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Abstract In the framework of polynomial Palatini cosmol-

ogy, we investigate a simple cosmological homogeneous and

isotropic model with matter in the Einstein frame. We show

that in this model during cosmic evolution, early inflation

appears and the accelerating phase of the expansion for the

late times. In this frame we obtain the Friedmann equation

withmatter and dark energy in the formof a scalar fieldwith a

potential whose form is determined in a covariant way by the

Ricci scalar of the FRW metric. The energy density of mat-

ter and dark energy are also parameterized through the Ricci

scalar. Early inflation is obtained only for an infinitesimally

small fraction of energy density of matter. Between the mat-

ter and dark energy, there exists an interaction because the

dark energy is decaying. For the characterization of inflation

we calculate the slow roll parameters and the constant roll

parameter in terms of the Ricci scalar. We have found a char-

acteristic behavior of the time dependence of density of dark

energy on the cosmic time following the logistic-like curve

which interpolates two almost constant value phases. From

the required numbers of N -folds we have found a bound on

the model parameter.

1 Introduction

While current astronomical observations favour the standard

cosmological model [1], the ΛCDM model plays only the

role an effective theory of theUniversewhich offers rather the

description of the current properties of the Universe than its

explanations. The origin of properties of the current Universe

we should find in the very early Universe. In this context a

very simple inflation model was proposed by Starobinsky

in 1980 [2]. This model attracted attention of cosmologists

because it can explain some troubles of the ΛCDM model
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in a very simple way. Moreover, this evolutionary scenario

is generic and emerged in cosmology in different contexts

[1]. In this model, the inflationary scenario of the Universe is

driven by the higher quadratic term in the action which takes

the form S =
∫ √−g

(

R + R2

6M2

)

d4x .

This model [3,4] predicts that the slow roll parameters

ns = 1− 2
N
and r = 12

N2 where N = 50 ∼ 60 is the number

of e-folds before the end of inflation, are in good agreement

with Planck 2015 data [1].

On the other hand, from the viewpoint of the complete

quantum theory of gravity, higher order corrections α′ =
1/M2

s to the Einstein–Hilbert action are always expected i.e.

S =
∫ √

−g(R + c2α
′ R2

+
∑

i=3

ciα
′i−1Ri

+ other higher derivative terms)d4x, (1)

where ci are the dimensionless couplings.

The higher derivative terms in the action may also origi-

nate from supergravity [5,6].

The problem of inflation in polynomial f (R) cosmology

was investigated in the metric formalism in [7], where the

spectral index and tensor-to-scalar ratio were calculated in

the f (R) inflation model.

In this paper we will phenomenologically investigate the

inflationmodel with a polynomial form of the potential in the

Palatini formalism in the Einstein frame [8,9]. For simplicity

we truncate a Taylor series on the term R3.

In the present paper we consider cosmological models of

modified gravity which are the polynomial extensions of the

Starobinsky model because our aim is to study how tuned

is this model and in consequence its prediction—inflation.

However, we must remember that the exact form of the func-

tion f (R) can be different from such a choice. In particu-

lar the adding of negative powers in a f (R) series is also
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very interesting [10]. The treating of the relation f (R) in the

form of a series with respect to R guarantees that it is simple

enough to handle it easily in the study of physical effects of

modified gravity [11]. On the other hand, the introduction of

negative powers of R may lead to instabilities [12].

Therefore, it is interesting to investigate some stable

isotropic cosmological models describing both inflation and

present acceleration in f (R) gravity. In this context the idea

of quintessential cosmology seems to be interesting [10,13].

In the metric approach a more complicated, non-polynomial

form of the function f (R) is required at low curvature [14].

The main aim of the paper is to investigate how rigid the

Starobinsky model of inflation is and if it can be disturbed by

switching higher order terms. Therefore, our study is moti-

vated by a stability investigation. If the Starobinsky model

is stable it is in some sense generic. The standard Starobin-

sky model of inflation is formulated in the background of a

metric formulation of f (R) modified gravity. In this paper

we formulate f (R) theory in the Palatini formalism which

gives us an equation of motion in the form of a second order

equation. The inflation similarly to the Starobinsky approach

is obtained after transition to the Einstein frame. We obtain

the form of the potential for the scalar field in the covariant

form directly parameterized by the Ricci scalar in the Palatini

formulation.

We investigate how the shape of the potential changes

under changing of the parameter which measures the fraction

of the higher order term in the assumed f (R) formula.

In modern cosmology, the Starobinsky model of inflation

plays a crucial role [2]. This model of the cosmic inflation is

considered as a source of the inflaton field—higher curvature

corrections with respect to the Ricci scalar R in the Einstein–

Hilbert action of gravity of the type R2.

The Starobinsky model seems to be distinguished among

different alternative models of inflation in predicting a low

value of the scalar-to-tensor ratio r ; namely, it predicts that

r ∼ 12/N 2, where N is the number of e-foldings during

inflation [15].

The Starobinsky model is also favoured by experimental

results [1,16–19] which give an upper bound on r around

the value of 0.1. What it is important from the observational

point of view the Starobinsky model is the model with the

highest Bayesian evidence [17]. It is characteristic that the

other types of models which also fit the data are actually

equivalent to the Starobinsky model during inflation [15].

From the methodological point of view it is important that

the Starobinsky model can be embedded in different domains

of fundamental physics. The situation is in some sense similar

to what happens in mathematics, where an important theorem

has many references to it in different areas of mathematics.

Here, one can distinguish embedding into the supergravity

[20,21] and embedding into the superstring theory [22–26].

In our paper we consider a new embedding of the Starobin-

sky model into cosmology of Palatini gravity. The emergence

of inflation will be demonstrated as an endogenous dynam-

ical effect in the Palatini formulation of gravity applied to

FRW cosmology.

2 Cosmological equations for the polynomial f (R̂)

theory in the Palatini formalism in the Einstein frame

In the Palatini formalism, the gravity action for f (R̂) gravity

has the following form:

S = Sg + Sm = 1

2

∫ √
−g f (R̂)d4x + Sm, (2)

where R̂ is the generalized Ricci scalar R̂ = gµν R̂µν(Γ̂ ) in

the Palatini formalism [27,28]. In this approach the torsion-

less connection Γ̂ is treated as a variable independent of the

spacetime metric gµν and it is used to construct the Riemann

and Ricci tensor.

Let f ′′(R̂) �= 0. In this case, the action (2) has the equiv-

alent form [11,29,30]

S(gµν, Γ
λ
ρσ , χ) = 1

2

∫

d4x
√

−g

(

f ′(χ)(R̂ − χ)

+ f (χ)

)

+ Sm(gµν, ψ). (3)

We introduce a scalar field Φ = f ′(χ), where χ = R̂. Then

the action (3) is given by the following form:

S(gµν, Γ
λ
ρσ , Φ) = 1

2

∫

d4x
√

−g
(

Φ R̂ − U (Φ)

)

+Sm(gµν, ψ), (4)

where the potential U (Φ) is defined as

U f (Φ) ≡ U (Φ) = χ(Φ)Φ − f (χ(Φ)) (5)

with Φ = d f (χ)
dχ

and R̂ ≡ χ = dU (Φ)
dΦ

.

The equations of motion are obtained after the Palatini

variation of the action (4),

Φ

(

R̂µν − 1

2
gµν R̂

)

+ 1

2
gµνU (Φ) − Tµν = 0, (6a)

∇̂λ(
√

−gΦgµν) = 0, (6b)

R̂ − U ′(Φ) = 0. (6c)

From Eq. (6b) we see that a metric connection Γ̂ is a new

(conformally related) metric ḡµν = Φgµν ; thus R̂µν =
R̄µν, R̄ = ḡµν R̄µν = Φ−1 R̂ and ḡµν R̄ = gµν R̂. We can

obtain from the g-trace of Eq. (6a) a new structural equation,

2U (Φ) − U ′(Φ)Φ = T . (7)
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Let Ū (φ) = U (φ)/Φ2, T̄µν = Φ−1Tµν . Then Eq. (6a) and

(6c) can be rewritten in the following form:

R̄µν − 1

2
ḡµν R̄ = T̄µν − 1

2
ḡµνŪ (Φ), (8)

Φ R̄ − (Φ2 Ū (Φ))′ = 0, (9)

and we get the following structural equation:

Φ Ū ′(Φ) + T̄ = 0. (10)

In this case the action for the metric ḡµν and the scalar field

Φ has the following form in the Einstein frame:

S(ḡµν, Φ) = 1

2

∫

d4x
√

−ḡ
(

R̄ − Ū (Φ)
)

+Sm(Φ−1ḡµν, ψ) (11)

with a non-minimal coupling between Φ and ḡµν ,

T̄ µν = − 2√
−ḡ

δ

δḡµν

Sm = (ρ̄ + p̄)ūµūν + p̄ḡµν

= Φ−3T µν , (12)

ūµ = Φ− 1
2 uµ, ρ̄ = Φ−2ρ, p̄ = Φ−2 p, T̄µν =

Φ−1Tµν, T̄ = Φ−2T (see e.g. [30,31]).

We take the metric ḡµν in the standard form of the FRW

metric,

ds̄2 = −dt̄2 + ā2(t̄)
[

dr2 + r2(dθ2 + sin2 θdφ2)

]

, (13)

where dt̄ = Φ(t)
1
2 dt and a new scale factor ā(t̄) =

Φ(t̄)
1
2 a(t̄). We assume the cosmological equations for the

barotropic matter in the following form:

3H̄2 = 3

( ˙̄a
ā

)2

= ρ̄Φ + ρ̄m + Λ, 6
¨̄a
ā

= 2ρ̄Φ − ρ̄m(1 + 3w) (14)

where

ρ̄Φ = 1

2
Ū (Φ), ρ̄m = ρ0ā−3(1+w)Φ

1
2 (3w−1) (15)

and w = p̄m/ρ̄m = pm/ρm. The conservation equation has

the following form:

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρΦ . (16)

In this paper, we consider the Palatini model, f (R̂) =
∑n

i=1 γi R̂i , in the Einstein frame, where γ1 = 1. In this

case, the potential Ū is given by the following formula:

Ū (R̂) = 2ρ̄Φ(R̂) =
∑n

i=1(i − 1)γi R̂i

(

∑n
i=1 iγi R̂i−1

)2
(17)

and the scalar field Φ has the following form:

Φ(R̂) = d f (R̂)

d R̂
=

n
∑

i=1

iγi R̂i−1. (18)

3 Inflation in f (R̂) = R̂ + γ R̂2 + δ R̂3 theory in the

Palatini formalism in the Einstein frame

Let f (R̂) = R̂ + γ R̂2 + δ R̂3. For this case

Ū (R̂) = R̂2(γ + 2δ R̂)
(

1 + 2γ R̂ + 3δ R̂2
)2

(19)

and

Φ = 1 + 2γ R̂ + 3δ R̂2. (20)

For this parameterization, we can obtain, from the structural

equation (10), a parameterization of ρ̄m with respect to R̂,

ρ̄m(R̂) = R̂ − δ R̂3

(

1 + 2γ R̂ + 3δ R̂2
)2

− 4Λ. (21)

In consequence, the Friedmann equation is given by the fol-

lowing equation:

3H̄2 = ρ̄m(R̂) + Ū (R̂)

2
+ Λ

= R̂(2 + γ R̂)

2
(

1 + 2γ R̂ + 3δ R̂2
)2

− 3Λ. (22)

As a reminder, the Hubble function in the Einstein frame H̄

is defined by Eq. (14) and the generalized Ricci scalar in the

Palatini formalism is R̂ = gµν R̂µν(Γ̂ ).

In this model inflation appears when matter ρ̄m is negligi-

ble with comparison to ρ̄φ .

In the statistical analysis the slow roll parameters are help-

ful in the estimation of the model parameter in the inflation

period [1]. These parameters are defined as

ǫ = − Ḣ

H2
and η = 2ǫ − ǫ̇

2Hǫ
. (23)

In our model the slow roll parameters have the following

form in the case when δ = 0:

ǫ = 3

2

R̂ − 4Λ(1 + 2γ R̂)2

R̂ + γ
2

R̂2 − 3Λ(1 + 2γ R̂)2
, (24)

η = 5 + 3

2(γ R̂ − 1)
+ R̂(1 + 2γ R̂)

6Λ(1 + 2γ R̂)2 − R̂(2 + γ R̂)
.

(25)
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From the Planck observations, we know the limits at a 2-

σ level of the values of the scalar spectral index ns and the

tensor-to-scalar ratio r (ns = 0.9667±0.0040 and r < 0.113

[1]). The relations between the scalar spectral index and the

tensor-to-scalar ratio and the slow roll parameters are the

following:

ns − 1 = −6ǫ + 2η and r = 16ǫ. (26)

Because the slow roll parameters ǫ and η cannot be treated

as constant parameters in our model (see Figs. 1 and 2), we

cannot use these parameters to find the restriction on the

parameter γ from astronomical observations [1].

For example, if we assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc

[1], then we get 3.277 × 10−6 s2Mpc2

km2 <

γ < 3.285 × 10−6 s2Mpc2

km2 , 0 < Ωm = ρ̄m

3H̄2 < 0.0047 and

ΩΦ = ρ̄Φ

3H̄2 ≈ 0.50. But this value of the parameter γ is too

large for explaining the present evolution of the Universe.

In consequence, the slow roll parameters are useless in the

estimation of the parameter γ .

The slow roll parameter approximation is more restrictive

than the constant roll condition [32,33]. The constant roll

condition has the following form:

β = Φ̈

H̄Φ̇
= const. (27)

When β ≪ 1 then we get the slow roll approximation.

In our case Φ̈

H̄Φ̇
is given by

Φ̈

H̄Φ̇
= 4 − 240γΛ + 2

1 − 24γΛ
− 192γ 2ΛR̂

+9(36γΛ − 1)

(γ R̂ − 1)2

+ 12Λ + 3(8γΛ − 1)R̂

(24γΛ − 1)
(

6Λ + R̂(24γΛ − 2 + γ (24γΛ − 1)R̂)
) ,

(28)

when δ = 0. Φ̈

H̄Φ̇
is not constant (see Fig. 3) at all times, but

beyond the logistic-like type transition it can be well approx-

imated by a constant value. At this intermediate interval the

effects of matter do not become negligible. The constant

roll inflation approximation is approximately valid beyond

a short time during which the effects of matter stay very

important (in consequence of the interaction between matter

and dark energy).

Figure 1 presents the evolution of ǫ with respect to the

cosmological time t̄ . We can see that ǫ is not a constant

function when matter is not negligible (see Fig. 4).

Figure 2 demonstrates the evolution of η with respect to

the cosmological time t̄ . Note that η is not a constant function

when matter is not negligible (see Fig. 4). The characteristic

1. 10
32

1.2 10
32

1.4 10
32

1.6 10
32

1.8 10
32

t

0.002

0.004

0.006

0.008

Fig. 1 The diagram presents the evolution of ǫ with respect to the

cosmological time t̄ . The time is expressed in seconds. The value of the

parameter γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that
Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc

. Note that ǫ is not a constant

function when matter is not negligible (see Fig. 4)

1.2 10
32

1.4 10
32

1.6 10
32

1.8 10
32

t

0.3

0.2

0.1

0.1

0.2

Fig. 2 The evolution of η with respect to the cosmological time t̄ . The

time is expressed in seconds. The value of the parameter γ is assumed

as 3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc

. Note that η is not a constant function when matter

is not negligible (see Fig. 4). It is interesting that the function η is of

logistic-like function type

attribute of the function η is the shape of the logistic-like

function.

Figure 3 presents the evolution of Φ̈

H̄Φ̇
with respect to

the cosmological time t̄ . It is important that Φ̈

H̄Φ̇
is not a

constant function when matter is not negligible (see Fig. 4).

It is interesting that the Φ̈

H̄Φ̇
function is of the logistic-like

function type.

Note that β = d ln Φ̇
d ln a

= Φ̈

H̄Φ̇
measures the elasticity of Φ̇

with respect to the scale factor. When β is constant then

Φ̇ ∝ aβ . (29)

Therefore, if β is positive then Φ̇ is a growing function of the

scale factor. In the opposite case (β < 0) Φ̇ is an increasing

function of the scale factor and goes to zero for large values

of the scale factor.
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1.2 10
32

1.4 10
32

1.6 10
32

1.8 10
32

t

0.4

0.2

0.2

0.4

0.6

1

H

Fig. 3 The diagram presents the evolution of Φ̈

H̄Φ̇
with respect to the

cosmological time t̄ . The time is expressed in seconds. The value of the

parameter γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that

Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc

. Note that Φ̈

H̄Φ̇
is not a constant

function when matter is not negligible (see Fig. 4). It is interesting that
Φ̈

H̄Φ̇
function is of the logistic-like function type

The slow roll approximation is achieved in our model

when matter is negligible. Of course, the constant roll con-

dition is respected automatically.

The evolution of matter in the inflation period can be

divided into four phases. The first phase is when matter is

negligible and the density of ρ̄m increases by the interac-

tion with the potential ρ̄Φ . The second phase is when the

matter cannot be negligible and its density still increases. In

this phase the injection of matter is the most effective. After

achieving of the maximum of the density of ρ̄m the third

phase appears. In this phase matter still cannot be negligi-

ble but its density decreases. The last phase is when matter

density decreases and is negligible.

The evolution of matter in the inflation period is presented

in Fig. 4. We see all four phases of the evolution of matter.

The maximum is achieved when

R̂ = 1

2γ
. (30)

In the maximum, the value of ρ̄m is equal to 1
8γ

− 4Λ.

In detail, the behaviour of the potential function Ū (Φ)

depends on the form of f (R̂). For the polynomial form of

f (R̂), there are two cases. In the first case f (R̂) is in the

form f (R̂) = R̂ + γ R̂2. The typical behaviour of the poten-

tial Ū (Φ) for f (R̂) = R̂ + γ R̂2 is present in Fig. 5. The

characteristic attribute is a plateau for a large value of Φ like

for the Starobinsky potential [2]. In this case the formula for

the potential Ū (Φ) has the following form:

Ū (Φ) = γ

(

Φ − 1

2γΦ

)2

. (31)

1. 10
32

1.2 10
32

1.4 10
32

1.6 10
32

1.8 10
32

t

20

40

60

80

Fig. 4 The diagram presents the evolution of ρ̄m with respect to the cos-

mological time t̄ . The time is expressed in seconds and ρ̄m is expressed in
km2

s2Mpc2 . The value of the parameter γ is assumed as 3.277×10−6 s2Mpc2

km2 .

We also assume that Λ

3H2
0

= 0.6911, where H0 = 67.74 km
s Mpc

. Note that

the maximum of this function is achieved when R̂ = 1
2γ

0 10 20 30 40 50 60

20 000

40 000

60 000

80 000

U

Fig. 5 The diagram presents the typical behaviour of the function

Ū (Φ) for the case f (R̂) = R̂ + γ R̂2. The potential Ū (Φ) is expressed

in km2

s2Mpc2 . Note that, for the large value of Φ, the function Ū (Φ) has

the plateau

The second case is when f (R̂) is of the form f (R̂) =
R̂ + γ R̂2 +

∑n
i=2 δi R̂i+1. Then the potential Ū (Φ) has no

plateau and decreases asymptotically to zero when Φ goes

to infinity. This situation is presented in Fig. 6. The formula

for the potential Ū (Φ) for f (R̂) = R̂ + γ R̂ + δ R̂2 has the

following form:

Ū (Φ)

=

(

γ −
√

γ 2+3δ(Φ − 1)

)2 (

γ +2
√

γ 2 + 3δ(Φ − 1)

)

27δ2Φ2
.

(32)

In the context of inflation Ijjas et al. [34] pointed out the

problem with the desired plateau in the behaviour of the

potential of the scalar field. Such a choice seems to be unjus-

tified because it requires that the power series expansion of

potential U with respect to Φ is cancelled at a precise order

in Φ to make the plateau appear.
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Fig. 6 The diagram presents the typical behaviour of the function

Ū (Φ) for the case f (R̂) = R̂ + γ R̂2 + δ R̂2. The potential Ū (Φ)

is expressed in km2

s2Mpc2 . Note that, for a large value of Φ, the function

Ū (Φ) decreases asymptotically to zero

In agreement with Ijjas et al. we obtain the plateau of the

potential Ū (Φ) only when f (R̂) = R̂ +γ R̂2. For the higher

order terms in the expansion of the f (R̂), i.e., R̂3 and higher,

the potential monotically decreases to zero.

Now, we consider in detail inflation in the two above-

mentioned cases with the potential expanded to second order

and third order with respect to Φ. In consequence, we study

whether the plateau is necessary for the appearance of infla-

tion in our model and whether inflation is possible for the

model with a cut-off in a higher order (R̂3 and higher) expan-

sion.

In the inflation period when the matter is negligible, the

Ricci scalar R̂ is constant. The evolution of the Ricci scalar

R̂ is presented in Fig. 7. We can see three phases of the evo-

lution of the Ricci scalar R̂. The first phase is when matter is

negligible and the density of ρ̄m is increased by an interaction

with the potential ρ̄Φ . Then the Ricci scalar R̂ is constant and

is described by the following formula when δ = 0:

R̂ = 1 − 16γΛ + √
1 − 32γΛ

32γ 2Λ
. (33)

The second phase is when the matter is not negligible. In this

case, the Ricci scalar R̂ decreases. The last phase is when

matter density decreases and is negligible. Then the Ricci

scalar R̂ is constant and is equal to

R̂ = 1 − 16γΛ − √
1 − 32γΛ

32γ 2Λ
, (34)

when δ = 0. The function which describes the evolution of

the Ricci scalar R̂ has the shape of a logistic-like function.

The evolution of ρ̄Φ , in the inflation period, similar qual-

itatively to the evolution of the Ricci scalar R̂. We can find

three phases. In the first phase, ρ̄Φ is constant and is equal to

1. 10
32

1.2 10
32

1.4 10
32

1.6 10
32

1.8 10
32

t

50 000

100 000

150 000

R

Fig. 7 The diagram presents the evolution of the Ricci scalar R̂ with

respect to the cosmological time t̄ . The time is expressed in seconds and

the Ricci scalar R̂ is expressed in km2

s2Mpc2 . The value of the parameter

γ is assumed as 3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

=
0.6911, where H0 = 67.74 km

s Mpc
. The transition phase is of logistic-like

behaviour and is strictly correlated with a peak of the matter density, as

shown in Fig. 4

ρ̄Φ = 1 − 16γΛ + √
1 − 32γΛ

16γ
(35)

and in the last phase when ρ̄Φ is also constant,

ρ̄Φ = 1 − 16γΛ − √
1 − 32γΛ

16γ
(36)

for δ = 0. The difference between ρ̄Φ in the first and in the

last phase is equal to

∆ρ̄Φ =
√

1 − 32γΛ

8γ
≈ 1

8γ
. (37)

The evolution of ρ̄Φ is presented in Fig. 8. Our model predicts

a phase of the early constant dark energy which is correlated

with inflation [35,36].

When δ = 0 the number of e-folds in the first phase is

equal to

N = 1

4
√

3

√

1 + √
1 − 32γΛ

γ

(

t̄fin − t̄ini

)

≈ t̄fin − t̄ini

4
√

3γ
,

(38)

where t̄fin is the time of the end of inflation and t̄ini is the time

of the beginning of inflation. In the last phase

N = 1

4
√

3

√

1 − √
1 − 32γΛ

γ

(

t̄fin − t̄ini

)

. (39)

Figures 9 and 10 present the number of e-folds in the first

phase with respect to the parameters γ and δ. In our model,

inflation appears only when δ ≥ 0.
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Fig. 8 The diagram presents the evolution of ρ̄Φ with respect to

the cosmological time t̄ . The time is expressed in seconds and ρ̄Φ

is expressed in km2

s2Mpc2 . The value of the parameter γ is assumed as

3.277 × 10−6 s2Mpc2

km2 . We also assume that Λ

3H2
0

= 0.6911, where

H0 = 67.74 km
s Mpc

. Note that ρ̄Φ is not a constant function when matter

is not negligible (see Fig. 4). It is interesting that the function ρ̄Φ is of

the logistic-like function type
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Fig. 9 The diagram presents the relation between the number of e-

folds N and the parameter γ . The parameter γ is given in
s2Mpc2

km2 . We

assume that δ = 0 and the inflation time is of order 10−32s [38]
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Fig. 10 The diagram presents the relation between the number of e-

folds N and the parameter δ. The parameter δ is given in
s4Mpc4

km4 . We

assume that γ = 1.16 × 10−69 s2Mpc2

km2 and the inflation time is of order

10−32s [38]

If we assume that the parameter δ is equal to zero and

N = 50–60 [37] and the inflation time is of order 10−32s

[38] then the parameter γ belongs to the interval (1.16 ×
10−69, 1.67 × 10−69). In consequence, the present value of
ρ̄Φ

3H2
0

belongs to the interval (3.41 × 10−61, 4.90 × 10−61).

This means that the running dark energy is negligible in the

present epoch and does not influence the acceleration of the

present Universe.

If the parameter δ �= 0 the number of e-folds is modi-

fied. For the parameter γ belonging to the interval (1.16 ×
10−69, 1.67×10−69), we get the number of e-folds N = 50–

60, when the value of δ parameter belongs to the interval

(0, 6.4 × 10−140).

4 Conclusions

We are looking for a cosmological model in which one can

see both the early inflation and the late times acceleration

phase of the expansion in a unique evolutional scenario. To

this aim we study the cosmological model of polynomial

f (R) gravity cut on the R3 term in the Palatini formalism in

the Einstein frame. This model can be treated as an exten-

sion of the Starobinsky model which is formulated in the

metric formalism. Our model is formulated in the Palatini

formalism, but it possesses analogous features and its main

advantage is simplicity. The model is reduced to the FRW

model with matter and dark energy in the form of the homo-

geneous scalar field. Both energy densities of the matter and

dark energy are determined by the Ricci scalar of the FRW

metric. Therefore they are given in the covariant way. In the

Einstein frame the energy density of the dark energy is fully

determined by the potential of the scalar field. Because the

density of dark energy is running, the interaction appears nat-

urally between the matter and dark energy which can also be

parametrized in a covariant way through the Ricci scalar. It

is interesting that in our model it is possible to achieve some

analytic formulae on the energy densities of dark energy and

dark matter.

While the Hilbert–Einstein action and the f (R)-action

can be related by a conformal transformation [39–41], the

corresponding equations are connected by the same transfor-

mation. This fact shows that the Einstein frame and the Jordan

frame are mathematically equivalent [42] but they could not

be physically equivalent as pointed out in several papers (see

e.g. [41,43,44]).

Our investigation confirms that theories equivalent math-

ematically on the classical level can be non-equivalent phys-

ically [45]. However, we observe in the context of our model

that the Einstein frame is privileged in this sense that some

strong singularities can be cured in the cosmological evolu-

tion [14]. A detailed discussion of the meaning of conformal

transformations is in [46].

In our model, we have found that the plateau of the poten-

tial Ū (Φ) is not necessary for the appearance of inflation

123



249 Page 8 of 9 Eur. Phys. J. C (2018) 78 :249

[34]. In the expansion of the function f (R̂), the coefficient

δ of the term R̂3 affects the number of e-folds. The number

of e-folds decreases for δ > 0 with respect to the number of

e-folds obtained for the model with the f (R̂) expansion cut

off at a quadratic term. In our model, inflation appears only

when δ ≥ 0.

In the model if the matter is vanishing we obtain eternal

inflation following the stationary solution H = const. This

result is valid for the function f (R̂) given by the polyno-

mial form f (R̂) = R̂ + γ R̂2 +
∑n

i=2 δi R̂i+1. Only for an

infinitesimally small fraction of matter inflation take places.

The early inflation is studied in detail in terms of slow roll

parameters as well as using the conception of constant roll

inflation. We calculate the constant roll parameter β = d ln Φ̇
d ln a

,

which measures the elasticity of Φ̇ with respect to the scale

factor. We have found the characteristic type of the behaviour

of the parameter β following the logistic-like curve. One can

distinguish four different phases in the time behaviour of the

parameter β. In the first phase, the effects of matter are neg-

ligible but due to the interaction with the dark energy sector,

the energy density of matter grows. As inflation progresses,

matter is created, it disturbs the inflation phenomenon at the

point when matter cannot be neglected. In consequence the

first phase of inflation becomes unstable and the second phase

appears. During the second and third phase, the effects of

matter are not negligible. Finally, the fourth phase is char-

acterized by diminishing effects of matter and the constant

value of the Ricci scalar (and in consequence the constant

value of energy density). During this phase dark energy dom-

inates and the Universe behaves following the standard cos-

mological ΛCDM model.

Because the slow roll parameters are inadequate to con-

strain the model parameter we have found a bound on the

model parameter γ from the numbers of required N -folds.

If we assume that N = 50–60 [37] then the parameter γ

belongs to the interval (1.16 × 10−69, 1.67 × 10−69). For

this interval of the parameter γ , we get the number of e-folds

N = 50–60, when the value of the δ parameter belongs to

the interval (0, 6.4 × 10−140).
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