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Mengjie Zheng

JOINT MODELING OF LONGITUDINAL AND SURVIVAL OUTCOMES USING

GENERALIZED ESTIMATING EQUATIONS

Joint models for longitudinal and time-to-event data has been introduced to study the

association between repeatedly measured exposures and the risk of an event. The use

of joint models allows a survival outcome to depend on some characteristic functions

from the longitudinal measures. Current estimation methods include a two-stage

approach, Bayesian and maximum likelihood estimation (MLEs) methods. The two-

stage method is computationally straightforward but often yields biased estimates.

Bayesian and MLE methods rely on the joint likelihood of longitudinal and survival

outcomes and can be computationally intensive.

In this work, we propose a joint generalized estimating equation framework

using an inverse intensity weighting approach for parameter estimation from joint

models. The proposed method can be used to longitudinal outcomes from the expo-

nential family of distributions and is computationally efficient. The performance of

the proposed method is evaluated in simulation studies. The proposed method is used

in an aging cohort to determine the relationship between longitudinal biomarkers and

the risk of coronary artery disease.

Sujuan Gao, Ph.D., Chair
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Chapter 1

Introduction

In many cohort studies or clinical trials, participants are routinely followed with reg-

ularly scheduled evaluation to collect new symptoms and biological samples until a

designated study endpoint is reached. The longitudinal data collected during study

follow-up are of great interest in modeling event time. For example, in AIDS stud-

ies, it is often of interest to study the association between repeated CD4 counts and

the risk of death for HIV-infected patients. In longitudinal dementia research, sub-

jects are evaluated at frequent time intervals to measure potential risk factors. The

objective is to identify the relationship between the changes in these exposures and

the clinical onset of the disease. The correlation between longitudinal responses and

event times also occurs in many other disciplines. For example, in civil engineering,

structural integrity indicators are recorded regularly to evaluate the risk of failure of

the structure (Rizopoulos, 2012).

When the longitudinal and survival outcomes are correlated, modeling the

longitudinal and survival outcome seperately can lead to biased estimates (Ibrahim

et al., 2010). Joint modeling of longitudinal and time-to-event outcomes utilizes

informaiton collected during the course of study, which can lead to reduced bias

and impovements in the efficiencey of statistical inference (Hogan and Laird, 1998).

Comprehensive overview of joint models can be found in Tsiatis and Davidian (2004)

and Wu et al. (2011). Tsiatis and Davidian (2004) focused on the early work of
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joint models while Wu et al. (2011) included more recent methods. In a typical

model setting, the longitudinal process is assumed to follow a mixed effect model,

and the time-to-event process is captured by a Cox’s proportional hazard model

or an Accelerated Failure Time (AFT) model, with the longitudinal and time-to-

event sharing common random effects. There are two general approaches used for

estimations in joint models: a two-stage approach and a likelihood based method.

A naive two-stage method conducts estimation in two separate steps: in the

first stage, a linear mixed effects (LME) model is used for the longitudinal data

without regard to the time-to-event process; in the second stage, a survival model for

time-to-event is used with the predicted longitudinal responses from the first stage

as independent variables (Ye et al., 2008a). An advantage of the naive two-stage

approach is that by separating out the two models, various methods can be used for

one model without affecting the other model. In addition, it can be implemented

with standard statistical software without complex estimation techniques (Wu et al.,

2011). However, the two-stage method can introduce estimation biases and a lose

of efficiency because the longitudinal model fitted at the first stage can be biased

without accounting for the survival outcomes (Ghisletta et al., 2006; Faucett and

Thomas, 1996; Albert and Shih, 2010; Sweeting and Thompson, 2011; Murawska

et al., 2012), and the estimation of the risk coefficient in the survival model does not

consider the uncertainty form the predicted longitudinal outcomes.

The two-stage approach has been considered by many authors and there have

been attempts at correcting for the biases. Self and Pawitan (1992) used the least

square method to estimate the longitudinal covariate trajectories; Tsiatis et al. (1995),

Bycott and Taylor (1998), Dafni and Tsiatis (1998) considered an approximation of
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the hazard function to account for measurement error in the observed longitudinal

markers; Ye et al. (2008b) proposed two approaches: the ordinary regression cal-

ibration (ORC) approach that fits the LME model with all observed longitudinal

measures, and the risk regression calibration (RRC) method that fits the LME model

by removing subjects who have an event before a time point; Albert and Shih (2010)

simulated complete longitudinal pseudo-measurements and used the “complete data”

in the second stage. Even though various modifications have been proposed to ad-

dress the informative dropout and measurement error issues, the two-stage approach

may still yield biased estimates (Wu et al., 2011).

Rather than using the two-stage approximation, many authors have taken

the likelihood approach. In a likelihood based appraoch, subject specific effects are

used to model the longitudinal outcomes and predicted individual responses from

the longitudinal models are used as covariates in the survival model for time-to-

event. Joint likelihood functions from both the longitudinal and survival models

are used to obtain parameter estimates and for the statistical inference. Likelihood

based approach includes maximum likelihood using EM algorithm and the Bayesian

approach. De Gruttola and Tu (1994), Wulfsohn and Tsiatis (1997), Lin et al. (2002),

Tseng et al. (2005), Rizopoulos et al. (2009), Wu et al. (2010), Choi et al. (2015) and

Yang et al. (2016) considered the likelihood approach and applied the EM algorithm

for estimation. Monte Carlo methods or Laplace approximations can be applied for

the E step (Rizopoulos et al., 2009; Wu et al., 2010), and Newton-Raphson method is

often used for the M step (Yang et al., 2016). Various researchers have also used the

Bayesian approach in joint models, including Faucett and Thomas (1996), Xu and

Zeger (2001a), Xu and Zeger (2001b), Wang and Taylor (2001), Law et al. (2002),
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R Brown and G Ibrahim (2003), Brown and Ibrahim (2003), Ibrahim et al. (2004),

Chi and Ibrahim (2006), Rizopoulos and Ghosh (2011), Sweeting and Thompson

(2011), Huang et al. (2011), Hatfield et al. (2012) Lawrence Gould et al. (2015) and

He and Luo (2016). Bayesian methods can be implemented via Markov Chain Monte

Carlo (MCMC) techniques. Both the maximum likelihood approach using EM and

Bayesian method produce valid and efficient inference if the longitudinal and survival

models are correctly specified. However, the biggest challenge to the wide application

of the likelihood based approach for joint models is computational complexity (Wu

et al., 2011).

Many previous works in the joint modeling literature focused on a single lon-

gitudinal outcome that is associated with the time-to-event model. However, in prac-

tice, it is common for studies to collect multiple longitudinal outcomes and aim to

determine the association between the longitudinal outcomes and time-to-event. Most

current methodologies use joint modeling of linear mixed effect models for multivari-

ate longitudinal outcomes and proportional hazard models for the survival model

while assuming multivariate normal distributions for random effects (Hickey et al.,

2016). Taking into account the correlations among multiple longitudinal markers can

improve the predictive ability of the joint models (Lin et al., 2002; Brown et al., 2005;

Chi and Ibrahim, 2006; Gueorguieva and Sanacora, 2006; Fieuws et al., 2008; Mc-

Culloch, 2008; Proust-Lima et al., 2009). The longitudinal outcomes may also be a

mixture of discrete and continuous measures that can be potentially predictive of the

risk of time-to-event. Rizopoulos and Ghosh (2011) proposed a Bayesian framework

for this setting.

4



In this work, we focus on joint modeling with multiple longitudinal outcomes

that are associated with the risk of an event. We are considering a joint general-

ized estimating equation framework where inverse intensity weighting is used for the

longitudinal models to adjust for informative truncation by the event, and a partial

likelihood is used for the event time data. Such an approach can allow a straightfor-

ward extension of models from normally distributed data to non-normal longitudinal

outcomes. In addition, this approach is computationally efficient to carry out by

avoiding high dimensional integration. Moreover, we use a partial likelihood for the

time-to-event data to avoid estimation of the baseline hazard function, which further

simplifies the estimation.
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Chapter 2

Joint Models for Multiple Longitudinal Continuous Outcomes and

Time-to-Event Data

In this chapter, we introduce joint models for analyzing the association between mul-

tiple continuous longitudinal measures and a time-to-event outcome. In section 2.2,

we define the notation and model formulation of longitudinal and survival processes.

We consider multivariate mixed effects models for longitudinal biomarkers without

the assumption that the random effects and random errors are normally distributed.

The survival model is assumed to follow the Cox proportional hazard model with a

function of the true longitudinal measures as time-dependent covariates. We review

the background on generalized estimating equations and describe our estimating ap-

proach in section 2.1. The proposed method is applied to data from a longitudinal

cohort in section 2.5.

2.1 Introduction

Generalized estimating equations (GEE) offers a robust estimation method to cap-

ture the characteristics of correlated data from repeated measures (Liang and Zeger,

1986). There are many advantages of GEE: GEE is closely related to quasi-likelihood

(Wedderburn, 1974), which requires only the relationship between the expected value

of outcome variable and covariates, and the relationship between the conditional mean

and variance of response variable; GEE allows the specification of a working corre-
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lation matrix that accounts for within-subject correlation of responses on dependent

variables; asymptotic consistency of GEE estimators holds even with the misspecifi-

cation of the working correlation structure; when the working correlation is correctly

specified, GEE estimators are efficient within the linear estimating function family; in

addition, estimates using GEE are computationally efficient (Liang and Zeger, 1986;

Zeger et al., 1988; Liang et al., 1992; Zorn, 2001; McCulloch and Neuhaus, 2001).

The GEE approach can also be used in data with multiple longitudinal out-

comes. Rochon (1996) considered a GEE approach for bivariate repeated measures

of discrete and continuous outcomes. Shelton et al. (2004) described a SAS macro

for the analysis of multivariate longitudinal binary outcomes with GEE. Lipsitz et al.

(2009) proposed a joint estimation of the marginal models by using a single modified

GEE for longitudinal binary outcomes with missing data. Asar and Ilk (2013) ex-

tended GEE to multivariate longitudinal binary, continuous and count responses and

developed the R package mmm.

Longitudinal measures related to a time-to-event outcome could be considered

as a case of missing data with outcome-dependent follow-up. That is, subject’s data

are observed at certain intervals until an event occurs. Robins et al. (1995) proposed

a class of weighted estimating equations that lead to consistent and asymptotically

normal estimators for monotone missing data patterns. This technique weighted a

subject’s contribution to the estimating equation by the inverse of the conditional

probability of being observed. The most recent review of inverse probability weight-

ing (IPW) for dealing with missing data is provided by Seaman and White (2013). To

handle irregular visits and outcome-dependent follow-up, Lin et al. (2004) proposed

an inverse intensity of visit process weighted GEEs that can handle arbitrary pat-
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terns of missing data when longitudinal responses are observed in continuous times.

However, this method requires an estimation of baseline intensity of the observation

process. Buzkova and Lumley (2007) proposed a similar approach, inverse intensity

rate ratio (IIRR) weighted estimating equation, that avoids the smoothing of the base-

line hazard, and the estimation could be easily implemented in standard statistical

software.

In joint models, the estimated true longitudinal measures are considered as

time-dependent covariates in the survival model. The uncertainty of the predicted

random effects in longitudinal covariates needs to be taken into account. In the sur-

vival model, the adjustment of the variability of the random effects can be considered

as a setting of measurement error models. Several methods have been developed to

deal with measurement error starting with Prentice (1982). Augustin and Schwarz

(2002) provided a review and comparison of methods for Cox’s proportional hazards

model with covariate measurement errors. Nakamura (1990), Nakamura (1992), Kong

and Gu (1999), Kulich and Lin (2000), Hu and Lin (2002), Zucker and Spiegelman

(2008) have adopted the method of correcting the partial likelihood score function.

The idea is to construct a corrected score function such that the expectation with

respect to the measurement error distribution is equal to the original score func-

tion based on the unknown true variables. Pepe et al. (1989), Hughes (1993), Wang

et al. (1997), Xie et al. (2001) and Spiegelman et al. (2001) etc. have considered

the regression calibration method, which replaces the unobserved true variables by

their expectation given the observed variables. The regression calibration method

is the most well-known tool for measurement error correction, the main advantage

is its easy implementation and the estimates can be obtained by standard software

8



(Augustin and Schwarz, 2002). Some other approaches including Huang and Wang

(2000) who had rewritten the partial score function as a function of empirical process,

Gorfine et al. (2004) considered weighted estimating equations method, Song et al.

(2002) and Li and Ryan (2006) treated measurement error as missing data problem

and used multiple imputation for measurement error correction, and Zucker (2005)

presented a pseudo-partial likelihood procedure.

In this work, first, we use the weighted GEE to reduce biases in estimating

the longitudinal model parameters. Second, in the survival model, we account for the

measurement error in the predicted subject-specific random effects in order to further

reduce biases in estimating risk coefficients.

2.2 Model Formulation

2.2.1 Longitudinal Models

Let Yi = (yTi1, · · · ,y
T
iL)T denotes L-variate response vector for the i-th subject, yil =

(yil(ti1), · · · , yil(tini))
T is a ni × 1 vector of longitudinal response at different time

points, where i = 1, · · · , N and l = 1, · · · , L. yil(tij) is the l-th response collected on

subject i at time point tij , where j = 1, · · · , ni. Let ti = (ti1, · · · , tini)
T denotes time

points for subject i. Assuming the l-th longitudinal outcome has the set of covariates

Xil = (XT
il(ti1), · · · ,XT

il(tini))
T , where XT

il(tij) = (1, xil1(tij), · · · , xilpl(tij))
T is a

(pl + 1)× 1 vector of covariates for the l-th response of subject i at time tij . The l-th

response for i-th subject is modeled by the following mixed effects model:

yil(t) = y∗il(t) + εil(t)

= XT
il(t)βl + ZTil(t)bil + εil(t),

(2.1)
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where XT
il(t) and ZTil(t) denote row vectors of the design matrices for the fixed and

random effects corresponding to the l-th longitudinal outcome for the i-th subject at

time t; βl is the corresponding fixed effects; bil is the vector of random effects with

mean 0 and variance Gl; εil(t) is a random error term with mean 0 and variance σ2
l .

To take into account the correlation for the multiple longitudinal markers, the

responses for the i-th subject can be modeled by the following mixed effects model:

Yi = Xiβ + Zibi + εi, (2.2)

where Xi =



Xi1 0 · · · 0

0 Xi2 · · · 0

...
...

. . .
...

0 · · · 0 XiL


(
∑L

j=1(pj+1))×(
∑L

j=1(pj+1))

,

β =



β1

β2

...

βL


(
∑L

j=1(pj+1))×1

, Zi =



Zi1 0 · · · 0

0 Zi2 · · · 0

...
...

. . .
...

0 · · · 0 ZiL


,

bi =



b1

b2

...

bL


with covariane matrix G =



G1 G12 · · · G1L

G21 G2 · · · G2L

...
...

. . .
...

GL1 · · · GL(L−1) GL


,
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εi =



ε1

ε2

...

εL


represent independent random errors, with covariance matrix

Σi =



σ2
1Ini 0 · · · 0

0 σ2
2Ini · · · 0

...
...

. . .
...

0 · · · 0 σ2
LIni


, where Ini is ni × ni identity matrix.

Assume bi and εi are mutually independent, then the variance covariance of

Yi is Vi = Cov(Yi) = ZiGZTi + Σi and E(Yi) = Xiβ. Note that Yi’s are observed

until an time-to-event occurs. That is, longitudinal data are unbalanced follow-ups

with irregular time points of observation and also with right “censoring” missing

caused by the survival outcome.

2.2.2 The Survival Model

For a time-to-event outcome, let T ∗i be the true event time for subject i. Some

subjects may not experience the event at the end of study, or they may drop out

during the study, so their event times are right censored. Let Ci denote the censoring

time for the i-th subject. The observed event time Ti = min(T ∗i , Ci). Define the

event indicator as δi = I(T ∗i ≤ Ci), here I(·) represents indicator function. Assume

that censoring times and event times are independent. The effects of longitudinal
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outcomes on survival times are captured by a hazard model:

hi(t) = h0(t) exp

uTi γ +
L∑
l=1

αlfl
(
y∗il(t)

) , (2.3)

where h0(t) is the baseline hazard; ui denotes a vector of baseline covariates with

corresponding regression coefficient vector γ; fl(·) is a known function of the true

longitudinal profile for the l-th outcome; and αl denotes a parameter measuring the

effect of the l-th longitudinal process on the time to event outcome. Parameters αl’s

(l = 1, 2, · · · , L) are of primary interest in this work.

Function fl(·)(l = 1, 2, · · · , L) are assumed to be known and reflect the as-

sociation between the longitudinal outcomes and the event process. The identity

function quantifies the effect of the true current underlying longitudinal outcomes on

the hazard for an event; a first derivative with respect to time t implies that the risk

for an event at time t depends on the slope of the true longitudinal trajectory at time

t; an integration function over time indicates that the event risk of depends on the

cumulative history of the longitudinal biomarkers over time.

2.3 Estimation Method

Three broad approaches have been used for parameter estimation for the joint mod-

els defined above. The two-stage method derives predicted longitudinal outcomes

from mixed effects models fitted to the longitudinal data without considering the

survival model at the first stage. Cox’s models are used at the second stage using the

predicted longitudinal outcomes as covariates without accounting for the prediction

errors. The two stage method has been shown to result in biased results (Wu et al.,

12



2011). Maximum likelihood approaches and Bayesian methods that utilize the full

likelihood based on the joint models have been proposed. However, these methods can

be computationally intensive as the likelihood function or the posterior distribution

function involves integration over multiple random effects.

In this section, we present the joint generalized estimating equation method-

ology for parameter estimation of joint models for multiple longitudinal biomarkers

and time-to-event outcome.

2.3.1 The Joint Generalized Estimating Equation Method

Hypothetically, if we knew parameters in the survival model, a weight can be calcu-

lated using the inverse visit intensity by Lin et al. (2004) and the weight can be used

in a weighted GEE to obtain parameter estimates for the fixed effect, β, in the lon-

gitudinal model. Individual random effects can then be obtained by minimizing the

squared “distance” between observed individual responses and predicted population

averages. The new estimates can be used in the survival models to provide the next

round of parameter estimates. The process iterates until converges.

Let Wi be the diagonal weight matrix, U(β), D(b), L(α,γ) are objective

functions for solving β, b, α and γ respectively. We propose a joint generalized

estimating equation (JGEE) approach for estimation, which is to solve the following

systematic estimating equations:

Estimate β from:

U(β) =
N∑
i=1

XT
i V−1

i Wi(Yi −Xiβ) = 0. (2.4)
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Predict random effects b from:

b = argmin
b

∑
i=1

(Yi −Xiβ − Zibi)
TV−1

i (Yi −Xiβ − Zibi). (2.5)

Estimate risk coefficients α from:

α = argmax
α,γ

N∏
i=1

 eu
T
i γ+

∑L
l=1 αlfl(y

∗
il(Ti))∑N

j=1 I(Tj ≥ Ti)e
uT
j γ+

∑L
l=1 αlfl(y

∗
jl(Tj))

δi . (2.6)

Equation (2.4) is a weighted GEE for longitudinal outcomes. In equation (2.4),

Yi is the multivariate response of the i-th subject with dimension (L × ni) × 1; Xi

is the design matrix with dimension (
∑L
j=1(pj + 1)) × (

∑L
j=1(pj + 1)), and β is

the corresponding vector of regression coefficients for the fixed effects with dimension

(
∑L
j=1(pj + 1))×L)× 1. Vi is the variance covariance matrix of Yi with dimension

(L× ni)× (L× ni).

Wi is a (L × ni) × (L × ni) diagonal weight matrix with the j-th diagonal

element as

W (tij ;β,γ,α) =
c(tij ; ui,γ0)

h0(tij) exp
{

uTi γ +
∑L
l=1 αlfl(y

∗
il(tij−))

} ,
where y∗il(tij−) denotes all the past observations until time tij . Note that W can use

Y’s collected right up to time tij . This weight is called inverse visit intensity weight

motivated by Lin et al. (2004) and Buzkova and Lumley (2007), and it is used to

account for missing caused by time-to-event. c(·) is a pre-specified function of the time

independent covriates u and has the potential to stabilize the influence of small values

14



in the denominator. In addition, if we choose c(·) as h0(tij) exp
{

uTi γ0

}
, when yi(t)’s

have no influence on the risk of event at time t, the weight becomes identity matrix

reducing to the regular GEE for equation (2.4). Note that longitudinal measures at

different time points will assign different weights, but multiple longitudinal outcomes

will share the same weight at the same time point. The solution to the weighted

GEEs (2.4) can be found by applying the Fisher Scoring method (Nelder and Baker,

1972). The algorithm is to get initial estimates of β, Wi and Vi, update β by βr+1 =

βr +
[∑N

i=1 XT
i V−1

i WiXi

]−1 [∑N
i=1 XT

i V−1
i Wi(Yi −Xiβr)

]
until converge.

Equation (2.5) minimizes the squared distance between an individual’s re-

sponse measures to the population average. b can be predicted as minimizing the

squared length of residual vector:

b = argmin
b

(Y −Xβ − Zb)TV−1(Y −Xβ − Zb).

Thus b is the generalized least squares estimates with explicit form

b̂ =
(
ZTV−1Z

)−1
ZTV−1 (Y −Xβ) ,

with β is replaced by the consistent estimate β̂.

Equation (2.6) is to maximize the partial likelihood function for Cox propor-

tional hazard model with unobserved longitudinal measures replaced by estimated

longitudinal measures from equations (2.4) and (2.5):

ŷ∗il(tij) = XT
i (tij)β̂l + ZTi (tij)b̂

∗
il,
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where b̂∗il is an adjusted predicted random effect given by equation (2.5). The corre-

sponding log partial likelihood function is:

l(α,γ) =
N∑
i=1

δi

uTi γ +
L∑
l=1

αlf(ŷ∗il(Ti))

− log
N∑
j=1

I(Tj ≥ Ti) exp{uTj γ +
L∑
l=1

αlf(ŷ∗jl(Ti))}

 .
(2.7)

Coefficients α and γ can be obtained by maximizing this log partial likelihood.

Note that the weight Wi’s in equation (2.4), and y∗il(Ti)’s in equation (2.6)

depend on the true model parameters, which are unknown in reality. Equations

(2.4),(2.5) and (2.6) can be solved iteratively with Wi, y
∗
il(Ti) replaced by their

estimators. The initial value of Wi can be obtained from a naive two-stage method;

equation (2.4) can provide an estimator of fixed effects β̂; given β̂, equation (2.5) can

provide a prediction of random effects; from equation (2.4) and (2.5), an estimator y∗

can be obtained and fl(ŷ
∗
il(t)) = fl(X

T
il(t)β̂l+ZTil(t)b̂

∗
il) can be plugged into equation

(2.6). The three equations can be solved iteratively.

2.3.2 Variance Estimates

For general estimating equations, Liang and Zeger (1986) have proposed a sandwich

variance covariance matrix estimator for β̂ the robust variance covariance estimator.

Following the sandwich variance covariance of GEEs, the robust sandwich variance

covariance matrix of β̂ from weighted GEEs will be calculated by:

(
XTV−1WX

)−1 (
XTV−1W(Y −Xβ)(Y −Xβ)TWV−1X

)(
XTV−1WX

)−1
,

(2.8)

16



with V, β and W are replaced by estimates.

The variance estimate of α̂ will be obtained by inverse of the information

matrix of the log partial likelihood:

V (α̂) = −
[
∂2l(α̂)

∂α∂αT

]−1

. (2.9)

In Chapter 4, we will provide theoretical support of the asymptotic properties

for the estimators obtained from the proposed iterative joint GEE approach. The

proposed approach uses an iterative computational approach and avoids high dimen-

sional integration required in likelihood or Bayesian methods. The proposed method

can be implemented in standard statistical software. Because the standard errors of

fixed effects in the longitudinal model are calculated based on modified GEE as if

the weights are known, and the standard errors of the risk coefficient estimators are

obtained through partial likelihood assuming that all the true covariate values are

known, estimated standard errors are likely to be underestimating the true variance.

In the following section, we investigate the finite sample performance of the proposed

method in simulation studies.

2.4 Simulation Study

In this section, we perform simulation studies to assess the performance of the pro-

posed method. Simulation results are compared with those obtained using the two-

stage method and the GEE approach. The GEE method is solving equations (2.4),

(2.5) and (2.6) with W be identity matrix in (2.4). Model specification and data

generation process in the simulation study follows part of Yang’s strategy (Yang,
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2013). Data are simulated from the joint models with two correlated normally dis-

tributed longitudinal outcome and time-to-event outcome. Similar fixed and random

effects structures are considered for two longitudinal outcomes, where the fixed effects

include intercept, time, and one baseline binary covariate, and the random effects in-

clude random intercept and slope. Two longitudinal outcomes are correlated through

the random effects.

Suppose longitudinal outcomes follow the model:

y1(tij) = y∗1(tij) + ε1(tij) = β01 + β11tij + β21ui + b01i + b11itij + ε1(tij),

y2(tij) = y∗2(tij) + ε2(tij) = β02 + β12tij + β22ui + b02i + b12itij + ε2(tij),

where ε1(tij) ∼ N(0, σ2
1), ε2(tij) ∼ N(0, σ2

2) and



b01i

b11i

b02i

b12i


∼ N





0

0

0

0


,



σ2
01 ρ1σ01σ11 ρ2σ01σ02 ρ1σ01σ12

ρ1σ01σ11 σ2
11 ρ1σ11σ02 ρ1σ11σ12

ρ2σ01σ02 ρ1σ11σ02 σ2
02 ρ1σ02σ12

ρ1σ01σ12 ρ1σ11σ12 ρ1σ02σ12 σ2
12




.

Assume the time-to-event outcomes follow Cox Proportional Hazard (PH) Model with

Weibull baseline function:

h(t) = abtb−1 exp(α1y
∗
1(t) + α2y

∗
2(t)), (2.10)
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where a is the shape parameter and b is the scale parameter of the Weibull distri-

bution. The Cox PH model is assumed to depend on the current values of the two

longitudinal outcomes at event time points. For each subject, a survival probability

si at the true even time T ∗i is simulated from uniform (0, 1), and the true event time

T ∗i is solved from the equation:

si − exp

{
−
∫ T ∗

i

0
abtb−1 exp(α1y

∗
1(t) + α2y

∗
2(t))dt

}
= 0.

Censoring times are simulated from another uniform distribution independently. The

event indicator δi for the ith subject is determined by comparing true event time

T ∗i and censoring time Ci, δi = I(T ∗i ≤ Ci). The observed time Ti = min(T ∗i , Ci).

Four censoring percentages and three different sample sizes are considered. The true

parameters used in the simulations are summarized in Table 2.1 and Table 2.2.

The proposed JGEE algorithm will be performed as the following steps:

Step 1: Run native two-stage method to estimate the initial values for all un-

known parameters. Specially, the mixed effect model (2.2) with multiple biomarkers

is used to calculate the initial values in longitudinal models, including β̂01, β̂11, β̂02,

β̂02, β̂12 and β̂22. Then the Cox PH model using estimated longitudinal biomarker

measures at the event times as time-dependent covariates is used to obtain the initial

values for parameters in the hazard function, including α̂1, α̂2.

Step 2: Obtain initial values of weights using estimated parameters, specially,

diagonal values of the weight matrix have the form:

Wi(tij) =
1

exp
{
α̂1

(
β̂01 + β̂11tij + β̂21ui

)
+ α̂2

(
β̂02 + β̂12tij + β̂22ui

)} .
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Step 3: Solve longitudinal fixed effect parameters from weighted joint gener-

alized estimation equations (2.4):

N∑
i=1

XT
i V−1

i Wi(Yi −Xiβ) = 0,

where

XT
i =



1 ti1 ui 0 0 0

...
...

...
...

1 tini ui 0 0 0

0 0 0 1 ti1 ui

...
...

...
...

0 0 0 1 tini ui



T

,

Denote estimated parameters from the weighted GEE in (2.4) as β̂∗01, β̂∗11, β̂∗02, β̂∗02,

β̂∗12 and β̂∗22.

Step 4: Obtain individual random effects b̂ form equation (2.5) by solving

random effects model Y −XT β̂ = ZTb + ε. We provide a correction to account for

the variability in estimated b̂i. Similar to idea of regression calibration in measure-

ment error models (Carroll et al., 1995), we use b̂∗il = b̂il/

√
1 + V ar(b̂l). Calibrated

random effects depend on variation of predicted subject specific random effects; if the

predicted random effects have large variance, the calibrated random effects shrink

them to return less variable random effects.

Step 5: Estimated longitudinal measures ŷ∗1(tij) = β̂∗01+β̂∗11tij+β̂∗21wi+ b̂
∗
01i+

b̂∗11itij and ŷ∗2(tij) = β̂∗02 + β̂∗12tij + β̂∗22wi + b̂∗02i + b̂∗12itij are used as time-varying
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covariates in the survival model (2.10). The Cox model procedure is used with the

partial likelihood

L(α1, α2) =
N∏
i=1

 α1ŷ
∗
i1(Ti) + α2ŷ

∗
i2(Ti)∑N

j=1 I(Tj ≥ Ti)e
α1ŷ

∗
j1(Tj)+α2ŷ

∗
j2(Tj)

δi

to obtain new estimates α̂∗1 and α̂∗2.

Step 6: Repeat step 1 to 5 until converge.

In this simulation, 500 Monte Carlo samples are generated. Longitudinal data

are simulated for 200, 500, 1000 subjects with 10 equally spaced bivariate longitudinal

observations over 5 year period. Survival data are simulated for 40%, 30%, 10%

and 0% of censoring. Longitudinal observations are right censored by time-to-event

data. Simulation results are presented in Tables 2.3 to 2.6. Relative bias (defined

as ((θ̂ − θtrue)/θtrue), empirical standard errors (Emp. S.E.), model based standard

errors (Model S.E.), coverage probability of the 95% confidence intervals (95% CI

C.P.) and Mean Square Error (MSE) (defined as E
[
(θ̂ − θ)2

]
) based on 500 Monte

Carlo samples are reported.

From simulation results, it can be observed that for a fixed survival censoring

percentage with a given sample size, proposed JGEE method performs better than

GEE and two-stage method with smaller relative bias, larger 95% coverage probability

and comparable MSE. For a fixed survival censoring percentage and with sample

size gets larger, relative bias, standard error, 95% coverage probability and MSE

get smaller as expected for proposed JGEE method; and if we compare different

methods on relative bias improvement, with sample size gets larger, the improvement

gets better (relative bias from two-stage and GEE method tends to get larger while
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JGEE method relative bias gets smaller). We also observe that JGEE method tends

to underestimate the standard error, this is because the standard errors of β’s are

calculated based on modified GEE as if the weights are known, and the standard errors

of α’s are obtained through partial likelihood assuming that all the true covariate

values are known. It is also observed that the GEE method always performs worse

than the naive Two-stage method, this is because for longitudinal data, missing caused

by survival information is not missing completely at random, regular GEE leads to

more biased results on longitudinal estimates, thus worse survival estimates. This also

reflects the proposed JGEE method adding weight in the GEE method does adjust

for missing data.

For a given sample size, it can be observed from simulation results that, with

censoring percentage gets smaller, proposed JGEE approach performs better with

smaller relative bias and smaller MSE, while GEE and two-stage method get larger

relative bias and MSE. This is because in the longitudinal part, missingness is caused

by either censoring or time-to-event; missing data come from censoring are non-

informative, which do not affect parameter estimation; while missing caused by event

is nonignorable missing, the less censoring, the more events have happened, thus more

bias would be for longitudinal estimates if the missing is ignored. On the other hand,

survival effect depends on true unobserved longitudinal measures, the more bias in

longitudinal estimation, the more bias result in survival estimation. Because JGEE

method did adjust for missingness related to event by adding weight into estimation

equation to acquire better longitudinal estimates, with better longitudinal parameter

estimates, proposed JGEE method yield better survival parameter estimates.
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Table 2.1: True parameter values for the two longitudinal outcomes and the propor-
tional hazard function.

Outcome 1 Outcome 2 Time to event Outcome

Parameter Value Parameter Value Parameter Value

β01 0.2 β02 1 a 0.005

β11 0.5 β12 0.2 b 1.1

β21 0.2 β22 0.5 α1 1.0

α2 1.5

Table 2.2: True values for random errors, random intercept and correlation for the
longitudinal models, and censoring percentage from survival.

Scenario σ1 σ2 σ01 σ11 σ02 σ12 ρ1 ρ2 Censor

1 0.5 0.5 0.5 0.2 0.5 0.2 0.2 0.4 40%

2 0.5 0.5 0.5 0.2 0.5 0.2 0.2 0.4 30%

3 0.5 0.5 0.5 0.2 0.5 0.2 0.2 0.4 10%

4 0.5 0.5 0.5 0.2 0.5 0.2 0.2 0.4 0%
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2.5 Data Application

In this section, the proposed method is applied to data from a longitudinal cohort to

examine the association of longitudinally collected low density lipoprotein (LDL), high

density lipoprotein (HDL) measures and their association with the risk of coronary

artery disease (CAD).

It has been reported that high LDL, low HDL cholesterol levels are associated

with increased risk of coronary artery disease (CAD) (Wilson, 1990; Mertens and

Holvoet, 2001). However, many observational studies have questioned the relevance

of lipids in relation to cardiovascular disease risk (Weverling-Rijnsburger et al., 1997;

Schatz et al., 2001). There are very few studies on LDL, especially HDL cholesterol

levels in relation to risk of CAD in old adults (Weverling-Rijnsburger et al., 2003).

Existing studies on the association of lipids and risks of CAD have typically utilized

either baseline measurements or mean values from multiple measurements over time.

And so far, no study have looked at the association between longitudinal LDL and

HDL measures together and the risk of CAD.

2.5.1 The Longitudinal Cohort

The study population comes from the Indianapolis-Ibadan Dementia Project (IIDP).

The IIDP is a 20-year study of dementia in elderly African Americans living in Indi-

anapolis, Indiana, and elderly Africans living in Ibadan and Nigeria, all of whom were

age 65 or older. The project recruitment was conducted in two phases: for the first

recruitment, 2212 African Americans age 65 or older who live in Indianapolis were en-

rolled in 1992; for the second enrollment in 2001, additional 1893 community-dwelling
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African American with age 70 years and older were recruited. Detailed description of

the IIDP cohort can be found at Hendrie et al. (2001) and Hall et al. (2009).

This data application merged electronic medical records (EMRs) with data

collected from the Indianapolis-Ibadan Dementia project (IIDP). Of the 4105 par-

ticipants enrolled in IIDP, 3778 (92%) were identified in EMR using social security

numbers, name, gender, and date of birth. For each individual, HDL and LDL mea-

sures associated with outpatient visits were retrieved from EMR data. The event of

CAD was defined as the diagnosis of CAD using ICD-9 codes or cause of death by

CAD. For patients with an event, age at CAD diagnosis is used as the event time; for

subjects without CAD diagnosis, age at last evaluation time in IIDP or age of death

other than CAD is used as the right censoring point.

The current work focuses on a subset of 979 female patients, with a total num-

ber of 3728 observations. During the study follow-up, 343(35.0%) of the subjects were

diagnosed with CAD by the end of study period. The average number of longitudinal

lipid measurements is 3.81(sd 4.00). The average length of follow up is 2.21 years

(range 0 to 21.67). Demographic characteristics of the study population including

baseline age, year of education, baseline smoking status and diabetes condition are

summarized in Table 2.7. CAD and non-CAD patients are not different in baseline

age, education years, baseline smoking status and baseline LDL levels, but they are

different in percent with diabetes and mean baseline HDL levels.

Figure 2.1 and 2.2 plot annualized longitudinal LDL and HDL measures over

time. The blue dots are observed lipids for Non-CAD group, and red dots are observed

lipids for CAD group. The blue and red lines represent fitted population mean profiles

for Non-CAD and CAD group respectively. From Figure 2.1, population mean LDL
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over time for patients in CAD and Non-CAD group are both decreasing. From Figure

2.2, population mean HDL over time for patients in Non-CAD group stays flat, while

population mean HDL decreases over time for patients in CAD group. Figure 2.1 and

2.2 indicates potential association between the risk of CAD and longitudinal LDL and

HDL over time.

Table 2.7: Comparisons of baseline demographic of female subjects between CAD
and non-CAD groups (n = 979)

All CAD Non-CAD

Baseline Characters (n=979) (n=343) (n=636) p-value

Age at baseline, mean(sd) 77.02(6.71) 76.53(6.54) 77.28(6.80) 0.096

Year of Education, mean(sd) 11.09(2.52) 11.15(2.57) 10.98(2.41) 0.327

Smoking, n (%) 479(48.93%) 182(53.06%) 297(46.70%) 0.057

Diabetes, n (%) 276(28.19%) 118(34.40%) 158(24.84%) 0.002

Baseline LDL, mean(sd) 132.48(42.28) 134.56(43.35) 131.35(41.68) 0.258

Baseline HDL, mean(sd) 58.79(16.70) 56.34(15.39) 60.11(17.23) 0.001

Number of measures, mean(sd) 3.81(4.00) 3.28(3.20) 4.09(4.34) 0.003

Years of follow up, median(range) 2.21(0, 21.67) 1.48(0, 17.52) 2.80(0, 21.67) <.0001
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Figure 2.1: Observed annualized longitudinal LDL measures over time and fitted
population mean curves for the CAD and Non-CAD group.
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Figure 2.2: Observed annualized longitudinal HDL measures over time and fitted
population mean curves for the CAD and Non-CAD group.
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2.5.2 Application to IIDP Data

The proposed JGEE method is applied to the longitudinal cohort with 979 female

patients. Four different sets of joint models using the proposed JGEE method are

fitted. The best set of models are determined using the AIC. The four sets of joint

models are outlined as follows:

Joint model 1: Consider the following longitudinal model:

yl(tij) = y∗l (tij) + εijl(tij)

= β0l + β1ltij + β2lgradei + β3lbaseagei + b0li + b1litij + εijl(tij),

where yl, l = 1, 2 denote the observed longitudinal LDL and HDL measures, y∗l

denote the true unobserved longitudinal outcomes. Grade denotes year of education,

and baseage denotes age at baseline. bi = (b01i, b11i, b02i, b12i)
T is random effect

with mean zero and variance covariance matrix G. εij1 and εij2 are independent and

normally distributed error term with mean 0 and variance parameters σ2
1 and σ2

2. εij1

and εij2 are independent of bi.

The survival model is assumed to follow the Cox PH model with the form:

h(t) = h0(t) exp{γ1baseagei + γ2somkei + γ3diabetesi + α1y
∗
i1(t) + α2y

∗
i2(t)}.

This hazard function assumes that the hazard of CAD depends on baseline age,

smoking status, history of diabetes and the current value of LDL and HDL measures

on the log scale.
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Joint model 2: The longitudinal model:

yl(tij) = y∗l (tij) + εijl(tij)

= β0l + β1ltij + β2lgradei + β3lbaseagei + b0li + b1litij + εijl(tij).

The survival model:

h(t) = h0(t) exp{γ1baseagei + γ2somkei + γ3diabetesi

+ α1(β11 + b11i) + α2(β12 + b12i)}.

Joint model 2 is the same as joint model 1 for longitudinal sub-models, while joint

model 2 assumes the hazard function depends on the slope of LDL and HDL measures

over time.

Joint model 3: The longitudinal model:

yl(tij) = y∗l (tij) + εijl(tij)

= β0l + β1ltij + β2lt
2
ij + β3lgradei + β4lbaseagei + b0li + b1litij + εijl(tij).

The survival model:

h(t) = h0(t) exp{γ1baseagei + γ2somkei + γ3diabetesi + α1y
∗
i1(t) + α2y

∗
i2(t)}.

Joint model 3 is the same as joint model 1 in the survival sub-model, while the

longitudinal linear mixed effect models are assumed to depend on a quadratic fixed

time effect in joint model 3.
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Joint model 4: The longitudinal model:

yl(tij) = y∗l (tij) + εijl(tij)

= β0l + β1ltij + β2lt
2
ij + β3lgradei + β4lbaseagei + b0li + b1litij + εijl(tij).

The survival model:

h(t) = h0(t) exp{γ1baseagei + γ2somkei + γ3diabetesi

+ α1(β1l + 2β21tij) + α2(β12 + 2β22tij)}

Joint model 4 is the same as joint model 3 for longitudinal sub-model, while that

joint model 4 assumes the hazard function depends on the slope of LDL and HDL

measures over time.

Estimated parameters applying proposed JGEE method for the four sets of

joint models are presented in Tables 2.8, 2.9, 2.10 and 2.11 respectively. Models are

compared according to the AIC on survival models. Joint model 1 is the best with

smallest AIC(AIC=3867.824) followed by the joint model 3(AIC=3871.145), the joint

model 4 (AIC=3886.694) and the joint model 2(AIC=3895.248). As a result, we focus

on the joint model 1 for associating longitudinal LDL and HDL on the risk of CAD.

Results from the joint model 1 are presented in Table 2.8. It can be seen

that on population average, both LDL and HDL are decreasing over time. It can be

observed that LDL is not statistically significantly associated with the risk of CAD

development, while lower HDL measures are significantly associated with the risk of

developing CAD. With one unit increase of the current value of HDL, the hazard of

developing CAD decrease by 4%(eα1 = 0.96). The fitted model also identified several
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other risk factors for CAD, participants with older age, smoking and with diabetes

have a higher risk of CAD.

Four different methods are compared for estimated associations between the

longitudinal LDL, HDL and CAD: Cox PH model using observed baseline LDL and

HDL measures as time-independent covariates; Cox PH model using observed time-

dependent LDL and HDL measures; joint model 1 with two-stage approach; joint

model 1 with proposed JGEE method. Estimated association parameters α1 (LDL)

and α2 (HDL) of four different methods are presented in Table 2.12 : Cox PH model

with baseline LDL and HDL measures as time independent covariates, along with

baseline covariates baseline age, smoking indicator and diabetes indicator; Cox PH

model considers longitudinal LDL and HDL as time dependent covariates, adjusting

for baseline age, smoking indicator and diabetes indicator; the naive two-stage ap-

proach with the joint model 1; the proposed JGEE method for the joint model 1.

Figure 2.3 and 2.4 plots the estimated association parameters of LDL and HDL and

the corresponding 95% CI from the four different methods respectively. All meth-

ods demonstrate that LDL is not statistically significantly associated with the risk

of CAD development. It can be observed that lower HDL measures are significantly

associated with the risk of developing CAD. From Cox PH with baseline, to Cox PH

with time-dependent covariates, to joint models with two-stage, to joint models with

JGEE, the effect of HDL on CAD risk getting larger, with the proposed method has

the largest effect estimator for the association between HDL and risk of CAD.

Cox PH model uses only baseline measures or considers longitudinal measures

as time-dependent covariates are commonly used approaches in practice. As longi-

tudinal measures are collected intermittently with measurement errors at a few time
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points for each subject; use only baseline measures can not catch possible survival risk

effects; use longitudinal measures as time-dependent covariates fail to take measure-

ment error into account and those measures right ahead of the event make a larger

contribution to survival parameter estimation. Joint modeling framework can take

into account the longitudinal measurement error and link true longitudinal covariates

to the risk effect. Naive two-stage method tends to underestimate the risk effects

refer to simulation studies. The proposed method adopts weighted estimating equa-

tion idea justifies missing caused by the time-to-event. This can be an explanation

why the proposed approach obtains larger association parameters than the native

two-stage method.
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Table 2.8: Parameter estimates, standard errors and 95% CI using the Joint Model 1.
α1 and α2 are association estimates between the risk of CAD and the current value
of LDL, HDL at event time point, respectively.

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal LDL

Intercept 232.570 31.142 171.533 293.608

Time -3.173 0.511 -4.173 -2.172

Year of Education -0.810 0.723 -2.227 -0.607

Age at baseline -1.275 0.354 -1.969 -0.580

Longitudinal HDL

Intercept 47.994 12.703 23.097 72.891

Time -0.608 0.635 -1.852 0.637

Year of Education 0.016 0.318 -0.607 0.640

Age at baseline 0.091 0.151 -0.205 0.386

Time to CAD

Age at baseline 0.078 0.014 0.050 0.106

Smoke 0.298 0.109 0.085 0.512

Diabetes 0.341 0.114 0.118 0.564

α1 (LDL) -0.001 0.002 -0.005 0.003

α2 (HDL) -0.041 0.008 -0.057 -0.026
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Table 2.9: Parameter estimates, standard errors and 95% CI using the Joint Model 2.
α1 and α2 are association estimates between the risk of CAD and the slope of LDL,
HDL at event time point, respectively.

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal LDL

Intercept 214.146 30.123 155.107 273.185

Time -2.448 0.500 -3.427 -1.469

Year of Education -0.729 0.692 -2.086 -0.627

Age at baseline -1.066 0.345 -1.743 -0.390

Longitudinal HDL

Intercept 52.799 13.677 25.993 79.605

Time 0.137 0.280 -0.412 0.685

Year of Education -0.172 0.332 -0.822 0.479

Age at baseline 0.077 0.165 -0.245 0.400

Time to CAD

Age at baseline 0.066 0.014 0.038 0.094

Smoke 0.283 0.109 0.070 0.495

Diabetes 0.356 0.114 0.133 0.579

α1 (LDL) 0.024 0.026 -0.028 0.075

α2 (HDL) -1.212 0.488 -2.168 -0.255
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Table 2.10: Parameter estimates, standard errors and 95% CI using the Joint Model
3. α1 and α2 are association estimates between the risk of CAD and the current value
of LDL, HDL at event time point, respectively.

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal LDL

Intercept 237.395 32.468 173.758 301.032

Time -4.413 1.144 -6.655 -2.171

Time2 0.128 0.072 -0.013 0.269

Year of Education -0.812 0.721 -2.226 0.602

Age at baseline -1.326 0.369 -2.049 -0.603

Longitudinal HDL

Intercept 44.647 13.126 18.921 70.373

Time 0.312 0.521 -0.709 1.333

Time2 -0.080 0.045 -0.168 0.008

Year of Education -0.007 0.318 -0.630 0.615

Age at baseline 0.132 0.155 -0.171 0.435

Time to CAD

Age at baseline 0.075 0.014 0.048 0.103

Smoke 0.300 0.109 0.088 0.513

Diabetes 0.346 0.113 0.123 0.568

α1 (LDL) -0.001 0.002 -0.005 0.003

α2 (HDL) -0.039 0.008 -0.055 -0.024
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Table 2.11: Parameter estimates, standard errors and 95% CI using the Joint Model
4. α1 and α2 are association estimates between the risk of CAD and the slope of
LDL, HDL at event time point, respectively.

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal LDL

Intercept 215.883 31.787 153.582 278.184

Time -2.583 0.893 -4.332 -0.833

Time2 0.061 0.055 -0.047 0.169

Year of Education -0.564 0.685 -1.906 0.779

Age at baseline -1.155 0.361 -1.863 -0.447

Longitudinal HDL

Intercept 53.519 14.455 25.188 81.850

Time 0.205 0.474 -0.724 1.134

Time2 -0.029 0.028 -0.084 0.026

Year of Education -0.216 0.326 -0.855 0.422

Age at baseline 0.069 0.171 -0.267 0.405

Time to CAD

Age at baseline 0.094 0.015 0.064 0.124

Smoke 0.280 0.109 0.067 0.493

Diabetes 0.345 0.109 0.121 0.569

α1 (LDL) 0.008 0.114 -0.029 0.045

α2 (HDL) -0.778 0.196 -1.163 -0.393
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Table 2.12: Association parameter estimates, standard errors, hazard ratio (HR) and
95% confidence interval of hazard ratio (HR) using four different methods: Cox PH
model with baseline LDL, HDL as time-independent covariates; Cox PH model with
observed LDL and HDL as time dependent covariates; the two-stage method for the
Joint model 1; the JGEE method for the joint model 1

Parameter Estimate StdErr HR for CAD (95% CI)

Cox PH baseline

α1 (LDL) -0.001 0.001 0.999 (0.996, 1.002)

α2 (HDL) -0.011 0.004 0.989 (0.982, 0.996)

Cox PH time-dependent

α1 (LDL) -0.001 0.001 0.999 (0.996, 1.002)

α2 (HDL) -0.014 0.004 0.986 (0.978, 0.993)

Joint models two-stage

α1 (LDL) -0.002 0.002 0.998 (0.994, 1.002)

α2 (HDL) -0.028 0.007 0.972 (0.958, 0.987)

Joint models JGEE

α1 (LDL) -0.001 0.002 0.999 (0.995, 1.003)

α2 (HDL) -0.041 0.008 0.959 (0.945, 0.974)
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Figure 2.3: Comparison of estimated associations between the longitudinal LDL and
CAD from four methods, the blue solid dots are estimated α̂1 from four methods.
The upper and lover bars are 95% confidence interval of parameter estimates.
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Figure 2.4: Comparison of estimated associations between the longitudinal HDL and
CAD from four methods, the blue solid dots are estimated α̂2 from four methods.
The upper and lover bars are 95% confidence interval of parameter estimates.
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2.6 Discussion

In this work, joint generalized estimating equation approach (JGEE) has been pro-

posed for parameter estimation in joint modeling of multiple longitudinal measures

and a time-to-event outcome. The performance of the proposed approach have been

evaluated through extensive simulation studies. We have illustrated the proposed

method using data from a longitudinal cohort study.

The JGEE approach does not require complete specification of the joint dis-

tribution of the longitudinal measures and survival outcomes, but only the first two

moments of the longitudinal outcomes. Thus it can be easily extended to non-normal

longitudinal, or mixtures of different types of longitudinal processes. In comparison,

maximum likelihood with EM algorithm and Bayesian approach can be computa-

tionally extremely intensive because of the integration over multiple random effects,

while the proposed JGEE method is computationally fast and feasible, and can be

implemented in standard software.

There are a few limitations of the proposed methodology. On one hand, JGEE

method loses the features of limiting properties likelihood estimation possesses such

as straight consistency and asymptotic normality. Theoretical justification is needed

for JGEE method on large sample properties. On the other hand, JGEE method

first obtains the fixed effect estimators. During the process, subject specific random

effects have been predicted and added back into the longitudinal outcome estimation.

A correction has been provided for predicting random effects borrowing regression cal-

ibration method from measurement error problem. However, regression calibration

methods work only for additive measurement error situation. In our case, measure-
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ment error in the predicted random effects is not necessary additive or normally

distributed. Thus the random effects is still not perfectly predicted, and the estima-

tors are not completely unbiased. Moreover, by adding a weight into GEE function,

it can not fully accommodate the non-ignorable missing caused by the occurrence of

an event.

Joint modeling of multiple longitudinal outcomes and time-to-event data are

applicable to many clinical trials and observational studies, when the interest lies

on an association between longitudinal measures and the risk of an event. It may

be more clinical meaningful and accurate to predict patients’ risk effect based on all

available longitudinal biomarker history. Multivariate longitudinal responses are not

necessarily normal, they could belong to different response families, which is common

in medical science. Thus it is worthwhile to study general multivariate longitudinal

processes and time-to-event outcomes.
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Chapter 3

Joint Models for Multiple Longitudinal Poisson Outcomes and

Time-to-Event Data

3.1 Introduction

In a previous chapter we introduced the framework of joint models for multiple con-

tinuous longitudinal outcomes and time-to-event data, and we showed how models of

this type can be solved with generalized estimating equation approach. In that work,

we focused on multiple continuous longitudinal outcomes and one survival endpoint.

The majority of the research in joint models has focused on continuous longitudinal

responses. However, longitudinal outcomes may not be continuous in some biomedi-

cal studies. For example, increases in the number of skin tumors each week can have

an influence on the time of death; the longitudinal outcome could be categorical such

as test results positive or negative that are relates to the onset of an event.

Extensions of joint models to deal with different types of longitudinal and

survival data are limited in literature. Huang et al. (2001) considered bivariate bi-

nary longitudinal processes and bivariate event times with Expectation-Maximization

(EM) algorithm for estimation. Wang et al. (2002) accomplished Markov Chain Monte

Carlo methods for analysing data from ordinal multiple longitudinal outcomes when

death is present. Dunson and Herring (2005) considered Poisson model for univaraite

longitudinal tumor counts response and gamma frailty models for survival following

a Bayesian approach to inference. Rizopoulos and Ghosh (2011) proposed a Bayesian
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flexible multivariate joint model that relates different types of longitudinal outcomes

to a time-to-event. Luo (2014) proposed a Bayesian approach to joint analysis of

multivariate longitudinal data and parametric accelerated failure time for survival.

Choi et al. (2015) considered simultaneously modeling the survival time with single

longitudinal categorical responses with Expectation-Maximization (EM) algorithm.

The aim of this work is to present one of the extensions, namely joint models

with multiple count longitudinal responses and one time-to-event outcome, and how

parameters in such models can be estimated using joint generalized estimating equa-

tion(JGEE) approach. This structure results in a log-log of expected counts to the risk

of events. Multivariate longitudinal Poisson data will be modeled by generalized lin-

ear mixed models (GLMMs). And Cox’s Proportional Hazards (PH) semi-parametric

model will be used to capture the time-to-event process. GLMMs are an extension

of linear mixed models to allow response variables from different distributions, such

as binary or count responses. In contrast to linear mixed models, fitting GLMMs

under maximum likelihood is computationally much more challenging. In a linear

mixed model, the log likelihood is well defined, while in GLMM, it is possible that

no valid joint distribution can be constructed; numerical integration is much more

complicated with the number of random effects increase.

The remainder of this chapter is organized as follows. In section 3.1, we

introduce the joint models for analyzing the association between multiple longitudinal

counts measures and a time-to-event outcome. We define the notation and model

formulation of longitudinal and survival processes. In section 3.2, we introduce the

proposed estimation methods. Simulation studies and results are summarized in
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section 3.3. The proposed method is applied to data from a longitudinal cohort in

section 3.4.

3.2 Model Formulation

The joint models for time-to-event data and multivariate longitudinal count data

comprise two submodels: a multivariate longitudinal data model and a time-to-event

data model depend on the true longitudinal process.

3.2.1 Longitudinal Models

Following the same notation as in Section 2.2, let yil(tij) denote the j-th observed

value of the l-th longitudinal outcome for subject i, measured at time tij , where

i = 1, · · · , N ; l = 1, · · · , L and j = 1, · · · , ni. Yi = (yTi1, · · · ,y
T
iL)T denotes L-

variate response vector for the i-th subject, yil = (yil(ti1), · · · , yil(tini))
T is a vec-

tor of longitudinal response at different time points. The set of covariates for the

l-th longitudinal outcome are denoted as Xil = (XT
il(ti1), · · · ,XT

il(tini))
T , where

XT
il(tij) = (1, xil1(tij), · · · , xilpl(tij))

T is a vector of covariates for the l-th response

of subject i at time tij . The longitudinal data are modeled by the following general-

ized linear mixed effect model:

yil(tij)|bil ∼ Poisson(E(yil(tij)|bil)),

log(E(yil(tij)|bil)) = mil(tij) = XT
il(tij)βl + ZTil(tij)bil, (3.1)
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where XT
il(tij) and ZTil(tij) are row vectors of covariates for subject i associated with

fixed and random effects respectively; βl is a vector of fixed effects parameters for the

l-th outcome; bil is a vector of subject specific random effects for the lth outcome.

For multiple longitudinal markers, the responses for the i-th subject can be

modeled by the following generalized mixed effects model:

log(E(Yi|bi)) = Xiβ + Zibi, (3.2)

where Xi =



Xi1 0 · · · 0

0 Xi2 · · · 0

...
...

. . .
...

0 · · · 0 XiL


(
∑L

j=1(pj+1))×(
∑L

j=1(pj+1))

,

β =



β1

β2

...

βL


(
∑L

j=1(pj+1))×1

, Zi =



Zi1 0 · · · 0

0 Zi2 · · · 0

...
...

. . .
...

0 · · · 0 ZiL


,

bi =



b1

b2

...

bL


with covariane matrix G =



G1 G12 · · · G1L

G12 G2 · · · G2L

...
...

. . .
...

G1L · · · G(L−1)L GL


.
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Thus E(yil|bil) = V ar(yil|bil) = eX
T
ilβl+ZT

ilbil and E(Yi|bi) = V ar(Yi|bi) =

eXiβ+Zibi .

The Marginal Model

The mean value, variance and covariance of the Y marginals can be computed. For

mean of yil:

µil = E(yil) = Ebil
(E(yil|bil)) = E(eX

T
ilβl+ZT

ilbil) = eX
T
ilβlE(eZ

T
ilbil).

Then

log(E(yil)) = XT
ilβl + log

(
E(eZ

T
ilbil)

)
.

Thus in the marginal model, log
(
E(eZ

T
ilbil)

)
can be considered as an offset variable.

For variance of yil:

V ar(yil) = V ar [E(yil|bil)] + E [V ar(yil|bil)]

= V ar
[
eX

T
ilβl+ZT

ilbil

]
+ E

[
eX

T
ilβl+ZT

ilbil

]
= eX

T
ilβleX

T
ilβlV ar[eZ

T
ilbil ] + E(yil)

= E(yil)

[
eX

T
ilβl

V ar[eZ
T
ilbil ]

E(eZ
T
ilbil)

+ 1

]
.

Thus variance of yil can be written as V ar(yil) = φilE(yil), where

φil = eX
T
ilβl

V ar[eZ
T
ilbil ]

E(eZ
T
ilbil)

+ 1.
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For the covariance, with l 6= k,

Cov(yil, yik) = Cov [E(yil|bil), E(yik|bik)] + E [Cov(yil|bil, yik|bik)]

= Cov
[
eX

T
ilβl+ZT

ilbil , eX
T
ikβk+ZT

ikbik

]
= eX

T
ilβl+XT

ikβkCov(eZ
T
ilbil , eZ

T
ikbik).

That is the correlation among different responses are introduced by correlation among

random effects bi.

3.2.2 The Survival Model

For a time-to-event outcome, let T ∗i be the true event time for subject i. Some

subjects may not experience the event at the end of study, or they may drop out

during the study, so their event times are right censored. Let Ci denote the censoring

time for the i-th subject. The observed event time Ti = min(T ∗i , Ci). Define the event

indicator as δi = I(T ∗i ≤ Ci), here I(·) represents indicator function. Assume that

censoring times and event times are independent. Suppose time-to-event sub-model

follows Cox’s Proportional Hazards model. The hazard function for subject i at time

t is given by:

hi(t) = h0(t) exp

uTi γ +
L∑
l=1

αlfl (mil(t))

 , (3.3)

where h0(t) denotes the baseline hazard function; uTi is a vector of baseline covariates;

γ is a vector of fixed effects parameters; mil(t) is the longitudinal profile as defined in

(3.1); function fl(·) captures the association between the longitudinal measurements

and the event process; and αl denotes a parameter measuring the effect of the l-th

longitudinal process on the time to event outcome. Parameters αl’s (l = 1, 2, · · · , L)
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are of primary interest in this work. Note that multiple longitudinal outcomes are

assumed to have additive effects on the survival times.

3.3 Estimation Method

Different approaches can be used for parameter estimation for the joint models defined

above, the two-stage method can result in biased results; maximum likelihood based

approach and Bayesian method utilizes the full likelihood based on the joint models

can be computationally intensive as the likelihood function or the posterior distribu-

tion function involves integration over multiple random effects. In this section, we

present the joint generalized estimating equation methodology for parameter estima-

tion of joint models for multiple longitudinal counts biomarkers and time-to-event

outcome.

Let µi = (µTi1, · · · ,µ
T
iL)T be the mean vector corresponding to the vector of

measurements Yi on the i-th subject. Let Vi denote the variance covariance matrix

of Yi. Let Wi be the diagonal weight matrix, U(β), D(b), L(α,γ) are objective

functions for solving β, b, α and γ respectively. We propose a joint generalized

estimating equation (JGEE) approach for estimation, which is to solve the following

estimating equations:

Estimate β from:

U(β) =
N∑
i=1

(
∂µi
∂β

)T
V−1
i Wi(Yi − µi) = 0. (3.4)
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Predict random effects b from:

b = argmin
b

∑
i

{
Yi log

Yi

eX
T
i β+ZT

i bi
− (Yi − eXiβ+ZT

i bi)

}
. (3.5)

Estimate risk coefficients α from:

α = argmax
α,γ

N∏
i=1

 eu
T
i γ+

∑L
l=1 αlfl(mil(Ti))∑N

j=1 I(Tj ≥ Ti)e
uT
j γ+

∑L
l=1 αlfl(mjl(Tj))

δi . (3.6)

Equation (3.4) is the weighted GEE for longitudinal outcomes. Wi is an

(L× ni)× (L× ni) diagonal weight matrix with the j-th diagonal element as

W (tij ;β,γ,α) =
c(tij ; ui,γ0)

h0(tij) exp
{

uTi γ +
∑L
l=1 αlfl(mil(tij−))

} ,
where mil(tij−) denotes log of the mean of the past observations until time tij .

Note that W can use Y’s collected right up to time tij . This weight is called in-

verse visit intensity weight motivated by Lin et al. (2004) and Buzkova and Lum-

ley (2007), and it is used to account for missing caused by time-to-event. c(·) is

a pre-specified function of the time independent covriates u and has the poten-

tial to stabilize the influence of small values in the denominator. In addition, if

we choose c(·) as h0(tij) exp
{

uTi γ0

}
, when yi(t)’s have no influence on the risk of

event at time t, the weight becomes identity matrix reducing to the regular GEE

for equation (3.4). Note that longitudinal measures at different time points will

assign different weights, but multiple longitudinal outcomes will share the same

weight at the same time point. The solution to the weighted GEEs (3.4) can be
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found by applying the Fisher Scoring method (Nelder and Baker, 1972). The al-

gorithm is to get initial estimates of β, Wi and Vi, update β by βr+1 = βr +[∑N
i=1(eXiβrXi)

TV−1
i Wie

XiβrXi

]−1 [∑N
i=1(eXiβrXi)

TV−1
i Wi(Yi − eXiβr)

]
un-

til converge.

Equation (3.5) is to minimize the deviance residuals between observation and

the estimated population average, which provides a prediction of random effects. For

subject i, let

D =
∑
i

{
yi log

yi

eXiβ̂+Zibi
−
(
yi − eXiβ̂+Zibi

)}

=
∑
i

{
yi log yi − yi(Xiβ̂ + Zibi)−

(
yi − eXiβ̂+Zibi

)}
.

(3.7)

For each subject at each time point, there is a random effect Zibi associated with

it. Let Zb = Zibi, consider Zb as an unknown parameter, take derivative of equation

(3.7) respect to Zb:

∂D

∂Zb
= −yi + eXiβ̂eZb = 0. (3.8)

Then there is explicit solution for (3.8): Zb = log Yi −Xiβ̂. Thus Zb = log Y−Xβ̂.

b can be predicted from the generalized least squares estimates with explicit form

b̂ =
(
ZTV−1Z

)−1
ZTV−1 (log Y −Xβ) .

Equation (3.6) is the partial likelihood function for Cox Proportional Hazard

model with the true unobserved counts replaced by the estimated rates from equation

(3.4) and (3.5):

m̂il(tij) = XT
i (tij)β̂l + ZTi (tij)b̂

∗
il,
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where b̂∗il is an adjusted random effect based on the estimate from (3.5). The corre-

sponding log partial likelihood function is :

l(α,γ) =
N∑
i=1

δi

uTi γ +
L∑
l=1

αlf(m̂il(Ti))

− log
N∑
j=1

I(Tj ≥ Ti) exp{uTj γ +
L∑
l=1

αlf(m̂jl(Tj))}

 .
(3.9)

Note that the weight Wi’s in equation (3.4), and mil(Ti)’s in equation (3.6)

depend on the true parameters, which are unknown in reality. Equations (3.4),(3.5)

and (3.6) can be solved with Wi, mil(Ti) replaced by their estimators. Equation

(3.4) can provide an estimator of fixed effects β̂; given β̂, equation (3.5) can provide

a prediction of random effects; from equation (3.4) and (3.5), an estimator m can be

obtained and fl(m̂(t)) = fl(X
T
il(t)β̂l + ZTil(t)b̂

∗
il) can be plugged into equation (3.6).

The three equations can be solved iteratively.

Note that the marginal mean E(yil) = eX
T
ilβlE(eZ

T
ilbil). In the iteration algo-

rithm, in equation (3.4), we can start without random effect to obtain β̂ with weighted

GEE. But once we have one iteration, we should be able to use the predicted E(eZ
T
ilbil)

as an offset for the GEE at subsequent iterations to get better estimates β̂.
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Following the sandwich variance covariance of GEEs, the robust sandwich

variance covariance matrix of β̂ from weighted GEEs will be calculated by:

((
∂µi
∂β

)T
V−1W

∂µi
∂β

)−1

((
∂µi
∂β

)T
V−1W(Y − µi)(Y − µi)

TWV−1∂µi
∂β

)
((

∂µi
∂β

)T
V−1W

∂µi
∂β

)−1

,

(3.10)

with V, β and W are replaced by estimates.

The variance estimate of α̂ will be obtained by inverse of the information

matrix of the log partial likelihood:

V (α̂) = −
[
∂2l(α̂)

∂α∂αT

]−1

(3.11)

The proposed approach uses an iterative computational approach and avoids

the high dimensional integration required in likelihood or Bayesian methods. The

proposed method can be implemented in standard statistical software. Because the

standard errors of fixed effects in longitudinal model are calculated based on modified

GEE as if the weights are known, and the standard errors of the risk coefficient

estimators are obtained through partial likelihood assuming that all the true covariate

values are known, estimated standard errors are likely to be underestimating the true

variance. In the following section, we investigate the finite sample performance of the

proposed method in simulation studies.
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3.4 Simulation Study

In this section, we perform simulation studies to assess the performance of the pro-

posed method. Simulation results are compared with those obtained using the two-

stage method and the GEE approach. The GEE method is solving equations (3.4),

(3.5) and (3.6) with W be identity matrix in (3.4). Data are simulated form joint

models with two longitudinal Poisson outcomes and time-to-event outcome. Similar

fixed and random effects structures are considered for two longitudinal outcomes,

where the fixed effects include intercept, time, and one baseline binary covariate, and

the random effects include random intercept and slope.

Suppose longitudinal outcomes follow the model:

y1(tij)|(b01, b11) ∼ Poisson(µ1(tij)),

log
{
µ1(tij))

}
= m1(tij) = β01 + β11tij + β21ui + b01i + b11itij ,

y2(tij)|(b02, b12) ∼ Poisson(µ2(tij)),

log
{
µ2(tij)

}
= m2(tij) = β02 + β12tij + β22ui + b02i + b12itij ,

where



b01i

b02i

b11i

b12i


∼ N





0

0

0

0


,



σ2
01 ρ1σ01σ11 ρ2σ01σ02 ρ1σ01σ12

ρ1σ01σ11 σ2
11 ρ1σ11σ02 ρ1σ11σ12

ρ2σ01σ02 ρ1σ11σ02 σ2
02 ρ1σ02σ12

ρ1σ01σ12 ρ1σ11σ12 ρ1σ02σ12 σ2
12




.
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Time-to-event outcomes follow Cox Proportional Hazard (PH) Model with

Weibull baseline function:

h(t) = abtb−1 exp(α1m1(t) + α2m2(t)),

where a is the shape parameter and b is the scale parameter of the Weibull distribu-

tion. For each subject, a survival probability si at the true even time T ∗i iss simulated

from uniform (0, 1), and the true event time T ∗i is solved from the equation:

si − exp

{
−
∫ T ∗

i

0
abub−1 exp(α1m1(t) + α2m2(t))du

}
= 0.

Censoring times are simulated from another uniform distribution independently. The

event indicator δi for the ith subject is determined by comparing true event time

T ∗i and censoring time Ci, δi = I(T ∗i ≤ Ci). The observed time Ti = min(T ∗i , Ci).

Four censoring percentages and three different sample sizes are considered. The true

parameters used in the simulations are summarized in Table 3.1 and Table 3.2.

In this simulation, 500 Monte Carlo samples are generated. Longitudinal data

are simulated for 200, 500, 1000 subjects with 10 equally spaced bivariate longitudinal

observations over 5 year period. Survival data are simulated for 40%, 30%, 10%

and 0% of censoring. Longitudinal observations are right censored by time-to-event

data. Simulation results are presented in Tables 3.3 to 3.6. Relative bias (defined

as ((θ̂ − θtrue)/θtrue), empirical standard errors (Emp. S.E.), model based standard

errors (Model S.E.), coverage probability of the 95% confidence intervals (95% CI
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C.P.) and Mean Square Error (MSE) (defined as E
[
(θ̂ − θ)2

]
) based on 500 Monte

Carlo samples are reported.

From simulation results, it can be observed that for a fixed survival censoring

percentage with a given sample size, proposed JGEE method performs better than

GEE and two-stage method with smaller relative bias. For a fixed survival censoring

percentage and with sample size gets larger, standard error, 95% coverage probability

and MSE get smaller as expected. We also observe that JGEE method tends to under-

estimate the standard error, this is because the standard errors of β’s are calculated

based on modified GEE as if the weights are known, and the standard errors of α’s

are obtained through partial likelihood assuming that all the true covariate values are

known. It is also observed that the GEE method always performs worse than naive

two-stage method, this is because for longitudinal data, missing caused by survival

information is not missing completely at random, regular GEE leads to more biased

results on longitudinal estimates, thus worse survival estimates. This also reflects the

proposed JGEE method adding weight in the GEE method does adjust for missing

data.

For a given sample size, it can be observed from simulation results that,

with censoring percentage gets larger, proposed JGEE approach gets smaller rela-

tive bias and larger MSE. This is because in the longitudinal part, missingness is

caused by either censoring or time-to-event; missing data come from censoring are

non-informative, which do not affect parameter estimation; while missing caused by

event is nonignorable missing, the less censoring, the more events have happened,

thus more bias would be for longitudinal estimates if the missing is ignored. On the
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other hand, survival effect depends on true unobserved longitudinal measures, the

more bias in longitudinal estimation, the more bias result in survival estimation.

Table 3.1: True parameter values for the two longitudinal models and the proportional
hazard function.

Outcome 1 Outcome 2 Time to event Outcome

Parameter Value Parameter Value Parameter Value

β01 0.5 β02 1 a 0.005

β11 0.4 β12 0.2 b 1.1

β21 0.2 β22 0.5 α1 1.0

α2 1.5

Table 3.2: True values for random errors, random intercept and correlation for the
longitudinal models, and censoring percentage from survival.

Scenario σ01 σ11 σ02 σ12 ρ1 ρ2 Censor

1 0.2 0.15 0.2 0.15 0.1 0.4 40%

2 0.2 0.15 0.2 0.15 0.1 0.4 30%

3 0.2 0.15 0.2 0.15 0.1 0.4 10%

4 0.2 0.15 0.2 0.15 0.1 0.4 0%
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3.5 Data Application

In this section, the proposed method is applied to data from a longitudinal cohort to

examine the association of longitudinally collected cognitive memory score and cog-

nitive executive score and their association with the risk of coronary artery disease

(CAD). The cognitive scores are counting number of items the participant answered

correctly in the questionnaire instrument, with higher scores indicating better cogni-

tive function.

Existing work of CAD and cognition mainly focused on examing the cognitive

funciton in patients with heart failure (Cannon et al., 2015). It is well reported

that CAD is associated with cognition function decline (Borowicz et al., 1996; Selnes

et al., 1999; Saxton et al., 2000; Trojano et al., 2003). Zheng et al. (2012) have showed

that history of coronary artery disease was associated with greater declines in global,

verbal memory and executive cognition. However, no one has investigated changes

in cognitive memory and executive scores over time before diagnosis of CAD and the

association between longitudinal cognitive memory and cognitive executive scores and

the risk of CAD.

3.5.1 The Longitudinal Data Cohort

The study population comes from the Indianapolis cohort of the Indianapolis-Ibadan

Dementia Project (IIDP). The IIDP is a 20-year study of dementia in elderly African

Americans living in Indianapolis, Indiana, Ibadan and Nigeria, all were age 65 or older.

The project recruitment was conducted in two phases: for the first recruitment, 2212

African Americans age 65 or older who live in Indianapolis were enrolled in 1992; for
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the second enrollment in 2001, additional 1893 community-dwelling African American

with age 70 years and older were recruited. Detailed description of the IIDP cohort

can be found at Hendrie et al. (2001) and Hall et al. (2009).

The cognitive memory and executive scores are from IIDP measured with

Community Screening Instrument for Dementia (CSID). The CSID was developed as

a screening tool for Dementia in populations with various cultural backgrounds and

literacy levels. CSID had been widely used as a screening tool for demeina and evalu-

ates multiple cognitive domains, including language, attention, memory, orientation,

praxis, comprehension and motor response (Hall et al., 1996). Details in the CSID

instrument has been published in Hall et al. (1996). The CSID has demonstrated

good reliability and validity in detecting dementia in various populations (Hendrie

et al., 2001; Hall et al., 2000).

The event of CAD was defined as the diagnosis of CAD using ICD-9 codes or

cause of death by CAD. For patients with an event, age at CAD diagnosis is used as

the event time; for subjects without CAD diagnosis, age at last evaluation time in

IIDP or age of death other than CAD is used as the right censoring point.

The current work focuses on a subset of 1323 male patients, with a total num-

ber of 3230 observations. During the study follow-up, 365(27.59%) of the subjects

were diagnosed with CAD by the end of study period. The overall average number of

longitudinal cognitive measurements is 2.4(SD1.4). The average length of follow up

is 3.65 years (range 0 to 17.25). Demographic characteristics of the study population

including baseline age, year of education, baseline smoking status and diabetes con-

dition are summarized in Table 3.7. CAD and non-CAD patients are not different

in baseline age, education years, baseline smoking status, baseline diabetes percent-
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age and baseline cognitive memory levels, but they are different in baseline cognitive

executive levels.

Figure 3.1 and 3.2 plot longitudinal cognitive memory and executive scores

over time. The blue dots are cognitive scores for Non-CAD group, and red dots are

cognitive scores for CAD group. The blue and red lines represent fitted population

average for Non-CAD and CAD group respectively. From figure 3.1, population mean

cognitive memory score over time for patients in CAD and Non-CAD group are both

decreasing. From figure 3.2, population mean cognitive executive score over time for

patients in Non-CAD group stays flat, while population mean cognitive executive

score decreases over time for patients in CAD group. Figure 3.1 and 3.2 indicates a

potential association between the risk of CAD and longitudinal memory and executive

cognition over time.

Table 3.7: Comparison of baseline demographic of male subjects between CAD and
non-CAD groups (n = 1323)

All CAD Non-CAD

Baseline Characters (n=1323) (n=365) (n=958) p-value

Age at baseline, mean(sd) 75.28(6.29) 75.08(6.22) 75.36(6.32) 0.474

Year of Education, mean(sd) 9.92(3.41) 9.86(3.40) 9.94(3.41) 0.681

Smoking, n (%) 1033(78.08%) 298(81.64%) 735(76.72%) 0.053

Diabetes, n (%) 338(25.55%) 106(29.04%) 232(24.22%) 0.072

Baseline memory, mean (sd) 25.79(4.66) 26.19(4.22) 25.64(4.81) 0.057

Baseline executive, mean (sd) 31.22(5.33) 31.87(5.07) 30.97(5.41) 0.006

Number of measures, mean(sd) 2.44(1.40) 2.19(1.26) 2.54(1.44) <.0001

Years of follow up, median(range) 2.25(0, 17.25) 1.92(0, 16.18) 2.40(0, 17.25) 0.0002

68



Figure 3.1: Observed longitudinal memory cognitive scores over time for the CAD
and Non-CAD group.
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Figure 3.2: Observed longitudinal executive cognitive scores over time for the CAD
and Non-CAD group.
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3.5.2 Application to IIDP Data

The proposed JGEE method is applied to the longitudinal cohort with 1323 male

patients. Joint modeling with two-stage approach are compared with joint modeling

with proposed JGEE method.

Consider the following longitudinal model:

log(E(yl(tij))) = ml(tij) = β0l+β1ltij+β2lgradei+β3lbaseagei+b0li+b1litij , (3.12)

where yl, l = 1, 2 denote the observed longitudinal cognitive memory and executive

scores. Grade indicates year of education, baseage denotes age at baseline. bi =

(b01i, b11i, b02i, b12i)
T is random effect with mean zero and variance covariance matrix

G. The survival model is assumed to follow the Cox PH model with form:

h(t) = h0(t) exp{γ1baseagei+γ2smokei+γ3diabetesi+α1m1(t)+α2m2(t)}. (3.13)

This hazard function assumes that the logarithm of hazard of CAD depends on base-

line age, smoking status, history of diabetes, and the logarithm of expected cognitive

memory and executive score.

We also considered the hazard function assumes that the logarithm of hazard of

CAD depends on baseline age, smoking status, history of diabetes, and the logarithm

of observed cognitive memory and executive score:

h(t) = h0(t) exp{γ1baseagei + γ2smokei + γ3diabetesi

+ α1 log cogmem+ α2 log cogexec},
(3.14)
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where cogmem represents the observed cognitive memory score and cogexec denotes

the observed cognitive executive score. Results for Cox model (3.14) with observed

memory and executive scores at baseline as covariates and Cox model (3.14) with

observed memory and executive scores as time dependent covariates are presented in

Table 3.8 and 3.9 respectively. Note that model (3.14) has different assumption with

the joint models ( defined by (3.12) and (3.13)).

Estimated parameters applying the two-stage and proposed JGEE method

for joint models are summarized in Tables 3.10 and 3.11. It can be observed that

on population average, the logarithm of expected memory and executive cognitive

score are both decreasing over time. Subjects with higher education level have higher

cognitive memory and executive scores. Older subjects have lower cognitive mem-

ory and executive scores. More years of educated subjects have higher log expected

memory and executive cognitive scores. For time to CAD, higher age is related to

higher risk of developing CAD, subjects with diabetes have higher risk of CAD. Sub-

jects with higher logarithm of memory cognitive score have lower risk of developing

CAD. Subjects with higher logarithm of expected executive cognitive score have lower

risk of developing CAD. However, either memory or executive score reach statistical

significance for risk of CAD.
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Table 3.8: Parameter estimates, standard errors and 95% CI using Cox model with
logarithm of observed memory and executive scores at baseline. α1 and α2 are as-
sociation estimates between the risk of CAD and the logarithm of observed memory
and executive scores

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Time to CAD

Age at baseline -0.129 0.010 -0.149 -0.109

Smoke 0.333 0.136 0.066 0.600

Diabetes 0.331 0.116 0.103 0.559

α1 -0.245 0.291 -0.815 0.326

α2 0.696 0.361 -0.012 1.404

Table 3.9: Parameter estimates, standard errors and 95% CI using Cox model with
logarithm of observed memory and executive scores as time dependent covariates.
α1 and α2 are association estimates between the risk of CAD and the logarithm of
observed memory and executive scores

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Time to CAD

Age at baseline 0.128 0.013 0.102 0.153

Smoke 0.179 0.134 -0.084 0.442

Diabetes 0.362 0.118 0.118 0.593

α1 0.090 0.256 -0.413 0.593

α2 -0.287 0.343 -0.960 0.386
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Table 3.10: Parameter estimates, standard errors and 95% CI using joint models with
the two-stage approach. α1 and α2 are association estimates between the risk of CAD
and the current value at the event time point

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal memory cognitive score

Intercept 3.521 0.048 3.427 3.615

Time -0.008 0.001 -0.009 -0.006

Year of Education 0.017 0.001 0.015 0.019

Age at baseline -0.006 0.001 -0.007 -0.005

Longitudinal executive cognitive score

Intercept 3.525 0.050 3.426 3.623

Time -0.007 0.001 -0.009 -0.005

Year of Education 0.018 0.001 0.016 0.020

Age at baseline -0.003 0.001 -0.005 -0.002

Time to CAD

Age at baseline 0.123 0.014 0.096 0.150

Smoke 0.152 0.136 -0.113 0.418

Diabetes 0.371 0.118 0.140 0.602

α1 -0.353 0.496 -1.326 0.619

α2 -0.713 0.539 -1.770 0.343
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Table 3.11: Parameter estimates, standard errors and 95% CI with joint generalized
estimating equation (JGEE) approach. α1 and α2 are association estimates between
the risk of CAD and the current value at the event time point

Parameter Estimate StdErr Lower 95% CI Upper 95% CI

Longitudinal memory cognitive score

Intercept 3.734 0.195 3.351 4.117

Time -0.011 0.004 -0.019 -0.002

Year of Education 0.013 0.005 0.003 0.022

Age at baseline -0.008 0.002 -0.013 -0.004

Longitudinal executive cognitive score

Intercept 3.518 0.193 3.140 3.897

Time -0.008 0.004 -0.016 -0.001

Year of Education 0.012 0.004 0.004 0.020

Age at baseline -0.003 0.002 -0.008 0.002

Time to CAD

Age at baseline 0.127 0.013 0.101 0.153

Smoke 0.180 0.136 -0.086 0.445

Diabetes 0.365 0.118 0.135 0.596

α1 -0.039 0.810 -1.626 1.548

α2 -0.149 1.164 -2.431 2.132
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3.6 Discussion

In this work, we have extended the joint generalized estimating equation approach

(JGEE) to parameter estimation in joint modeling of multiple longitudinal count

measures and a time-to-event outcome. The performance of the proposed approach

has been evaluated through extensive simulation studies. We have illustrated the pro-

posed method using data from a longitudinal cohort study to examine the association

of longitudinally collected cognitive memory score and cognitive executive score and

their association with the risk of coronary artery disease (CAD).

The proposed JGEE method enjoys several advantages. Firstly, JGEE method

is computationally efficient to carry out as it avoids the direct maximization of the

joint likelihood. Secondly, JGEE method corrects biases from the naive two-stage

method by adjusting for informative truncation from the time-to-event outcome with

inverse intensity weighting. Thirdly, the JGEE method estimates the longitudinal and

survival parameters simultaneously by updating inverse intensity weight and solving

the estimating equations iteratively.

The current work also has some limitations. Through simulation studies, we

observed that although the JGEE method reduces biased from the naive two-stage

method, but the proposed estimators can still be biased. We know in the case of

log linear model for Poisson data, the marginal mean and the conditional mean are

shifted by an offset. Thus the first estimating equation in the JGEE will need to

be adjusted to correctly reflect this shift in order to produce parameter estimates

that correspond to those specified in the longitudinal model. In addition, estimated

standard errors are underestimating the true variance, because the standard errors
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of fixed effects in longitudinal models are calculated based on modified GEE as if

the weights are known, and the standard errors of the risk coefficient estimators are

obtained through partial likelihood assuming that all the true covariate values are

known.

In this work, we have focused on joint models with longitudinal Poisson out-

comes, it is straightforward to extend to joint models with various distributed lon-

gitudinal outcomes, including binary and a mixture of different outcomes. A unified

algorithm can be developed to estimate those different types of longitudinal out-

comes by specifying different link functions for different distributions. Furthermore,

JGEE method does not inherit consistency and asymptotic property as the likelihood

method does. Thus, theoretical justification on the consistency and asymptotic of the

parameters are necessary.
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Chapter 4

Joint Models for Multiple Longitudinal Outcomes from the Exponential

Family and Time-to-Event Data

In Chapter 2, we introduced joint models for analyzing the association between mul-

tiple longitudinal continuous measures and a time-to-event outcome. In Chapter 3,

we considered joint models with multiple longitudinal count responses and one time-

to-event outcome. In this chapter, we accommodate different types of longitudinal

responses in a unified framework, where the longitudinal outcomes can be members

of the exponential family. This chapter is organized as follows. Section 4.1 specifies

the formulation and parameterizations of the joint models in full generality. Section

4.2 presents the details of the proposed joint generalized estimation equation (JGEE)

procedure for parameter estimation. The remaining sections illustrate the consistency

and asymptotic properties of the estimators.

4.1 Model Formulation

4.1.1 Longitudinal Models

Let Yi = (yTi1, · · · ,y
T
iL)T denotes L-variate response vector for the i-th subject, yil =

(yil(ti1), · · · , yil(tini))
T is a ni × 1 vector of longitudinal response at different time

points, where i = 1, · · · , N and l = 1, · · · , L. yil(tij) is the l-th response collected on

subject i at time point tij , where j = 1, · · · , ni. Let ti = (ti1, · · · , tini)
T denotes time

points for subject i. Assuming the l-th longitudinal outcome has the set of covariates
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Xil = (XT
il(ti1), · · · ,XT

il(tini))
T , where XT

il(tij) = (1, xil1(tij), · · · , xilpl(tij))
T is a

(pl + 1)× 1 vector of covariates for the l-th response of subject i at time tij .

The l-th response for i-th subject is modeled by a multivariate generalized

linear mixed effects model:

gl {E (yil(t)|bil)} = mil(t) = XT
il(t)βl + ZTil(t)bil, (4.1)

where gl(·) denotes a known one-to-one monotonic link function of l-th longitudinal

response; for example, if longitudinal response is a proportion, gl(·) can be the logit

link function; if the longitudinal response variable is a count, gl(·) can be a log link

function; for continuous outcomes, gl(·) is the identity function; XT
il(t) and ZTil(t)

denote row vectors of the design matrix for fixed and random effects corresponding to

the l-th longitudinal outcome for the i-th subject at time point t; βl is the correspond-

ing parameter vector of the fix effects; bil is the according vector of random effects.

Let bi = (bTi1, · · · ,b
T
il)
T denote random effects for the i-th subject with mean 0 and

variance covarianc G. Random effects for different outcomes are correlated in the

same subject, but independent for different subjects. The unknown function mil(t)

describes the true profile for the l-th outcome.

For the longitudinal model, we have the conditional mean

E (yil|bil) = g−1
l (XT

ilβl + ZTilbil),

and the conditional variance

V ar(yil|bil) = φh(E (yil|bil)),
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where h(·) represents a function of E (yil|bil). For example, for binary responses, g(·)

is the logit link function, then h(E (yil|bil)) = E(yil|bil)(1−E(yil|bil)) and φ = 1; for

Poisson count responses, g(·) is the log link function, then h(E (yil|bil)) = E (yil|bil)

and φ = 1.

4.1.2 The Survival Model

For a time to event outcome, let T ∗i be the true event time for subject i. Some

subjects may not experience the event at the end of study, or they may drop out

during the study, so their event times are right censored. Let Ci denote the censoring

time for the i-th subject. The observed event time Ti = min(T ∗i , Ci). Define the

event indicator as δi = I(T ∗i ≤ Ci), here I(·) represents indicator function. Assume

that censoring times and event times are independent. The effects of longitudinal

outcomes on survival times are captured by a hazard model:

hi(t) = h0(t) exp

uTi γ +
L∑
l=1

αlfl (mil(t))

 , (4.2)

where h0(t) is the baseline risk function; ui denotes a vector of time independent co-

variates with corresponding regression coefficient vector γ; function fl(·) is assumed

to describe the true longitudinal profile for the l-th outcome; and αl denotes a param-

eter measuring the effect of the l-th longitudinal process to the time to event outcome.

exp{γj} denotes the hazard ratio for one unit change in uij at any time t. exp{αl}

denotes the relative increase in the risk for an event at time t that results from one

unit increase in fl(mil(t)) at the same time point. Parameters αl’s (l = 1, 2, · · · , L)

are of primary interest in this work.
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Function fl(·)(l = 1, 2, · · · , L) are assumed to be known and reflect the asso-

ciation between the longitudinal outcomes and the event process. Identity function

quantifies the effect of the true current underlying longitudinal outcomes on the haz-

ard for an event; a first derivative with respect to time t implies that the risk for

an event at time t depends on the slope of the true longitudinal trajectory at time

t; an integration function over time indicates that the event risk of depends on the

cumulative history of the longitudinal biomarkers over time.

4.2 Estimation Method

Different approaches can be used for parameter estimation for the joint models de-

fined above, the two-stage method can result in biased results; the maximum likeli-

hood based approach and Bayesian method utilizes the full likelihood based on the

joint models can be computationally intensive as the likelihood function or the pos-

terior distribution function involves integration over multiple random effects. In this

section, we present the joint generalized estimating equation methodology for pa-

rameter estimation of joint models for multiple longitudinal counts biomarkers and

time-to-event outcome.

Recall from the longitudinal model that gl {E (yil|bil)} = mil = XT
ilβl +

ZTilbil. Then

E(yil|bil) = g−1
l (XT

ilβl + ZTilbil) = g−1
l (mil).

For Gaussian distributed bil with mean 0 and covariance Gl. The marginal mean of

yil is

E(yil) = Ebil
(E(yil|bil)) = E

(
g−1
l

(
XT
ilβl + ZTilbil

))
.
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Thus the expression for the marginal mean depends on the link functions. For the

identity link (gl(u) = u), we have E(yil) = XT
ilβl. For the log link (gl(u) = log(u)),

we have E(yil) = eX
T
ilβlE(eZ

T
ilbil) = eX

T
ilβl+ZT

ilGlZ
T
il/2. That is, the random effect

leads to an offset in the marginal mean. However, in general, there is no exact closed

form for the marginal mean.

The variance of yil does not have simple form except the linear link.

V ar(yil) = V ar(E(yil|bil)) + E(V ar(yil|bil))

= V ar(g−1
l (XT

ilβl + ZTilbil)) + E(φh(E (yil|bil))).

For the covariance, with l 6= k,

Cov(yil, yik) = Cov [E(yil|bil), E(yik|bik)] + E [Cov(yil|bil, yik|bik)] .

That is the correlation among different responses are introduced by correlation among

random effects bi.

In Chapter 2, for the continuous longitudinal outcomes, we can estimate the

fixed effect by a straightforward weighted GEE; in Chapter 3, with longitudinal count

outcomes, the weighted GEE can be applied with an offset variable defined by the

random effects; but for other distributions when there is no exact closed form for

the marginal mean, an approximate GEE can be used with a linearized response.

When using GEE approach, only an approximation for the variance Vi is necessary

to obtain consistent and nearly efficient inferences for β, when the number of subjects,

N , is large relative to the number of observations per subject, ni, and random effect

variance G is given.
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4.2.1 Linearization of the Longitudinal Model

Recall from previous introduction

E(yil|bil) = g−1
l (XT

ilβl + ZTilbil) = g−1
l (mil)

and

E(yil) = Ebil
(E(yil|bil)) = E

(
g−1
l (mil)

)
.

Thus the marginal model can be considered as

yil = g−1
l (XT

ilβl + ZTilbil) + εi.

Following Wolfinger and O’connell (1993), take first order Taylor series of g−1
l (mil)

about β̃l and b̃il yields

yil ≈ g−1
l (m̃il)− ∆̃l(X

T
il β̃l + ZTil b̃il) + ∆̃l(X

T
ilβl + ZTilbil),

where

∆̃l =

(
∂g−1
l (mil)

∂mil

)
β̃l,b̃il

is a diagonal matrix of derivatives of the conditional mean evaluated at β̃l, b̃il.

Rearranging terms yields the expression

∆̃−1
l (yil − g−1

l (m̃il)) + XT
il β̃l + ZTil b̃il ≈ XT

ilβl + ZTilbil.
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Let

y∗il ≡ ∆̃−1(g−1
l (mil)− g−1

l (m̃il)) + XT
il β̃l + ZTil b̃il.

Thus we can consider the model

y∗il = XT
ilβl + ZTilbil + εil,

which is a linear mixed model with response y∗il, with fixed effects βl, random effects

bil, V ar(εil) = V ar(y∗il|bil) = ∆̃−1
l V ar(yil)∆̃

−1
l , V ∗il = V ar(y∗il) = ZTilV ar(bil)Zil +

V ar(εil), and µil = E(y∗il) = XT
ilβl. And y∗il is a linear transformation of yil:

y∗il ≡ ∆̃−1(yil − g−1
l (m̃il)) + XT

il β̃l + ZTil b̃il.

Let Y∗i = (y∗Ti1 , · · · ,y
∗T
iL )T denotes corresponding linearized L-variate re-

sponse vector for the i-th subject, y∗il = (y∗il(ti1), · · · , y∗il(tini))
T . The longitudinal

model with approximated response will be

Y∗i = Xiβ + Zibi + εi.

Then E(Y∗i ) = Xiβ and the variance covariance of Y∗i is V∗i = Cov(Y∗i ) = ZiGZTi +

Σi, where Xi =



Xi1 0 · · · 0

0 Xi2 · · · 0

...
...

. . .
...

0 · · · 0 XiL


(
∑L

j=1(pj+1))×(
∑L

j=1(pj+1))

,
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β =



β1

β2

...

βL


(
∑L

j=1(pj+1))×1

, Zi =



Zi1 0 · · · 0

0 Zi2 · · · 0

...
...

. . .
...

0 · · · 0 ZiL


,

bi =



b1

b2

...

bL


with covariane matrix G =



G1 G12 · · · G1L

G21 G2 · · · G2L

...
...

. . .
...

GL1 · · · GL(L−1) GL


,

εi =



ε1

ε2

...

εL


represent independent random errors, with covariance matrix

Σi =



σ2
1Ini 0 · · · 0

0 σ2
2Ini · · · 0

...
...

. . .
...

0 · · · 0 σ2
LIni


, where Ini is ni × ni identity matrix.

4.2.2 The Joint Generalized Estimating Equation Method

Let Wi be the diagonal weight matrix, U(β), D(b), L(α,γ) are objective functions

for solving β, b, α and γ respectively. We propose a joint generalized estimating
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equation (JGEE) approach for estimation, which is to solve the following estimating

equations:

Estimate β from:

U(β) =
N∑
i=1

XT
i V∗−1

i Wi(Y
∗
i −Xiβ) = 0. (4.3)

Predict random effects b from:

b = argmin
b

∑
i=1

(Y∗i −Xiβ − Zibi)
TV∗−1

i (Y∗i −Xiβ − Zibi). (4.4)

Estimate risk coefficients α from:

α = argmax
α,γ

N∏
i=1

 eu
T
i γ+

∑L
l=1 αlfl(mil(Ti))∑N

j=1 I(Tj ≥ Ti)e
uT
j γ+

∑L
l=1 αlfl(mjl(Tj))

δi . (4.5)

Where equation (4.3) is a weighted GEE for longitudinal outcomes. In equa-

tion (4.3), Wi is an (L×ni)× (L×ni) diagonal weight matrix with the j-th diagonal

element as

W (tij ;β,γ,α) =
c(tij ; ui,γ0)

h0(tij) exp
{

uTi γ +
∑L
l=1 αlfl(mil(tij−))

} ,
This weight is called inverse visit intensity weight motivated by Lin et al. (2004) and

Buzkova and Lumley (2007), and it is used to account for missing caused by time-to-

event. c(·) is a pre-specified function of the time-independent covriates u and has the

potential to stabilize the influence of small values in the denominator. In addition,

if we choose c(·) as h0(tij) exp
{

uTi γ0

}
, when yi(t)’s have no influence on the risk of
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event at time t, the weight becomes identity matrix reducing to the regular GEE for

equation (4.3).

Equation (4.4) minimizes the squared distance between approximate individ-

ual’s response to the population average. b can be predicted as minimizing the

squared length of residual vector:

b = argmin
b

(Y∗ −Xβ − Zb)TV∗−1
i (Y∗ −Xβ − Zb).

Thus b is the generalized least squares estimates with explicit form

b̂ =
(
ZTV∗−1

i Z
)−1

ZTV∗−1
i (Y∗ −Xβ) .

With β is replaced by the consistent estimate β̂.

Equation (4.5) is the partial likelihood function for Cox proportional haz-

ard model with unobserved longitudinal measures replaced by estimated longitudinal

measures from equations (4.3) and (4.4)

m̂il(tij) = XT
i (tij)β̂l + ZTi (tij)b̂

∗
il,

where b̂∗il is an adjusted random effect based on the estimate from (4.5). The corre-

sponding log partial likelihood function is :

l(α,γ) =
N∑
i=1

δi

uTi γ +
L∑
l=1

αlf(m̂il(Ti))

− log
N∑
j=1

I(Tj ≥ Ti) exp{uTj γ +
L∑
l=1

αlf(m̂jl(Tj))}

 .
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Coefficients α and γ can be obtained by maximizing this log partial likelihood.

Note that the weight Wi’s in equation (4.3), and mil(Ti)’s in equation (4.5)

depend on the true model parameters, which are unknown. Equations (4.3), (4.4)

and (4.5) can be solved iteratively with Wi, mil(Ti) replaced by their estimators.

Initial value of Wi can be obtained from a naive two-stage or GEE method; equation

(4.3) can provide an estimator of fixed effects β̂; given β̂, equation (4.4) can provide

a prediction of random effects b̂; from equation (4.3) and (4.4), an estimator of m can

be obtained and fl(m̂il(t)) = fl(X
T
il(t)β̂l + ZTil(t)b̂il) can be plugged into equation

(4.5). The three equations can be solved iteratively.

The variance of β̂ will be calculated as:

(
XTV∗−1WX

)−1

(
XTV∗−1W(Y∗ −Xβ)(Y∗ −Xβ)TWV∗−1X

)
(
XTV∗−1WX

)−1
,

(4.6)

with V∗, β and W are replaced by estimates.

The variance estimate of α̂ will be obtained by inverse of the information

matrix of the log partial likelihood:

V (α̂) = −
[
∂2l(α̂)

∂α∂αT

]−1

(4.7)

The proposed approach uses an iterative computational approach and avoids

high dimensional integration required in likelihood or Bayesian methods. The pro-

posed method can be implemented in standard statistical software. Because the stan-

dard errors of fixed effects in the longitudinal model are calculated based on modified
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GEE with linearized longitudinal responses as if the weights are known, and the stan-

dard errors of the risk coefficient estimators are obtained through partial likelihood

assuming that all the true covariate values are known, estimated standard errors are

likely to be underestimating the true variance. In the following section, we discuss

the large sample properties of the proposed estimators.

4.3 Consistency of Estimators

4.3.1 Zero mean of the estimating function for β

The regression parameters β are identified under estimating equation (4.3) and sur-

vival assumption (4.2) and the fact that

E [U(β)] = E

 N∑
i=1

XT
i V∗−1

i Wi(Y
∗
i −Xiβ)

 = 0. (4.8)

Let Ni(t) =
∑ni
i=1 I[T

∗
i ≤ t] be the number of observations of the ith subject

by time t. dNi(t) denote the indicator for the ith individual being observed to have

an event in [t, t+ dt). Let ξi(t) = I(T ∗i ≥ t) indicate whether subject i is still at risk

at time t. From survival assumption (4.2):

P {dNi(t)} = ξi(t)h(t)dt.

Suppose the hazard rate at time t is not related to the timing of the visits

prior to t. Assume V∗−1
i is given, Wi is known, and the approximated Y∗i are true
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and known.

E [U(β)] = EY∗,T

 N∑
i=1

XT
i V∗−1

i

∫ τ

0

c(t)

h(t)
dNi(t)(Y

∗
i −Xiβ)


= EY∗

ET|Y∗

 N∑
i=1

XT
i V∗−1

i

∫ τ

0

c(t)

h(t)
dNi(t)(Y

∗
i −Xiβ)

∣∣∣∣∣∣ Y∗


= EY∗


N∑
i=1

XT
i V∗−1

i ET|Y∗

[∫ τ

0

c(t)

h(t)
dNi(t)

∣∣∣∣ Y∗
]

(Y∗i −Xiβ)


= EY∗


N∑
i=1

XT
i V∗−1

i Em

[
ET|Y∗,m

[∫ τ

0

c(t)

h(t)
dNi(t)

∣∣∣∣ mi(t
−),Y∗

]]
(Y∗i −Xiβ)


= EY∗


N∑
i=1

XT
i V∗−1

i Em

[∫ τ

0

c(t)

h(t)
ET|Y∗,m

[
dNi(t)

∣∣ mi(t
−),Y∗

]]
(Y∗i −Xiβ)


= EY∗


N∑
i=1

XT
i V∗−1

i

∫ τ

0

c(t)

h(t)
ξi(t)h(t)dt(Y∗i −Xiβ)


= EY∗


N∑
i=1

XT
i V∗−1

i

∫ τ

0
c(t)ξi(t)dt(Y

∗
i −Xiβ)


=

N∑
i=1

XT
i V∗−1

i

∫ τ

0
c(t)ξi(t)dtEY∗ [Y∗i −Xiβ]

= 0.

Consistent estimates of β can be obtained as the solution of equation (4.3)

with the weight Wi be substituted by suitable consistent estimators.
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4.3.2 Zero mean of the estimating function for α

Equation (4.5) corresponds to maximizing the logarithm of the partial likelihood:

l(α) =
N∑
i=1

δi

uTi γ +
L∑
l=1

αlfl(mil(Ti))

− log
N∑
j=1

I(Tj ≥ Ti) exp

uTj γ +
L∑
l=1

αlfl(mjl(Tj))


 .

(4.9)

Setting the derivative with respect to the parameters provides the score estimating

equations S(α), the score equation corresponding to parameter αl is:

S(αl) =
∂l(α)

∂αl
=

N∑
i=1

δi [fl(mil(Ti))

−
∑
j I(Tj ≥ Ti) exp{uTj γ +

∑L
l=1 αlfl(mjl(Ti))}fl(mjl(Ti))∑

j I(Tj ≥ Ti) exp{uTj γ +
∑L
l=1 αlfl(mjl(Ti))}

]
.

=
N∑
i=1

δi

fl(mil(Ti))−
∑
j

fl(mjl(Ti))pj

 ,
where

pj =
I(Tj ≥ Ti) exp{uTj γ +

∑L
l=1 αlfl(mjl(Ti))}∑

j I(Tj ≥ Ti) exp{uTj γ +
∑L
l=1 αlfl(mjl(Ti))}

could be considered as proportional to the hazard of the individual failing.

The regression parameters α are identified under estimating equation (4.3)

and survival assumption (4.2) and the fact that E [S(α)] = 0. Condition on true

longitudinal process mjl’s are known, suppose function f is known, thus covariates

fl(mil) are known.
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E [S(αl)] = E

 N∑
i=1

δi

fl(mil(Ti))−
∑
j

fl(mjl(Ti))pj


=

N∑
i=1

E

δi
fl(mil(Ti))−

∑
j

fl(mjl(Ti))pj


=

N∑
i=1

E

E
δi

fl(mil(Ti))−
∑
j

fl(mjl(Ti))pj

 |f,mi(t
−),ui, δi


=

N∑
i=1

E

δi
E [fl(mil(Ti))|f,mi(t

−),ui
]
−
∑
j

fl(mjl(Ti))pj


=

N∑
i=1

E

δi
∑

j

fl(mjl(Ti))pj −
∑
j

fl(mjl(Ti))pj

 = 0

Because mil’s are unknown, to obtain the estimator of α, mil’s are substituted

by their estimates m̂il(t) = XT
il(t)β̂l + ZTil(t)b̂il , expectation of S(α, m̂) is no longer

zero at α. Uncertainty of estimates b̂il relative to true values of bil can be considered

as subject to measurement error. Assume b is normally distributed, suppose b̂ are

subject to additive and normal measurement error ε ∼ N(0,Λ), b̂il = bil + εil.

Then m̂il(t) = XT
il(t)β̂l + ZTil(t)bil + ZTil(t)εil, consider the measurement error of

m̂il(t) relative to mil(t) is ZTil(t)εil. Nakamura (1990) have proposed a corrected

score function method and Nakamura (1992) applied it to the proportional hazards

model that allows a simple correction to the ordinary partial likelihood.

Suppose f is identity function (the hazard for an event depends on the effect

of the true underlying longitudinal outcomes), the corrected score function following
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Nakamura’s method is

S̃(α, m̂) = S(α, m̂) + ZTΛZα.

Nakamura’s corrected maximum partial likelihood estimates(MPLE) is α̂ that satis-

fies

S̃(α, m̂) = 0.

In the special case of no measurement error, Nakamura’s corrected MPLE becomes

a regular MPLE. Theoretical justification can be found in the paper by Kong and

Gu (1999). The authors have shown that the corrected MPLE is consistent and

asymptotically normally distributed.

4.4 Asymptotic Properties of Estimators

In this section, we derive the large sample behavior of the JGEE estimators. The

property of β̂ is under the assumption that the number of independent subjects goes

to infinity and the number of observations are finite with an upper bound, and the

weights are known in JGEE. The property of α̂ is under the assumption that the

number of independent subjects goes to infinity and the longitudinal covariates are

known without random error.
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4.4.1 Asymptotic properties of β̂

Assuming the weights are known

For general estimating equations, Liang and Zeger (1986) have proposed a sandwich

variance covariance matrix estimator for β̂, the variance covariance estimator is con-

sistent even if the working covariance matrix is not true covariance matrix of Yi. If

the covariance matrix of Yi is correctly specified, a consistent estimator for covariance

matrix of β̂ is model based or naive covariance estimator. Following the sandwich

variance covariance of GEEs, the robust sandwich variance covariance matrix of β̂

from (4.3) will be similar when the weight is considered as known.

The large sample distribution of
√
N(β̂ − β) and variance covariance matrix

follows from the asymptotic normality of U(β) =
∑N
i=1 XT

i V∗−1
i Wi(Y

∗
i − Xiβ)

in (4.3) and a series of Taylor expansions. Take the first two terms of the Taylor

expansion for U(β) at estimator β̂:

U(β) = U(β̂) +
∂UT

∂β
|β∗(β − β̂),

where β∗ is on the line segment between β̂ and β. Then

√
N(β̂ − β) =

(
− 1

N

∂UT

∂β
|β∗

)−1
1√
N

U(β).
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By the strong law of large numbers, − 1

N

∂UT

∂β
|β∗ converges to fisher information

matrix. That is

− 1

N

∂UT

∂β
|β∗ = −E

(
∂UT

∂β

)
=

N∑
i=1

XT
i V∗−1

i WiXi
defined as

= A(β).

And

E [U(β)] = E
[
XT
i V∗−1

i Wi(Y
∗
i −Xiβ)

]
=

N∑
i=1

XT
i V∗−1

i Wi (E(Y∗i )−Xiβ) = 0.

In addition,

V ar

(
1√
N

U(β)

)
=

1

N

N∑
i=1

V ar (Ui(β)) =
1

n

n∑
i=1

E
[
Ui(β)UT

i (β)
]

=
1

N

N∑
i=1

E
[
XT
i V∗−1

i Wi(Y
∗
i −Xiβ)(Y∗i −Xiβ)TWiV

∗−1
i Xi

]

=
1

N

N∑
i=1

XT
i V∗−1

i Wi(Y
∗
i −Xiβ̂)(Y∗i −Xiβ̂)TWiV

∗−1
i Xi

defined as
= B(β),

where (Y∗i −Xiβ̂)(Y∗i −Xiβ̂)T is the empirical estimation of Cov(Y∗i −Xiβ). By

central limit theorem:

1√
N

U(β) ∼ N(0, B(β)).

Therefore, condition on the weights W are known, as N −→∞,

√
N(β̂ − β) ∼ N(0, A(β)−1B(β)A(β)−1),
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where A(β) and B(β) are defined above.

4.4.2 Asymptotic properties of α̂

Assuming the longitudinal covariates are known

Risk coefficients are estimated by maximizing the following log partial likelihood

function:

l(α,γ) =
N∑
i=1

δi

uTi γ +
L∑
l=1

αlfl(mil(Ti))

− log
∑
j

I(Tj ≥ Ti) exp{uTj γ +
L∑
l=1

αlfl(mjl(Ti))}

 .
(4.10)

Conditional on mil’s are known, and function fl(·) are known, then fl(mil) can be

consider as known covariates. Regression parameter estimators α̂ obtained from

solving the score estimating equations (4.10) will yield consistent estimators of true

α. The statistic
√
n(α̂−α) converge in distribution to normal random variables with

mean 0 and variance covariance matrix Σ. The asymptotic properties of maximum

partial likelihood estimator holds following studies such as Tsiatis (1981), Andersen

and Gill (1982), Næs (1982), Bailey (1983) and Lin and Wei (1989).

Setting derivative of the logarithm of the partial likelihood (4.10) with respect

to the parameters to zero yields the score equations, the parameter estimator α̂l is

obtained by solving:
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S(αl) =
∂l(α)

∂αl
=

N∑
i=1

δi [fl(mil(Ti))

−
∑
j I(Tj ≥ Ti) exp{uTj γ +

∑L
l=1 αlfl(mjl(Ti))}fl(mjl(Ti))∑

j I(Tj ≥ Ti) exp{uTj γ +
∑L
l=1 αlfl(mjl(Ti))}

]
.

=
N∑
i=1

δi

[
fl(mil(Ti))−

p(1)(αl, Ti)

p(0)(αl, Ti)

]
= 0,

(4.11)

where

p(r)(αl, T ) =
∑
j

I(Tj ≥ T ) exp

uTj γ +
L∑
l=1

αlfl(mjl(T ))

 fl(mjl(T ))r.

Take second derivatives:

All(α) =
∂2l

∂αl∂αl
=

N∑
i=1

δi

p(2)(αl, Ti)

p(0)(αl, Ti)
−

{
p(1)(αl, Ti)

p(0)(αl, Ti)

}⊗2
 .

Alh(α) =
∂2l

∂αl∂αh
=

N∑
i=1

δi

[
p(1)(αl, Ti)fh(mjh(Ti))

p(0)(αl, Ti)
− p(1)(αl, Ti)

p(0)(αl, Ti)

p(1)(αh, Ti)

p(0)(αl, Ti)

]
.

Denote the second derivatives matrix as A(α), with diagonal elements All(α) and

non-diagonal elements Alh(α) defined above. The Fisher information matrix can be

written as:

I(α) = −E(A(α)).

The variance covariance matrix of α̂ with the score estimating equation S(α̂) = 0

is asymptotically I(α̂)−1, which is inverse negative the expectation of the second

derivative of Cox’s partial likelihood. The standard errors calculated based on partial
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likelihood with estimated longitudinal outcomes are likely to be biased and tend to be

smaller than the true variance of these risk coefficent estimators. Because this method

assumes all the longitudinal covariates as known, it does not take into account the

uncertainty of those random effects carried by the covariates.
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Chapter 5

Conclusion

In this thesis, we studied joint models for multiple longitudinal responses and their

relation to the survival outcome. We started from an approach to handle multiple

longitudinal continuous responses and a time-to-event outcome in Chapter 2. In

Chapter 3, we extended the method to handle multiple longitudinal Poisson responses

and a time-to-event outcome. In Chapter 4, we offered a general formulation to

handle various longitudinal response and a time-to-event outcome. The proposed

methodology is applicable to a number of medical research areas.

Joint models for multiple continuous longitudinal biomarkers and a time-to-

event outcome were examined in Chapter 2. We developed a Joint Generalized Es-

timating Equation (JGEE) approach for parameter estimation. We investigated the

finite sample behavior of the estimators with a series of simulations. The simulation

compared the naive two-stage method, the GEE approach (same estimating equations

as JGEE but with identity weight) to the JGEE method. The results demonstrated

that the proposed JGEE method can provide more accurate parameter estimates

than the two-stage or the GEE method. Our approach was also illustrated with a

data from a longitudinal cohort to examine the association of longitudinally collected

low density lipoprotein (LDL), high density lipoprotein (HDL) measures and their

association with the risk of coronary artery disease (CAD).
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In Chapter 3, we extended the proposed JGEE method to multiple longitudinal

count data and a time-to-event outcome. The performance of the propsed JGEE

method was assessed through extensive simulation studies. We have shown that the

proposed JGEE method yields adequate risk effect estimates. The proposed method

was applied to data from a longitudinal cohort to examine the association between

longitudinal collected cognitive memory score and cognitive executive score and their

association with the risk of coronary artery disease (CAD).

In Chapter 4, we introduced a general formulation of joint models to accom-

modate different types of longitudinal responses and a time-to-event outcome. The

JGEE method is further extended to handle the general joint models. And the large

sample properties of the parameter estimators are investigated.

The propose JGEE method has several advantages. First, the JGEE method

can easily handle mixed types of longitudinal processes, which comes naturally from

the feature of generalized estimating equations. Second, the JGEE method is com-

putationally efficient to carry out as it avoids the direct maximization of the joint

likelihood, thus it can be implemented in standard software. In comparison, maximum

likelihood with EM algorithm and Bayesian approach can be extremely computation-

ally intensive because of the integration over multiple random effects. Third, JGEE

method reduces biases from the naive two-stage method by adjusting for informative

truncation from the time-to-event outcome with inverse intensity weighting.

The current work also has some limitations and further development is nec-

essary. Through simulation studies, we observed that although the JGEE method

reduces biased from the naive two-stage method, but the proposed estimators can

still be biased, especially in non-normal situations. We theorize that the bias of the
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JGEE estimator arises from the non-identical functional form for the marginal mean

from the conditional mean in the non-normal setting. We know in the case of log lin-

ear model for Poisson data, the marginal mean and the conditional mean are shifted

by an offset. Thus the first estimating equation in the JGEE will need to be adjusted

to correctly reflect this shift in order to produce parameter estimates that correspond

to those specified in the longitudinal model.

In addition, additional work is also needed to refine the prediction of longitudi-

nal components to be used in the estimating equation based on the partial likelihood.

Moreover, because the standard errors of fixed effects in longitudinal model are calcu-

lated based on modified GEE as if the weights are known, and the standard errors of

the risk coefficient estimators are obtained through partial likelihood assuming that

all the true covariate values are known, estimated standard errors are underestimat-

ing the true variance. Further theoretical work needs to be conducted for improved

variance estimations based on the joint modeling framework.

There are also many potential extensions to our joint modeling framework. For

survival sub-models, the current work focuses on one time-to-event with right censor-

ing. More complicated scenarios such as multiple events, recurrent events, competing

risks, or interval censoring can be considered. For longitudinal sub-models, one can

consider capturing the longitudinal trajectories more flexibly with a smoothing spline

models. Another topic that this work did not address is procedures for model selec-

tion, especially in settings where many potential covariates need to be considered in

the joint models.

In summary, joint models are powerful analytical tools for longitudinal and

time-to-event data and widely applicable to medical research. Our proposed method
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offers a computationally efficient method for parameter estimation from a number

of longitudinal processes and can increase the utility of joint models in solving real

world problems.
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