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ABSTRACT 

End-of-life (EOL) disassembly has developed into a major research area within 

the sustainability paradigm, resulting in the emergence of several algorithms and models 

to solve related problems. End-of-life disassembly focuses on regaining the value added 

into products which are considered to have completed their useful lives due to a variety 

of reasons such as lack of technical functionality and/or lack of demand. Disassembly is 

known to possess unique characteristics due to possible changes in the EOL product 

structure and hence, cannot be considered as the reverse of assembly operations. With the 

same logic, obtaining a near-optimal/optimal disassembly sequence requires intelligent 

decision making during the disassembly when the sequence need to be regenerated to 

accommodate these unforeseeable changes. That is, if one or more components which 

were included in the original bill-of-material (BOM) of the product is missing and/or if 

one or more joint types are different than the ones that are listed in the original BOM, the 

sequencer needs to be able to adapt and generate a new and accurate alternative for 

disassembly.  These considerations require disassembly sequencing to be solved by 

highly adaptive methodologies justifying the utilization of image detection technologies 

for online real-time disassembly. These methodologies should also be capable of handling 

efficient search techniques which would provide equally reliable but faster solutions 

compared to their exhaustive search counterparts. Therefore, EOL disassembly 

sequencing literature offers a variety of heuristics techniques such as Genetic Algorithm 

(GA), Tabu Search (TS), Ant Colony Optimization (ACO), Simulated Annealing (SA) 
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and Neural Networks (NN). As with any data driven technique, the performance of the 

proposed methodologies is heavily reliant on the accuracy and the flexibility of the 

algorithms and their abilities to accommodate several special considerations such as 

preserving the precedence relationships during disassembly while obtaining near-optimal 

or optimal solutions. This research proposes three approaches to the EOL disassembly 

sequencing problem. The first approach builds on previous disassembly sequencing 

research and proposes a Tabu Search based methodology to solve the problem. The 

objectives of this proposed algorithm are to minimize: (1) the traveled distance by the 

robotic arm, (2) the number of disassembly method changes, and (3) the number of 

robotic arm travels by combining the identical-material components together and hence 

eliminating unnecessary disassembly operations. In addition to improving the quality of 

optimum sequence generation, a comprehensive statistical analysis comparing the results 

of the previous Genetic Algorithm with the proposed Tabu Search Algorithm is also 

included. Following this, the disassembly sequencing problem is further investigated by 

introducing an automated disassembly framework for end-of-life electronic products. 

This proposed model is able to incorporate decision makers’ (DMs’) preferences into the 

problem environment for efficient material and component recovery. The proposed 

disassembly sequencing approach is composed of two steps. The first step involves the 

detection of objects and deals with the identification of precedence relationships among 

components. This stage utilizes the BOMs of the EOL products as the primary data 

source. The second step identifies the most appropriate disassembly operation alternative 

for each component. This is often a challenging task requiring expert opinion since the 
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decision is based on several factors such as the purpose of disassembly, the disassembly 

method to be used, and the component availability in the product. Given that there are 

several factors to be considered, the problem is modeled using a multi-criteria decision 

making (MCDM) method. In this regard, an Analytic Hierarchy Process (AHP) model is 

created to incorporate DMs’ verbal expressions into the decision problem while 

validating the consistency of findings. These results are then fed into a metaheuristic 

algorithm to obtain the optimum or near-optimum disassembly sequence. In this step, a 

metaheuristic technique, Simulated Annealing (SA) algorithm, is used.  

In order to test the robustness of the proposed Simulated Annealing algorithm an 

experiment is designed using an Orthogonal Array (OA) and a comparison with an 

exhaustive search is conducted. In addition to testing the robustness of SA, a third 

approach is simultaneously proposed to include multiple stations using task allocation. 

Task allocation is utilized to find the optimum or near-optimum solution to distribute the 

tasks over all the available stations using SA. The research concludes with proposing a 

serverless architecture to solve the resource allocation problem. The architecture also 

supports non-conventional solutions and machine learning which aligns with the 

problems investigated in this research. Numerical examples are provided to demonstrate 

the functionality of the proposed approaches. 
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CHAPTER 1:  INTRODUCTION 

1.1 Research Problem and Scope 

Decision making is a scientific approach for solving problems [4, 5] and is 

considered to be a crucial step for many organizations in solving short- and long-range 

problems. Since the acceptance of its vital role, several decision-making methods have 

been developed to map complex operations and to incorporate various factors into the 

modeling environment such as uncertainty, preferences of decision makers and the 

expected value of decision alternatives. Decision making is generally investigated under 

Operations Research (OR); a technique that summarizes the major elements of the 

problem, integrating them into a mathematical model to solve and analyze the model to 

obtain the optimum or near-optimum solution [6]. Ackoff and Sasieni [7] describes 

operations research as the application of scientific method, by interdisciplinary teams, to 

problems involving the control of organized systems to provide efficient solutions which 

are compatible with goals of companies. Operations research is also known to improve 

the efficiency and the effectiveness of an organization as it is capable of improving 

quality, reducing costs and minimizing risks [8]. 

According to Taha [9], in order to be able to solve decision making problems, the 

decision alternatives need to be mapped, the restrictions on the model environment need 

to be included, and the objective function need to be created to evaluate the alternatives. 
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Lieberman brings a similar perspective and defines operations research as a tool to be 

applied to problems that are concerned with how to conduct and coordinate the operations  

within an organization [10]. Generally, achieving this understanding relies on combining 

analytical and numerical techniques. 

A typical OR project consists of three steps: (1) Model building, (2) Model 

solution, and (3) Implementation and analysis of findings. The emphasis of this research 

is on the second step which involves scientific methodologies or techniques. These 

techniques are analytical in nature and can be categorized in one of four categories; 

simulation techniques, mathematical analysis techniques, optimum-seeking techniques, 

and heuristics. 

Metaheuristics such as genetic algorithms, Tabu Search, evolutionary 

programming, and Simulated Annealing are relatively new heuristics algorithms. These 

methods are considered to be more simplistic and effective compared to their 

counterparts. Sorensen and Glover defines a metaheuristic as a high-level problem 

independent algorithmic framework that provides a set of guidelines or strategies to 

develop heuristic optimization algorithms [11]. Metaheuristics attempts to combine exact 

algorithms with heuristics. 

Using metaheuristics, this research primarily focuses on regaining the value 

embedded in the manufactured products, in particular, electronic products which have 

completed their useful lives. Due to increasing volumes of e-waste and scarcity of raw 

materials, the utilization and subsequent re-utilization of recyclable materials and 

reusable components are often cited as the most viable solutions to reducing user waste. 
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End-of-life (EOL) disassembly is the subsequent step following the collection of EOL 

products to regain the value embedded in e-waste. The EOL products are defined as the 

products which completed their usefulness due to deterioration and/or obsolescence. The 

need for disassembly originates from economic, social and environmental concerns since 

disassembly of EOL products plays an important role in making available part or 

materials for reuse, reducing the amount of industrial waste and decreasing environmental 

deterioration.  

Further, the factor of ‘uncertainty’ is considered as a unique characteristic of 

disassembly. The implied uncertainty stems from the probable changes on the product 

during its life cycle or from the likely damage that occurs after the product is landfilled. 

Therefore, disassembly cannot be considered as the reverse of assembly. Obtaining the 

optimum or near-optimum disassembly sequence is a complex problem, thus using a 

conventional, exhaustive search is generally considered to be mathematically prohibitive. 

Therefore, solving the disassembly sequence problem using metaheuristic approaches 

rises as a more effective way to find the optimum or near-optimum solution. Furthermore, 

solving the disassembly sequencing problem with operations research techniques requires 

the model to be flexible enough to accommodate unexpected changes in the model 

environment, making metaheuristics better alternatives for this purpose. 

1.2 Research Motivation 

Products in today’s market can be generally classified into two categories: 

efficient and responsive. Efficient products are considered to have a stable and constant 
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demand, supply, pricing, and they tend to move slowly through the supply chain. 

However, the demand, supply, and price for responsive products fluctuate often. 

Furthermore, these products are characterized by relatively larger profit margins due to 

their time-sensitive nature. This sensitivity requires them to move faster in the forward 

supply chain to ensure customer satisfaction. With similar logic, the useful lifetime of 

responsive products tends to be much shorter than their efficient counterparts due to 

macro environmental changes, viz., globalization and technological advances. Therefore, 

reverse distribution systems become instrumental in retrieving these products from the 

market for subsequent reuse, recycling, or proper disposal. Within responsive products, 

electrical and electronic equipment is the largest growing waste stream requiring 

economically and environmentally solid and efficient reverse logistics and supply chain 

operations. Waste electrical and electronic equipment (WEEE) uses large quantities of 

natural resources, including substantial amounts of precious metals such as gold, silver, 

and copper during their production. Furthermore, WEEE is composed of several 

components and subassemblies that can be reused even if the whole product might not be 

technologically valid. Together with the precious material content, the functionality of 

these partial structures makes recycling and reuse activities economically valid. Reuse, 

recycling, or proper disposal of any product generally requires disassembly of the end-

of-life product. 

The efficiency of disassembly operations is a crucial factor in the success of any 

reverse flow. Since using human labor to disassemble these products significantly 

increases the overall cost and time of the recovery system, the need for utilizing 
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automated solutions gains importance. In addition, the process of disassembly is 

complicated and carries various risk factors due to the hazardous substances embedded 

in these products. In some instances, disassembly is also required to replace or repair 

components that are not accessible by humans, making robotic solutions the only viable 

alternative. 

The problem of generating an optimal sequence for disassembly operations is 

rather challenging due to the uncertainty of the process. Electrical and electronic 

equipment are often subject to various changes in their original bill-of-materials due to 

technological compatibility issues. For instance, a component inside a personal computer 

may be altered over time due to an upgrade or a change, such as replacing the RAM 

capacity. Another, perhaps more important challenge that contributes to the complication 

of disassembly operations is the fact that the majority of products are not designed for 

disassembly. This fact often mandates destructive disassembly, prohibiting the reuse of 

still functioning components.  

With these motivations, this work initially aims to decrease the uncertainty in 

disassembly processes and to address the aforementioned challenges by introducing two 

modules: A sensory system, and an online Tabu Search algorithm [12].  

The sensory system is used for identifying the depth of the product with the help 

of a digital camera that captures product images for processing and detecting the 

components. The algorithm then generates an online real-time disassembly sequence 

using this information, hence overcoming the uncertainty in the product structure. 

Building on this model, the proposed disassembly system has been improved to 
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accommodate the preferences of the decision makers, a more efficient metaheuristics 

algorithm and multiple robot arms. Performance comparisons over exhaustive searches 

are provided and the robustness of the proposed model is tested and validated using 

orthogonal arrays. 

The following provides detailed information regarding the motivation and 

potential impact of this work on the environment, economy and the society in general. 

Due to shortening life cycles of electronic products and increasing need for faster 

and more reliable technologies, the demand for raw materials in related industries is 

increasing to meet the production-line requirements. Raw materials and components used 

in technological products are often limited and valuable in nature. For instance, computer 

production uses gold, copper, tin, silver and several other precious metals. Since the 

demand for state-of-the-art technology products is growing along with the technological 

advances, finding alternative sources to fulfill the production line requirements is 

important. Shortening life cycles of technological products have also led to substantial 

amounts of electronic waste (e-waste). According to the U.S. Environmental Protection 

Agency (EPA) [13], on average, approximately 416 thousand mobile phones and 142 

thousand computers are discarded daily. As a result of discarded consumer electronics, 

annual e-waste has reached more than 3 million tons over the past decade. 

Consequently, environmental awareness has increased worldwide, with 

governments and related agencies enforcing rules and regulations encouraging industries 

to expand their environmentally-benign operations. One way to address this issue is to 

restructure the product life cycle to regain the value added into the electronic waste. 
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End-of-life electronics recovery is proven to be economically viable when 

conducted appropriately, in addition to its positive impact on the environment and society 

as a whole. For instance, it is reported that for every 1 million recycled mobile devices, 

20 thousand lbs. of copper, 550 lbs. of silver, 50 lbs. of gold and 20 lbs. of palladium can 

be recovered [14]. To further strengthen the argument that the electronic waste recovery 

operations are effective in regaining the value added to EOL products, Apple reported 

having recovered over 61 million pounds of materials (Table 1.1) from returned retail 

products [15]. 

Material Quantity (lb.) 

Steel 23,101,000 

Plastics 13,422,360 

Glass 11,945,680 

Aluminum 4,518,200 

Copper 2,953,360 

Cobalt 189,544 

Zinc 130,036 

Lead 44,080 

Nickel 39,672 

Silver 6,612 

Tin 4,408 

Gold 2,204 

Table 1.1 Amount of material recovered through take-back initiatives in 2015 [15]. 
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Figure 1.1 illustrates the total e-waste generated in the United States and the 

amounts of disposal and recycling between 2000 and 2012. As illustrated in the figure, 

the total amount of e-waste has increased annually over the same period along with the 

percentage of recycled e-waste. One plausible explanation for this trend is growing 

economically-viable and environmentally-sustainable practices, fostered by increasing 

environmental awareness. Despite the growing efforts and the significant potential gain, 

however, there are still large volumes of precious materials which are not recovered and 

ultimately landfilled, requiring economically- and environmentally-benign EOL recovery 

solutions. 

 

Figure 1.1 Total e-waste generation, disposal and recycling in the United States [13]. 

These attempts to regain the value added into the EOL electronic products are 

forcing businesses to consider several additional cost factors such as the costs associated 

with EOL product take back, collection, disassembly and recovery operations. Given the 

environmental nature of these operations, coupled with their potential societal impact, the 

2000 2005 2007 2009 2010 2011 2012
Total e-waste 1,900 2,630 3,010 3,190 3,320 3,410 3,420
E-waste disposed of 171 2,270 2,460 2,590 2,670 2,560 2,420
E-waste recycled 190 360 550 600 650 850 1,000
Recycled percentage 10.00% 13.70% 18.30% 18.80% 19.60% 24.90% 29.20%
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problem can be appropriately addressed only via a carefully-designed EOL management 

system that considers these three factors simultaneously. EOL management systems 

comprise of multiple consecutive steps. The first step involves the collection of EOL 

products from various warehouse and landfill locations. Following the required sorting 

and inspection operations, the second step is primarily concerned with the disassembly 

of these EOL products. Disassembly aims at regaining the value added into the EOL 

products via recycling or reuse, or alternatively, storing the components for possible 

future use or properly disposing of them to minimize the environmental hazard. 

Furthermore, according to the Global e-waste monitor, 44.7 million metric tons of e-waste 

were generated globally in 2016 (Figure 1.2), with an estimated e-waste per individual 

around 6.1 kg [16]. 

Today, several industries adopted varying levels of take back policies and are 

attempting to disassemble their own products for their material and component content. 

These companies rely heavily on the original blueprints of these products when balancing 

their disassembly lines with the assumption that the original product structure remained 

unaltered during use. However, EOL products are known to be associated with high levels 

of uncertainty due to the changes which are likely to occur in the product structure during 

their useful lives. There are two reasons why a product reaches its end-of-life; namely, 

deterioration and obsolescence [17]. Regardless of the reason, components in electronic 

EOL products are likely to be replaced by other components for upgrade and/or repair 

purposes. In some cases, product recovery operations are not conducted by the original  
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Figure 1.2 E-waste total for years 2014-2021 [16]. 

equipment manufacturer (OEM), and this task is outsourced to a third-party 

service provider, resulting in limited access to the original BOMs. Therefore, to ensure 

the success of disassembly operations in a product recovery chain: an efficient, 

intelligent, and automated decision-making system is needed. With this motivation, this 

study proposes environmentally-benign and economically-feasible disassembly 

sequencing approaches that incorporates decision makers’ (DMs’) preferences into the 

modeling environment. 

Disassembly sequencing is considered to be an NP-complete problem [18, 19]. 

As with all NP-complete problems, the complexity of the disassembly sequencing 

problem increases exponentially with the number of components in the product structure 

justifying the utilization of metaheuristic methods.  

In addition to its NP-complete nature, disassembly sequencing of EOL products 
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requires methods which are able to handle the uncertainty in the product. The problem 

becomes even more complex since the economic justification of disassembly operations 

requires large volumes of EOL products with varying levels of demand for their 

components and materials. That is, the decision maker who is responsible for recovery 

operations must take into account various factors such as the inventory on hand, the 

demand for materials and components, and the current market prices prior to disassembly. 

To address these considerations, this research also presents an Analytic Hierarchy Process 

(AHP) and Simulated Annealing (SA) - based methodology to generate the optimum or 

near-optimum disassembly sequence based on the preferences of the decision maker. 

1.3 Contributions 

This research builds on a previously proposed Genetic Algorithm model for 

disassembly sequencing and proposes a more efficient metaheuristic algorithm, Tabu 

search, to obtain the optimal solution. The objectives of the proposed algorithm are to 

minimize (1) the traveled distance by the robotic arm, (2) the number of disassembly 

method changes, and (3) the number of robotic arm travels by combining the identical-

material components together, hence eliminating unnecessary disassembly operations. In 

addition to improving the quality of optimum sequence generation, a comprehensive 

statistical analysis, comparing the previous Genetic Algorithm and the proposed Tabu 

Search Algorithm, is also included. 

Following this, the research also presents an automated disassembly framework 

for end-of-life (EOL) electronic products. Proposed model is able to incorporate decision 
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makers’ (DMs’) preferences into the problem environment for efficient material and 

component recovery. The disassembly sequencing approach is composed of two steps. 

The first step involves the detection of objects and deals with the identification of 

precedence relationships among components. This stage uses the Bill of Materials 

(BOMs) of the EOL products as the primary data source. The second step identifies the 

most appropriate disassembly operation alternative for each component. This is often a 

challenging task requiring expert opinion since the decision is based on several factors, 

such as the purpose of disassembly, the disassembly method to be used, and the 

component availability in the product. Given that there are several factors to be 

considered, the problem is modeled using a multi-criteria decision making (MCDM) 

method. In this regard, an Analytic Hierarchy Process (AHP) model is created to 

incorporate DMs’ verbal expressions into the decision problem while validating the 

consistency of findings. These results are then fed into a metaheuristic algorithm to obtain 

the optimum or near-optimum disassembly sequence. In this step, a metaheuristic 

technique, Simulated Annealing (SA) algorithm, is used. A numerical example is 

provided to demonstrate the functionality of the proposed approach. 

Building on the results of this model, a robustness test and performance evaluation 

for the proposed SA disassembly sequence problem are conducted using orthogonal 

arrays (OAs). The problem is also expanded to have multiple symmetric robot arms as 

opposed to a single arm. At this stage, all available robot arms (stations) are being 

deployed and used ensuring the efficiency of their utilization. This solution also utilizes 

SA to find the optimum task allocation among available stations. 
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An additional improvement involves the resource allocation. Majority of 

optimization problems require adequate resources to be allocated to the metaheuristic 

algorithm for faster execution times while generating the optimum or near-optimum 

solution(s). This is especially true when personal devices with limited capacities are 

utilized. To address this issue, this work recommends an architecture that would help the 

algorithm acquire required resources to generate the solution in a more efficient manner. 
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CHAPTER 2:  BACKGROUND AND LITERATURE REVIEW 

2.1 Tabu Search (TS), Genetic Algorithm (GA), Analytic Hierarchy 

Process (AHP) and Simulated Annealing (SA) Literature Survey 

Evolutionary algorithms have been recognized to be well-suited to multi-objective 

optimization since their development [20]. Given that the EOL disassembly embodies 

several objectives to ensure its efficiency, multi-objective evolutionary algorithms have 

been extensively used for the EOL disassembly scheduling and/or sequencing problems 

[21]. The following summarizes the Tabu Search (TS) and Genetic Algorithm (GA) - 

related studies in the environmentally conscious manufacturing and robotics fields. 

Kongar and Gupta [22] considered the case of complete disassembly utilizing both 

destructive and non-destructive methods. Their method helped in finding the optimum 

disassembly sequence faster based on the information from the design process. Therefore, 

the authors claimed that the algorithm could be used in new product design as well as for 

recycling and product maintenance. One example of the code for Tabu Search appears in 

Rizk and ElSayed [23]. 

McGovern and Gupta [18] focused on the disassembly line balancing problem, 

aiming at increasing the process productivity while reducing the number of workstations 

used. To achieve this, their work utilized a genetic algorithm to obtain the optimal or 

near-optimal solution for the disassembly sequencing.  

ElSayed et al. [24] used a Genetic Algorithm with precedence preservative 

crossover (PPX) to find the optimum or near-optimum disassembly sequence for 
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complete disassembly. The objective of the proposed GA was to minimize the total fitness 

function by minimizing (i) the traveled distance, (ii) the number of disassembly method 

changes, and (iii) by combining the identical-material components together, eliminating 

unnecessary disassembly operations. 

Torres et al. [25] proposed a cell with a degree of automation in non-destructive 

product disassembly. The authors also employed computer vision for object detection in 

addition to a modeling system for the products. The modeling system provided 

information regarding the type of products and the main components of the product 

architecture.  

ElSayed et al. [26] proposed an online Genetic Algorithm (GA) that aims at 

handling uncertainty in the EOL product structure. The algorithm consisted of two 

modules: (i) a sensory-driven visual and range acquisition recovery system, and (ii) an 

online genetic algorithm (GA) model. The object detection converts objects from 3D to 

2D structures via a camera-based algorithm resulting in 21
2 D images. The proposed 

algorithm was able to obtain the optimal disassembly sequence while reducing the time 

required for disassembling the product. 

Xing et al. [27] conducted a survey reviewing the application of soft computing 

to remanufacturing. The survey aimed at finding answers to various remanufacturing 

software questions such as the main problems within remanufacturing systems and 

existing remanufacturing techniques. The survey utilized the data provided by the library 

of the University of Johannesburg, South Africa. The results were categorized into two 

basic groups: disassembly and remanufacturing.  
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Kalayci and Gupta [28] introduced a Tabu Search (TS) algorithm to solve the 

Disassembly Line Balancing Problem (DLBP) with multiple objectives. The DLBP 

described in the paper consisted of multiple objectives requiring the assignment of 

disassembly tasks to a set of ordered disassembly workstations. The algorithm also 

satisfied the disassembly precedence constraints and optimized the effectiveness of 

several measures. The authors assigned the removal of hazardous and high demand 

components maximum priority. 

Torres et al. [29] proposed two types of cooperation among robot arms aiming to 

manage the task between multiple robots: in the first cooperation, two or more robots 

cooperated to achieve the same task. In the latter, several tasks were achieved by different 

robots concurrently. The entire design was built based on a decision tree. The main goal 

in their follow up work [30] was to retrieve materials from the EOL product via 

destructive disassembly.  

Kuren [31] proposed a disassembly cell prototype and presented a case study for 

mobile phone disassembly. Since a destructive method was used in this research, the need 

to preserve precedence relationships has been eliminated in the proposed solution. 

This work builds on the algorithms provided in Kongar and Gupta [22]. The 

proposed genetic algorithm includes Precedence Preservation Crossover (PPX) to 

accurately reflect the hierarchical structure of the EOL product. The main objective of 

the algorithm is to minimize the makespan by minimizing the number of direction 

changes, disassembly method changes, and combining the identical-material 

components. 
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This section first provides an overview of the previous research on Analytic 

Hierarchy Process (AHP). This is followed by the Simulated Annealing (SA) literature 

that focused on EOL product recovery systems.  

The Analytic Hierarchy Process was first proposed by Prof. Thomas L. Saaty [32] 

in the early 1970s. AHP is interposed between operational research and decision analysis 

and is considered as a Multi-Criteria Decision Making (MCDM) method, based on the 

relative measurement theory. AHP, using linguistic expressions, derives the ratio scales 

from pairwise comparisons and is designed to help decision makers to make a choice 

among a set of alternatives [33]. The problem description in AHP consists of goal, 

criteria, and alternatives.  

The AHP process includes the following steps: (i) Decompose problem hierarchy 

into goal, set of alternatives, and set of criteria, (ii) create a pairwise comparison matrix, 

(iii) calculate the priority vector for each criterion, and (iv) evaluate the solution by 

calculating the Consistency Index (CI) and Consistency Ratio (CR) [3, 34]. The final step 

provides a clear insight into the reliability of the solution. For the priority vector 

calculations, the literature offers a large variety of methods as also stated by Choo and 

Wedley [35]. Out of these, eigenvector and eigenvalue, and geometric mean methods are 

most commonly used. Comparing these, Saaty and Vargas [36] reported eigenvector and 

eigenvalue based methods to be superior to the methods based on the geometric mean. 

The steps required for constructing the main parts of an AHP model are provided 

by Saaty [37] and include defining: (1) the objective of the decision, (2) the criteria to be 

selected upon, and (3) the alternatives that may achieve the criteria to reach the goal of 
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the objective. This process is then translated into a mathematical operation depending on 

the judgments made to assign each criterion a priority when compared with one another. 

AHP has been used in several areas such as city evaluation and planning, country 

ranking, mobile valued service, organ transplant, chess prediction, and facility location 

[33, 38]. Triantaphyllou and Mann [39] have utilized AHP for a computer upgrade system 

at a computer integrated manufacturing facility. Similarly, Chakraborty et al. [40] 

employed AHP to solve a vendor selection problem. The authors determined AHP as the 

most effective MCDM method due to its ability to provide a near-optimal solution and 

its capability of handling quantifiable and unquantifiable criteria. 

Syamsuddin and Hwang [41] applied AHP to aid decision makers in their efforts 

to ensure efficient management of information security policies. Dalalah et al. [42] 

presented a systematic methodology for crane selection. Al-Harbi [43] introduced the 

application of the AHP method as a potential decision making tool in project 

management. Koç and Burhan [44] conducted a study to select a location for a new auto 

glass store using tangible and intangible criteria. Parameshwaran et al. [45] proposed an 

integrated approach for selecting the most appropriate robot, taking into account both 

objective and subjective criteria. Wang et al. [46] used the combination of AHP and 

geographical information system (GIS) to analyze and assess the safety of the shipping 

routes of the South China Sea. 

In another relevant study, Malik et al. [47], studied the characterization and 

modeling of reverse logistics and claimed that its application was becoming imperative 

as the issues related to environment and societies gain more and more attention and 
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importance. 

In sum, previous literature indicates that the AHP is a viable method when 

evaluating, comparing and choosing from multiple alternatives. The method also 

decreases the bias or prejudice in the decision-making process and is considered to be 

more flexible when compared with other multi-criteria decision making approaches.  

Given that hybrid methods are often superior to their standalone counterparts, this 

research integrated AHP with another well-known heuristics algorithm, Simulated 

Annealing (SA). SA has been proven to (i) be able to deal with arbitrary systems, (ii) be 

relatively easy to build, and, more importantly, (iii) be able to produce a faster 

convergence to the optimal or near-optimal solutions. A performance comparison 

between SA and Tabu Search was conducted to solve the corridor allocation problem 

where SA was found to be superior while providing more reliable solutions [48]. 

Disassembly sequencing literature embodies several heuristics-based 

methodologies. In one of the most relevant works, Kalayci and Gupta [19] applied 

simulated annealing to solve the sequence-dependent disassembly line balancing problem 

(SDDLBP). Following this, the authors applied a variant of the particle swarm 

optimization algorithm [49], and a hybrid genetic algorithm [50] to the SDDLBP. Kalayci 

et al. [51] also proposed a hybrid algorithm that combined genetic algorithm with a 

variable neighborhood search method (VNSGA) to solve the SDDLBP. Table 2.1 

provides further details on the methods utilized in related literature including the primary 

goals and motivations of these studies along with the evaluation criteria and the utilized 

techniques.
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Author(s) Goal Motivation 
Evaluation 

Technique(s) 
Evaluation Criteria 

Kongar and Gupta [52] 

Help selecting the desirable disassembly 

process satisfying several environmental, 

financial and physical goals. 

Environmental 
Preemptive integer 

goal programming 

Recycling revenue, total disposal cost, total inventory 

cost, profit from resale, no. of items stored, no. of 

recycled items, and no. of disposed items. 

Massoud and Gupta 

[53] 

Determining the best combination of EOL 

products to be purchased from every 

supplier while achieving the aspiration 

levels of multiple goals. 

Environmental 
Preemptive goal 

programming  

Condition of returned products, variety of products 

from different suppliers, and quantity discounts offered 

by suppliers. 

Kinoshita et al. [54, 55] 
Minimizing the recycling cost and 

maximizing the recycling rate.  

Environmental and 

economic 
Goal programming The ε constraint method and Goal Programming. 

Igarashi et al. [56] 
Designing a multi criteria disassembly 

system part selection and line balancing. 

Environmental and 

economic 
Integer Programming  Cost, recycling, and CO2 savings. 

Ghorabaee [57] 
Allowing the DM to set the preferences to 

the MCDM algorithm. 

Environmental and 

economic 

Fuzzy liner physical 

programming 

Implement the DM preferences in equations and apply 

it using MCDM algorithm. 

Ilgin et al. [58] 

Use of MCDM techniques in 

environmentally conscious manufacturing 

and product recovery. 

Literature review Literature review Literature review. 

Kalayci et al. [59] 

Multi-objective fuzzy disassembly line 

balancing using a hybrid discrete artificial 

bee colony algorithm. 

Environmental and 

economic 

Hybrid discrete 

artificial bee colony 

algorithm 

Lexicographic method, and fixed weighted method 

trying to optimize each conflicting concurrency. 

Kalayci et al. [60] 
Variable neighborhood search algorithm for 

disassembly lines. 

Environmental and 

economic 

Variable 

neighborhood search 

Disassembly Line Balancing Problem and Sequence-

Dependent Disassembly Line Balancing Problem. 
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Table 2.1. continued 

Ondemir and Gupta 

[61] 

Multi-criteria decision making model for 

advanced repair-to-order and disassembly-

to-order system. 

Environmental 
Linear Physical 

Programming 

Minimize the total cost and minimize the number of 

disposed items while reducing the uncertainty in 

products.  

Ondemir et al. [62] 

Optimal End-of-Life Management in 

Closed-Loop Supply Chains Using RFID 

and Sensors. 

Environmental and 

economic 

Mixed integer liner 

programming 

RFID is considered as a support method to reduce the 

uncertainty in disassembly operations. 

Vongbunyong et al. 

[63] 

Basic behavior control of the vision-based 

cognitive robotic disassembly automation. 
Economic Cognitive robotics Cognitive robot to perform the disassembly task. 

Wang and Chan [64] 

To demonstrate the applicability of AHP 

and propose methods for making an 

evaluation of remanufacturing alternatives. 

Economic 
Fuzzy hierarchical 

TOPSIS 

Value (e.g. rare metal content, competition between 

imitated products, environmental impacts), cost 

involved, employee health and safety, and design 

difficulties. 

ElSayed et al. [65] 

To generalize the current models by 

accommodating an environment that is 

conducive to fuzzy problem solving. 

Economic 

Fuzzy linear physical 

programming and 

LPPW 

Profit, monthly production level. 

 

Joshi et al. [66] 

To evaluate and select the best suppliers of 

multiple suppliers of the EOL products 

based on stated criteria for maximizing the 

profit, quality level, and material sales 

revenue and minimizing the disposal 

weight. 

Economic and 

financial 
Goal programming 

The conditions of the EOL products, their collection 

costs and labor costs. 
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Table 2.1. continued 

Ilgin and Gupta [67] 

To present and discuss the development of 

research in Environmentally Conscious 

Manufacturing and Product Recovery 

(ECMPRO). 

Literature 

review 
Literature review Literature review. 

McGovern and Gupta 

[68] 

To determine performance metrics for 

multiple objective end-of-life Disassembly 

Line Balancing Problem. 

Economic 
Preemptive goal 

programming 

Early removal of hazardous parts, early removal of 

high- demand, and adjacent removal of parts with 

equivalent part removal directions. 

William Ho [69] 

To provide evidence that the integrated 

AHPs are better than the stand-alone AHP, 

and to aid the researchers and decision 

makers in applying the integrated AHPs 

effectively. 

Literature review Literature review Literature review. 

Rousis et al. [70] 
To examine alternative scenarios/systems 

for WEEE management in Cyprus. 
Environmental 

MCDM: 

PROMETHEE 
Performance and efficiency. 

Valério et al. [71]  

To present Multiple- criteria decision-

making (MCDM) modeling for the 

selection of equipment suppliers in an 

automotive plant. 

Financial and 

economic 

Analytic Hierarchy 

Process 

Cost, lead time, maintenance easiness, expected index 

of rejected products, yield and contamination. 

Table 2.1 Review of related literature.
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2.2 Design of Experiments (DOE) Literature Survey  

Experimental design was first introduced in 1920s by R. A. Fischer, who 

developed the basic principles of factorial design and the associated data analysis known 

as ANOVA during research in improving the yield of agricultural crops [72]. Design of 

Experiment (DOE) has gained a wide interest especially in the field of engineering and 

science in optimization, process management, and development. DOE is an experimental 

method that is used to signify the relationship between input parameters and the output 

results statistically [73].  

Aksoy and Gupta [74] have presented an efficient algorithm to determine the near- 

optimal buffer allocation of a given number of buffer slots in a remanufacturing cell with 

finite buffers and unreliable servers. The authors considered a manufacturing cell that 

consisted of three main modules: the disassembly and testing module for returned 

products, the disposition module for non-reusable returns, and the remanufacturing 

module. They have proposed a buffer allocation algorithm that distributed a given number 

of available buffer slots among the various stations to optimize the performance of the 

cell.  

In the area of manufacturing, Kondapalli et al. [73] reviewed the literature on 

DOE techniques that have been employed for different welding processes. The paper also 

focused on the application of Taguchi method on fusion arc welding processes namely, 

gas tungsten arc welding and plasma arc welding. 

For most disassembly systems, there are two crucial issues: one is the disassembly 

sequencing where the optimal or near optimal disassembly sequence determination is 



 

 

24 
 

involved, and the other is the disassembly to order (DTO) where the number of end-of-

life products to process is determined to fulfill the demand for specified numbers of 

components and materials.  

For a good combination of those two issues, Ilgin and Tasoglu [75] have proposed 

a simulation optimization approach based on genetic algorithm (GA) for the simultaneous 

determination of disassembly sequence and disassembly-to-order decisions. The authors 

illustrated their proposed approach through a numerical example. Their study employed 

Taguchi’s L9 orthogonal array experimental design to obtain the best values of GA 

parameters. This orthogonal array was designed with four factors with three levels. 

Chang [76] presented a method that combined a particle swarm optimization with 

nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning 

of harmonic filters for the high speed railway traction. The paper aimed at minimizing 

the cost of the filter, the filter losses, and the total harmonic distortion of currents and 

voltages at each bus simultaneously. 

Mehmet Ali Ilgin at el. [77] studied the use of embedding sensors during their 

end-of-life (EOL) processing. They carried out separate design of experiments based on 

orthogonal arrays for conventional products (CPs) and sensor embedded products (SEPs). 

Detailed discrete event simulation models of both cases were developed by taking into 

consideration the precedence relationships among the components together with the 

routing of many different types of appliances through the line of disassembly. The study 

showed that the sensor embedded products SEPs not only decreased various costs and 

also increased revenue and profit.  
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Lazic and Mastorakis [78] studied the problem of testing black boxes and 

considered the combination of input parameters that affect an output parameter through 

an Orthogonal Array Testing Strategy (OATS). The authors analyzed software-system 

test requirements and corresponding models. Their study also presented a brief overview 

of the response surface methods (RSM) for computer experiments in the literature.  

Finally, Moghaddam and Kolahan [79] proposed an approach that is based on 

Taguchi design matrix for the face milling process. 

2.3 Task Allocation Literature Survey 

Disassembly line balancing (DLB) is known as arranging of a group of tasks to 

an ordered sequence of stations for the purpose of optimizing performance. DLB 

problems optimize the disassembly line while meeting the demand for the parts retrieved 

from the returned products [80]. Several steps of recovery and remanufacturing are 

included in the disassembly process.  

Metea et al. [81] provided a mathematical model for solving DLB problems 

through resource constraints. The authors aimed at minimizing the number of resources 

and workstations under determined cycle-times. The solution was obtained through 

GAMS-CPLEX. 

Bentaha et al. [82] proposed a disassembly line balancing and sequencing problem 

for EOL products with hazardous parts. The authors aimed at maximizing the profit of 

the production line with uncertain task times. The tasks were arranged in a sequence of 

workstations while concurrently satisfying precedence and cycle time constraints. In 
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order to cope with uncertainties, the authors developed an exact solution method based 

on integer programming and Monte Carlo sampling.  

The disassembly line balancing problem has a profound effect since it is 

considered as one of the most efficient ways to achieve disassembly of large or largely 

produced products. In this regard, Güngör et al. [80] presented a heuristic to show the 

combination of several important factors in disassembly into the process of solving of a 

DLB problem. 

The disassembly process includes a group of tasks that must be completed within 

a given time. Due to defects however, one or more tasks cannot be performed and leading 

to complications on the disassembly. To address these issues, Gungor and Gupta [83] 

discussed the disassembly line balancing problem in the presence of task failures (DLBP-

F), and proposed an approach aiming at minimizing the impact of the defective part task 

assignments to workstations. 

Torres et al [84] published a study for nondestructive automatic disassembly of 

personal computers where they considered a disassembly cell. The authors employed a 

computer vision system to recognize and localize the product and its components. An 

additional disassembly system responsible for generating the disassembly sequence and 

the planning of the disassembly movements was also proposed. The two systems 

cooperated with each other to provide semi-automatic disassembly operations. 

Gutjahr and Nemhauser [85] first described a solution to the assembly line 

balancing problem with an algorithm that minimized the delays at each workstation based 

on the shortest route in a finite directed network. The proposed heuristic accounted for 
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precedence relationships. 

Erel and Gokcen [86] developed a modified version of an existing line-balancing 

problem algorithm. The proposed model was capable of considering any constraint that 

can be expressed as a function of task assignments. 

McMullen and Tarasewich [87] used ant colony optimization techniques to solve 

the assembly line balancing problem with parallel workstations, stochastic task durations, 

and mixed models. Their methodology addressed several assembly line balancing 

problems. 

The disassembly line balancing problem searches a sequence that targets the 

feasibility and minimization of number of workstations with reduced idle times. With this 

motivation, McGovern and Gupta [18] presented a genetic algorithm to obtain optimal or 

near-optimal solutions for disassembly line balancing problems. 

Duta et al. [88] designed and balanced a disassembly line based on the equal piles 

approach to avoid uncertainties during the disassembly process. In addition, Duta and 

Filip [89] studied the line structure and proposed an algorithm that aimed at finding the 

best disassembly sequence. The authors concluded that their proposed algorithm provided 

a solution that improved the line balance. 

ElSayed et al. [90] presented a genetic algorithm model to find the optimal 

disassembly sequence of a given product. The model provided reliable and quick input to 

the disassembly scheduling environments. The authors concluded that the multi-objective 

algorithm was practical and easy to use accounting for precedence relationships and 

additional constraints. 
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Gagnon and Morgan [91] conducted a review of the documented decisions and 

issues that explained the complications in disassembly line balancing problems. 

Avikal et al. [92] proposed an efficient, near optimal, and a multi-criteria decision 

making technique based heuristics for assigning the disassembly tasks to the 

workstations. The PROMETHEE method was used to set the priorities of the assigned 

tasks. The authors concluded that the proposed technique helped in achieving substantial 

improvements in the performance compared with other heuristics. 

2.4 Serverless Architecture Literature Survey 

Serverless computing has recently gained considerable interest due to its powerful 

services, simple programming and deployment models, and efficient cost management. 

In spite of this trend in its adoption, the serverless architecture is still in its infancy and 

therefore the related work on using this architecture is scarce. 

Serverless computing is preferred by highly scalable, event-driven applications 

since it deals with allocating resources as events arrive which can reduce the cost of pre-

allocated or dedicated hardware.  

McGrath and Brenner [93] have presented a novel serverless computing platform 

implemented in .NET and deployed in Microsoft Azure. The platform utilized windows 

containers as function execution environments. The authors also proposed metrics to 

evaluate the execution performance of serverless platforms and conduct tests on a 

prototype as well as AWS Lambda, Azure Functions, Google Cloud Functions, and 

IBM’s deployment of Apache Open Whisk. Their findings indicate that the prototype 
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achieved greater throughput compared to other platforms in some aspects.  

Conventionally, client-server-based video streaming systems are the most 

common video streaming systems. Ho and Lee [94] studied the problem of data 

recognition when growing a serverless video streaming system. The authors presented a 

new data reorganization algorithm that allowed a controllable tradeoff between data 

reorganization overhead and streaming load balance. 

Lee and Leung [95] investigated a radically serverless architecture that relied on 

the client machines for distributed data storage and delivery. In this work, the authors 

developed fault-tolerance algorithms to maintain the stream delivery even if some clients 

failed.  

Bolosky et al. [96] considered architecture for a serverless distributed file system 

that did not assume mutual trust among the client computers. The authors measured and 

analyzed a large set of client machines in a commercial environment to assess the 

feasibility of deploying this system on an existing desktop infrastructure.  

Bolosky et al. [97] calculated results on disk usage, content, and file activity and 

also factored into their results machine uptimes, lifetimes, and loads. They concluded that 

the measured desktop infrastructure would possibly support their proposed system, 

providing availability on the order of one unfilled file request per user per thousand days. 

Hendrickson et al. [98] proposed a new, open-source platform for building next-

generation web services and applications in the burgeoning model of serverless 

computation called OpenLambda. The authors discussed the main aspects of serverless 

computation regarding the design and the implementation of such systems.  
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Bila et al. [99] presented their serverless architecture for securing Linux 

containers which provide continuous scanning for containers. The authors explored the 

design of an automated threat mitigation architecture based on OpenWhisk and 

Kubernetes. 

Baldini et al. [100] investigated serverless functions and identified three 

competing constraints: functions should be considered as black boxes; function 

composition should obey a substitution principle with respect to synchronous invocation; 

and invocations should not be double-billed. They introduced the serverless trilemma, 

which captured the inherent tension between economics, performance, and synchronous 

composition. 

Finally, Adya et al. [96] described serverless distributed file system and improved 

the performance through storing fewer copies of a file. 
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CHAPTER 3:  RESEARCH PLAN 

This section presents the model environment including the hardware setting and 

the developed algorithms to obtain the near-optimal/optimal disassembly sequence for a 

given EOL product. Figure 3.1 presents the proposed sensory system that includes an 

end-of-life personal computer, the robotic manipulator and the digital camera in addition 

to the captured image prior to disassembly. 

 

Figure 3.1 Sensory system: EOL PC, robotic manipulator, digital camera and the captured image prior to 
disassembly 

Screenshot of the robot arm and the processor prior to the disassembly operation 

is presented in Figure 3.2. 
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Figure 3.2 Screenshot of the robot arm and the processor prior to disassembly. 

3.1 Disassembly Sequence Problem Mathematical Foundation 

The MCDM algorithms use an evaluation function that would calculate the total 

time for disassembly operations. Equation (3.1) represents the formulation of the fitness 

function which comprises of three segments. 

𝐹 = ∑ 𝑡𝑡 +∀ ∈ ∑ 𝑚𝑡 +∀ ∈ ∑ 𝑑𝑡∀ ∈ . (3.1) 

The first part of equation (3.1) utilizes the distance formula to calculate the 

travel time of the robot arm between two components. This can be represented by 

equation (3.2). 

𝑡𝑡 =
𝑋 ( ) − 𝑋 + 𝑌 ( ) − 𝑌 + 𝑍 ( ) − 𝑍

𝑠𝑓
. 

(3.2) 

In this equation, X and Y represent respectively the width (x-axis), the height (y-

axis) while Z denotes the depth (z-axis). The index i represents component i being 

disassembled in the jth sequence while index denotes the previously disassembled 

component in the (j-1)th sequence. The travel time between components i and k are 
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calculated by dividing this distance by the average speed of the robot arm (sf). The robot 

speed is given as 7 centimeters per second (sf = 7 cm/sec), the average speed of the 

Mitsubishi Industrial Micro-Robot System Model RV-M1. 

The second part of the fitness function introduces the time penalty for changing 

the disassembly method if present (Eq. 3.3). Here, the fitness function is penalized by 1 

second for each method change, if any. 

𝑚𝑡 =
0, 𝑖𝑓 𝑛𝑜 𝑚𝑒𝑡ℎ𝑜𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
1, 𝑖𝑓 𝑚𝑒𝑡ℎ𝑜𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

.       (3.3) 

The third part represents the actual disassembly time required for component i in 

seconds. This can be expressed with equations below.  

𝑑𝑡 = 𝑑𝑡 , 𝑑𝑡 , … , 𝑑𝑡 }, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛. (3.4) 

In this work, the following values are used for the ten components (n = 10) in the 

EOL product. 

𝑑𝑡 = {2, 3, 3, 2, 3, 4, 2, 1, 3, 2}, 𝑓𝑜𝑟 𝑖 = 1, … ,10. (3.5) 

In equation (3.1), the index boundaries are, 1≤ i ≤ n, 1 ≤ j ≤ l, and 0 ≤ k ≤ n, where, 

n is the number of items in the EOL product structure and l is the length of the sequence 

generated by the simulated annealing algorithm in each run. Furthermore, the lower and 

upper boundaries for the sequence, 1 ≤ l ≤ n, are naturally introduced into the fitness 

function, similar to the constraint, i ≠ k. Zero values for both k and (j-1) indicate the initial 

position of the robot arm prior to disassembly when there is no sequence generated. 

The algorithm is structured so that if two of the same-layer components are both 

made out the same material and are assigned destructive disassembly, a “pair” 
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disassembly operation is conducted. In this case, these two components are disassembled 

concurrently with only a single penalty for the disassembly time. Please see [26] for the 

detailed description of the pairing logic. 
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CHAPTER 4:  IMPLEMENTATION AND RESULTS 

4.1 Implementation of the Tabu Search and Genetic Algorithm Models 

The proposed algorithm aims at minimizing the uncertainty in the disassembly 

process via two techniques: (1) A sensory system, and (2) an online real-time Tabu Search 

module. The sensory system consists of a robotic manipulator, a digital camera and an 

image processing algorithm. The camera captures the images of components and/or 

subassemblies accessible at each level (Figure 3.2) and identifies the depth of each 

available entity. The Tabu Search (TS) algorithm then uses this information to determine 

the optimal disassembly sequence for the current level. Since the visibility and 

accessibility of components are altered following each disassembly operation, the Tabu 

Search algorithm seeks another optimal sequence for the newly generated EOL product 

structure. The sensory system captures product images after every removal, providing the 

Tabu Search algorithm with accurate online real-time data. This loop continues until all 

the components demanded for recycling and reuse are removed. Unwanted components 

are also subjected to disassembly, if and only if their removal would lead to accessibility 

of desired components; i.e., the components demanded for reuse or recycling. This 

condition prohibits unnecessary movements and hence reduces the overall makespan.  

The Tabu Search algorithm is motivated by multiple objectives while searching 

for the best possible sequence within each layer. The algorithm ensures that (1) the 

distance traveled by the robot arm, (2) the number of disassembly method changes; i.e., 

from non-destructive (ND) to destructive (D) or vice versa, and (3) the number of material 
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changes, are minimized. Objective (3) is achieved by grouping the components that are 

made out of identical materials and increases the overall makespan via a panelizing 

constant if the following component to be disassembled consists of different material.  

A literature example is considered to demonstrate the functionality of the 

proposed algorithm. The optimal disassembly path search has been conducted via Tabu 

Search. 

Figure 4.1 represents the Tabu Search algorithm steps. In Block 1, the parameter 

initialization is executed to set Tabu parameters, such as short-term memory, to generate 

the initial solution and to calculate the fitness value of the initial solution. Block 2 is the 

general loop that runs every iteration during the search. Block 3 explains the internal runs. 

During the iteration, three solutions will be generated and evaluated to obtain the 

subsequent best solution. In the case where the current solution is not considered as a 

feasible one, the same iteration will be executed until a feasible (good) solution is 

obtained. These solutions will make sure that the algorithm will avoid trapping into local 

optima and will also serve as the short term memory for the algorithm. 

The steps of the Tabu Search algorithm are provided in Table 4.1 and the pseudo 

code for the overall search is given in Table 4.2.  

Step 1 Start with random initial solution 

Step 2 Calculate the fitness value for the random generated solution 

Step 3 Tabu search will obtain the subsequent feasible solution 

Step 4 Calculate the fitness for the next solution 

Step 5 
If next solution provides a better fitness, set the new solution as the current solution and go 

to step 3 

Step 6  End of iterations, return best selected solution. 
Table 4.1.Tabu search algorithm. 
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Figure 4.1.Tabu search algorithm flowchart. 

BEGIN TS3M 
Set Subdistances to Detected items distances, numberofiterations = NumberOfIterations, 
CurrentSolution  To InitialSolution, BestSolution To InitialSolution 
CurrentSolution.Cost ComputeCost 
BestSolution.Cost  ComputeCost 
InitializeTL 
RunTS 

END TS3M 
BEGIN COMPUTECOST 

SET ft, f to zero 
IF SolutionArray count  = 0 

SET robot_speed = 7 
SUM(subdistance[:][1]) 
IF SolutionArray[0] Not Equal 0 

Return POSITIVEINFINITY 
  ELSE 
   FOR i=0 TO SolutionArray.count 

Set ct To 0, Var1 To 0, Var2 To 0, Var3 To 0 
Var1  sqr(differencebetween(solutionarray[i-1][2],solutionarray[i-1][2]) 
Var2  sqr(differencebetween(solutionarray[i-1][3],solutionarray[i-1][3]) 
Var3  sqr(differencebetween(solutionarray[i-1][4],solutionarray[i-1][4])  

   END FOR 
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IF(SolutionArray[i-1][6] =0 and SolutionArray[i][6] =0 and 
SolutionArray[i][7] =0 and SolutionArray[i][7] =0) 

f=f-subdistance.solutionarray[i][1] 
ELSE 

F=f+ct/robot_spped+abs(solutionarray[i-1][5]- solutionarray]i][5] 
END IF 

END IF   
END IF 

END COMPUTECOST 
BEGIN RunTS 

Set notgood to False 
FOR i=0 To numberofiterations 

Notgood GetCurrentSolution 
While notgood  

Notgood GetCurrentSolution 
END WHILE  
UPDATETL 
IF CurrentSolution.cost<BestSolution.cost 

Swap(CurrentSolution,BestSolution) 
END IF 

END FOR 
END RunTS 

Table 4.2 Pseudocode for Tabu search. 

After initializing the algorithm parameters, the ComputeCost function will be 

executed to calculate the fitness for the first and initial solution, and then RunTS will 

iterate to find the optimal or near optimal solution. In the case where the next best feasible 

solution is found, the new solution will be assigned as the current solution (Best Solution), 

and the program will continue iterating to obtain a new and better solution. If a better 

solution does exist, the short term memory provided by the Tabu search algorithm will 

prevent falling back into local optimal solution. 

Figure 4.2 demonstrates the Genetic Algorithm flowchart. GA parameters such as 

population, generation size and the number of iterations is initialized. This represent the 

call of GA functions such as Crossover, Permutation, and Chromosome.  

Figure 4.3 depicts the overall process for the application. Block 1 represents the 

initialization of all parameters such as object distances, sub-distances, the number of 
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items and the number of detected objects. Block 2 represents the call of Object detection 

functions, Tabu or GA algorithm to generate the optimal and near optimal solution in 

addition to the generation of sequence, action and disassembly tool. When this block is 

executed successfully, the optimal or near optimal solution will be ready, including the 

disassembly method and the tool needed to disassemble the product.  

 

Figure 4.2 Genetic algorithm flowchart. 
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Figure 4.3 Genetic and Tabu search algorithms. 

4.2 Implementation of the Tabu Search and Genetic Algorithm Models 

This section presents a numerical example to demonstrate the functionally of the 

proposed methodology. Table 4.3 lists the components of the end-of-life product, material 

content of each product along with the required disassembly technique to recycle, reuse, 

store or properly dispose of these components. D denotes destructive disassembly 

whereas ND indicates that non-destructive disassembly method must be used. 

Component 
Number 

Description Material Disassembly 
Method 

0 Robot reference point   
1 Side cover Aluminum (A) D 
2 Power supply Copper(C) D 
3 Sound card Plastic (P) ND 
4 Modem card Plastic (P) ND 
5 CPU Plastic (P) ND 
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6 Hard drive Aluminum (A) ND 
7 CD drive Aluminum (A) ND 
8 Zip drive Aluminum (A) ND 
9 RAM Plastic (P) ND 

10 Drives slot Aluminum (A) D 
Table 4.3 End-of-life product components, material content and required disassembly techniques. 

 

Figure 4.4 Bill-of-materials (BOM) for the EOL product. 

The Tabu Search algorithm is applied to the numerical example provided in Table 

4.3; for the product provided in Figure 4.4, 1,000 independent runs are completed to test 

the Tabu Search and to compare the solutions with the previously published Genetic 

Algorithm results provided in Kongar and Gupta [22]. The following details the 

comparison of both algorithms. 

In order to validate the reliability of results, various statistical analyses have been 

conducted in SPSS, Excel, Matlab and the Arena Simulation software. The SPSS output 

of the summary statistics for 1,000 random runs for Genetic Algorithm (GA) and Tabu 

Search (TS) are provided in Table 4.4. The median and mode for Tabu Search runs in 
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milliseconds (187.5, 197.65625) are significantly less than the median and mode of the 

Genetic Algorithm runs (406.25, 402.9844). 

 
Tabu Search 

(TS) 
Genetic 

Algorithm (GA) 
Mean 197.65625 402.9844 
Standard Error 2.033077929 1.125706 
Median 187.5 406.25 
Mode 156.25 390.625 
Standard Deviation 64.29156917 35.59795 
Sample Variance 4133.405867 1267.214 
Kurtosis 0.3840795 6.296531 
Skewness 0.95576832 1.572811 
Range 328.125 328.125 
Minimum 78.125 296.875 
Maximum 406.25 625 
Sum 197656.25 402984.4 
Count 1000 1000 
Confidence Level 
(95.0%) 

3.989593024 2.20902 

Table 4.4 Summary Statistics for Tabu search (TS) and Genetic algorithm (GA) run times in 
milliseconds. 

Figure 4.5 depicts the scatter plots of Tabu Search (TS) and Genetic Algorithm 

(GA) Run Times in Milliseconds. Despite the fact that Genetic Algorithm (GA) runs 

depict a slower runtime than the Tabu Search, a hypothesis testing has been conducted to 

prove this suspicion. 

The histograms of both runs are provided in Figure 4.6. The histograms indicate 

that Tabu Search (s2= 4133.405867) runs are more spread compared to Genetic 

Algorithm (s2 = 1267.214) runs. Figure 4.7 represent a side-by-side comparison for the 

same histogram represent in Figure 4.6, its clear from 4.7 when the data was presented 

on side by side that the mean for GA is higher than the mean of Tabu Search. Figure 4.7 

explains that the run time required by GA is more than Tabu Search.  
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Figure 4.5 Scatter plots of Tabu search (TS) and Genetic algorithm (GA) run times in milliseconds. 

 

Figure 4.6 Histograms of Tabu search (TS) and Genetic algorithm (GA) run times in milliseconds. 

Further distribution testing in the Arena simulation software indicated that both 

data sets were most likely to belong to a Gamma distribution with the parameters 78 + 

GAMM (35.4, 3.38) for Tabu Search and 78 + GAMM (35.4, 3.38) for the Genetic 

Algorithm; with test statistics being 0.085 for Kolmogorov Smirnov test and Chi Square 
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test statistics being 559 for both data sets. 

Since for a data set smaller than 2,000 elements the Shapiro-Wilk test is 

considered more reliable and both Kolmogorov-Smirnoff and Shapiro-Wilk normality 

tests are conducted; the SPSS results of Kolmogorov-Smirnoff (.165 > .000 for Tabu 

Search and .174 > .000 for Genetic Algorithm) and Shapiro-Wilk tests (.921 > .000 for 

Tabu Search and .879 > .000 for Genetic Algorithm) for normality show that both datasets 

are not from a standard normal distribution (Table 4.5).  The alternative hypothesis is 

rejected concluding that neither Tabu Search nor the Genetic Algorithm data set comes 

from a normal distribution. 

F-Test Two-Sample for Variances indicates that the variances are not equal to 

each other (Table 4.6). 

Due to the fact that the data sets are not normally distributed, ANOVA single 

factor test was also run. The results are provided in Table 4.7, indicating that the 

variations between the data sets are significantly different. 

 

Figure 4.7 Histograms of Tabu search and Genetics algorithm. 
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 Kolmogorov-Smirnov Shapiro-Wilk 
Statistic df Sig. Statistic df Sig. 

Tabu .165 1000 .000 .921 1000 .000 
Genetic .174 1000 .000 .879 1000 .000 

Table 4.5 Kolmogorov-Smirnov and Shapiro-Wilk tests of normality. 

  Tabu Search (TS) Genetic Algorithm (GA) 

Mean 197.65625 402.984375 

Variance 4133.405867 1267.214236 

Observations 1000 1000 

Df 999 999 

F 3.261805108  

P(F<=f) one-tail 4.09549E-74  

F Critical one-tail 1.109746136   

Table 4.6 F-Test two-sample for variances results. 

ANOVA: Single factor      

Source of 

Variation 
SS Df MS F P-value F crit 

Between 

Groups 
21079819 1 21079819 7806.444 0 3.846117028 

Within 

Groups 
5395219 1998 2700.31    

Total 26475039 1999         

Table 4.7 ANOVA: Single factor results. 
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Figure 4.8 Scatter plot for Tabu search (TS) versus Genetic algorithm (GA) runs in milliseconds. 

A scatter plot for Tabu Search (TS) versus Genetic Algorithm (GA) runs is plotted 

to illustrate the relationship between the two data sets (Figure 4.8). 

In order to prove the samples are independent of each other, Pearson's Correlation 

test has been conducted in SPSS. The test results indicate that the strength of association 

between the variables is very low (r = 0.011), and that the correlation coefficient is 

significantly close to zero (P = 0.719 > 0.001). In addition, we can say that 0.0121% 

(0.0112) of the variation in GA run times is explained by TS run times. 

4.3 Implementation of the Analytical Hierarchy Process (AHP) and 

Simulated Annealing (SA) Models 

In order to incorporate DMs’ preferences into the process, AHP, a method capable 

of incorporating tangible and intangible factors into the model environment [1], has been 

utilized. AHP facilitates interaction with the model environment allowing DMs to assess 
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and evaluate their decisions based on necessity [34]. AHP is a stepwise process using a 

numerical scale ranging from 1 to 9 to represent the DMs’ preference for each activity 

[3]. Table 4.8 represents the original intensity of importance used in this study. 

The levels of the AHP algorithm, namely, goal, criteria, and alternatives are 

provided in Figure 4.8. Here, the goal is to obtain the preference vector to decide on the 

appropriate EOL recovery option, viz., recycle, proper disposal, reuse, and storage. In the 

second level, each criterion is listed to include environmental, economic and social 

considerations imposed by the decision maker(s). A list of all alternatives is provided in 

the third level of the hierarchy.  

Intensity of importance Definition Description 

1 Equal importance 
Two activities contribute equally to the 
objective 
 

3 
Weak importance of one 
over another 

Experience and judgement slightly favor 
one activity over anothe 
 

5 
Essential or strong 
importance 

Experience and judgment strongly favor 
one activity over another 

7 Demonstrated importance 
An activity is strongly favored and its 
dominance is demonstrated in practice 
 

9 Absolute importance 
The evidence favoring one activity over 
another is of the highest possible order of 
affirmation 

2 ,4 ,6 ,8 

Intermediate values 
between the two adjacent 
judgments 
 

When compromise is needed 

Reciprocals of above 
nonzero 

If activity i has one of the above nonzero numbers assigned to it when 
compared with activity j, then j has the reciprocal value when compared 
with i. 

Table 4.8 Verbal and numerical scale representation for AHP [32]. 

The EOL product recovery system is initiated by the input provided by the 

decision maker. Based on the Bill-of-Materials of the end-of-life product, the decision 

maker sets the preference levels using Table 4.9. 
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Table 4.9 represents the preferences for each component. In the EOL section of 

the component is the preferences to select between Environmental Economic, and Social. 

The second set of preferences to choose between Reuse, Recycling, Proper Disposal, and 

Storage.  

 

Figure 4.9 AHP priority vector generation process (Adopted from [3]). 

The preference vector is then generated based on these preference assignments. 

The flexibility ratio is a percentage to be set by the DM and represents the stringency of 

the DM input. For instance, if the flexibility ratio is set as five percent, this will imply 

that if the difference between the destructive and non-destructive method is less than or 

equal to this value, the simulation will select the appropriate disassembly method to 

reduce the overall time. Otherwise, the disassembly method will be selected based on the 

DMs’ preference. 

The weight vector is then calculated to represent the probability of each criterion 

Choosing the most 
appropriate EOL processing 

option

Economic Social

Proper Disposal StorageReuseAlternatives

Criteria

Goal

Recycling

Environmental
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using equation (4.1). 

𝑃𝑀 =
1 ⋯ 𝑤
⋮ ⋱ ⋮

1/𝑤 ⋯ 1
=

1 , ∀ 𝑝, 𝑞 ∈ 1,2, … . 𝑟 𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑞
𝑤  , ∀ 𝑝, 𝑞 ∈ 1,2, … . 𝑟 𝑤ℎ𝑒𝑟𝑒 𝑝 < 𝑞

1/𝑤  , ∀ 𝑝, 𝑞 ∈ 1,2, … . 𝑟 𝑤ℎ𝑒𝑟𝑒 𝑝 > 𝑞
 . 

(4.1) 

 

Once the pairwise comparison matrix is built, the next step is to normalize this 

matrix by summing up each column and dividing the column cells by the summation: 

𝑁𝑃𝑀 =
∑

∀ 𝑝, 𝑞 𝜖 1, … , 𝑟. (4.2) 

This process will generate a priority vector that will be used to decide on the 

disassembly method and the EOL option for each component: 

𝑃𝑃𝑀 =
∑

∗ 100 ∀ 𝑝, 𝑞 𝜖 1, … , 𝑟. (4.3) 

The variable r is bounded by 1 and the number of criteria and the number of EOL 

processing options based on the AHP problem structure. In this study, r = 1,….3, in the 

first step and r = 1,…, 4, in the second. 

At every step, the consistency ratio (CR) is calculated to ensure the consistency 

of corresponding pairwise comparison matrix, i.e., judgment matrix. If the resulting CR 

value is higher than 10%, the decision maker is asked to revise the corresponding set of 

parameters. This is continued until the consistency ratio is less than or equal to 10%. 

Following the preference vector calculations, the normalized decision vector 

values are fed into the Simulated Annealing (SA) search algorithm. The algorithm is then 

utilized to generate the optimum or near-optimum solution, based on the DM preferences. 

Schematic representation of the decision maker-centered EOL product disassembly 
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sequencing infrastructure is provided in Figure 4.9.  

 

Figure 4.10 Decision maker-centered EOL product disassembly sequencing infrastructure: sensory 
system, AHP and SA modules. 
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Table 4.9 Decision maker parameters and sample data 

The flowchart shown in Figure 4.10 describes the process of disassembly sequence 

generation using the two steps discussed previously. In the first step, AHP is employed 

to generate the DM preferences and to obtain to the weight matrices. In the second step, 

SA is utilized to obtain the optimum or near-optimum solution using the provided DM 

preferences. In order to take into account the uncertainty in the EOL product structure, a 

component discovery operation is conducted prior to each disassembly process. 

This section details the integrated disassembly sequencing modules and demonstrates the 

functionality of the AHP and SA algorithms via a numerical example. 

The hierarchy of the EOL product used in this study along with its component and 

material contents is provided in Figure 4.11. As illustrated in the figure, the EOL product 
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is composed of ten components. 

 

Figure 4.11 Schematic representation of the EOL product. 

The steps of the EOL product disassembly sequencing system is provided below. 

Step 1. Detect all available objects for disassembly using the camera and the 

sensory system (Figure 3.1 and Figure 3.2). 

Step 2. Obtain decision maker input. From the DM preferences select the 

preferences related to the objects detected in Step 1. For instance, if the components 2, 3 

and 4 have been detected in the first round, the corresponding weight vectors provided 

below are then calculated to represent the probability of each vector using equation (4.  

Using the weight vectors, the pairwise matrix is then generated using equation 

(4.2). The pairwise matrix is calculated in two iterations. The first iteration is to decide 

between the criteria Environmental (en), Economic (ec), and Social (so). 
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𝑃𝑀 (𝑒𝑛, 𝑒𝑐, 𝑠𝑜 ) =

1

7 1 3

5 1

=
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7 1 3
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The pairwise matrices are then normalized using equation (4.3). The criterion 

which is selected is marked in bold. 
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⎠

⎟
⎞

=
7.30
𝟔𝟒. 𝟑
28.2

, 
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𝑃𝑀 (𝑒𝑛, 𝑒𝑐, 𝑠𝑜 ) =
1 0.33 3
3 1 5

0.33 0.20 1
=

0.077 0.097 0.048
0.538 0.677 0.714
0.384 0.226 0.238

=

0.221
1.930
0.848

=

⎝

⎜
⎛

.

.

.

⎠

⎟
⎞

=
7.30
𝟔𝟒. 𝟑
28.2

. 

The second iteration uses the results obtained from the first iteration and selects 

the proper pairwise matrix to generate the EOL processing option for each component. 

As explained previously, the EOL processing options include reuse (ru), recycling (rc), 

storage (st), and proper disposal (pd). 

𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

⎝

⎜
⎜
⎜
⎛

1
1

5
1

1

3
5 1 5 7

1
3

1

5
1

7

1
1

3
3 1

⎠

⎟
⎟
⎟
⎞

=

1 0.20 1 0.33
5 1 5 7
1
3

0.20
0.14

1 0.33
3 1

, 

𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

⎝

⎜⎜
⎛

1 7 5 3

1 1

3
1

1 3

1
⎠

⎟⎟
⎞

=

1 7 5 3
0.14 1 0.33 1
0.20
0.33

3
1

1 3
0.33 1

, 

𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

⎝

⎜⎜
⎛

1 7 5 3

1 1

3
1

1 3

1
⎠

⎟⎟
⎞

=

1 7 5 3
0.14 1 0.33 1
0.20
0.33

3
1

1 3
0.33 1

. 

The pairwise matrices are then normalized using equation (4.3). 
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𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

1 0.20 1 0.33
5 1 5 7
1
3

0.20
0.14

1 0.33
3 1

=

⎝

⎜
⎜
⎜
⎛

.

.

.

.

. .
.

.

.

.

.

.

. ⎠

⎟
⎟
⎟
⎞

=

0.1 0.129 0.1 0.038
0.5 0.648 0.5 0.807
0.1
0.3

0.129
0.092

0.1
0.3

0.038
0.115

=

0.092
0.613
0.092
0.201

 =

9.2
𝟔𝟏. 𝟑
9.2

20.1

 , 

𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

1 7 5 3
0.14 1 0.33 1
0.20
0.33

3
1

1 3
0.33 1

=

⎝

⎜
⎜
⎜
⎛

. .

.

.

.

.
.

.

.

.

.

.

. ⎠

⎟
⎟
⎟
⎞

=

0.596 0.583 0.75 0.375
0.085 0.083 0.05 0.125
0.119
0.198

0.25
0.083

0.15
0.05

0.375
0.125

=

0.576
0.085
0.223
0.114

 =

𝟓𝟕. 𝟔
8.50
22.3
11.4

, 

𝑃𝑀 (𝑟𝑢, 𝑟𝑐, 𝑠𝑡, 𝑝𝑑) =

1 7 5 3
0.14 1 0.33 1
0.20
0.33

3
1

1 3
0.33 1

=

⎝

⎜
⎜
⎜
⎛

. .

.

.

.

.
.

.

.

.

.

.

. ⎠

⎟
⎟
⎟
⎞

=

0.596 0.583 0.75 0.375
0.085 0.083 0.05 0.125
0.119
0.198

0.25
0.083

0.15
0.05

0.375
0.125

=

0.576
0.085
0.223
0.114

 =

𝟓𝟕. 𝟔
8.50
22.3
11.4

. 

Table 4.12 shows the user preference input, AHP pairwise comparison matrices, 

priority vectors, and the consistency ratios for all components in the EOL product. As it 

can be observed from the table, the DM preference vector indicates the percentages of 

destructive and non-destructive disassembly operations along with the percentages of 
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components to be recycled, reused, stored and disposed of for each component in the EOL 

product. These values are then used in the fitness function calculations. 

After assigning the DM preferences, the Simulated Annealing (SA) search 

algorithm is applied to generate the optimum or near-optimum solution, based on the DM 

preferences. The SA algorithm is explained in detail in Step 3. 

Step 3. Introduce the preference percentages into the disassembly matrix to 

calculate the disassembly sequence via the simulated annealing algorithm. Here, since 

there is only one item (component 1) detected in the initial step, the AHP algorithm is 

immediately executed without the simulated annealing search to generate the preference 

vector for the first item in the EOL product structure.  

In the second iteration, three components are detected (components 2, 3 and 4). 

Since there is more than one component in this step, following the preference matrix 

calculations, the SA search algorithm is initiated to generate the optimum or near-

optimum disassembly sequence. Table 4.10 represents the results of the sub-matrices used 

in this step.  

 

Iteration 
Detected 

Component 
X-axis Y-axis Z-axis Purpose Method Material 

Disassembly 

Time 

1 0 0 0 0 0 1 0 0 

2 

2 42 80.5 110.0 0 1 1 3 

3 127 89 210.0 1 0 2 3 

4 146.333 90.333 210.0 1 0 2 2 

Table 4.10 Sample run results 
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Here, the disassembly method is categorized as destructive and non-destructive 

and are represented by values 0 and 1, respectively. Similarly, 0, 1, 2, and 3 indicate the 

purpose of the disassembly, viz.; reuse, recycle, storage, and proper disposal, 

respectively.  

In the first simulated annealing solution provided in Table 4.10, the order of the 

components (0, 2, 3, 4) represents the disassembly sequence where “0” is the robot arm 

reference point followed by the component indices. Using the SA fitness function given 

in equation 5, the fitness value is then calculated as 49.1646115780334. Table 4.11 shows 

the disassembly sequence generated in this iteration. 

 

Disassembly 

Sequence 

Disassembly 

Method 

EOL 

Option 
Material 

Fitness 

Value 

2 3 4 0 1 1 2 0 0 0 2 2 49.16 

Table 4.11 Initial disassembly sequence results. 

 

The complete disassembly sequence generated by the SA algorithm is presented 

in Table 4.13 along with the corresponding coordinates, disassembly methods, EOL 

processing options and the material contents of the components. The table is structured 

as follows: the first column represents the iteration number, while the second column lists 

the items detected in the product. The third, fourth and fifth columns show the exact 

coordinates of the components. The sixth column represents the disassembly method 

provided by the AHP algorithm, whereas the seventh column presents the EOL 



 

 

58 
 

processing option, also provided by the algorithm. The eighth column provides the 

corresponding material content for each item while the final column represents the 

component selected for disassembly. The algorithm terminates when there is one single 

item left in the EOL product. This component (component 9 in this numerical example) 

is then placed at the end of the sequence. 

The final EOL disassembly sequence with the corresponding disassembly 

method, the EOL choice based on the DM preferences and the material content for each 

item is provided below in Table 4.14. 

Here, destructive disassembly method is represented by 0 while non-destructive 

disassembly is denoted by 1. Similarly, 0, 1, 2, and 3 indicate the purpose of the 

disassembly pointing to a specific EOL processing option; reuse, recycle, storage, and 

proper disposal, respectively.
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  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 

  Environmental Economic Social   Reuse Recycling Storage Proper Disposal   Environmental Economic Social   Reuse Recycling Storage Proper Disposal

Environmental 1 5/1 7/1 Reuse 1 1/5 1/1 1/3 Environmental 1 1/3 1/1 Reuse 1 3/1 1/5 3/1 

Economic 1/5 1 3/1 Recycling 5/1 1 5/1 7/1 Economic 3/1 1 5/1 Recycling 1/3 1 1/5 1/1 

Social  1/7 1/3 1 Storage 1/1 1/5 1 1/3 Social  1/1 1/5 1 Storage 5/1 5/1 1 5/1 

     Proper Disposal 3/1 1/7 3/1 1      Proper Disposal 1/3 1/1 ` 1 

Preference Vector 72.35 19.32 8.33 Preference Vector 9.2 61.4 9.2 20.2 Preference Vector 18.67 65.55 15.78 Preference Vector 9.2 61.4 9.2 20.2 

CR 0.06     CR 0.1       CR 0.03     CR 0.06       
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  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 

  Environmental Economic Social   Reuse Recycling Storage Proper Disposal   Environmental Economic Social   Reuse Recycling Storage Proper Disposal

Environmental 1 1/7 1/5 Reuse 1 1/5 1/1 1/3 Environmental 1 3/1 5/1 Reuse 1 3/1 1/5 3/1 

Economic 7/1 1 3/1 Recycling 5/1 1 5/1 7/1 Economic 1/3 1 1/1 Recycling 1/3 1 1/5 1/1 

Social  5/1 1/3 1 Storage 1/1 1/5 1 1/3 Social  1/5 1/1 1 Storage 5/1 5/1 1 5/1 

     Proper Disposal 3/1 1/7 3/1 1      Proper Disposal 1/3 1/1 1/5 1 

                      

Preference Vector 7.38 64.34 28.28 Preference Vector 9.2 61.4 9.2 20.2 Preference Vector 18.67 65.55 15.78 Preference Vector 9.2 61.4 9.2 20.2 

CR 0.06     CR 0.1       CR 0.03     CR 0.04       
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  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 

  Environmental Economic Social   Reuse Recycling Storage Proper Disposal   Environmental Economic Social   Reuse Recycling Storage Proper Disposal

Environmental 1 1/3 3/1 Reuse 1 7/1 5/1 3/1 Environmental 1 1/1 1/3 Reuse 1 3/1 5/1 7/1 

Economic 3/1 1 5/1 Recycling 1/7 1 1/3 1/1 Economic 1/1 1 1/5 Recycling 1/3 1 1/3 1/1 

Social  1/3 1/5 1 Storage 1/5 3/1 1 3/1 Social  3/1 5/1 1 Storage 1/5 3/1 1 3/1 

     Proper Disposal 1/3 1/1 1/3 1      Proper Disposal 1/7 1/1 1/3 1 

Preference Vector 26.05 63.33 10.62 Preference Vector 57.6 8.59 22.36 11.43 Preference Vector 18.67 15.78 65.6 Preference Vector 57.62 11.43 22.36 8.59 

CR 0.03     CR 0.09       CR 0.03     CR 0.09       
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  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 

  Environmental Economic Social   Reuse Recycling Storage Proper Disposal   Environmental Economic Social   Reuse Recycling Storage Proper Disposal

Environmental 1 1/3 3/1 Reuse 1 7/1 5/1 3/1 Environmental 1 5/1 3/1 Reuse 1 5/1 3/1 3/1 

Economic 3/1 1 5/1 Recycling 1/7 1 1/3 1/1 Economic 1/5 1 1/3 Recycling 1/5 1 1/5 1/3 

Social  1/3 1/5 1 Storage 1/5 3/1 1 3/1 Social  1/3 3/1 1 Storage 1/3 5/1 1 3/1 

     Proper Disposal 1/3 1/1 1/3 1      Proper Disposal 1/3 3/1 1/3 1 

Preference Vector 26.05 63.33 10.62 Preference Vector 57.6 8.59 22.36 11.43 Preference Vector 63.33 10.62 26.05 Preference Vector 49.09 6.7 29.13 15.07 

CR 0.03     CR 0.09       CR 0.03     CR 0.07       

C
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po
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nt
 5

 

  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 
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om
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 1

0 

  Round 1 Pairwise Matrix Round 2 Pairwise Matrix 

  Environmental Economic Social   Reuse Recycling Storage Proper Disposal   Environmental Economic Social   Reuse Recycling Storage Proper Disposal

Environmental 1 1/1 1/3 Reuse 1 1/5 1/1 1/3 Environmental 1 3/1 1/3 Reuse 1 3/1 1/5 3/1 

Economic 1/1 1 1/5 Recycling 5/1 1 5/1 3/1 Economic 1/3 1 1/5 Recycling 1/3 1 1/5 1/1 

Social  3/1 5/1 1 Storage 1/1 1/5 1 1/3 Social  3/1 5/1 1 Storage 5/1 5/1 1 5/1 

     Proper Disposal 3/1 1/3 3/1 1      Proper Disposal 1/3 1/1 1/5 1 

Preference Vector 18.67 15.78 65.55 Preference Vector 9.67 55.49 9.67 25.16 Preference Vector 26.05 10.62 63.3 Preference Vector 21.88 9.38 59.38 9.38 

CR 0.03     CR 0.09       CR 0.03     CR 0.06       

Table 4.12 User preference input, AHP pairwise comparison matrices, priority vectors, and consistency ratios.
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Iteration Detected 
Component 

X-axis Y-axis Z-
axis 

Method EOL 
Option 

Material Selected 
Component 

1 1 42 80.5 110 0 1 1 1 
2 2 42 80.5 110 0 1 1 2 

3 127 89 210 1 0 2 
4 146.333 90.333 210 1 0 2 

3 3 127 89 210 1 0 2 7 
4 146.333 90.333 210 1 0 2 
5 57.5 88 300 0 1 2 
6 86 31 150 1 2 0 
7 20 50 150 1 0 0 
8 64 35 150 1 0 0 

4 3 127 89 210 1 0 2 8 
4 146.333 90.333 210 1 0 2 
5 57.5 88 300 0 1 2 
6 86 31 150 1 2 0 
8 64 35 150 1 0 0 
9 63 54 320 1 0 2 

5 3 127 89 210 1 0 2 10 
4 146.333 90.333 210 1 0 2 
5 57.5 88 300 0 1 2 
6 86 31 150 1 2 0 
9 63 54 320 1 0 2 
10 34 33 170 1 2 0 

6 3 127 89 210 1 0 2 6 
4 146.333 90.333 210 1 0 2 
5 57.5 88 300 0 1 2 
6 86 31 150 1 2 0 
9 63 54 320 1 0 2 

7 3 127 89 210 1 0 2 3 
4 146.333 90.333 210 1 0 2 
5 57.5 88 300 0 1 2 
9 63 54 320 1 0 2 

8 4 146.333 90.333 210 1 0 2 4 
5 57.5 88 300 0 1 2 
9 63 54 320 1 0 2 

9 5 57.5 88 300 0 1 2 5 
9 63 54 320 1 0 2 

10 9 63 54 320 1 0 2 9 
Table 4.13 Disassembly sequencing results. 

Disassembly Sequence Disassembly Method EOL Option Material Fitness Value 

1 2 7 8 10 6 3 4 5 9  0 0 1 1 1 1 1 1 0 1 1 1 0 0 2 2 0  0 1 0 1  2 1 1 1 1 0 0 0 0 106.43 

Table 4.14 Final EOL disassembly sequence 



 

 

61 
 

4.4 Simulated Annealing (SA) Computation Requirements and 

Performance Models 

The first part of this research looked into utilizing Tabu Search for disassembly 

sequence generation. A comparison between Genetic Algorithm and Tabu search are also 

provided. A scatter plot for these two runs is plotted to illustrate the relationship between 

the two data sets (Figure 4.12). As it can also be observed from the figure, the data sets 

are statistically different from one another with unequal variances and significantly low 

correlation. Tabu Search runs are statistically less time consuming than Genetic 

Algorithm runs, hence providing faster solutions to the disassembly sequencing problem 

 

Figure 4.12 Scatter plot for Tabu search (TS) versus Genetic algorithm (GA) runs in milliseconds. 

In its second step, this work also proposed a decision maker-centered disassembly 

sequencing algorithm. The problem is modeled as a multiple criteria decision making 

problem and solved via Simulated Annealing (SA) and Analytic Hierarchy Process 
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(AHP) methods. Utilization of SA enabled the algorithm to provide faster and reliable 

results while utilization of AHP introduced flexibility into the system. 

Both the SA and AHP algorithms are written in C# programming language and 

run on The Microsoft .NET Framework 4. In order to depict the computational 

complexity of the SA algorithm, the simulation is run three thousand times. Figure 4.13 

represents the CPU times of these runs in milliseconds. 

 

Figure 4.13 Simulated annealing run times. 

The computational complexity of the Simulated Annealing algorithm is heavily 

reliant on the temperature annealing mechanism used for the cooling process. For 

instance, if the temperature is altered via a logarithmic scale, the algorithm complexity 

will then be higher than of an exhaustive search for the same problem with the complexity 

of 𝑂(𝑛 ) for an n-element search [101]. In the instances where the temperature 

change is proportional to the previous temperature, the algorithm complexity will be 
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sufficiently reduced to a polynomial order 𝑂((𝑛 + 𝑛)log (𝑛)) which will lead to a more 

efficient algorithm in large scale optimization problems [102, 103]. In this research, the 

temperature is proportionally altered and achieved via the Simulated Annealing for the 

Traveling Salesman Problem with polynomial order of complexity.  

Since AHP uses the maximum eigenvalue of the pairwise matrix, the complexity 

of the algorithm is identical to the complexity of eigenvalue calculations. The 

conventional eigenvalue algorithms have order of 𝑂(𝑛 ) time complexity. In some cases, 

this can be further reduced to order of 𝑂(𝑛) [104, 105]. The AHP model utilized in this 

research calculates approximate maximum eigenvalues using one column or one row at 

a time. Therefore, the computational complexity of the methodology is 𝑂(𝜑 ) where 𝜑 

denotes the number of choices. In this study, there are 2 alternatives, (𝜑 = 2), i.e., i. non-

destructive and destructive, and, ii. Reuse and storage or recycle and disposal, resulting 

in 𝑂(2 ).  

Orthogonal arrays are used instead of full factorization to test the robustness of 

the proposed disassembly sequence generation algorithm. Here, the disassembly time is 

considered to be normally distributed with varying values of the mean (µ) and standard 

deviation (σ) for the EOL product with 10 components. In addition, the robot speed and 

the time required for the disassembly method change are also assumed to be normally 

distributed creating the need for a 24 variable orthogonal array. With three levels for each 

variable, the full factorial would translate to 324 = 282,429,536,481 experiments. Using 

orthogonal arrays the number of experiments are reduced to 54 as shown in Table 5.1 [1]. 

  



 

 

64 
 

CHAPTER 5:  ROBUST DESIGN USING ORTHOGONAL 

ARRAYS 

This section analyses the robustness of the Simulated Annealing algorithm 

proposed by Alshibli et al. [106] using Orthogonal Arrays (OAs) [2]. A detailed 

explanation of the SA implementation is also included in this section. 

Figure 5.1 represent the product hierarchy and the dependencies amongst the 

components. The performance result in this section was compared against the results 

generated from an exhaustive search. 

 

Figure 5.1 Product component hierarchy. 
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Expt. 
No. 

L54 (2^1 X 3^25) Orthogonal Array 
Column 

µ(dt1j) σ(dt1j) µ(dt2j) σ(dt2j) µ(dt3j) σ(dt3j) µ(dt4j) σ(dt4j) µ(dt5j) σ(dt5j) µ(dt6j) σ(dt6j) µ(dt7j) σ(dt7j) µ(dt8j) σ(dt8j) µ(dt9j) σ(dt9j) µ(dt10j) σ(dt10j) µ(sf) σ(sf) µ(mtij) σ(mtij) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
4 1 2 2 2 2 2 2 1 1 1 1 1 1 2 3 2 3 2 3 2 3 2 3 2 
5 1 2 2 2 2 2 2 2 2 2 2 2 2 3 1 3 1 3 1 3 1 3 1 3 
6 1 2 2 2 2 2 2 3 3 3 3 3 3 1 2 1 2 1 2 1 2 1 2 1 
7 1 3 3 3 3 3 3 1 1 1 1 1 1 3 2 3 2 3 2 3 2 3 2 3 
8 1 3 3 3 3 3 3 2 2 2 2 2 2 1 3 1 3 1 3 1 3 1 3 1 
9 1 3 3 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 1 2 1 2 
10 2 1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 1 2 3 2 3 2 3 2 
11 2 1 1 2 2 3 3 2 2 3 3 1 1 2 2 2 2 3 1 3 1 3 1 3 
12 2 1 1 2 2 3 3 3 3 1 1 2 2 3 3 3 3 1 2 1 2 2 1 2 
13 2 2 2 3 3 1 1 1 1 2 2 3 3 2 3 2 3 3 2 3 2 1 1 1 
14 2 2 2 3 3 1 1 2 2 3 3 1 1 3 1 3 1 1 3 1 3 2 2 2 
15 2 2 2 3 3 1 1 3 3 1 1 2 2 1 2 1 2 2 1 2 1 3 3 3 
16 2 3 3 1 1 2 2 1 1 2 2 3 3 3 2 3 2 1 1 1 1 2 3 2 
17 2 3 3 1 1 2 2 2 2 3 3 1 1 1 3 1 3 2 2 2 2 3 1 3 
18 2 3 3 1 1 2 2 3 3 1 1 2 2 2 1 2 1 3 3 3 3 1 2 1 
19 3 1 2 1 3 2 3 1 2 1 3 2 3 1 1 2 3 1 1 3 2 2 3 3 
20 3 1 2 1 3 2 3 2 3 2 1 3 1 2 2 3 1 2 2 1 3 3 1 1 
21 3 1 2 1 3 2 3 3 1 3 2 1 2 3 3 1 2 3 3 2 1 1 2 2 
22 3 2 3 2 1 3 1 1 2 1 3 2 3 2 3 3 2 2 3 1 1 3 2 1 
23 3 2 3 2 1 3 1 2 3 2 1 3 1 3 1 1 3 3 1 2 2 1 3 2 
24 3 2 3 2 1 3 1 3 1 3 2 1 2 1 2 2 1 1 2 3 3 2 1 3 
25 3 3 1 3 2 1 2 1 2 1 3 2 3 3 2 1 1 3 2 2 3 1 1 2 
26 3 3 1 3 2 1 2 2 3 2 1 3 1 1 3 2 2 1 3 3 1 2 2 3 
27 3 3 1 3 2 1 2 3 1 3 2 1 2 2 1 3 3 2 1 1 2 3 3 1 
28 1 1 3 3 2 2 1 1 3 3 2 2 1 1 1 3 2 3 2 2 3 2 3 1 
29 1 1 3 3 2 2 1 2 1 1 3 3 2 2 2 1 3 1 3 3 1 3 1 2 
30 1 1 3 3 2 2 1 3 2 2 1 1 3 3 3 2 1 2 1 1 2 1 2 3 
31 1 2 1 1 3 3 2 1 3 3 2 2 1 2 3 1 1 1 1 3 2 3 2 2 
32 1 2 1 1 3 3 2 2 1 1 3 3 2 3 1 2 2 2 2 1 3 1 3 3 
33 1 2 1 1 3 3 2 3 2 2 1 1 3 1 2 3 3 3 3 2 1 2 1 1 
34 1 3 2 2 1 1 3 1 3 3 2 2 1 3 2 2 3 2 3 1 1 1 1 3 
35 1 3 2 2 1 1 3 2 1 1 3 3 2 1 3 3 1 3 1 2 2 2 2 1 
36 1 3 2 2 1 1 3 3 2 2 1 1 3 2 1 1 2 1 2 3 3 3 3 2 
37 2 1 2 3 1 3 2 1 2 3 1 3 2 1 1 2 3 3 2 1 1 3 2 2 
38 2 1 2 3 1 3 2 2 3 1 2 1 3 2 2 3 1 1 3 2 2 1 3 3 
39 2 1 2 3 1 3 2 3 1 2 3 2 1 3 3 1 2 2 1 3 3 2 1 1 
40 2 2 3 1 2 1 3 1 2 3 1 3 2 2 3 3 2 1 1 2 3 1 1 3 
41 2 2 3 1 2 1 3 2 3 1 2 1 3 3 1 1 3 2 2 3 1 2 2 1 
42 2 2 3 1 2 1 3 3 1 2 3 2 1 1 2 2 1 3 3 1 2 3 3 2 
43 2 3 1 2 3 2 1 1 2 3 1 3 2 3 2 1 1 2 3 3 2 2 3 1 
44 2 3 1 2 3 2 1 2 3 1 2 1 3 1 3 2 2 3 1 1 3 3 1 2 
45 2 3 1 2 3 2 1 3 1 2 3 2 1 2 1 3 3 1 2 2 1 1 2 3 
46 3 1 3 2 3 1 2 1 3 2 3 1 2 1 1 3 2 2 3 3 2 1 1 2 
47 3 1 3 2 3 1 2 2 1 3 1 2 3 2 2 1 3 3 1 1 3 2 2 3 
48 3 1 3 2 3 1 2 3 2 1 2 3 1 3 3 2 1 1 2 2 1 3 3 1 
49 3 2 1 3 1 2 2 1 3 2 3 1 2 2 3 1 1 3 2 1 1 2 3 3 
50 3 2 1 3 1 2 3 2 1 3 1 2 3 3 1 2 2 1 3 2 2 3 1 1 
51 3 2 1 3 1 2 3 3 2 1 2 3 1 1 2 3 3 2 1 3 3 1 2 2 
52 3 3 2 1 2 3 1 1 3 2 3 1 2 3 2 2 3 1 1 2 3 3 2 1 
53 3 3 2 1 2 3 1 2 1 3 1 2 3 1 3 3 1 2 2 3 1 1 3 2 
54 3 3 2 1 2 3 1 3 2 1 2 3 1 2 1 1 2 3 3 1 2 2 1 3 

Table 5.1 Reduced orthogonal array (OA), L54 (21X325) [1, 2].
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For each parameter generated from the set of mean and standard deviation, the 

three levels are represented in Table 5.1 [1, 2]. The levels 1,2 and 3 are replaced by the 

actual values generated using the mean and standard deviation in Table 5.2. 

Table 5.2 represents the value of each parameter for every experiment conducted. 

Here, column 1 represents the number of the experiment, columns 2 to 21 are the averages 

and standard deviations of disassembly times for each component, column 22 and 23 

represent the average and standard deviation of the robot speed, whereas column 24 and 

25 represent the average and the standard deviation of the disassembly method change, 

respectively. 

For further analysis, each set of data was run 1,000 times using both exhaustive 

search and the proposed SA method. Figure 5.2 shows the results of each experiment run 

along with the time required to run each exhaustive search and SA model. 

As it can be observed from Figure 5.2, the exhaustive search required significantly 

longer time to find the optimum solution in each experiment. Both the SA and exhaustive 

search models were able to obtain the optimum solution. Additionally, a comparison was 

conducted with all disassembly sequences generated in each of the 1,000 trials to validate 

the results. 
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Figure 5.2 Simulated Annealing (SA) and Exhaustive Search (ES) run results. 
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Ex

L54 (2^1 X 3^25) Orthogonal Array Column 

µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(dt σ(dt µ(s σ(s µ(m σ(m

1 2.00 0.01 3.00 0.01 3.00 0.01 2.00 0.01 3.00 0.01 4.00 0.01 2.00 0.01 1.00 0.01 3.00 0.01 2.00 0.01 7.0 0.0 0.01 1.00

2 2.00 0.01 3.00 0.01 3.00 0.01 2.00 0.01 3.25 0.05 4.25 0.05 2.25 0.01 1.25 0.05 3.25 0.05 2.25 0.05 7.2 0.0 0.05 1.25

3 2.00 0.01 3.00 0.01 3.00 0.01 2.00 0.10 3.50 0.10 4.50 0.10 2.50 0.01 1.50 0.10 3.50 0.10 2.50 0.10 7.5 0.1 0.10 1.50

4 2.00 0.05 3.25 0.05 3.25 0.05 2.25 0.01 3.00 0.01 4.00 0.01 2.00 0.01 1.50 0.05 3.50 0.05 2.50 0.05 7.5 0.0 0.10 1.25

5 2.00 0.05 3.25 0.05 3.25 0.05 2.25 0.05 3.25 0.05 4.25 0.05 2.25 0.01 1.00 0.10 3.00 0.10 2.00 0.10 7.0 0.1 0.01 1.50

6 2.00 0.05 3.25 0.05 3.25 0.05 2.25 0.10 3.50 0.10 4.50 0.10 2.50 0.00 1.25 0.01 3.25 0.01 2.25 0.01 7.2 0.0 0.05 1.00

7 2.00 0.10 3.50 0.10 3.50 0.10 2.50 0.01 3.00 0.01 4.00 0.01 2.00 0.01 1.25 0.10 3.25 0.10 2.25 0.10 7.2 0.1 0.05 1.50
8 2.00 0.10 3.50 0.10 3.50 0.10 2.50 0.05 3.25 0.05 4.25 0.05 2.25 0.00 1.50 0.01 3.50 0.01 2.50 0.01 7.5 0.0 0.10 1.00

9 2.00 0.10 3.50 0.10 3.50 0.10 2.50 0.10 3.50 0.10 4.50 0.10 2.50 0.01 1.00 0.05 3.00 0.05 2.00 0.05 7.0 0.0 0.01 1.25

10 2.25 0.01 3.00 0.05 3.25 0.10 2.50 0.01 3.00 0.05 4.25 0.10 2.50 0.00 1.00 0.01 3.00 0.05 2.50 0.05 7.5 0.0 0.10 1.25

11 2.25 0.01 3.00 0.05 3.25 0.10 2.50 0.05 3.25 0.10 4.50 0.01 2.00 0.01 1.25 0.05 3.25 0.10 2.00 0.10 7.0 0.1 0.01 1.50

12 2.25 0.01 3.00 0.05 3.25 0.10 2.50 0.10 3.50 0.01 4.00 0.05 2.25 0.01 1.50 0.10 3.50 0.01 2.25 0.01 7.2 0.0 0.01 1.25

13 2.25 0.05 3.25 0.10 3.50 0.01 2.00 0.01 3.00 0.05 4.25 0.10 2.50 0.01 1.50 0.05 3.50 0.10 2.25 0.10 7.2 0.0 0.01 1.00
14 2.25 0.05 3.25 0.10 3.50 0.01 2.00 0.05 3.25 0.10 4.50 0.01 2.00 0.01 1.00 0.10 3.00 0.01 2.50 0.01 7.5 0.0 0.05 1.25

15 2.25 0.05 3.25 0.10 3.50 0.01 2.00 0.10 3.50 0.01 4.00 0.05 2.25 0.00 1.25 0.01 3.25 0.05 2.00 0.05 7.0 0.1 0.10 1.50

16 2.25 0.10 3.50 0.01 3.00 0.05 2.25 0.01 3.00 0.05 4.25 0.10 2.50 0.01 1.25 0.10 3.25 0.01 2.00 0.01 7.0 0.0 0.10 1.25

17 2.25 0.10 3.50 0.01 3.00 0.05 2.25 0.05 3.25 0.10 4.50 0.01 2.00 0.00 1.50 0.01 3.50 0.05 2.25 0.05 7.2 0.1 0.01 1.50

18 2.25 0.10 3.50 0.01 3.00 0.05 2.25 0.10 3.50 0.01 4.00 0.05 2.25 0.01 1.00 0.05 3.00 0.10 2.50 0.10 7.5 0.0 0.05 1.00

19 2.50 0.01 3.25 0.01 3.50 0.05 2.50 0.01 3.25 0.01 4.50 0.05 2.50 0.00 1.00 0.05 3.50 0.01 2.00 0.10 7.2 0.0 0.10 1.50
20 2.50 0.01 3.25 0.01 3.50 0.05 2.50 0.05 3.50 0.05 4.00 0.10 2.00 0.01 1.25 0.10 3.00 0.05 2.25 0.01 7.5 0.1 0.01 1.00

21 2.50 0.01 3.25 0.01 3.50 0.05 2.50 0.10 3.00 0.10 4.25 0.01 2.25 0.01 1.50 0.01 3.25 0.10 2.50 0.05 7.0 0.0 0.05 1.25

22 2.50 0.05 3.50 0.05 3.00 0.10 2.00 0.01 3.25 0.01 4.50 0.05 2.50 0.01 1.50 0.10 3.25 0.05 2.50 0.01 7.0 0.1 0.05 1.00

23 2.50 0.05 3.50 0.05 3.00 0.10 2.00 0.05 3.50 0.05 4.00 0.10 2.00 0.01 1.00 0.01 3.50 0.10 2.00 0.05 7.2 0.0 0.10 1.25

24 2.50 0.05 3.50 0.05 3.00 0.10 2.00 0.10 3.00 0.10 4.25 0.01 2.25 0.00 1.25 0.05 3.00 0.01 2.25 0.10 7.5 0.0 0.01 1.50

25 2.50 0.10 3.00 0.10 3.25 0.01 2.25 0.01 3.25 0.01 4.50 0.05 2.50 0.01 1.25 0.01 3.00 0.10 2.25 0.05 7.5 0.0 0.01 1.25
26 2.50 0.10 3.00 0.10 3.25 0.01 2.25 0.05 3.50 0.05 4.00 0.10 2.00 0.00 1.50 0.05 3.25 0.01 2.50 0.10 7.0 0.0 0.05 1.50

27 2.50 0.10 3.00 0.10 3.25 0.01 2.25 0.10 3.00 0.10 4.25 0.01 2.25 0.01 1.00 0.10 3.50 0.05 2.00 0.01 7.2 0.1 0.10 1.00

28 2.00 0.01 3.50 0.10 3.25 0.05 2.00 0.01 3.50 0.10 4.25 0.05 2.00 0.00 1.00 0.10 3.25 0.10 2.25 0.05 7.5 0.0 0.10 1.00

29 2.00 0.01 3.50 0.10 3.25 0.05 2.00 0.05 3.00 0.01 4.50 0.10 2.25 0.01 1.25 0.01 3.50 0.01 2.50 0.10 7.0 0.1 0.01 1.25

30 2.00 0.01 3.50 0.10 3.25 0.05 2.00 0.10 3.25 0.05 4.00 0.01 2.50 0.01 1.50 0.05 3.00 0.05 2.00 0.01 7.2 0.0 0.05 1.50

31 2.00 0.05 3.00 0.01 3.50 0.10 2.25 0.01 3.50 0.10 4.25 0.05 2.00 0.01 1.50 0.01 3.00 0.01 2.00 0.10 7.2 0.1 0.05 1.25
32 2.00 0.05 3.00 0.01 3.50 0.10 2.25 0.05 3.00 0.01 4.50 0.10 2.25 0.01 1.00 0.05 3.25 0.05 2.25 0.01 7.5 0.0 0.10 1.50

33 2.00 0.05 3.00 0.01 3.50 0.10 2.25 0.10 3.25 0.05 4.00 0.01 2.50 0.00 1.25 0.10 3.50 0.10 2.50 0.05 7.0 0.0 0.01 1.00

34 2.00 0.10 3.25 0.05 3.00 0.01 2.50 0.01 3.50 0.10 4.25 0.05 2.00 0.01 1.25 0.05 3.50 0.05 2.50 0.01 7.0 0.0 0.01 1.50

35 2.00 0.10 3.25 0.05 3.00 0.01 2.50 0.05 3.00 0.01 4.50 0.10 2.25 0.00 1.50 0.10 3.00 0.10 2.00 0.05 7.2 0.0 0.05 1.00

36 2.00 0.10 3.25 0.05 3.00 0.01 2.50 0.10 3.25 0.05 4.00 0.01 2.50 0.01 1.00 0.01 3.25 0.01 2.25 0.10 7.5 0.1 0.10 1.25

37 2.25 0.01 3.25 0.10 3.00 0.10 2.25 0.01 3.25 0.10 4.00 0.10 2.25 0.00 1.00 0.05 3.50 0.10 2.25 0.01 7.0 0.1 0.05 1.25
38 2.25 0.01 3.25 0.10 3.00 0.10 2.25 0.05 3.50 0.01 4.25 0.01 2.50 0.01 1.25 0.10 3.00 0.01 2.50 0.05 7.2 0.0 0.10 1.50

39 2.25 0.01 3.25 0.10 3.00 0.10 2.25 0.10 3.00 0.05 4.50 0.05 2.00 0.01 1.50 0.01 3.25 0.05 2.00 0.10 7.5 0.0 0.01 1.00

40 2.25 0.05 3.50 0.01 3.25 0.01 2.50 0.01 3.25 0.10 4.00 0.10 2.25 0.01 1.50 0.10 3.25 0.01 2.00 0.05 7.5 0.0 0.01 1.50

41 2.25 0.05 3.50 0.01 3.25 0.01 2.50 0.05 3.50 0.01 4.25 0.01 2.50 0.01 1.00 0.01 3.50 0.05 2.25 0.10 7.0 0.0 0.05 1.00

42 2.25 0.05 3.50 0.01 3.25 0.01 2.50 0.10 3.00 0.05 4.50 0.05 2.00 0.00 1.25 0.05 3.00 0.10 2.50 0.01 7.2 0.1 0.10 1.25

43 2.25 0.10 3.00 0.05 3.50 0.05 2.00 0.01 3.25 0.10 4.00 0.10 2.25 0.01 1.25 0.01 3.00 0.05 2.50 0.10 7.2 0.0 0.10 1.00
44 2.25 0.10 3.00 0.05 3.50 0.05 2.00 0.05 3.50 0.01 4.25 0.01 2.50 0.00 1.50 0.05 3.25 0.10 2.00 0.01 7.5 0.1 0.01 1.25

45 2.25 0.10 3.00 0.05 3.50 0.05 2.00 0.10 3.00 0.05 4.50 0.05 2.00 0.01 1.00 0.10 3.50 0.01 2.25 0.05 7.0 0.0 0.05 1.50

46 2.50 0.01 3.50 0.05 3.50 0.01 2.25 0.01 3.50 0.05 4.50 0.01 2.25 0.00 1.00 0.10 3.25 0.05 2.50 0.10 7.2 0.0 0.01 1.25

47 2.50 0.01 3.50 0.05 3.50 0.01 2.25 0.05 3.00 0.10 4.00 0.05 2.50 0.01 1.25 0.01 3.50 0.10 2.00 0.01 7.5 0.0 0.05 1.50

48 2.50 0.01 3.50 0.05 3.50 0.01 2.25 0.10 3.25 0.01 4.25 0.10 2.00 0.01 1.50 0.05 3.00 0.01 2.25 0.05 7.0 0.1 0.10 1.00

49 2.50 0.05 3.00 0.10 3.00 0.05 2.25 0.01 3.50 0.05 4.50 0.01 2.25 0.01 1.50 0.01 3.00 0.10 2.25 0.01 7.0 0.0 0.10 1.50
50 2.50 0.05 3.00 0.10 3.00 0.05 2.50 0.05 3.00 0.10 4.00 0.05 2.50 0.01 1.00 0.05 3.25 0.01 2.50 0.05 7.2 0.1 0.01 1.00

51 2.50 0.05 3.00 0.10 3.00 0.05 2.50 0.10 3.25 0.01 4.25 0.10 2.00 0.00 1.25 0.10 3.50 0.05 2.00 0.10 7.5 0.0 0.05 1.25

52 2.50 0.10 3.25 0.01 3.25 0.10 2.00 0.01 3.50 0.05 4.50 0.01 2.25 0.01 1.25 0.05 3.50 0.01 2.00 0.05 7.5 0.1 0.05 1.00

53 2.50 0.10 3.25 0.01 3.25 0.10 2.00 0.05 3.00 0.10 4.00 0.05 2.50 0.00 1.50 0.10 3.00 0.05 2.25 0.10 7.0 0.0 0.10 1.25

54 2.50 0.10 3.25 0.01 3.25 0.10 2.00 0.10 3.25 0.01 4.25 0.10 2.00 0.01 1.00 0.01 3.25 0.10 2.50 0.01 7.2 0.0 0.01 1.50

Table 5.2 Experimental frame, modified from L54(21X325)[1, 2]. 
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CHAPTER 6:  TASK ALLOCATION 

 

This section introduces multiple robot arms to the problem environment ensuring 

that all robot arms work with a balanced load.  

Equation 6.1 represents the part assignment status; 1 if the product is assigned and 

0 if not assigned.  

𝑥 =
1 𝑖𝑓 𝑝𝑎𝑟𝑡 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(6.1) 

𝑥
×

 , ( 𝑛)  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑠, 𝑎𝑛𝑑 (𝑚)  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠  

 

(6.2) 

Here, xik represents the time required to disassemble the component and the total 

load on the current station. In Equation 6.2, the variable n represents the number of 

discovered items and m represents the number of available stations or robot arms for 

disassembly. 

𝑐 =  𝑑𝑡 /𝑛 
(6.3) 

In Equation 6.3, the variable c represents cycle time, viz., maximum time 

available at each workstation, whereas dt is the disassembly time for all available items 

(i). This equation always sets the value of c to the average of disassembly time dt. The 

value of c becomes part of the evaluation function. 
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The first evaluation function is represented in Equation (6.4).  The main factor in 

this evaluation function is to minimize the number of robots running while keeping the 

entire system balanced. The number of stations is set to a constant value of 5. 

min 𝑓 =  𝑚 (6.4) 

In Equation (6.5), main factor is balance the load on all the stations, and this is 

applied by calculating the square difference between the constant factor from Equation 

(6.3) and the total time the station is running. 

min 𝑓 = (𝑐 − 𝑆𝑇 )  
(6.5) 

Disassembling the hazardous items has priority over other components to ensure 

the environmentally-benign nature of the algorithm. This condition can be represented as 

in the following. 

min 𝑓 = 𝑖 × ℎ , ℎ =
1 ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6.6) 

The final evaluation function is represented in Equation (6.7), this equation 

represents the demand measure This measure is based on positive integer values that 

indicate the quantity required of a given part after it is removed (or 0 if it is not desired) 

and its position in the sequence 

min 𝑓 = 𝑖 × 𝑑 , 𝑑  ∈ 𝑁, 𝑃𝑆    
(6.7) 

Subject to  



 

 

71 
 

𝑋 = 1, 𝑗 = 1, … . , 𝑛 
(6.8) 

 

Figure 6.1 represents the combined SA disassembly sequence generation and SA 

task allocation. In the initial step, the system will detect any available items for 

disassembly and, if there are objects detected, then SA will run and generate the 

disassembly sequence for the list of items. The optimum or near-optimum solution will 

be passed to the 3rd phase to allocate tasks and find the optimum task allocation using 

SA. The process will continuously execute until all the items are disassembled 

successfully. The result of the proposed solution is presented in Table 6.1. 

 

Figure 6.1 Disassembly sequence and task allocation process. 
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Iteration Sequence Allocation  
Fitness 
Value 

1 0 1 D r A 24.7381249836807 
[ 1 0 0 ] 
[ 3 0 0 ] 

 

1, 3, 0, 0 
 

2 0 2 3 4 DNN ruu CPP 49.1646115780334 

[ 1 0 0 ] 
[ 0 1 0 ] 
[ 0 0 1 ] 

 
[ 6 0 0 ] 
[ 0 3 0 ] 
[ 0 0 3 ] 

 

3, 6, 0, 0 
 

3 
0 7 8 6 5 NNNN rrru AAAP 
73.8853195338248 

[ 1 0 0 ] 
[ 0 1 0 ] 
[ 0 0 1 ] 
[ 0 1 0 ] 

 
[ 5 0 0 ] 
[ 0 3 0 ] 
[ 0 0 4 ] 
[ 0 4 0 ] 

 

3, 5, 0, 0 
 

4 0 10 9 DN rs AP 53.241942485292 

[ 1 0 0 ] 
[ 0 1 0 ] 

 
[ 3 0 0 ] 
[ 0 2 0 ] 

2, 6, 0, 0 
 

Table 6.1 Disassembly sequence and task allocation results. 

Finally, the task allocation allows multiple robots to disassemble the product 

components while making sure that the robot work load remains balanced. 
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CHAPTER 7:  CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

Proposed automated disassembly framework for end-of-life electronic products is 

able to incorporate decision makers’ (DMs’) preferences into the problem environment 

for efficient material and component recovery. The approach utilized an Analytic 

Hierarchy Process (AHP) model to incorporate DMs’ verbal expressions into the decision 

problem. These results are then fed into a metaheuristic algorithm to obtain the optimum 

or near-optimum disassembly sequence. In this step, a metaheuristic technique, Simulated 

Annealing (SA) algorithm, is used. A numerical example is provided to demonstrate the 

functionality of the proposed approach. The disassembly sequence preserved the 

precedence relationships and considered the exact location of each component in the EOL 

product. The utilization of captured images makes the algorithm suitable for both partial 

and complete disassembly. That is, complete disassembly is not mandated by the 

simulated annealing algorithm. Furthermore, a stringency factor was included in the AHP 

model, to ensure overall efficiency of the disassembly operations. 

It is important to note that, for small numbers of electronic products, a single arm 

robot can efficiently conduct disassembly operations under strict time constraints. 

However, when the number of EOL products rises to larger volumes, a single resource 

might cause bottlenecks in the disassembly lines. This issue can be addressed by 

introducing multiple arm robots with a load balancing system to enhance the performance 

of large scale disassembly processes. Furthermore, an automated system based on 
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industrial data mining results and part testing data can be used to classify the available 

parts with its conditions. This would help in generating automatic scales for the decision-

making algorithm and the following disassembly computations this was taken in 

consideration in task allocation section. Table 7.1, shows the three phases of this research.  

Algorithm 
Robot 
Arms 

BOM 
Decision Making 

Support 

Disassembly sequencing 
using Tabu search [12] 

Single 
Robot 
Arm 

Multiple 
Products 

No Decision-
Making Support 

A Decision Maker-Centered 
End-of-Life Product 

Recovery System for Robot 
Task Sequencing 

Single 
Robot 
Arm 

Multiple 
Products 

Supports Decision-
Making using AHP 

Mobile Support Balanced 
Multi-Robots with 

Conscious Sequence 
Generation System for End-
of-Life Electronic Products 

Disassembly 

Multiple 
Robot 
Arms 

Multiple 
Products 

Support Decision-
Making using AHP 

Table 7.1 Research Phases 

7.2 Discussion and Future Research 

In any optimization problem there are two major issues which need to be 

considered, namely, resource utilization and execution time. Serverless architecture 

detects resources for the problem to be executed without interference from other 

processes. The architecture is supported by reputable research companies in the field of 

Machine Learning and AI such as: Google, Microsoft, IBM, and Amazon. This strong 

market acceptance gives the architecture a promising future for its expansion. Serverless 
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architecture provides a complete tool allowing its users to monitor the processing status 

via a manageable dashboard. The dashboard takes into process related elements into 

account including latency, real-time processing, background processing, batch 

Processing, concurrency, memory limits, processing time limit, and synchronous versus 

asynchronous processing. 

The architecture also supports a variety of programming languages, providing 

researchers with the flexibility to build a system using a wide range of programming 

languages. Currently, there are studies on creating a standard architecture to make it a 

more uniform and conflict-free. 

With these aforementioned advantages, this research recommends using 

serverless architecture in solving provided problems given that the computational time 

would be significantly reduced. 
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