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Abstract
The infinitary lambda calculi pioneered by Kennaway et al. extend the basic lambda calculus by
metric completion to infinite terms and reductions. Depending on the chosen metric, the res-
ulting infinitary calculi exhibit different notions of strictness. To obtain infinitary normalisation
and infinitary confluence properties for these calculi, Kennaway et al. extend β-reduction with
infinitely many ‘⊥-rules’, which contract meaningless terms directly to ⊥. Three of the resulting
Böhm reduction calculi have unique infinitary normal forms corresponding to Böhm-like trees.

In this paper we develop a corresponding theory of infinitary lambda calculi based on ideal
completion instead of metric completion. We show that each of our calculi conservatively extends
the corresponding metric-based calculus. Three of our calculi are infinitarily normalising and con-
fluent; their unique infinitary normal forms are exactly the Böhm-like trees of the corresponding
metric-based calculi. Our calculi dispense with the infinitely many ⊥-rules of the metric-based
calculi. The fully non-strict calculus (called 111) consists of only β-reduction, while the other
two calculi (called 001 and 101) require two additional rules that precisely state their strictness
properties: λx.⊥ → ⊥ (for 001) and ⊥M → ⊥ (for 001 and 101).
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1 Introduction

In their seminal work on infinitary lambda calculus, Kennaway et al. [10] study different
infinitary variants of the lambda calculus, which are obtained by extending the ordinary
lambda calculus by means of metric completion. Different variants of the calculus are obtained
by choosing a different metric. The ‘standard’ metric on terms measures the distance between
two terms depending on how deep one has to go into the term structure to distinguish two
terms. For example the term x y is closer to the term x z than to the term x, because in the
former case both terms are applications whereas in the latter case one term is an application
and the other is a variable.

The different metric spaces arise by changing the way in which we measure depth.
Kennaway et al. [10] indicate this using a binary triple abc with a, b, c ∈ {0, 1}, where a = 0
indicates that we do not count lambda abstractions when calculating the depth, and b = 0
or c = 0 indicates that we do not count the left or the right side of applications, respectively.
More intuitively these three parameters can be interpreted as indicating strictness. For
example, a = 0 indicates that lambda abstraction is strict, i.e. if M diverges, then so does
λx.M .

© Patrick Bahr;
licensed under Creative Commons License CC-BY

3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Hélène Kirchner; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paba@itu.dk
https://orcid.org/0000-0003-1600-8261
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.8
https://arxiv.org/abs/1805.06736
https://arxiv.org/abs/1805.06736
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Strict Ideal Completions of the Lambda Calculus

Since the set of infinite terms is constructed from the set of finite terms by means of
metric completion, each calculus has a different universe of terms, as well as a different mode
of convergence, which is based on the topology induced by the metric. For instance, from
the lambda term N = (λx.x x y)(λx.x x y), we can derive the infinite reduction N → N y →
N y y → . . . . In the fully non-strict calculus, where abc = 111, this reduction converges to
the infinite term M = . . . y y y (i.e. M satisfies M = M y). By contrast, in the calculus 101,
which is strict on the left-hand side of every application, this reduction does not converge.
In fact, M is not even a valid term in the 101 calculus.

In order to deal with divergence as exemplified for the 101 calculus above, Kennaway
et al. [10] extend standard β-reduction to Böhm reduction by adding rules of the form
M → ⊥, for each term M that causes divergence such as the term N in the 101 calculus. The
resulting 001, 101, and 111 calculi based on Böhm reduction have unique normal forms, which
correspond to the well-known Böhm Trees [14, 6], Levy-Longo Trees [13, 15] and Berarducci
Trees [7], respectively.

In this paper, we introduce infinitary lambda calculi that are based on ideal completion
instead of metric completion with the goal of directly dealing with diverging terms without the
need for additional reduction rules that contract diverging terms immediately to ⊥. To this
end, we devise for each metric of the calculi of Kennaway et al. [10] a corresponding partial
order with the following property: Ideal completion of the set of finite lambda terms yields
the same set of infinite lambda terms as the corresponding metric completion (Section 3).
We also find a strong correspondence between the modes of convergence induced by these
structures: Each ideal completion yields a complete semilattice structure, which means
that the limit inferior is always defined. We show that this limit inferior is a conservative
extension of the limit in the corresponding metric completion in the sense that both modes
of convergence coincide on total lambda terms, i.e. terms without ⊥ (Section 3).

Based on these partial order structures we define infinitary lambda calculi by a straight-
forward instantiation of transfinite abstract reduction systems [2]. We find that the ideal
completion calculi form a conservative extension of the metric completion calculi of Kennaway
et al. [10] (Section 4). Moreover, in analogy to Blom [9] and Bahr [3], we find that the
differences between the ideal completion approach and the metric completion approach are
compensated for by adding ⊥-rules to the metric calculi in the style of Kennaway et al. [11]
(Section 5). Finally, we also show infinitary normalisation for our ideal completion calculi
and infinitary confluence for the 001, 101, and 111 calculi (Section 5). However, in order
to obtain infinitary confluence for 001 and 101, we need to extend β-reduction with two
additional rules that precisely capture the strictness properties of these calculi: λx.⊥ → ⊥
(for 001) and ⊥M → ⊥ (for 001 and 101). In Section 6, we give a brief overview of related
work.

2 The Metric Completion

In this section, we introduce infinite lambda terms as the result of metric completion of the
set of finite lambda terms. Before we get started, we introduce some basic notions about
transfinite sequences and lambda terms. We presume basic familiarity with metric spaces
and ordinal numbers.

A sequence over a set A of length α is a mapping from an ordinal α into A and is written
as (aι)ι<α, which indicates the mapping ι 7→ aι; the notation |(aι)ι<α| denotes the length α
of (aι)ι<α. If α is a limit ordinal, then (aι)ι<α is called open; otherwise it is called closed.
If (aι)ι<α is finite, it is also written as 〈a0, . . . , aα−1〉; in particular, 〈〉 denotes the empty
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sequence. We write S · T for the concatenation of two sequences S and T ; S is called a
(proper) prefix of T , denoted S ≤ T (resp. S < T ) if there is a (non-empty) sequence S′ such
that S · S′ = T . The unique prefix of a sequence S of length β ≤ |S| is denoted by S|β .

We consider lambda terms with an additional symbol ⊥; the resulting set of lambda terms
Λ⊥ is inductively defined by the following grammar:

M,N ::= ⊥ | x | λx.M |MN

where x is drawn from a countably infinite set V of variable symbols. The set of total lambda
terms Λ is the subset of lambda terms in Λ⊥ that do not contain ⊥. Occurrences of a variable
x in a subterm λx.M are called bound; other occurrences are called free. We use the notation
M [x→ y] to replace all free occurrences of the variable x in M with the variable y. We use
finite sequences over {0, 1, 2}, called positions, to point to subterms of a lambda term; we
write P for the set of all positions. For each M ∈ Λ⊥, P(M) denotes the set of positions
of M (excluding ‘⊥’s) recursively defined as follows: P(⊥) = ∅, P(x) = {〈〉}, P(M1 M2) =
{〈〉} ∪ {〈i〉 · p | i ∈ {1, 2} , p ∈ P(Mi)}, and P(λx.M) = {〈〉} ∪ {〈0〉 · p | p ∈ P(M)}.

A conflict [10] between two lambda terms M,N is a position p ∈ P(M)∪P(N) such that:
(a) if p = 〈〉, then M and N are not identical variables, not both ⊥, not both applications,
and not both abstractions; (b) if p = 〈i〉 · q and i ∈ {1, 2}, then M = M1M2, N = N1N2,
and q is a conflict of Mi and Ni; (c) if p = 〈0〉 · q, then M = λx.M ′, N = λy.N ′, and q is a
conflict of M ′[x→ z] and N ′[y → z], where z is a fresh variable occurring neither in M nor
N . The terms M and N are said to be α-equivalent if they have no conflicts. By convention
we identify α-equivalent terms (i.e. Λ⊥ and Λ are assumed to be quotients by α-equivalence).

I Definition 2.1. Given a triple a = a0a1a2 ∈ {0, 1}3, called strictness signature, a position
is called a-strict if it is of the form q · 〈i〉 with ai = 0; otherwise it is called a-non-strict. If a
is clear from the context, we only say strict resp. non-strict.

That is, a strictness signature indicates strictness by 0 and non-strictness by 1. For example,
if a = 011, lambda abstraction is strict, and application is non-strict both from the left and
the right. We shall see what this means shortly: Following Kennaway et al. [10], we derive,
from a strictness signature a, a depth measure |·|a, which counts the number of non-strict,
non-empty prefixes of a position. From this depth measure we then derive a corresponding
metric da on lambda terms.

I Definition 2.2. Given a strictness signature a, the a-depth of a position p, denoted |p|a, is
recursively defined as |〈〉|a = 0 and |q · 〈i〉|a = |q|a + ai. The a-distance da(M,N) between
two terms M,N ∈ Λ⊥ is 0 if M and N are α-equivalent and otherwise 2−d, where d is the
least number satisfying d = |p|a for some conflict p of M and N .

Kennaway et al. [10] showed that the pair (Λ⊥,da) forms an ultrametric space for any a.
Intuitively, the consequence of the definition of these metric spaces is that sequences of terms,
such as the sequence N,N y,N y y, . . . , only converge if conflicts between consecutive terms
are guarded by an increasing number of non-strict positions. In the example, conflicts between
consecutive terms are guarded by an increasing stack of applications to y. If a1 = 1, these
applications correspond to non-strict positions, and thus the sequence converges. However, if
a1 = 0, the sequence does not converge.

We turn now to the metric completion. To facilitate later definitions and to illustrate the
resulting structures, we use a partial function representation in the form of lambda trees taken
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8:4 Strict Ideal Completions of the Lambda Calculus

from Blom [9], which will serve as mediator between metric completion and ideal completion.1
A lambda tree is a (possibly infinite) labelled tree where a label λ indicates abstraction and
@ indicates application; labels in V indicate free variables and a label p ∈ P indicates a
variable that is bound by an abstraction at position p. There is no label corresponding to ⊥,
which instead is represented as a ‘hole’ in the tree. We write D(f) to denote the domain of a
partial function f , and f(p) ' g(q) to indicate that the partial functions f and g are either
both undefined or have the same value at p and q, respectively.

I Definition 2.3. A lambda tree is a partial function t : P ⇀ L with L = {λ,@} ] P ] V so
that

(a) p · 〈0〉 ∈ D(t) =⇒ t(p) = λ,
(b) p · 〈1〉 ∈ D(t) or p · 〈2〉 ∈ D(t) =⇒ t(p) = @, and
(c) t(p) = q, where q ∈ P =⇒ q ≤ p and t(q) = λ.

As one would expect, the domain D(t) of a lambda tree t is prefix closed.
The set of all lambda trees is denoted T ∞⊥ . The set of ⊥-positions in t, denoted D⊥(t),

is the smallest set satisfying (a) 〈〉 6∈ D(t) implies 〈〉 ∈ D⊥(t); (b) t(p) = λ, p · 〈0〉 6∈ D(t)
implies p · 〈0〉 ∈ D⊥(t); and (c) t(p) = @, p · 〈i〉 6∈ D(t), i ∈ {1, 2} implies p · 〈i〉 ∈ D⊥(t). A
lambda tree t is called total if D⊥(t) is empty. The set of all total lambda trees is denoted
T ∞. A lambda tree t is called finite if D(t) is a finite set. The set of all finite (total) lambda
trees is denoted T⊥ (respectively T ). A renaming of a lambda tree t is a lambda tree s such
that there is a bijection f : V → V with the following properties: s(p) = t(p) if t(p) ∈ L \ V,
s(p) = f(t(p)) if t(p) ∈ V, and otherwise s(p) is undefined.

In order to avoid confusion, we use upper case letters M,N for lambda terms and lower case
letters s, t, u for lambda trees. Below, we give a bijection from lambda terms to finite lambda
trees that should help illustrate the idea behind lambda trees. At the heart of this bijection
are the following constructions based on Blom [9]:

I Definition 2.4. Given lambda trees t, t1, t2 ∈ T ∞⊥ and a variable x ∈ V , let ⊥, x, λx.t and
t1 t2 be partial functions of type P ⇀ L defined by their graph as follows:

⊥ = ∅ x = {(〈〉, x)}
λx.t = {(〈〉, λ)} ∪ {(〈0〉 · p, l) | l ∈ {λ,@} ] V \ {x} , (p, l) ∈ t}

∪ {(〈0〉 · p, 〈0〉 · q) | q ∈ P, (p, q) ∈ t} ∪ {(〈0〉 · p, 〈〉) | (p, x) ∈ t}
t1 t2 = {(〈〉,@)} ∪ {(〈i〉 · p, l) | i ∈ {1, 2} , l ∈ {λ,@} ] V, (p, l) ∈ ti }

∪ {(〈i〉 · p, 〈i〉 · q) | i ∈ {1, 2} , q ∈ P, (p, q) ∈ ti }

One can easily check that each of the above four constructions yields a lambda tree, where
⊥ is the empty lambda tree, x the lambda tree consisting of a single free variable x, λx.t is a
lambda abstraction over x with body t, and t1 t2 is an application of t1 to t2. The following
translation of lambda terms to finite lambda trees illustrates the use of these constructions:

I Definition 2.5. Let J·K : Λ⊥ → T⊥ be defined recursively as follows:
J⊥K = ⊥ Jλx.MK = λx. JMK JxK = x JM NK = JMK JNK

One can easily check that J·K : Λ⊥ → T⊥ is indeed a bijection, which, if restricted to Λ, is
a bijection from Λ to T . Moreover, one can show that each t ∈ T ∞⊥ with some 〈i〉 · p ∈ D(t)

1 In the companion report [5] we give a direct proof of the correspondence between metric and ideal
completion based on the meta theory of Majster-Cederbaum and Baier [16].
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is equal to λx.t′ if i = 0 and to t1 t2 if i ∈ {1, 2}, for some t′, t1, t2 ∈ T ∞⊥ . Following this
observation, we define, for each t ∈ T ∞⊥ and p ∈ D(t), the subtree of t at p, denoted t|p, by
induction on p as follows: t|〈〉 = t, λx.t|〈0〉·p = t|p, and t1 t2|〈i〉·p = ti|p for i ∈ {1, 2}. One
can easily check that t|p is uniquely defined modulo renaming of free variables.

I Definition 2.6. An infinite branch in a lambda tree t ∈ T ∞⊥ is an infinite sequence S such
that each proper prefix of S is in D(t). We call a proper prefix of S a position along S.

Note that by instantiating König’s Lemma to lambda trees, we know that a lambda tree
is infinite iff it has an infinite branch.

The idea of the metric da on lambda terms is to disallow (in the ensuing metric completion)
infinite branches that have only finitely many non-strict positions along them. The following
definition makes this restriction explicit on lambda trees:

I Definition 2.7. An infinite branch S of a lambda tree t is called a-bounded if the a-depth
of all positions along S is bounded by some n < ω, i.e. |p|a < n for all p < S. The lambda
tree t is called a-unguarded if it has an a-bounded infinite branch S. Otherwise, t is called
a-guarded. The set of all a-guarded (total) lambda trees is denoted T a⊥ (respectively T a). In
particular, T 000

⊥ = T⊥ and T 111
⊥ = T ∞⊥ .

For example, the lambda tree s with s = s y is 101-unguarded while t with t = λy.t y is
101-guarded as each application is guarded by an abstraction (which is non-strict).

For each strictness signature a, we give a metric daT on lambda trees that corresponds to
the metric da on lambda terms.

I Definition 2.8. For each two lambda trees s, t ∈ T ∞⊥ , define daT (s, t) = 0 if s = t and
otherwise daT (s, t) = 2−d, where d is the least |p|a with s(p) 6' t(p).

From the characterisation of the metric completion of (Λ⊥,da) from Kennaway et al. [10,
Lemma 7] we know that the metric space of a-guarded lambda trees (T a⊥ ,daT ) is indeed
the metric completion of (Λ⊥,da) with the isometric embedding J·K : Λ⊥ → T⊥ (cf. the
companion report [5]). Analogously, (T a,daT ) is the metric completion of (Λ,da).

3 The Ideal Completion

In this section, we present an alternative to the metric completion from Section 2 that is
based on a family of partial orders on lambda terms indexed by strictness signatures. In the
following we assume basic familiarity with order theory.

I Definition 3.1. Given a strictness signature a, the partial order ≤a⊥ is the least transitive,
reflexive order on Λ⊥ satisfying the following for all M,M ′, N,N ′ ∈ Λ⊥ and x ∈ V:

(a) ⊥ ≤a
⊥ M

(b) λx.M ≤a
⊥ λx.M ′ if M ≤a

⊥ M ′ and M 6= ⊥ or a0 = 1
(c) MN ≤a

⊥ M ′N if M ≤a
⊥ M ′ and M 6= ⊥ or a1 = 1

(d) MN ≤a
⊥ MN ′ if N ≤a

⊥ N ′ and N 6= ⊥ or a2 = 1

For the case that a = 111, we obtain the partial order ≤⊥ that is typically used for
ideal completions. This order is fully monotone, i.e. M ≤⊥ M ′ implies λx.M ≤⊥ λx.M ′,
MN ≤⊥ M ′N and NM ≤⊥ NM ′. By contrast, ≤a⊥ restricts monotonicity of abstraction in
case a0 = 0 and of application in case a1 = 0 or a2 = 0. Intuitively, we have M ≤a⊥ N iff N
can be obtained from M by replacing occurrences of ⊥ in M at non-strict positions with

FSCD 2018



8:6 Strict Ideal Completions of the Lambda Calculus

arbitrary terms. For example, if a = 001, then neither λx.⊥ ≤a⊥ λx.x x nor λx.⊥x ≤a⊥ λx.x x;
but we do have that λx.x⊥ ≤a⊥ λx.x x.

With this intuition in mind, we translate ≤a⊥ to a corresponding order Ea⊥ on lambda
trees as follows:

I Definition 3.2. Given lambda trees s, t ∈ T ∞⊥ , we have s Ea⊥ t if
(a) D(s) ⊆ D(t),
(b) s(p) = t(p) for all p ∈ D(s), and
(c) p ∈ D(s) =⇒ p · 〈i〉 ∈ D(s) for all a-strict positions p · 〈i〉 ∈ D(t).

Conditions (a) and (b) alone would give us the corresponding order for the standard partial
order ≤⊥. Condition (c) ensures that the partial order Ea⊥ may not fill a hole in a strict
position in the left-hand side tree.

One can check that (T ∞⊥ ,Ea⊥) forms a partially ordered set. Moreover, we have the
following correspondence between the two families of orders ≤a⊥ and Ea⊥:

I Proposition 3.3. J·K : (Λ⊥,≤a⊥)→ (T⊥,Ea⊥) is an order isomorphism.

For the remainder of this section, we turn our focus to the partial orders Ea⊥ on lambda
trees. In particular, we show that (T a⊥ ,Ea⊥) forms a complete semilattice and that it is
(order isomorphic to) the ideal completion of (Λ⊥,≤a⊥). A complete semilattice is a partially
ordered set (A,≤) that is a complete partial order (cpo) and that has a greatest lower bound
(glb)

d
B for every non-empty set B ⊆ A.2 A partially ordered set (A,≤) is a cpo if it has a

least element, and each directed set D in (A,≤) has a least upper bound (lub)
⊔
D; a set

D ⊆ A is called directed if for each two a, b ∈ D there is some c ∈ D with a, b ≤ c.
In particular, for any sequence (aι)ι<α in a complete semilattice, its limit inferior, defined

by lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
, exists. While the metric completion lambda calculi

are based on the limit of the underlying metric space, our ideal completion lambda calculi
are based on the limit inferior.

To show that (T a⊥ ,Ea⊥) forms a complete semilattice structure, we construct the appro-
priate lubs and glbs:

I Theorem 3.4 (cpo (T a⊥ ,Ea⊥)). The partially ordered set (T a⊥ ,Ea⊥) forms a complete partial
order. In particular, the lub t of a directed set D satisfies the following:

D(t) =
⋃
s∈D D(s) s(p) = t(p) for all s ∈ D, p ∈ D(s)

Proof sketch. The lambda tree ⊥ is the least element in (T a⊥ ,Ea⊥). Construct the lub t of
D as follows: t(p) = s(p) iff there is some s ∈ D with p ∈ D(s). One can check that t indeed
is a well-defined lambda tree that is a-guarded and is the least upper bound of D. J

I Proposition 3.5 (glbs of Ea⊥). Every non-empty subset T of T a⊥ has a glb
d
T in (T a⊥ ,Ea⊥)

such that D(
d
T ) is the largest set P satisfying the following properties:

(1) If p ∈ P , then there is some l ∈ L such that s(p) = l for all s ∈ T .
(2) If p · 〈i〉 ∈ P , then p ∈ P .
(3) If p ∈ P , ai = 0, and p · 〈i〉 ∈ D(s) for some s ∈ T , then p · 〈i〉 ∈ P .

2 Equivalently, complete semilattices are bounded complete cpos. Hence, complete semilattices are a
generalisation of Scott domains (which in addition have to be algebraic).
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Proof sketch. Let P ⊆ P be the largest set satisfying (1) to (3). As these properties are
closed under union, P is well-defined. We define the partial function t : P ⇀ L as the
restriction of an arbitrary lambda tree in T to P . Using (1) and (2), one can show that t is
indeed a well-defined a-guarded lambda tree. One can then check that t is the glb of T . J

For instance
d
{λx.x y, λx.y x} is λx.⊥⊥ for 011, λx.⊥ for 110, and ⊥ for 001.

I Theorem 3.6. (T a⊥ ,Ea⊥) is a complete semilattice for any a.

Proof. Follows from Theorem 3.4 and Proposition 3.5. J

We conclude this section by establishing the partially ordered set (T a⊥ ,Ea⊥) as (order
isomorphic to) the ideal completion of (Λ⊥,≤a⊥). Recall that, given a partially order set
(A,≤), its ideal completion is an extension of the original partially ordered set to a cpo. A
set B ⊆ A is called an ideal in (A,≤) if it is directed and downward-closed, where the latter
means that for all a ∈ A, b ∈ B with a ≤ b, we have that a ∈ B. The ideal completion of
(A,≤), is the partially ordered set (I,⊆), where I is the set of all ideals in (A,≤) and ⊆ is
standard set inclusion.

I Theorem 3.7. The ideal completion of (Λ⊥,≤a⊥) is order isomorphic to (T a⊥ ,Ea⊥).

Proof sketch. By Proposition 3.3, it suffices to show that the ideal completion (I,⊆) of
(T⊥,Ea⊥) is order isomorphic to (T a⊥ ,Ea⊥). To this end, we define two functions φ : T a⊥ → I
and ψ : I → T a⊥ as follows: φ(t) =

{
s ∈ T⊥

∣∣ s Ea⊥ t}; ψ(T ) =
⊔
T . Well-definedness of φ and

ψ follows from König’s Lemma and Theorem 3.4, respectively. Both φ and ψ are obviously
monotone and one can check that φ and ψ are inverses of each other. Hence, (I,⊆) is order
isomorphic to (T a⊥ ,Ea⊥) J

Now that we have established the connection between T a⊥ and the metric completion resp.
the ideal completion of Λ⊥, we turn our focus to T a⊥ for the rest of this paper.

The characterisation of lubs and glbs for the complete semilattice (T a⊥ ,Ea⊥) allows us to
relate the corresponding notion of limit inferior with the limit in the complete metric space
(T a⊥ ,daT ) as summarised in the following theorem:

I Theorem 3.8. Let (tι)ι<α be a sequence in T a⊥ .

(i) If limι→α tι = t in (T a⊥ ,daT ), then lim infι→α tι = t in (T a⊥ ,Ea⊥).
(ii) If lim infι→α tι = t in (T a⊥ ,Ea⊥) and t is total, then limι→α tι = t in (T a⊥ ,daT ).

The key to establish the correspondence above is the following characterisation of the
limit t of a converging sequence (tι)ι<α in (T a⊥ ,daT ):

D(t) =
⋃
β<α

⋂
β≤ι<αD(tι), and t(p) = l ⇐⇒ ∃β < α∀β ≤ ι < α : tι(p) = l

The proof of the correspondence result makes use of a notion of truncation similar Arnold
and Nivat’s [1] but generalised to be compatible with the Ea⊥-orderings.

From the above findings we can conclude that the limit inferior in (T a⊥ ,Ea⊥) restricted to
total lambda trees coincides with the limit in (T a,daT ). In other words, the limit inferior is
a conservative extension of the limit. In the next section, we transfer this result to (strong)
convergence of reductions.

FSCD 2018



8:8 Strict Ideal Completions of the Lambda Calculus

4 Transfinite Reductions

In this section, we study finite and transfinite reductions on lambda trees. To this end, we
assume for the remainder of this paper a fixed strictness signature a such that all subsequent
definitions and theorems work on the same universe of lambda trees T a⊥ and its associated
structures daT and Ea⊥ (unless stated otherwise). Moreover, we need a suitably general
notion of reduction steps beyond the familiar β- and η-rules in order to accommodate Böhm
reductions in Section 5.

I Definition 4.1. A rewrite system R is a binary relation on T a⊥ such that (s, t) ∈ R implies
that s 6= ⊥. Given s, t ∈ T a⊥ and p ∈ P, an R-reduction step from s to t at p, denoted
s →R,p t, is inductively defined as follows: if (s, t) ∈ R, then s →R,〈〉 t; if t →R,p t

′, then
λx.t→R,〈0〉·p λx.t′, t s→R,〈1〉·p t

′ s, and s t→R,〈2〉·p s t
′ for all s ∈ T a⊥ . If R or p are irrelevant

or clear from the context, we omit them in the notation →R,p. If (t, t′) ∈ R, then t is called
an R-redex. If s→R,p t, then s is said to have an R-redex occurrence at p. A lambda tree t
is called an R-normal form if no R-reduction step starts from t. The prefix “R-” is dropped
if R is irrelevant or clear from the context.

I Example 4.2. The familiar β- and η-rules form rewrite systems as follows:

� =
{

((λx.t) s, t [x/s])
∣∣ s, t ∈ T a⊥ } � =

{
(λx.t x, t)

∣∣ t ∈ T a⊥ , x 6∈ Range(t)
}

where substitution t [x/s] is defined as follows: for each p ∈ P we have t [x/s] (p) = t(p) if
t(p) ∈ L\ {x}; t [x/s] (p) = s(p2) if p = p1 · p2, t(p1) = x, s(p2) ∈ L\P ; t [x/s] (p) = p1 · s(p2)
if p = p1 · p2, t(p1) = x, s(p2) ∈ P; and t [x/s] (p) is undefined otherwise.

The resulting �-reduction step relation →� on lambda trees is isomorphic (via the
isomorphism of Theorem 3.7) to the lifting of the ordinary finitary β-reduction step relation
on lambda terms to the ideal completion via the lifting operator [·〉 of Blom [8]. An analogous
correspondence can be shown for � as well.

I Definition 4.3. A sequence S = (tι →R,pι tι+1)ι<α of R-reduction steps is called an
R-reduction; S is called total if each tι is total. If S is finite, we also write S : t0 →∗R tα.

The above notion of reductions is too general as it does not relate lambda trees tβ at
a limit ordinal index β to the lambda trees (tι)ι<β that precede it. This shortcoming is
addressed with a suitable notion of convergence and continuity. In the literature on infinitary
rewriting one finds two different variants of convergence/continuity: a weak variant, which
defines convergence/continuity only according to the underlying structure (metric limit or
limit inferior), and a strong variant, which also takes the position of contracted redexes into
consideration. While both the metric and the partial order lend themselves to either variant,
we only consider the strong variant here and refer the reader to the companion report [5] for
the weak variant.

We use the name m-convergence and p-convergence to distinguish between the metric-
and the partial order-based notion of convergence, respectively. Our notion of (strong)
m-convergence is the same notion of convergence that Kennaway et al. [10] used for their
infinitary lambda calculi. For our notion of (strong) p-convergence we instantiate the
abstract notion of strong p-convergence from our previous work [2]. The key ingredient of
p-convergence is the notion of reduction context, which assigns to each reduction step s→ t

a lambda tree c with c Ea⊥ s, t. Intuitively, this reduction context c comprises the (maximal)
fragment of s that cannot be changed by the reduction step, regardless of the reduction rule.
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For instance, the reduction context of λx.(λy.y) x → λx.x is λx.⊥ if a0 = 1, and ⊥ otherwise.
The notion of p-convergence is defined using the limit inferior of the sequence of reduction
contexts (instead of the original lambda trees themselves). The canonical approach to derive
such a reduction context for any complete semilattice is to take the greatest lower bound of
the involved lambda trees s and t that does not contain any position of the redex:

I Definition 4.4. The reduction context of a reduction step s→p t is the greatest lambda
tree c in (T a⊥ ,Ea⊥) with c Ea⊥ s, t and p 6∈ D(c); we write s →c t to indicate the reduction
context c.

In order to simplify reasoning and provide an intuitive understanding of the concept, we
give a direct construction of reduction contexts as well:

I Definition 4.5. Given t ∈ T ∞⊥ and p ∈ D(t), we write t \ p for the restriction of t to the
domain {q ∈ D(t) | p 6≤ q }, and p↓a for the longest non-strict prefix of p.

That is, t \ p is obtained from t by replacing the subtree at p with ⊥. Moreover, ↓a can be
characterised as follows: 〈〉↓a = 〈〉; (p · 〈i〉)↓a = p · 〈i〉 if ai = 1; and (p · 〈i〉)↓a = p↓a if ai = 0.

I Lemma 4.6. The reduction context of s→p t is equal to s \ p↓a and t \ p↓a.

Proof sketch. By a straightforward induction on p. J

That is, the reduction context of s →p t is obtained from s by removing the most deeply
nested subtree that both contains the redex and is in a non-strict position. The ensuing
notions of strong convergence of reductions are spelled out as follows:

I Definition 4.7. An R-reduction S = (tι →pι,cι tι+1)ι<α m-converges to tα, denoted
S : t0 �m R tα, if limι→γ tι = tγ and (|pι|a)ι<γ tends to infinity for all limit ordinals γ ≤ α. S
p-converges to tα, denoted S : t0 �p R tα, if lim infι→γ cι = tγ for all limit ordinals γ ≤ α. S
is called m-continuous resp. p-continuous if the corresponding convergence conditions hold
for limit ordinals γ < α (instead of γ ≤ α).

Intuitively, strong convergence under-approximates convergence in the underlying structure
(i.e. weak convergence) by assuming that every contraction changes the root symbol of the
redex. Thus, given a reduction step s→p t, strong convergence assumes that the shortest
position at which s and t differ is p.

The semilattice structure underlying p-convergence ensures that p-continuous reductions
always p-converge, whereas m-convergence does not necessarily follow from m-continuity:

I Example 4.8. Given Ω = (λx.x x)(λx.x x) and t = (λx.x Ω) y, we consider the �-reduction
S : t→ t→ . . . that repeatedly contracts the redex Ω in t. S is trivially m- and p-continuous.
However, it is not m-convergent, since contraction takes place at a constant a-depth, namely
|〈1, 0, 2〉|a. But it p-converges to t \ 〈1, 0, 2〉↓a, which is also the reduction context of each
reduction step in S and is equal to (λx.x⊥) y if a2 = 1, to (λx.⊥) y if a2 = 0 but a0 = 1, to
⊥ y if a = 010, and to ⊥ if a = 000.

Similarly to the correspondence between the limit and the limit inferior in Theorem 3.8,
we find a correspondence between p- and m-convergence.

I Proposition 4.9. For each reduction S : s�m t, we also have that S : s�p t.
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Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. If S m-converges, then (|pι|a)ι<γ tends to infinity
for all limit ordinals γ < α, i.e. for each d < ω we have that |pι|a ≥ d after some δ < γ. With
the help of Lemma 4.6, one can show that the latter implies that tι and cι coincide up to
a-depth d for all δ ≤ ι < γ. Consequently, limι→γ tι = limι→γ cι, which, by Theorem 3.8 (i),
implies limι→γ tι = lim infι→γ cι. Since this holds for all limit ordinals γ ≤ α, we know that
S also p-converges to t. J

With the proposition above, we derive the other direction of the correspondence:

I Proposition 4.10. S : s�p t implies S : s�m t whenever S and t are total.

Proof sketch. One can show that the totality of S and t implies that the a-depth of contracted
redexes in each open prefix of S tends to infinity. Using Proposition 5.5 from [2], we can
show that the latter implies that S also m-converges. Then according to Proposition 4.9, S
must m-converge to the same lambda tree t. J

Note that it is not sufficient that the two trees s and t are total. For example, the �-reduction
S : (λx.y) Ω�p (λx.y)⊥ → y p-converges to y but does not m-converge.

Putting Propositions 4.9 and 4.10 together we obtain that p-convergence is a conservative
extension of m-convergence:

I Corollary 4.11. S : s�m t iff S : s�p t whenever S and t are total.

5 Beta Reduction

So far we have only studied the properties of p-convergence independent of the rewrite
system. In this section, we specifically study �-reduction and show infinitary normalisation
for all of our calculi, and infinitary confluence for three of them. However, considering
pure �-reduction, infinitary confluence only holds for the 111 calculus. We can construct
counterexamples for the other calculi:

I Example 5.1 ([10]). Given a2 = 0 and t = (λx.y) Ω, we find reductions t�p � ⊥ and t→� y.
Given a2 = 1, a1 = 0, and t = (λx.x y) Ω, we have t�p � (λx.x y)⊥ →� ⊥ y and t→� Ω y�p � ⊥.
Similarly, given a2 = 1, a0 = 0, and t = (λx.λy.x) Ω, we have t�p � (λx.λy.x)⊥ →� λy.⊥ and
t→� λy.Ω�p � ⊥.

Infinitary confluence of pure �-reduction fails for all m-convergence calculi of Kennaway
et al.[10] – including the 111 calculus. On the other hand, the Böhm reduction calculi of
Kennaway et al. [11], which extend pure �-reduction with infinitely many rules of the form
t→ ⊥, do satisfy infinitary confluence for the 001, 101, and 111 calculi.

We would like to obtain similar confluence results for the 001, 101, and 111 p-convergence
calculi. However, the gap we have to bridge to achieve infinitary confluence is much narrower
in our p-convergence calculi. Intuitively, confluence fails for 001 and 101 because p-convergence
only captures partiality that is due to infinite reductions, but not partiality that can propagate
via finite reductions: For example, in the 101 calculus we have Ω y�p � ⊥ but ⊥ y 6�p � ⊥. In
order to obtain the desired confluence properties, we have to add the rules λx.⊥ → ⊥ (for
001) and ⊥ t → ⊥ (for 001 and 101). More generally we define these S-rules formally as
follows:

S =
{

(t1 t2,⊥)
∣∣ t1, t2 ∈ T a⊥ , ti = ⊥, ai = 0

}
∪ {(λx.⊥,⊥)) | a0 = 0}

We use the notation �S to denote � ∪ S. Abusing notation, we also write �(S) to refer to �
or �S, e.g. if a property holds for either system. Note that for the 111 calculus, �S = �.
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In addition, we continue studying the relation between m-convergence and p-convergence:
In general, they are subtly different, but we show that a p-converging �(S)-reduction can be
adequately simulated by an m-converging B-reduction and vice versa, where B is an extension
of �, called Böhm rewrite system, which additionally contains rules of the form t→ ⊥. This
result uses the same construction used by Kennaway et al. [11] to study so-called meaningless
terms.

In the remainder of this section we first characterise the set of lambda trees that p-
converge to ⊥ (Section 5.1); we then establish a correspondence between pure p-convergence
and m-convergence extended with rules t → ⊥ for lambda trees t that p-converge to ⊥
(Section 5.2); and finally we prove infinitary confluence and normalisation for p-convergent
�S-reductions in the 001, 101, and 111 calculi (Section 5.3). For the infinitary confluence
result, we make use of the correspondence between p-convergence and m-convergence.

5.1 Partiality
We begin with the characterisation of lambda trees that p-converge to ⊥:

I Definition 5.2. Given an open reduction S = (tι →pι tι+1)ι<α, a position p is called
volatile in S if, for each β < α, there is some β ≤ γ < α with pγ↓a ≤ p ≤ pγ . If p is volatile
in S but no proper prefix of p is, then p is called outermost-volatile in S.

For instance, in the �-reduction in Example 4.8, 〈1, 0, 2〉 is volatile and 〈1, 0, 2〉↓a is
outermost-volatile. Note that outermost-volatile positions must be non-strict, because if p is
volatile, then so is p↓a.

The presence of volatile positions characterises partiality in p-convergent reductions,
which by Corollary 4.11 can be stated as follows:

I Proposition 5.3. S : s�m t iff no prefix of S has volatile positions and S : s�p t.

Proof sketch. Let S = (tι →pι tι+1)ι<α. The “only if” direction follows from Proposition 4.9
and the fact that if (|pι|a)ι<β tends to infinity, then S|β has no volatile positions. For the
“if” direction, the infinite pigeonhole principle yields that (|pι|a)ι<β tends to infinity. Using
this fact, one can show that S : s�m t. J

More specifically, outermost-volatile positions pinpoint the exact location of partiality in
the result of a p-converging reduction.

I Lemma 5.4. If p is outermost-volatile in S : s�p t, then p ∈ D⊥(t).

Proof sketch. Let S = (tι →pι,cι tι+1)ι<α. Since p is volatile in S, we find for each β < α

some β ≤ ι < α with pι↓a ≤ p. Hence, by Lemma 4.6, we know that p 6∈ D(cι). Consequently,
by Theorem 3.4 and Proposition 3.5, we have that p 6∈ D(t). If p = 〈〉, then p ∈ D⊥(t) follows
immediately. If p = q · 〈0〉, then one can use the fact that no prefix of q is volatile to show
that t(q) = λ, which means that p ∈ D⊥(t). The argument for the cases p = q · 〈1〉 and
p = q · 〈2〉 is analogous. J

This characterisation of partiality in terms of volatile positions motivates the following
notions of destructiveness and fragility:

I Definition 5.5. A reduction S is called destructive if it is p-continuous and 〈〉 is volatile in
S. A lambda tree t ∈ T a⊥ is called fragile if there is a destructive �-reduction starting from t.
The set of all fragile total lambda trees is denoted Fa.
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Note that fragility is defined in terms of destructive �-reductions. However, one can show
that a destructive �-reduction exists iff a destructive �S-reduction exists.

The following proposition explains why destructive reductions have deserved their name:

I Proposition 5.6. An open reduction is destructive iff it p-converges to ⊥.

Proof sketch. The “only if” direction follows from Lemma 5.4; the converse direction can
be shown using the characterisation of the limit inferior (Theorem 3.4, Proposition 3.5). J

For example, the �-reduction Ω→ Ω→ . . . (cf. Example 4.8) p-converges to ⊥ and is thus
destructive. As a corollary from the above proposition, we obtain that every fragile lambda
tree – such as Ω – can be contracted to ⊥ by an open p-convergent reduction.

5.2 Correspondence
To compare m- and p-converging reductions, we employ Böhm rewrite systems and the
underlying notion of ⊥-instantiation from Kennaway et al.’s work on meaningless terms [11].

I Definition 5.7. Let U ⊆ T ∞ and t ∈ T ∞⊥ . A lambda tree s ∈ T ∞ is called a ⊥-instance of
t w.r.t. U if s is obtained from t by inserting elements of U into t at each position p ∈ D⊥(t),
i.e. s(p) = t(p) for all p ∈ D(t) and s|p ∈ U for all p ∈ D⊥(t). The set of lambda trees that
have a ⊥-instance w.r.t. U that is in U itself is denoted U⊥. In other words, t ∈ U⊥ iff there
is a lambda tree s ∈ U such that s is obtained from t by replacing occurrences of ⊥ in t by
lambda trees from U .

In particular, we will use the above construction with the set of fragile total lambda trees
Fa, which gives us the set Fa⊥.

Finally, we give the construction of Böhm rewrite systems.

I Definition 5.8. For each set U ⊆ T a, we define the following two rewrite systems:

á(U) = {(t,⊥) | t ∈ U⊥ \ {⊥}} , B (U) = � ∪ á(U)

If U is clear from the context, we instead use the notation á and B, respectively.

In particular, we consider the Böhm rewrite system w.r.t. fragile total lambda trees, denoted
by B

(
Fa
)
. We start with one direction of the correspondence between p-converging �(S)-

reductions and m-converging B
(
Fa
)
-reductions:

I Theorem 5.9. If s�p �S t, then s�m B t, where B = B
(
Fa
)
.

Proof sketch. Given S : s�p �S t, we construct a B-reduction T from S that also p-converges
to t but that has no volatile positions in any of its open prefixes. Thus, according to
Proposition 5.3, T : s �m B t. The construction of T removes steps in S that take place at
or below any outermost-volatile position of some prefix of S and replaces them by a single
á-step. Such a á-step can be performed since a fragile lambda tree must be responsible for
an outermost-volatile position. Moreover, S-steps in S are á-steps in T since S ⊆ á

(
Fa
)
.

Lemma 5.4 can then be used to show that the resulting B-reduction T p-converges to t. J

The converse direction of Theorem 5.9 does not hold in general. The problem is that
á-steps can be more selective in which fragile lambda subtree to contract to ⊥ compared
to p-convergent reductions with volatile positions. If p is a volatile position, then so is
p↓a. Consequently, volatile positions and thus ‘⊥’s in the result of a p-converging reduction
are propagated upwards through strict positions. For example, let a0 = 0, and t = λy.Ω.
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Since Ω is fragile, we have the reduction t→á λy.⊥. On the other hand, via p-convergent
�-reductions, t only reduces to itself and ⊥. This phenomenon, however, does not occur if
we restrict ourselves to the strictness signature 111 or if we only consider á-normal forms.
Indeed, in the above example, λy.⊥ is not a á-normal form and can be contracted to ⊥ with
a á-step.

I Theorem 5.10. Let B = B
(
Fa
)
and s�m B t such that s is total. Then s�p � t if a = 111

or t is a á-normal form.

Proof sketch. The reduction s�m B t can be factored into S : s�m � s
′ and T : s′ �m á t (by the

same proof as Lemma 27 of Kennaway et al. [11]). Moreover, we may assume w.l.o.g. that T
contracts disjoint á-redexes in s′ (using an argument similar to Lemma 7.2.4 of Ketema [12]).
By Proposition 4.9, we have that S : s�p � s

′ and that T : s′ �p á t. For each step u→á,p v in
T we find a reduction Tp : u�p � v

′ in which p is volatile since u|p must be fragile. Given that
a = 111 or that t is a á-normal form, we can show that p is in fact outermost-volatile in Tp.
Hence, the equality v = v′ follows from Lemma 5.4. Therefore, we may replace each step
u→á,p v in T by Tp, which yields a reduction s′ �p � t. J

That is, in general we get one direction of the correspondence – namely from metric to
partial order reduction – only for reductions to normal forms. However, this does not matter
that much as p-converging �(S)-reductions (an thus also m-converging B

(
Fa
)
-reductions)

are normalising as we show below.

5.3 Infinitary Normalisation and Confluence
We begin by recalling the notion of active lambda trees [11], which we use to establish
infinitary normalisation and as an alternative characterisation of fragile lambda trees (in the
001, 101, and 111 calculi).

I Definition 5.11. A lambda tree t is called stable if no lambda tree t′ with t→∗� t′ has a
�-redex occurrence at a-depth 0; t is called active if no lambda tree t′ with t→∗� t′ is stable.
The set of all active total lambda trees is denoted by Aa.

To construct normalising p-convergent reductions, we follow the idea of Kennaway et al. [11]:
We contract all subtrees of the initial lambda tree into stable form. The only way to achieve
this for active subtrees is to annihilate them by a destructive reduction. The basis for that
strategy is the following observation:

I Lemma 5.12. Every active lambda tree is fragile.

Proof. If t0 is active, we find a reduction t0 →∗� t′0 to a �-redex at a-depth 0. By contracting
this redex we get a lambda tree t1 that is active, too. By repeating this argument we obtain
a destructive reduction t0 →∗� t′0 →� t1 →∗� t′1 →� . . . . J

The following normalisation result then follows straightforwardly:

I Theorem 5.13. For each s ∈ T a⊥ , there is a normalising reduction s�p �(S) t.

Proof sketch. Similar to Theorem 1 of Kennaway et al. [11]: an active subtree at position
p is by Lemma 5.12 also fragile. Hence, there is a �-reduction in which a prefix of p is
outermost-volatile. By Lemma 5.4, such a reduction annihilates the active subtree at p. This
yields a reduction s�p � t to �-normal form t, which can be extended by a reduction t�p S u

to a �S-normal form u. J
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From the above we immediately obtain the corresponding result for m-convergence:

I Theorem 5.14. For each s ∈ T a⊥ there is a normalising reduction s�m B(Fa) t.

Proof. By Theorem 5.13 and 5.9, as �S-normal forms are also B
(
Fa
)
-normal forms. J

Consequently, we can derive the following correspondence result.

I Corollary 5.15. For each s ∈ T a with s�m B(Fa) t, there is a reduction t�m B(Fa) t
′ such

that s�p � t
′.

Proof. According to Theorem 5.14, there is a normalising reduction t �m B(Fa) t
′. Then a

reduction s�p � t
′ exists by Theorem 5.10. J

A shortcoming of this correspondence property and the correspondence properties es-
tablished in Section 5.2 is that they consider m-convergence in the system B

(
Fa
)
, which is

unsatisfactory since Fa is defined using p-convergence. A more appropriate choice would be
the set Aa of active terms, which is defined in terms of finitary reduction only. To obtain a
correspondence in terms of Aa, we will show that Fa = Aa for strictness signatures 001, 101,
and 111. To prove this equality of fragility and activeness, we need the following key lemma,
which can be proved using descendants and complete developments.

I Lemma 5.16 (Infinitary Strip Lemma). Given S : s �p �S t1 and T : s →∗�S t2, there are
reductions S′ : t1 �p �S t and T ′ : t2 �p �S t, provided a ∈ {001, 101, 111}.

Recall that �S = � for a = 111, i.e. the infinitary strip lemma holds for pure �-reduction in
the 111 calculus; but it does not hold for 001 and 101 as Example 5.1 demonstrates. Hence,
the need for S-rules. By contrast, in the metric calculi of Kennaway et al. [10] the infinitary
strip lemma does not hold for any a. In order to obtain the infinitary strip lemma and
confluence, Kennaway et al. extended β-reduction to Böhm reduction.

We use the Infinitary Strip Lemma to show that p-convergent reductions to ⊥ can be
compressed to length at most ω.

I Lemma 5.17. If a ∈ {001, 101, 111} and S : t�p �S ⊥, then there is a reduction T : t�p �S ⊥
of length ≤ ω. If t is total, then T is a �-reduction of length ω.

Proof sketch. If |S| ≤ ω, we are done. Otherwise, we can construct a finite reduction
t →∗�S t′ with at least one contraction at a-depth 0 either using a finite approximation
property of p-convergence (in case S contracts �-redex at a-depth 0) or by an induction
argument (in case S contracts S-redex at root position). By Lemma 5.16, there is a reduction
S′ : t′ �p �S ⊥. Thus, we can repeat the argument for S′. Iterating this argument yields either
a reduction t→∗�S ⊥ or a reduction t�p �S s

′ of length ω with infinitely many contractions
at a-depth 0, and thus s′ = ⊥. If s is total, then T cannot be finite, as finite �S-reductions
preserve totality. Hence, no step in T can be an S-step. J

I Lemma 5.18. If a ∈ {001, 101, 111}, a total lambda tree is active iff it is fragile.

Proof. The “only if” direction follows from Lemma 5.12. For the converse direction let t be
total and fragile, and let t→∗� t1. Since t is fragile, there is a reduction t�p �S ⊥ according
to Proposition 5.6. Hence, by Lemma 5.16, there is a reduction T : t1 �p �S ⊥, which we
can assume, according to Lemma 5.17, to be a �-reduction of length ω. Since T is, by
Proposition 5.6, destructive, there is a proper prefix T ′ : t1 �p � t2 of T such that t2 has a
redex occurrence at a-depth 0. Because T is of length ω, T ′ is finite i.e. T ′ : t1 →∗� t2. J
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The above lemma allows us to derive confluence w.r.t. p-convergent reductions from the
confluence results w.r.t. m-convergence of Kennaway et al. [10]:

I Theorem 5.19 (infinitary confluence). Given a ∈ {001, 101, 111}, we have that s �p �S t1
and s�p �S t2 implies that t1 �p �S t and t2 �p �S t.

Proof. According to Theorem 5.13, we can extend the existing reductions by normalising
reductions t1 �p �S t′1 and t2 �p �S t′2. By Theorem 5.9 and Lemma 5.18, the resulting
normalising reductions s �p �S t′1 and s �p �S t′2 are also m-convergent B

(
Aa
)
-reductions.

Kennaway et al. [10] have shown that such reductions are confluent. Hence, t′1 = t′2 (as
�S-normal forms are B

(
Aa
)
-normal forms too). J

Together with the earlier normalisation result, this means that the 001, 101, and 111
calculi have unique normal forms w.r.t. �p �S. By the correspondence results between the
metric and the partial order calculi, these normal forms are the same as the unique normal
forms w.r.t. �m B(Aa) [10], which in turn correspond to Böhm Trees, Levy-Longo Trees, and
Berarducci Trees, respectively.

6 Related Work

The use of ideal completion in lambda calculus to construct infinite terms has a long history
(see e.g. Ketema [12] for an overview), in particular in the form of constructing infinite normal
forms such as Böhm Trees. In that line of work, the ideal completion is typically based on
the fully monotone partial order ≤⊥ generated by ⊥ ≤⊥ M for any term M . Different kinds
of infinite normal forms are then obtained by modulating the set of rules that are used to
generate the normal forms. In this paper, we instead modulated the partial order and we
have constructed full infinitary calculi in the style of Kennaway et al. [10]. Blom’s abstract
theory of infinite normal forms and infinitary rewriting based on ideal completion [8] has
been crucial for developing our infinitary calculi.

In previous work, we have compared infinitary rewriting based on partial orders vs. metric
spaces in a first-order setting [3, 4]. However, in that work we have only considered fully
non-strict convergence, whereas we consider varying modes of strictness in the present paper.

Blom’s work [9] on preservation calculi is similar to our ideal completion calculi. Blom
also considers different calculi indexed by strictness signatures and relates them to the
corresponding metric calculi. However, he uses the same partial order E111

⊥ for all calculi;
the different calculi vary in the notion of reduction contexts they use. Blom’s reduction
contexts are the same as our reduction contexts, and his Ω-rules are more general variants of
our S-rules. However, his approach of using a single partial order has some caveats:

Firstly, there is no corresponding weak notion of preservation sequences that corresponds
to weak m-convergence. Secondly, the partially ordered set (T a⊥ ,E111

⊥ ) is only a complete
semilattice for a = 111; otherwise it is not even a cpo and limit inferiors do not always
exist. For example, let t be an a-unguarded lambda tree (i.e. t 6∈ T a⊥), and for each i < ω

let ti be the restriction of t to positions of depth < i, which means that ti ∈ T a⊥ . Then
lim infi→ω ti w.r.t. E111

⊥ is t itself and thus not in T a⊥ even though all ti are. This does not
cause a problem, if one only considers reduction contexts of p-continuous reductions, though.

For the comparison of his preservation calculi with the metric calculi, Blom uses a notion
of 0-active terms, which is different from the notion of active terms as used here and by
Kennaway et al. [10, 11] (under the names 0-activeness resp. abc-activeness). Blom defines
that a lambda tree is 0-active iff there is a destructive reduction of length ω starting from
it. 0-activeness is demonstrably different from activeness for any strictness signature with
a2 = 0 as Example 5.1 shows. But 0-activeness and activeness do coincide for 001, 101, and
111 as we have shown with the combination of Lemma 5.17 and Lemma 5.18.
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