] X. Zhang, J. Zhao, and Y. LeCun, "Character-level convolutional networks for

text classification," in Advances in Neural Information Processing Systems, Montreal,

Quebec, Canada, pp. 649-657, 2015.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by

back-propagating errors," Nature 323, p. 533-536, 1986.

[32] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, "Distributed

representations," Parallel distributed processing: Explorations in the microstructure

of cognition, vol. 1, no. 3, pp. 77-109, 1986.

[33] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černocký, "Strategies for

training large scale neural network language models," in Automatic Speech

Recognition and Understanding, Hawaii, USA, pp. 196-201, 2011.

[34] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Černocký, "Empirical

evaluation and combination of advanced language modeling techniques," in Twelfth

Annual Conference of the International Speech Communication Association,

Florence, Italy, 2011.

[35] H. Schwenk, "Continuous space language models," Computer Speech &

Language, vol. 21, no. 3, pp. 492-518, 2007.

[36] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, "Bag of Tricks for Efficient

Text Classification," arXiv preprint arXiv:1607.01759, 2016.

[37] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, "Learning semantic

representations using convolutional neural networks for web search," in Proceedings

of the 23rd International Conference on World Wide Web, Seoul, Republic of Korea,

pp. 373-374, 2014.

83

[38] Yih, W.T. He, X, and Meek, C, "Semantic Parsing for Single-Relation Question

Answering," in in Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics, Baltimore, Maryland, USA, vol2, pp. 643-648, 2014.

[39] J. Weston, S. Chopra, and K. Adams, "# TagSpace: Semantic embeddings from

hashtags," presented at the Proceedings of the Conference on Empirical Methods in

Natural Language Processing, Doha, Qatar, pp. 1822-1827, 2014.

[40] R. Socher et al., "Recursive deep models for semantic compositionality over a

sentiment treebank," in Proceedings of the conference on empirical methods in

natural language processing, Seattle, Washington, USA, pp. 1631-1642, 2013.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, Lake Tahoe, CA, USA, pp. 1097-1105, 2012.

[42] R. Johnson and T. Zhang, "Effective use of word order for text categorization

with convolutional neural networks," arXiv preprint arXiv:1412.1058, 2014.

[43] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, "A convolutional neural

network for modelling sentences," arXiv preprint arXiv:1404.2188, 2014.

[44] M. Sundermeyer, H. Ney, and R. Schlüter, "From feedforward to recurrent LSTM

neural networks for language modeling," IEEE/ACM Transactions on Audio, Speech

and Language Processing, vol. 23, no. 3, pp. 517-529, 2015.

[45] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, "Semantic compositionality

through recursive matrix-vector spaces," in Proceedings of the Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, Jeju Island, Korea, pp. 1201-1211, 2012.

84

[46] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

"Indexing by latent semantic analysis," Journal of the American society for

information science, vol. 41, no. 6, pp. 391-407, 1990.

[47] B. Pang and L. Lee, "Opinion mining and sentiment analysis," Foundations and

trends in information retrieval, vol. 2, no. 1-2, pp. 1-135, 2008.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied

to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

1998.

[49] A. McCallum and K. Nigam, "A comparison of event models for naive bayes text

classification," in AAAI-98 workshop on learning for text categorization, Madison,

Wisconsin, USA, vol. 752, pp. 41-48, 1998.

[50] S. F. Chen and J. Goodman, "An empirical study of smoothing techniques for

language modeling," Computer Speech & Language, vol. 13, no. 4, pp. 359-394,

1999.

[51] A. Mnih and G. Hinton, "Three new graphical models for statistical language

modelling," in Proceedings of the 24th international conference on Machine

learning, Corvallis, OR, USA, pp. 641-648, 2007.

[52] P. F. Brown, V. J. D. Pietra, R. L. Mercer, S. A. D. Pietra, and J. C. Lai, "An

estimate of an upper bound for the entropy of English," Computational Linguistics,

vol. 18, no. 1, pp. 31-40, 1992.

[53] H. Schütze, "Distributional part-of-speech tagging," in Proceedings of the seventh

conference on European chapter of the Association for Computational Linguistics,

Dublin, Ireland, pp. 141-148, 1995.

85

[54] S. Miller, J. Guinness, and A. Zamanian, "Name tagging with word clusters and

discriminative training," in Proceedings of the Human Language Technology

Conference of the North American Chapter of the Association for Computational

Linguistics, Boston, MA, USA, 2004.

[55] L. Ratinov and D. Roth, "Design challenges and misconceptions in named entity

recognition," in Proceedings of the Thirteenth Conference on Computational Natural

Language Learning, Boulder, Colorado, USA, pp. 147-155, 2009.

[56] T. Koo, X. Carreras, and M. Collins, "Simple semi-supervised dependency

parsing," in Proceedings of ACL, Columbus, Ohio, USA, pp. 595-603, 2008.

[57] D. Lin and X. Wu, "Phrase clustering for discriminative learning," in Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP,

Singapore, pp. 1030-1038, 2009.

[58] F. Huang and A. Yates, "Distributional representations for handling sparsity in

supervised sequence-labeling," in Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP, Singapore, pp. 495-503, 2009.

[59] R. Socher, "Recursive deep learning for natural language processing and

computer vision," , Stanford University, CA, USA, 2014.

[60] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, "Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies," ed: A field guide to

dynamical recurrent neural networks, 2001.

86

[61] J. L. Elman, "Finding structure in time," Cognitive science, vol. 14, no. 2, pp.

179-211, 1990.

[62] H. Schwenk and J.-L. Gauvain, "Training neural network language models on

very large corpora," in Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language Processing, Vancouver,

British Columbia, Canada, pp. 201-208, 2005.

[63] A. Emami and F. Jelinek, "Exact training of a neural syntactic language model,"

in Acoustics, Speech, and Signal Processing, Monreal, Quebec, Canada, vol. 1, pp. I-

245, 2004.

[64] A. Alexandrescu and K. Kirchhoff, "Factored neural language models," in

Proceedings of the Human Language Technology Conference of the NAACL, New

York, NY, USA, pp. 1-4, 2006.

[65] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur, "Recurrent

neural network based language model," in Eleventh Annual Conference of the

International Speech Communication Association, Makuhari, Japan, 2010.

[66] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, "Extensions

of recurrent neural network language model," in International Conference on

Acoustics, Speech and Signal Processing, Prague, Czech Republic, pp. 5528-5531,

2011.

[67] J. Goodman, "Classes for fast maximum entropy training," in International

Conference of Acoustics, Speech, and Signal Processing, Salt Lake, Utah, USA, pp.

561-564, 2001.

87

[68] T. Mikolov, J. Kopecky, L. Burget, and O. Glembek, "Neural network based

language models for highly inflective languages," in International Conference on

Acoustics, Speech and Signal Processing, Taipei, Taiwan, pp. 4725-4728, 2009.

[69] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, "Structured attention networks,"

arXiv preprint arXiv:1702.00887, 2017.

[70] T. Mikolov, W.-t. Yih, and G. Zweig, "Linguistic Regularities in Continuous

Space Word Representations," in The Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

Atlanta, GA, USA, pp. 746-751, 2013.

[71] L. C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, "Semantic

image segmentation with task-specific edge detection using cnns and a

discriminatively trained domain transform," arXiv preprint arXiv:1511.03328, 2015.

[72] J. Gao, L. Deng, M. Gamon, X. He, and P. Pantel, "Modeling interestingness with

deep neural networks," in Proceedings of the Conference on Empirical Methods in

Natural Language Processing, Doha, Qatar, pp. 2-13, 2014.

[73] A. Hassan and A. Mahmood, "Deep Learning approach for sentiment analysis of

short texts," in The 3rd International Conference on Control, Automation and

Robotics, Nagoya, Japan, pp. 705-710, 2017

[74] A. Hassan and A. Mahmood, "Deep learning for sentence classification,"

presented at the Systems, Applications and Technology Conference, Long Island,

NY, USA, 2017.

[75] S. Albelwi And A. Mahmood, "A Framework for Designing the Architectures of

Deep Convolutional Neural Networks." Entropy, vol. 19, no 9, p. 242, 2017.

88

[76] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, "Character-aware neural language

models," arXiv preprint arXiv:1508.06615, 2015.

[77] A. G. Ororbia II, T. Mikolov, and D. Reitter, "Learning simpler language models

with the differential state framework," Neural computation, vol. 29, no. 12, pp. 3327-

3352, 2017.

[78] J. B. Pollack, "Recursive distributed representations," Artificial Intelligence, vol.

46, no. 1-2, pp. 77-105, 1990.

[79] A. Küchler and C. Goller, "Inductive learning in symbolic domains using

structure-driven recurrent neural networks," in Annual Conference on Artificial

Intelligence, pp. 183-197, 1996.

[80] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, "Semi-

supervised recursive autoencoders for predicting sentiment distributions," in

Proceedings of the conference on empirical methods in natural language processing,

Edinburgh, United Kingdom, pp. 151-161, 2011.

[81] K. M. Hermann and P. Blunsom, "The role of syntax in vector space models of

compositional semantics," in Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics, Sofia, Bulgaria, vol. 1, pp. 894-904, 2013.

[82] F. A. Gers and E. Schmidhuber, "LSTM recurrent networks learn simple context-

free and context-sensitive languages," IEEE Transactions on Neural Networks, vol.

12, no. 6, pp. 1333-1340, 2001.

[83] N. Kalchbrenner and P. Blunsom, "Recurrent continuous translation models," in

Proceedings of the Conference on Empirical Methods in Natural Language

Processing, Seattle, Washington, USA, pp. 1700-1709, 2013.

89

[84] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, "Attention-

based models for speech recognition," in Advances in neural information processing

systems, Montreal, Quebec, Canada, pp. 577-585, 2015.

[85] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[86] Y. Zhang and B. Wallace, "A sensitivity analysis of (and practitioners' guide to)

convolutional neural networks for sentence classification," arXiv preprint

arXiv:1510.03820, 2015.

[87] S. Arora, A. Bhaskara, R. Ge, and T. Ma, "Provable bounds for learning some

deep representations," in International Conference on Machine Learning, Beijing,

China, pp. 584-592, 2014.

[88] C. Szegedy et al., "Going deeper with convolutions," presented at the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-9, Boston,

MA, USA, 2015.

[89] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint

arXiv:1312.4400, 2013.

[90] A. Hassan and A. Mahmood, "Efficient Deep Learning Model for Text

Classification Based on Recurrent and Convolutional Layers," presented at the The

16th International Conference on Machine Learning and Applications, Cancun,

Mexico, 2017.

[91] N. M. Mayer, "Echo State Condition at the Critical Point," Entropy, vol. 19, no. 1,

p. 3, 2016.

90

[92] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with

gradient descent is difficult," IEEE transactions on neural networks, vol. 5, no. 2, pp.

157-166, 1994.

[93] R. Pascanu, T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent

neural networks," presented at the The 30th International Conference on Machine

Learning, Atlanta, GA, USA, pp. 1310-1318, 2013.

[94] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual

prediction with LSTM," Neural computation, vol. 12, no. 10, pp. 2451-2471, 2000.

[95] A. Graves and J. Schmidhuber, "Framewise phoneme classification with

bidirectional LSTM and other neural network architectures," in International Joint

Conference on Neural Networks, Montreal, QC, Canada, vol. 18, no. 5, pp. 602-610,

2005.

[96] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,

"LSTM: A search space odyssey," arXiv preprint arXiv:1503.04069, 2015.

[97] T. Mikolov, "Language Modeling for Speech Recognition in Czech," Masters

thesis, Brno University of Technology, Brno, Czechia, 2007.

[98] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE

Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.

[99] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, "Exploiting the past

and the future in protein secondary structure prediction," Bioinformatics, vol. 15, no.

11, pp. 937-946, 1999.

[100] T. K. Landauer, Foltz, P.W., and Laham, D, " An introduction to latent semantic

analysis," Discourse processes, vol 25, no 2-3, pp. 259-284, 1998.

91

[101] M. Baroni, G. Dinu, and G. Kruszewski, "Don't count, predict! A systematic

comparison of context-counting vs. context-predicting semantic vectors," in The 52nd

Annual Meeting of the Association for Computational Linguistics, Baltimore,

Maryland, USA, vol. 1, pp. 238-247, 2014.

[102] M. Boden, "A guide to recurrent neural networks and backpropagation," The

Dallas project, SICS technical report, 2002.

[103] B. Pang and L. Lee, "Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales," in Proceedings of the 43rd annual

meeting on association for computational linguistics, Ann Arbor, Michigan, pp. 115-

124, 2005.

[104] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, "Learning

word vectors for sentiment analysis," in Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics, Portland, Oregon, pp. 142-150, 2011.

[105] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature

detectors," arXiv preprint arXiv:1207.0580, 2012.

[106] G. E. Dahl, R. P. Adams, and H. Larochelle, "Training restricted boltzmann

machines on word observations," arXiv preprint arXiv:1202.5695, 2012.

[107] J. Hong and M. Fang, "Sentiment Analysis with Deeply Learned Distributed

Representations of Variable Length Texts," Technical report, Stanford University,

CA, USA, pp. 655-665, 2015.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: Inrtoduction
	1.1 Research Problem and Motivation
	1.2 Contributions

	Chapter 2: LITERATURE SURVEY
	2.1 Traditional Methods for Natural Language Processing
	2.1.1 N-gram Models
	2.1.2 Structured Language Models
	2.1.3 Word Vector Representations

	2.2 Neural Networks: Basics and Definitions
	2.2.1 Neural Network Language Models (NNLMs)
	2.2.2 Feedforward Neural Network Based Language Models (FFNNLMs)

	2.3 Deep Learning Background
	2.4 Deep Learning for Natural Language Processing
	2.4.1 Windows-Based Neural Networks

	2.5 Convolutional Neural Networks (CNNs)
	2.5.1 Pooling Layer

	2.6 Convolution Neural Networks for Natural Language Processing (CNNs-NLP)
	2.7 GoogLeNet: Inception Convolution Neural Networks
	2.8 Recurrent Neural Networks (RNNs)
	2.8.1 Recurrent Neural Networks Based Language Models (RNNLMs)
	2.8.2 The Problem of Long-Term Dependencies
	2.8.3 Vanishing and Exploding Gradients

	2.9 Long Short-Term Memory (LSTM)
	2.10 Bidirectional Recurrent Neural Networks (BRNNs)
	2.11 Gated Recurrent Unite (GRU)
	2.12 Vector Representations of Words
	2.13 Combination of Convolution Neural Networks and Recurrent Neural Networks (CNNs-RNNs)

	Chapter 3: research plan
	3.1 Deep Neural Network Language Model for Text Classification
	3.2 The Embedding Layer
	3.3 The Convolutional layer
	3.4 The Recurrent Layer
	3.5 LSTM Layer
	3.6 Back Propagation through Time (BPTT)
	3.7 Classification Layer
	3.8 Unsupervised Learning of Word-Level Embedding

	Chapter 4: implementation and results
	4.1  SENTIMENT ANALYSIS DATASETS
	4.1.1  STANFORD LARGE MOVIE REVIEW DATASET (IMDB)
	4.1.2 STANFORD SENTIMENT TREEBANK DATASET (SSTb)

	4.2 EXPERIMENTAL SETUP
	4.2.1 HYPERPARAMETERS AND TRAINNIG
	4.2.2  REGULARZATION
	4.2.3 OPTIMIZATION

	4.3 RESULTS AND ANALYSIS
	4.3.1  ANALYSIS OF THE STANFORD SENTIMENT TREEBANK DATASET (SSTb)
	4.3.2  ANALYSIS OF STANFORD LARGE MOVIE REVIEW DATASET (IMDB)

	4.4 OVERVIEW

	Chapter 5: conclustion
	REFERENCES

