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CLIMATE CHANGE AND ECOHYDROLOGICAL PROCESSES IN DRYLANDS: 

THE EFFECTS OF CO2 ENRICHMENT, PRECIPITATION REGIME CHANGE AND 

TEMPERATURE EXTREMES 

Drylands are the largest terrestrial biome on the planet, and the critically important 

systems that produce approximately 40% of global net primary productivity to support 

nearly 2.5 billion of global population. Climate change, increasing populations and 

resulting anthropogenic effects are all expected to impact dryland regions over the coming 

decades. Considering that approximately 90% of the more than 2 billion people living in 

drylands are geographically located within developing countries, improved understanding 

of these systems is an international imperative. Although considerable progress has been 

made in recent years in understanding climate change impacts on hydrological cycles, 

there are still a large number of knowledge gaps in the field of dryland ecohydrology. 

These knowledge gaps largely hinder our capability to better understand and predict how 

climate change will affect the hydrological cycles and consequently the soil-vegetation 

interactions in drylands.  

The present study used recent technical advances in remote sensing and stable 

isotopes, and filled some important knowledge gaps in the understanding of the dryland 

systems. My study presents a novel application of the combined use of customized 

chambers and a laser-based isotope analyzer to directly quantify isotopic signatures of 
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transpiration (T), evaporation (E) and evapotranspiration (ET) in situ and examine ET 

partitioning over a field of forage sorghum under extreme environmental conditions. We 

have developed a useful framework of using satellite data and trend analysis to facilitate 

the understanding of temporal and spatial rainfall variations in the areas of Africa where 

the in situ observations are scarce. By using a meta-analysis approach, we have also 

illustrated that higher concentrations of atmospheric CO2 induce plant water saving and the 

consequent available soil water increases are a likely driver of the observed greening 

phenomena. We have further demonstrated that Leuning’s modified Ball-Berry model and 

RuBP limited optimization model can generally provide a good estimate of stomatal 

conductance response to CO2 enrichment under different environmental conditions. All 

these findings provide important insights into dryland water-soil-vegetation interactions.  
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CHAPTER 1: INTRODUCTION 

Drylands regions, defined broadly as zones where mean annual precipitation is 

less than two-third of potential evaporation, are critically important systems (D’Odorico 

et al., 2013; Eldridge et al. , 2011; Wang et al. , 2012; Wang et al., 2017) and represent the 

largest terrestrial biome on the planet (Schimel, 2010). Drylands cover about 41% of the 

global land surface (Millennium Ecosystem Assessment, 2005), support a population of 

nearly 2.5 billion (Gilbert, 2011), and account for as much as 40% of global net primary 

productivity (Grace, 2006). Given the pressures of climate change, population growth 

that are expected to impact dryland regions over the coming decades (Millennium 

Ecosystem Assessment, 2005), especially as around 90% of dryland populations are 

geographically located within developing countries (Wang et al. , 2012), a better 

understanding of these systems is becoming an international imperative.  

Many drylands around the world are affected by “desertification”, i.e., land 

degradation in arid, semi-arid and dry sub-humid areas resulting from various reasons 

including climatic variations and human activities (UNCCD, 1994). It has been estimated 

that up to 70% of the world’s drylands (excluding those in hyper-arid deserts) suffer from 

degradation (Dregne, 2002). Evidence has also shown that changing climate conditions 

have resulted in the intensification of hydrologic cycles, leading to changes in 

water-resource availability, increase in the frequency and intensity of climate extremes 

such as floods and droughts, and amplification of warming through the water vapor 

feedback (Huntington, 2006). The disruptions to hydrological cycles has more severe 
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consequences on drylands since they result in less rainfall, yet more erratic rainfall events, 

as well as extreme heat and aridity that exacerbate the already critical state of water 

scarcity.  

Enhanced atmospheric CO2, temperature extremes, and changes in precipitation 

are three of the most critical factors determining the impact of climate change on the 

dynamics of water and vegetation in drylands. Generally, warmer temperatures tend to  

intensify the water stress through increased evapotranspiration, but the increase in 

atmospheric CO2 could partially mitigate these effects by accelerating the photosynthetic 

rates of plants or enhancing the water use efficiency (Tietjen et al. , 2010). Changes in 

precipitation show that drylands are facing decreases in mean annual precipitation, with 

less frequency of precipitation events, but more extreme events (Dore, 2005; Easterling et 

al., 2000). However, climate change impacts could vary substantially from region to 

region because of the differences in geographical characteristics and local climate (Naz et 

al., 2016); thus the ecohydrological responses to climate changes are region-specific and 

the scale of observation is an important factor to consider in understanding and predicting 

climate change impacts (Wang et al., 2012). 

Considerable progress has been made in recent years in understanding climate 

change impacts on hydrological cycles, especially with the establishment of 

Intergovernmental Panel on Climate Change (IPCC). There are a number of exciting 

developments in monitoring tools used for the climate change studies, particularly, the 

recent development of techniques using remote sensing and stable isotopes has provided 
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useful tools to characterize the water budget at various scales. Remote sensing has the 

advantage in temporal and spatial duration and stable isotopes have the advantage in 

detecting mechanisms (Wang et al., 2012). Through the remote sensing platforms, data 

could be extrapolated across the spatial and temporal domain, which therefore extends 

the point scale focus of many ecohydrological investigations to larger spatial extents, and 

offers insight into pattern change and development through time (Wang et al., 2012). 

Evapotranspiration (ET) loss can reach up to 95% in some dryland systems (Wang et al., 

2014; Wilcox and Thurow, 2006) and the development of techniques using stable isotopes 

of water provides a useful tool to separate evaporation (E) and transpiration (T) that can 

be applied across broad spatial and temporal scales. Besides facilitating ET partitioning, 

the stable isotopic composition of E and T can also provide insights regarding plant water 

use dynamics as well as the nature of land-atmosphere interactions (Parkes et al., 2017). 

This study uses remote sensing and stable isotopes of water to assist in addressing some 

critical issues in the understanding of dryland ecohydrology.   

Despite these recent developments, there are still a large number of knowledge 

gaps in the field of dryland ecohydrology, which hinder our ability to understand and 

predict the effects of climate change on hydrological cycles and soil-vegetation 

interaction in drylands. My dissertation research aims to resolve some important 

knowledge gaps related to the effect of CO2 enhancement, changes in precipitation and 

temperature extremes on soil and vegetation hydrological conditions in dryland systems 
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(Figure 1.1), using advanced techniques of remote sensing and stable isotopes. 

Specifically, my study addresses the following questions:  

 In contrast to growing desertification and declining vegetation productivity in 

drylands, recent findings based on remote sensing data have suggested a trend of 

increasing vegetation greening in global drylands. What are the drivers behind 

the observed greening response, and what are the processes and mechanisms by 

which these drivers could cause the greening?  

 Stomatal conductance (gs) is key to understanding plant-water-atmosphere 

interactions, and the response of vegetation to climate-induced water stress. 

Although there are gs models with different levels of complexity, the 

establishment of an accurate stomatal conductance model under diverse 

environmental conditions remains an important research goal and no previous 

studies have attempted to evaluate different gs models under diverse conditions. 

This study, by using field data from different environmental conditions, aims to 

find out how well do the gs models perform under diverse conditions. 

 IPCC has predicted a likely decrease in late summer rainfall over southern Africa; 

however, this prediction was run at a coarse spatial resolution while the rainfall 

process has a much higher spatial variability. With the valuable ground-based 

observations, can we develop an approach to evaluate the ecohydrological 

processes in extreme data scarcity regions through trend analysis with 

Multi-satellite Precipitation Analysis (TMPA) data? 
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 Extreme heat and aridity caused by high temperature and drought has put more 

stringent pressure on the already limited water resources in some dryland regions. 

Can we use stable isotope techniques to determine how much and to what extent 

irrigated water is transpired by crops relative to being lost through evaporation in 

such an unusually harsh production environment?  
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Figure 1.1 Conceptual framework for this dissertation. 
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CHAPTER 2: IS ELEVATED CO2 A DRIVER OF GLOBAL DRYLAND 

GREENING? 

2.1 Abstract 

Recent findings based on satellite records have indicated there is a positive trend in 

vegetation greenness over global drylands. However, the reasons behind the observed 

greening trend remain elusive. We hypothesize that enhanced levels of atmospheric CO2 

are responsible for the observed greening through a CO2 driven impact on plant water 

savings and consequent available soil water increases. In this study, we used meta-analytic 

techniques to compare the soil water content under ambient and elevated CO2 treatments 

across different climate regimes, vegetation types, soil textures and land management 

practices. Based on 1705 field measurements from 21 distinct sites, we observed a 

consistent and statistically significant increase (11%) in soil water under elevated CO2 

treatments in both drylands and non-drylands. More importantly, drylands showed a 

statistically stronger response over non-drylands (17% vs. 9%). Given the inherent water 

limitation in drylands, we suggested that the additional soil water availability is likely 

driving observed increases in vegetation greenness. 
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2.2 Introduction 

Defined broadly as zones where mean annual precipitation is less than two-third 

of potential evaporation, drylands are critically important systems (D’Odorico et al., 2012; 

Eldridge et al., 2011; Wang et al., 2012) and represent the largest terrestrial biome on the 

planet (Schimel, 2010). Climate change, increasing populations and resulting 

anthropogenic effects are all expected to impact dryland regions over the coming decades 

(Millennium Ecosystem Assessment, 2005). Considering that approximately 90% of the 

more than 2 billion people living in drylands (Gilbert, 2011) are geographically located 

within developing countries (Wang et al., 2012), improved understanding of these 

systems is an international imperative. Recent regional scale analyses using satellite 

based vegetation indices such as the Normalized Difference Vegetation Index (NDVI), 

have found extensive areas of “greening” in dryland areas of the Mediterranean (Osborne 

and Woodward, 2001), the Sahel (Herrmann et al., 2005), the Middle East (Nielsen and 

Adriansen, 2005) and Northern China (Runnström, 2000), as well as greening trends in 

Mongolia and South America (Hellden and Tottrup, 2008). More recently, a global 

synthesis over the period from 1982-2007 that used an integrated NDVI and annual 

rainfall, showed an overall “greening-up” trend over the Sahel belt, Mediterranean basin, 

China-Mongolia region and the drylands of South America (Fensholt et al., 2012). 

To better predict system responses to possible climate changes, it is necessary to 

understand the drivers behind the observed greening response. Several mechanisms may 

contribute to the apparent trends in vegetation greenness. For example, increased rainfall 



 

12 

is one obvious driver of change, with a number of studies establishing a positive 

relationship between NDVI and precipitation (Fensholt et al. , 2012; Herrmann et al., 

2005). However, rainfall does not explain the observed trends at a global scale. Indeed, 

there are regions where greening occurs in the absence of any observed rainfall increases 

(Fensholt et al., 2012). Likewise, there are areas where a significant rainfall increase 

occurs without a corresponding change in greening (Fensholt et al., 2012). In addition, 

even in those regions experiencing concurrent greening and rainfall increase (such as in 

the African Sahel), removing the effects of rainfall from the NDVI time series does not 

completely remove the NDVI residual, indicating that the vegetation greening in the 

Sahel may be attributable to additional factors (Herrmann et al. , 2005). Changes in land 

use or the implementation of improved management practices may also impact vegetation 

in certain areas, such as the observed agricultural expansions in Australia’s 

Murray-Darling basin, the Middle East, the southwest United States, tree plantations in 

west China (Liu et al. , 2015), as well as grazing practices triggering changes in plant 

community composition in South Africa. Greening can also result from variations in 

species composition (e.g., exotic species invasion in many drylands (Herrmann and 

Tappan, 2013)). However, similar to rainfall changes, human-induced factors and 

compositional changes in vegetation communities are more likely to be an important 

local driver impacting vegetation response. As vegetation greening has been observed 

across all drylands, discriminating the influence of a potential global driver that is 

enhanced or suppressed by local scale factors, is one of the goals of this work.  
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To this end, we hypothesize that higher levels of atmospheric CO2 concentration 

are a key driver of the observed dryland greening, through an impact on plant water 

savings and consequent available soil water increase. A novel modeling framework 

introduced by Donohue et al. (2013), described higher vegetation water use efficiency 

(WUE) under CO2 enrichment, with the authors using this mechanism to explain 

increases in maximum vegetation cover in warm and dry environments. The hypothesis 

developed in this study implies that the greening in global drylands is a response to 

higher atmospheric CO2 levels and resulting increase in soil water availability. The 

hypothesis is based on increasing atmospheric CO2 inducing decreases in plant stomatal 

conductance and enhancing vegetation WUE (Donohue et al. , 2013; Farquhar et al., 1989). 

Higher WUE encourages increased soil water under the same productivity levels. Since 

soil water is a limiting factor in dryland vegetation growth and function 

(Rodriguez-Iturbe and Porporato, 2004), any increase in available soil water is expected 

to enhance plant growth and greening.  

Here, we attempt to examine this hypothesis using a data driven meta-analytic 

approach. One of the key aims of this work is not just to identify the potential 

contribution of CO2 to observed changes in global greening, but also to identify different 

soil water responses that might be occurring within dryland and non-dryland systems. 

Understanding the varying interactions between soil water and vegetation under CO2 

enrichment between dryland and non-dryland systems would significantly increase our 
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capacity to predict vegetation response to future climatic changes, as dynamic vegetation 

responses often pose large uncertainties in global models.  

2.3 Methods 

Our study is based on an analysis of data obtained from field experiments in 

which changes in soil water were measured under elevated atmospheric CO2 

concentrations using a Free-Air CO2 Enrichment (FACE) facility or open top chamber. To 

collect the data required in the meta-analysis, a comprehensive literature search using the 

terms ‘CO2 enrichment’, ‘soil moisture’, ‘FACE’, ‘open top chamber’ and ‘growth 

chamber’ was conducted across Thomson Reuters Web of Science and Google Scholar 

databases. All of the field data used in this study was derived from in-situ field 

experiments that examined soil water responses to both ambient and elevated 

atmospheric CO2 levels.  

A rigorous procedure was employed to ensure the independence of each data entry, 

avoiding over-representation of any particular study and reducing publication bias. For 

instance, in cases where data were collected over consecutive years, but using identical 

treatments with the same soil texture and vegetation cover, data were averaged and only a 

single entry from that study was used in the meta-analysis. In cases where different types 

of vegetation cover or soil texture were used, or where the same experiment was carried 

out under different treatments (e.g., nitrogen addition vs. control), data were treated as 

separate contributions. When soil water content was measured at multiple depths, only 

the top 0-25 cm measurements were used in the meta-analysis. We focus on soil water 
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content from the growing season only, since this is the period with the closest interaction 

between vegetation and soil water. A summary of the soil water content data under 

different CO2 enhancement studies was provided in Appendix A.  

The Meta-Win 2.0 software (Rosenberg et al., 2000) was used to perform 

statistical analysis on results. In order to include those studies that did not adequately 

report sample sizes or standard deviations, we conducted an unweighted analysis using 

the log response ratio (lnR) to calculate bootstrapped confidence limits (Rosenberg et al., 

2000). Elevated CO2 was considered to have a significant effect on soil water content if 

the bootstrap confidence interval did not overlap with zero (Rosenberg et al., 2000). The 

CO2 response of two groups was considered significantly different if their bootstrap 

confident intervals did not overlap. A statistical significance level of P < 0.05 was used.  

A structural equation model (SEM) (Grace, 2006) was also employed to test the 

relative importance of direct versus indirect linkages between CO2 enrichment and 

vegetation productivity for both drylands and non-drylands using all the available data. 

SEM statistics were calculated using International Business Machines (IBM) SPSS 

AMOS version 22 (AMOS Development Corp. Meadville, PA). We used a maximum 

likelihood based goodness-of-fit test to assess the degree of accord between observed and 

predicted covariance structures. Because our models were saturated, i.e., all possible 

pathways between all variables were accounted for, we could not test the significance of 

our models (Grace, 2006). The calculated path coefficients are based on the amount of 

variance explained in the response variables and they represent relative strengths of the 
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specific pathways. R2 values represent the total variances explained by all of the 

contributing variables. 

To test the soil water response under different climate regimes, we classified the 

study locations as “dryland vs. non-dryland” based on an aridity index database (Figure 

2.1). Following the United Nations Environment Program (UNEP) terminology, drylands 

are defined as regions where the Aridity Index (AI) is less than 0.65, with AI expressed as 

the ratio of mean annual precipitation to mean annual potential evapotranspiration. In 

addition to climatic regimes, a number of other factors might affect the response of the 

available soil water under CO2 enrichment. These include the system type, vegetation 

type and soil texture. We classified the system types as “natural vs. managed” by defining 

agriculture as a managed ecosystem and the remainder (i.e., forest and grassland) as 

natural systems (Figure 2.3A). Similarly, vegetation was discriminated into “woody vs. 

non-woody”, with the latter comprising grassland and cropland (Figure 2.3B). Soil 

texture was grouped into two classes based upon the United States Department of 

Agriculture (USDA) soil texture triangle: (1) Sand, which includes sand and loamy sand; 

and (2) Loam, which includes loam, clay loam, silt loam, sandy loam, and silty clay loam 

(Figure 2.3C). To test any potential introduced methodological bias, we compared the 

results of studies reporting volumetric water content (the predominant unit used in the 

studies comprising our synthesis) and results using other techniques such as gravimetric 

water content (Figure 2.3D). 
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2.4 Results and discussion 

In order to test my hypothesis and to evaluate the soil water response differences 

occurring within dryland and non-dryland systems, a total of 45 studies from 8 countries 

(yielding 1705 measurements from 21 distinct sites), were included in the meta-analysis 

(Figure 2.1A). The meta-analysis revealed that increasing atmospheric CO2 to between 

1.2 and 2.0 times the ambient CO2 level has a positive effect on soil water content, as 

indicated by the fact that the effect size was greater than zero in both drylands and 

non-drylands (Figure 2.1B). When considering the entire data set, higher CO2 levels 

resulted in an 11% increase in soil water content across all systems (Figure 2.1B). 

Importantly, the analysis revealed that elevated CO2 significantly enhanced soil water 

levels in drylands more so than it did in non-drylands (P < 0.05, Figure 2.1C), with soil 

water content increasing by 9% in non-drylands compared to 17% in drylands (P < 0.05, 

Figure 2.1C). According to our meta-analysis data set, the mean soil water content was 

11.6% under the ambient CO2 level in drylands, while it was 24.1% in non-drylands. 

Based on the meta-analysis results, the enhanced CO2 level would result in a 1.9% soil 

moisture change in drylands and 2.2% change in non-drylands. Although the absolute 

change of soil moisture in drylands is comparable to that in non-drylands, studies have 

shown that even a small change of soil moisture in drylands could be significant enough 

to cause large changes in vegetation productivity (Wang et a l., 2010). The CO2 induced 

soil water increase seems contrary to the conventional understanding that any additional 

soil water should be transpired or evaporated in drylands, as water is a limiting resource. 
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However, similar responses have been observed across many individual studies and are 

apparent in our global synthesis at both dryland and non-dryland sites, highlighting the 

strong role vegetation plays in the soil water balance (Rodriguez-Iturbe and Porporato, 

2004). Importantly, the observed response lends weight to the hypothesis that any 

additional soil water in the root zone is then available to facilitate vegetation growth and 

greening under enhanced atmospheric CO2. Determining the mechanisms of stronger soil 

water responses in drylands requires further investigation, since it is generally thought 

that elevated CO2 has a smaller effect on stomatal response during dry periods or under 

extreme drought (Ainsworth and Rogers, 2007). 

The direct effects of elevated CO2 on photosynthesis can act to increase plant 

productivity through the alleviation of any carbon limitation (Strain and Cure, 1985). 

However, CO2 is not a limiting factor in most drylands, where productivity is governed 

mainly by water and nutrient constraints (Scholes and Walker, 1993). Assuming that a 

direct CO2 effect occurs through the alleviation of carbon limitation in both dryland and 

non-dryland ecosystems, as shown earlier, our analysis has demonstrated that the indirect 

soil water response to elevated CO2 levels is 89% higher in drylands (P < 0.05, Figure 

2.1C), indicating that factors other than a direct CO2 effect play a role in increasing plant 

productivity in dryland systems.  

To explore this idea further, a SEM approach (Grace, 2006) was used to test the 

relative importance of direct (increased CO2 removing any carbon limitation) versus 

indirect (i.e., increased CO2 increasing soil water content) links between CO2 enrichment 
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and vegetation productivity for both drylands and non-drylands. SEM results show that 

the CO2 effect on productivity was stronger for both direct effects on growth (path 

coefficients = 0.86 for drylands and 0.2 for non-drylands) and indirect effects on soil 

water content (path coefficients = 0.74 for drylands and 0.13 for non-drylands) (Figure 

2.2), providing additional support that CO2 induced soil moisture increases is important 

in drylands.  

There are other variables that could affect the interaction between soil water 

content and elevated CO2 level, including soil texture (i.e. sand vs. loam), vegetation type 

(i.e. woody vs. non-woody) and system type (i.e. managed agricultural system vs. natural 

forest or grassland). However, with the protocols developed in this exercise, the 

meta-analysis shows no evidence for any significant effects of these on soil water under 

higher CO2 levels (Figure 2.3A-C). In addition to accounting for the potential influence 

of other factors on vegetation response, the use of different methodologies to quantify 

soil water content has the capacity to influence the interpretation of results. To test any 

introduced methodological bias, we compared the results of studies reporting volumetric  

water content (the predominant unit used in the studies included in our analysis) and 

results using techniques such as gravimetric water content. The meta-analysis results 

were consistent between the different approaches (Figure 2.3D).  

To date, the global average concentration of CO2 in the atmosphere has increased 

by nearly 27% (from 315 ppm to approximately 400 ppm) over the period 1960-2015 

(NOAA, 2015), with the expectation of a continued rise into the 21st century. To establish 
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the validity of using results from higher CO2 enrichment experiments (1.2 to 2.0 times 

ambient atmospheric CO2) to explain the soil water-vegetation responses observed under 

current CO2 levels, we examined the sensitivity of soil water change to varying levels of 

CO2 using a regression analysis. Using the global meta-analysis data, a significant positive 

change in soil water along the CO2 enrichment gradient was determined (P < 0.05, Figure 

2.4), supporting the CO2 enrichment effect on soil water. At the same time, the rate of 

change was low (slope = 0.138, Figure 2.4), indicating that soil water changes in response 

to CO2 are comparable between higher CO2 enrichment levels (1.2-2.0) and currently 

observed CO2 enrichment (~1.27). The stability of the rate of change justifies using higher 

CO2 enrichment levels to interpret soil water responses to currently observed CO2 

enrichment.  

As noted earlier, increased CO2 is not the only potential driver of changes in 

vegetation response. Temperature increases could also affect dryland plant productivity 

and greenness. Studies on the impact of concurrent CO2 and temperature increase upon 

WUE have found that WUE substantially increased with elevated CO2, despite a significant 

increase in air temperature, because the increase in leaf temperature is not significantly 

different between CO2 treatments due to evaporative cooling of the leaf (Eamus, 1991). In 

addition, none of the CO2 enrichment studies used in this data synthesis have a concurrent 

temperature treatment operating, indicating that temperature is not a confounding factor for 

our main conclusion. At the same time, we argue temperature is an important factor to 

constrain the degree of CO2 induced greening due to its direct and negative impact on WUE 
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and vegetation phenology. For example, an experiment at an agricultural field in a 

semi-arid region of China showed that WUE could decrease by 7.3% with a mean daily 

temperature increase of 1.2°C (Xiao et al. , 2007). In some Mediterranean-type ecosystems 

such as annual-dominated California grasslands, warming has accelerated the decline of 

canopy greenness because the effects of reduced transpiration losses push the canopy to an 

earlier senescence (Zavaleta et al., 2003). These facts indicate that the positive effect of 

CO2 induced water savings may eventually be offset by the negative effect of CO2 induced 

temperature increases when the temperature increase crosses a certain threshold. Further 

understanding of this complex feedback process is required.  

2.5 Conclusions 

Dryland greening presents something of a paradox in our intuitive understanding of 

plant-water-CO2 interactions. Combining our meta-analysis results and early work, it 

illustrates that higher concentrations of atmospheric CO2 induce plant water saving and 

that consequent available soil water increases are a likely driver of the observed greening 

phenomena. The results support recent modeling work showing higher vegetation WUE 

and higher maximum vegetation cover under CO2 enrichment in warm and dry 

environments (Donohue et al. , 2013). The time scale of the CO2 enrichment effect on 

greening may have potential implications on global carbon budgets, as drylands have been 

found to be significant players in modulating the inter-annual variability of carbon cycling 

(Poulter et al., 2014). By identifying the contributing mechanisms that result in vegetation 

greenness, the findings provide important insights into plant-water interactions. Predicting 
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system level response to future climatic and/or anthropogenic perturbations in dryland 

systems remains a critically important but under-investigated area of inquiry. 
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Figure 2.2 Structural equation modeling of direct and indirect effects of CO2 enrichment 

on vegetation productivity for both drylands and non-drylands. The number of cases is 

shown in brackets. Arrow thickness is proportional to path coefficient. 
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Figure 2.3 Enhancement of soil water content for elevated CO2 levels (A) under different 

management systems; B) under different vegetation types; and (C) under different soil 

texture; and (D) using results from different soil water content (SWC) measurement 

methods (volumetric method, gravimetric method). The number of cases is shown in 

brackets. Error bars are bootstrapped confidence intervals (CI). All the statistics are 

significant at P < 0.05. 
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Figure 2.4 Sensitivity of the soil water response to CO2 enrichment for the entire data set. 

The response index was calculated as the soil water content under elevated CO2 divided 

by the soil water content under ambient CO2. The closed circ les are the observations, 

with the solid black line providing a linear regression. The red lines represent the 95% 

confidence intervals of the observations and the dashed grey lines represent the 95% 

confidence interval of the model. m is the slope of the regression line.  
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CHAPTER 3: EVALUATION AND DEVELOPMENT OF 

ECOHYDROLOGICAL MODELING FRAMEWORK TO LINK 

ATMOSPHERIC CO2, STOMATAL CONDUCTANCE RESPONSE, AND 

ROOT-ZONE SOIL MOISTURE DYNAMICS 

3.1 Abstract 

The establishment of an accurate stomatal conductance (gs) model in responding 

to CO2 enrichment under diverse environmental conditions remains an important research 

issue as gs is a key factor in understanding plant-water-atmosphere interactions and how 

changing climate affects vegetation responses. Although there are gs models with 

different levels of complexity, no previous studies have attempted to evaluate these 

models using the same set of measurements from various environmental conditions. In 

this study, we evaluated three of the most commonly-used gs formations for the 

estimation of the stomatal response to environmental factors using in situ measurements 

under different environmental conditions. The three gs models were Leuning’s modified 

Ball-Berry model, and two specific cases of the optimization models (i.e., Rubisco 

limitation model and RuBP regeneration limitation model). Based on an analysis of 234 

data points obtained from field experiments under instantaneous, semi-controlled and the 

Free-Air CO2 Experiment (FACE) conditions, we found that Leuning’s modified 

Ball-Berry model and RuBP limited optimization model showed similar performance and 

both performed better than Rubisco limitation model. Functional groups (e.g., C3 versus 

C4 species) and life form (e.g., annual versus perennial species) play an important role in 
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determining the gs model performance and thus pose a challenge for gs predictions in 

mixed vegetation communities. Further, a conceptual relationship was developed to link 

the relative effect of a change in gs to the soil water status, which helped to better 

understand the atmospheric CO2 effect on root-zone soil moisture dynamics in dryland 

systems where soil water is a limiting factor in vegetation growth and function.  
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3.2 Introduction 

Stomata control the water losses and CO2 uptake between plant and atmosphere, 

and therefore play a key role in determining the vegetation response to climate change. 

Stomatal conductance (hereafter gs) modeling has long been used as an effective and 

well-adapted tool to study the physiological controlling mechanisms of stomata. A large 

number of studies have modeled stomatal behavior as a function of environmental factors, 

such as CO2, light, relative humidity or vapor pressure deficit (Ball et al., 1987; Cowan 

and Farquhar, 1977b; Jarvis, 1976; Leuning, 1995). There are three basic approaches to 

modeling stomatal conductance; namely empirical approach, mechanistic (process-based) 

approach, and economic (optimization-based) approach (Buckley and Mott, 2013). In 

addition to the categorization based on modeling methods employed, the stomatal 

conductance models can also be categorized into two major types, depending on whether 

physiological constraint or hydrological limitation is the main controlling factor for 

stomatal response. The former models express gs as a function of the biochemical and 

physiological processes associated with carbon dioxide assimilation, and the latter 

express gs as a function of water availability such as soil water content (Damour et al., 

2010).  

The advantages and disadvantages of these different modeling approaches are 

well acknowledged. Most leaf and canopy gas exchange studies use the empirical 

(phenomenological) models because they are simpler, and in many conditions, agree well 

with direct gs measurements (Buckley and Mott, 2013). The widely used empirical 
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models include the multiplicative and empirical model of Jarvis (1976), ‘Ball-Berry’ 

model (1987), and modified ‘Ball-Berry’ model by Leuning (1995). The major limitation 

of such models is that the empirical approach relies on the choice of certain sets of 

empirical parameters and the use of statistical correlations to assume a link of the relevant 

mechanisms to the processes, so it cannot fully describe the system behaviors and 

interactions (Adams et al., 2013). It is worth noting, however, both Ball-Berry’s model 

and Leuning’s modified ‘Ball-Berry’ model have showed good agreement with 

observations across a broad range of vegetation types (Ball et al., 1987; Collatz et al., 

1992; Harley et al., 1992; Leuning, 1995). 

To address the limitations of empirical models, some recent studies have 

attempted to model gs in a more comprehensive and mechanistically explicit way (Adams 

et al., 2013; Buckley and Mott, 2013; Dewar, 2002; Gao et al., 2002). However, the 

mechanistic knowledge is often difficult to translate into a mathematic framework 

(Damour et al. , 2010), and parameters associated with biophysical properties are difficult 

to measure experimentally (Buckley and Mott, 2013). In reality, the mechanistic models 

are less often used to predict the environmental stimuli’s impact on gs in the cellular and 

subcellular processes. Because it is generally easier to build models using observations, 

the majority of stomatal conductance models are ‘semi-empirical’, meaning that the 

models are built on physiological mechanisms, but are combined with empirical functions 

(Damour et al., 2010). 
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The optimization approach is pioneered by Cowan & Farquhar (Cowan and 

Farquhar, 1977b), based on the theory that plants tend to maximize CO2 assimilation for a 

fixed amount of water loss or tend to minimize water loss for a fixed amount of CO2 

assimilation. Using Lagrange transformation, the optimization theory has been 

mathematically translated into the assumption that the marginal water cost per unit 

carbon gain 𝜕𝐸/𝜕𝐴𝑛𝑒𝑡, i.e. the ratio of the sensitivities of rate of transpiration (E) and 

net carbon assimilation (Anet) to changes in gs, stamatal remains constant and equals to the 

Lagrange multiplier λ during a finite time interval (i.e., within a given day) (Cowan and 

Farquhar, 1977b; Damour et al., 2010). Although there has been debated that λ may vary 

with environmental conditions and is difficult to measure (Buckley, 2007; Collatz et al., 

1992; Makela et al., 1996) , the optimization models have recently received renewed 

interest because they do not require a priori specification to describe the response of 

observed stomatal conductance to environmental variables (Manzoni et al. , 2011; Medlyn 

et al., 2011). The optimization models provide a close-form expression for gs as a 

function of environmental variables and an additional parameter λ (Vico et al., 2013). 

There are two major assumptions for optimization models, in which Katul (2009) and 

Lloyd and Farquhar (1994) assumed that leaf photosynthesis is limited by Rubisco 

activity (i.e. limited by CO2 availability within the sub-stomatal cavity), while Medlyn et 

al. (2011) focused on conditions where photosynthesis was limited by ribulose-1,5- 

biphosphate (RuBP regeneration) regeneration rate (i.e. limited by light availability).  
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The stomatal conductance models also can be categorized into CO2 assimilation 

models and water limited conductance models (Damour et al., 2010). The CO2 

assimilation models focus on the biochemical and physiological processes associated 

with carbon assimilation, and so these are also called moisture-independent models. The 

model assumes that the stomatal conductance is regulated by the environmental variables 

such as light, temperature, CO2 and nitrogen through the biochemical processes of 

assimilation (Cowan and Farquhar, 1977a; Farquhar et al., 1980; Field and Mooney, 

1986). Ball-Berry model (Ball et al., 1987) and Leuning’s (1995) modified version have 

been recognized as the most widely-used moisture-independent models to successfully 

estimate the stomatal conductance for well-watered systems. In contrast, the water 

limited conductance models are called moisture-limited models because they attempt to 

address the water limitation, either through scaling a photosynthesis-based model using 

some factors representing water stress (e.g. Albertson and Kiely, 2001; Jacquemin and 

Noilhan, 1990; Rodriguez‐Iturbe et al., 1999; Thornthwaite and Mather, 1955) , or by 

linking the rate of stomatal conductance with soil moisture status by assuming there is a 

continuous functional dependence of conductance upon soil moisture (e.g., Buckley et al., 

2003; Dewar, 2002; Gao et al., 2002; Katul et al., 2003).  

Stomata respond to environmental stimuli in a complex way. Therefore, it has been 

challenging to design gs models that are capable to deal simultaneously with all the 

environmental factors. The establishment of a reliable and general stomatal conductance 

model remains an important research problem since gs is the key for understanding the 
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plant-water-atmosphere interactions and how changing climate affects the three-way 

interactions. A recent study introduced by our group (Lu et al. , 2016) has described that 

the greening in global drylands is a response to higher CO2 levels. Thus, we hypothesize 

that elevated CO2 decreases stomatal conductance and increases vegetation water use 

efficiency, and subsequently increases the available soil moisture under the same 

productivity level. This study will help to evaluate such hypothesis from the modeling 

perspective. A complex model with physical based and realistic parameterization likely 

performs well; however, development of such a model can be difficult due to numerous 

model parameters and data inputs.  In this study, I will evaluate three of the most 

commonly-used gs models for estimation of stomatal response to environmental stimuli 

using in situ measurements under different environmental conditions. To our knowledge, 

no previous study has used the same dataset to test all three different model predictions 

simultaneously, and to test them under diverse conditions. The second objective of this 

study is to develop a modeling framework that could link the changes in stomatal 

conductance and soil water status. The establishment of this framework is important in 

dryland systems where soil water is a limiting factor in vegetation growth and function 

(Rodriguez-Iturbe and Porporato, 2004).  

3.3 Methods  

3.3.1 Model formulation 

In this study, I tested three gs models: the Leuning’s modified Ball-Berry model 

that is the modification of a widely used semi-empirical Ball-Berry approach, and the two 
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solutions to the stomatal optimization theory for estimating gs: the optimization model for 

RuBP regeneration limitation, and the optimization model for Rubisco limitation. These 

two cases presented the optimal extreme conditions since it is assumed that stomata 

aperture was optimized either under RuBP regeneration limitation or under Rubisco 

limitation only. Although the mechanistic models are theoretically better for predicting 

the stomatal response to environmental stimuli, the complex parameterization make it 

difficult to parameterize in the field setting, and therefore no mechanistic model was 

chosen for this study.  

1. Ball-Berry and Leuning’s stomatal conductance models 

Ball et al. (1987) developed one of the most commonly used models of gs. It 

assumed that stomatal conductance is a function of photosynthetic rate (A), CO2 

concentration at the leaf surface (Ca), and humidity deficit (D). Leuning (1995) suggested 

a hyperbolic function of D for humidity response, so the mathematical form of Leuning’s 

modified Ball-Berry model is given by  

𝑔𝑠 = 𝑔0 + 𝑎1
𝐴

(𝐶𝑎−Γ)(1+𝐷 𝐷0⁄ ), (1) 

 

where 𝑔0, 𝑎1  and 𝐷0  are empirically determined coefficients, and Γ is the CO2 

compensation point, which is zero for C4 plant (Cox et al., 1998).  

Cox et al. (1998) showed that the Ball-Berry and Leuning models produced good 

fits to the experimental data, and in both cases the optimal minimum canopy conductance 

𝑔0 was relatively small, and thus suggested to simplify Leuning’s model by taking 𝑔0 



 

 40 

as zero. Based on simplified Leuning’s model, Yu et al. (2001) further proposed to use 

gross assimilation rate instead of net assimilation, and correspondingly use 𝐶𝑎 to replace 

𝐶𝑎 − Γ, because stomatal conductance could increase immediately with increasing light 

even below the light compensation point. Next, by taking humidity response parameter 

𝐷0 as 1.5 kpa (Leuning, 1995), the Leuning’s model shows the following approximation:  

𝑔𝑠~ 𝑎1
𝐴

𝐶𝑎× (1+𝐷 1.5⁄ ), (2) 

Many other studies, however, showed better results when f (D) = D-1/2 was used for 

humidity response than a hyperbolic function of D. It is interesting to note when 

replacing D with a form of D-1/2, the Leuning’s modified Ball-Berry’s photosynthesis 

model shows a similar approximation for the function of A, Ca and D , as the RuBP 

regeneration limitation optimization model does.  

2. Optimization model for RuBP regeneration limitation 

CO2 fixation can be limited by Rubisco kinetics or by the regeneration of RuBP or 

co-limited by both. Here we tested two model solutions derived from optimal stomatal 

theory as shown in Vico et al. (2013). The first model assumed that stomatal aperture was 

optimized under RuBP regeneration, and the atmospheric CO2 concentration was much 

larger than the CO2 compensation point (i.e., 𝑐𝑎 ≫ Γ) and 𝑐𝑎 ≫  𝑎𝜆𝐷 (𝑎 = 1.6,  𝜆 is 

the marginal water use efficiency). Based on this assumption, Medlyn et al.’s (2011) 

derived the following approximation on the left for the optimal stomatal conductance, 

and Vico et al. further simplified the equation to obtain the approximation on the right 

(Vico et al., 2013): 
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𝑔𝑠~ 𝐴
𝑐𝑎√𝐷 𝑎(√𝐷 + √3Γ

𝑎𝜆)~ 𝐴
𝑐𝑎√𝐷

√3𝑎Γ
𝜆 , (3) 

where Γ is the CO2 compensation point.  

3. Optimization model for Rubisco limitation 

The second model was derived by Katul et al. (2009) assuming that stomatal 

aperture was optimized under Rubisco limitation only, and 𝑐𝑎 ≫ Γ, so the following 

linear dependence of stomatal conductance can be found (Vico et al., 2013): 

𝑔𝑠~ 𝐴
𝑐𝑎√𝐷 √𝑐𝑎

𝑎𝜆, (4) 

I re-arranged equation (4) and obtained the following expression:  

𝑔𝑠 ≈ 𝐴
√𝑐𝑎𝐷

√ 1
𝑎𝜆, (5) 

 

Assuming that 𝜆 is constant, the relations of equation (3) and (5) show that the 𝑔𝑠 

could be linearized with the function of Ca, A, and D , with the slopes of the lines being 

proportional to (3𝑎Γ 𝜆⁄ )1/2 for RuBP regeneration limited model and (𝑎𝜆)−1/2 for 

Rubisco limited model. Although λ may vary with environmental conditions for 

long-term (monthly to seasonal), in practice, λ can often be considered constant for short 

term (i.e., sub-hourly to daily) exposure to changing environmental conditions (Vico et al. , 

2013). 

3.3.2 Testing data sets 

This study consisted of two-steps, model evaluation and modeling framework 

development. The model evaluation was based on an analysis of data obtained from 

various field experiments in which changes in stomatal conductance were measured under 

acclimation to atmospheric CO2 concentrations under different environmental conditions. 
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A comprehensive literature search using the terms ‘CO2 acclimation’, ‘stomatal 

conductance’, ‘FACE’, and ‘growth chamber’ was conducted across Thomson Reuters 

Web of Science and Google Scholar databases. All of the field data used in this study was 

derived from in-situ field experiments that examined stomatal conductance responses to 

different atmospheric CO2 levels. The raw data was summarized in Appendix B.  

Three types of field measurements were used to evaluate the performance of the 

three photosynthesis models. The conditions to be tested included: (1) the instantaneous 

measurement of gs and atmospheric CO2 concentration (hereafter Ca), (2) the measurement 

of gs and Ca from semi-controlled plant growth facility, and (3) the Free-Air CO2 

Experiment (FACE) measurement of gs and Ca. For a better comparison, we re-adjusted the 

x-axis (i.e., f(A, Ca, D)) for Rubisco simulation, to scale it to the same range of f(A, Ca, D) 

as those of Leuning’s modified Ball-Berry model and RuBP limited model.  Such 

adjustments do not change the slope and R2 values of f(A, Ca, D) and gs correlation for the 

Rubisco model. 

In the instantaneous gs measurements, each chamber measurement was made over a 

short period in the field, and the environmental conditions were kept constant. For example, 

Yu et al. (2004) conducted leaf gas exchange measurements in a winter wheat cropping 

system at North China Plain. In the experiment, the Ca was varied from 0 to 1000 μmol 

mol-1 in the leaf chamber to get instantaneous gs response to CO2, while temperature, 

humidity and wind speed over the leaves were kept constant.  
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For semi-controlled conditions, the steady-state leaf gas-exchange was measured 

in a semi-controlled plant growth facility that allowed the study of the effects of elevated 

CO2 on the growth of plants under radiation and temperature conditions similar to the field 

(Anderson et al., 2001; Maherali et al. , 2002). Only a few studies have investigated the 

stomatal acclimation to CO2 in the field under semi-controlled conditions. Through an 

extensive literature search, five sets of semi-controlled measurement data sets were 

extracted from the literature and analyzed. 

Much of the FACE studies compared gs responses of plants grown under ambient 

Ca with those grown under doubled CO2 concentration. In FACE experiments, the 

environmental factors such as leaf temperature and atmospheric water vapor pressure 

entering the chamber were not controlled during measurements but gs was measured when 

it reached steady state. The database of FACE studies used in this study was extracted from 

43 studies that have determined the response of gs to CO2 concentration ranging from 330 

to 757 µmol mol-1, corresponding to 35 different plant species or growing conditions. 

These studies included thirteen datasets for C3 crops, two datasets for C3 herbaceous plants, 

eight datasets for C3 grasses, seven datasets for C3 shrubs, seventeen datasets for C3 trees, 

four datasets for C4 crops and four datasets for C4 grasses.  

3.3.3 Parameter sensitivity analysis  

There are three major factors in equations (2), (3) and (4) controlling gs: 

assimilative rate (A), CO2 concentration (Ca), and vapor pressure deficit (D). In this study, 

a sensitivity analysis was conducted to examine which parameter (input) could have the 
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most influence on the modeled gs output, by varying one parameter over its entire range 

while fixing others (i.e., no interactive effects were tested). For the sensitivity analyses, 

the mean value derived from the entire database was used as the “base case”, increasing 

and decreasing by 1% increment to reach the boundary values (i.e., maximum and 

minimum values derived from the entire database). The percent change in the model 

output was calculated. The average of the difference in percentage change between two 

consecutive gs output values was then defined as the parameter’s sensitivity, which can be 

described as:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
∑ ∆𝑔𝑠(𝑖)

𝑛
𝑖=1

𝑛  ×  100% , (6) 

where ∆𝑔𝑠(𝑖)  is the percentage change of stomatal conductance corresponding to one 

interval increment in one parameter (e.g., 1% increment is used in this study), n is the 

number of intervals. 

3.4 Results and discussion  

3.4.1 Sensitivity analysis  

The sensitivity values for Ca and D were negative while the assimilative rate A 

had the positive values (Table 3.1). Sensitivity analyses suggested that the assimilative 

rate A was the most influential factor for all three models among all the parameters with 

an average sensitivity value of 1.68% (Table 3.1). The average sensitivity values for Ca 

and D varied among the different models. Ca exhibited the same sensitivity value of 1.25% 

for Leuning’s modified Ball-Berry model and RuBP limited model, while the Rubisco 

limited model had a lower average sensitivity value of -0.63% (Table 3.1). D had the 

lowest sensitivity values for all of the three models, ranging from -0.57% to -0.64% 
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(Table 3.1). The results suggested that A and Ca were two main parameters controlling the 

model output for Leuning’s modified Ball-Berry model and RuBP limited model, while 

the model output for Rubisco limitation was more controlled by A and less controlled by 

Ca and D. All three models were less sensitive to the parameter D. 

3.4.2 Evaluation of model performance under different environmental conditions  

Figure 3.1 shows the response of gs to the function of Ca, A, and D, as predicted 

by the Leuning’s modified Ball-Berry model and the two single-limitation optimization 

models, by using the instantaneous measurement data. The response of gs to 

environmental factors was better predicted by Leuning’s modified Ball-Berry model and 

RuBP limited optimization model, with a R2 value of 0.78 for Leuning’s modified 

Ball-Barry model (p < 0.05), and 0.81 for RuBP-limited optimization model (p < 0.05) 

(Figure 3.1). However, the Rubisco-limited optimization model could not predict the 

response of gs well with the functions of Ca, A, and D, showing a low R2 value of 0.21 (p 

< 0.05) (Figure 3.1).  

None of the three models show a good performance to predict the response of gs to 

the function of Ca, A, and D using the semi-controlled measurement data (Figure 3.2). The 

predictability of gs using the function of Ca, A, and D was low for all the three models, with 

R2 values ranging from 0.21 to 0.31 (p < 0.05) (Figure 3.2).  However, there was a 

significant difference between functional groups. The predictability of gs was significantly 

improved when separating functional groups. The Leuning’s modified Ball-Berry model 

and the RuBP-limited optimization model provided R2 values of 0.56 and 0.54 (p < 0.05) 
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for C3 species, and R2 values of 0.67 and 0.58 (p < 0.05) for C4 species, respectively 

(Figure 3.3). The Rubisco-limited optimization model, however, showed much better gs 

predicting power for C4 species (R2 = 0.67, p < 0.05) than C3 species (R2 = 0.19, p < 0.05) 

(Figure 3.3). Besides the difference in functional groups, it was also found there was a 

significant difference between annual and perennial species. gs can be better predicted by 

the function of Ca, A, and D for the annual species alone, with a R2 value of 0.68, 0.72, and 

0.58, for Leuning’s model, RuBP limited model and Rubisco limited model, respectively (p 

< 0.05) (Figure 3.4). In comparison, the gs predictability on perennial species was much 

lower, with a R2 value ranging between 0.25 and 0.36 (p < 0.05) (Figure 3.4). This may 

imply that gs is less sensitive to Ca, A, and D for perennial species than annual species.  

Because the environmental factors such as atmospheric water vapor pressure were 

not monitored in FACE experiments, only the estimates of gs as the function of Ca and A 

were tested for FACE data. In general, neither model provides a good estimate of gs as the 

function of Ca and A on either C3 plants or C4 plants using the FACE data (Figure 3.5). 

But a detailed analysis of the FACE database used in this study indicated that there was 

significant variability among functional groups in how gs responded to elevated CO2 

(Figure 3.6). On average, gs was reduced by 22.8%, 23.6%, 13.5%, 16.6%, 30.5%, and 

32.3% in C3 herbaceous crops, C3 grasses, C3 shrubs, C3 trees, C4 herbaceous crops, and 

C4 grasses, with an atmospheric CO2 enhancement of 58%, 69%, 59%, 54%, 52%, 81%, 

respectively. Trees and shrubs showed a lower percentage decrease in gs compared to C3 

and C4 grasses and herbaceous crops, similar to the trend reported previously (Ainsworth 
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and Rogers, 2007; Nowak et al., 2004; Saxe et al., 1998). When separating into different 

plant life forms (e.g., trees, shrub or grasses), the predicted linear correlation of gs and the 

function of Ca and A on trees and shrubs had been considerably improved. The regression 

factor of R2 value increased to 0.70, 0.70 and 0.65 for C3 trees (p < 0.05), 0.87, 0.87 and 

0.83 for C3 shrubs (p < 0.05), on linear fitting with Leuning’s modified Ball-Berry model, 

RuBP limited model, and Rubisco limited model, respectively (Figure 3.6). But crops and 

grasses still had low R2 value for the gs dependence on the function of Ca and A (Figure 

3.6).  It was noted that gs might be better predicted by the function of Ca and A for the 

perennial species than for the annual species (Figure 3.7). Although the result seemingly 

contrasted with what was observed from semi-controlled data, a detailed data check 

revealed that the majority of annual species were C3 and C4 crops, indicating that the 

functional group could be a more important factor affecting the model performance as 

discussed in the later sections.  

In general, the Leuning’s modified Ball-Berry model and RuBP limited 

optimization model showed similarly better predictive performance than Rubisco limited 

model. It is not surprising to see that these two models exhibited the similar patterns 

because the RuBP model was derived structurally homogenous to the classic Ball-Berry 

model but was based on the optimal stomatal conductance theory (Medlyn et al., 2011). A 

major difference between these two formulations of gs was that Leuning’s model used a 

hyperbolic form of D while the RuBP limited model used f (D) = D -1/2. Our sensitivity 

analysis has indicated that model output for Leuning’s modified model and RuBP limited 
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model were more sensitive to A and Ca, and less sensitive to D, so the modeled stomatal 

conductance was less influenced by using the different form of the function D. The RuBP 

regeneration limited model generally simulated more reasonable Ca response because its 

formulation could predict a stomatal closure to rising Ca for all the values above 200 ppm, 

while the Rubisco limited formulation predicted that the stomata remained open at rising 

Ca up to Ca values of 500-600 ppm (Buckley, 2017; Medlyn et al. , 2013). The current 

data-driven analytical results generally supported previous findings, but it is noted that 

other factors such as functional groups could play a more important role in achieving a 

better model performance.  

The results showed that the Rubisco-limited optimization model could not predict 

the response of gs well with the functions of Ca, A, and D, for any types of the field data 

on C3 species. This can be explained by what process is limiting A at given CO2 and 

whether the control of A shifts from Rubisco to RubP regeneration as CO2 arises. For C3 

plants, Rubisco capacity is the predominant limitation on A at low CO2 while the 

limitation shifts to RuBP regeneration capacity at elevated CO2 (Long and Drake, 1992). 

Our collected data for Ca ranged between 100 and 998 ppm, particularly, a major part of 

the Ca from the instantaneous measurements and semi-controlled measurements were 

within the transition for the stomatal aperture being Rubisco activity to RuBP 

regeneration. As Ca continued to rise, the photosynthesis on C3 plants moved towards 

more predominately limited by RuBP regeneration. To date, the global average 

concentration of CO2 in the atmosphere has increased to approximately 405 ppm 
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(lugokencky, 2017), which implies that the RuBP limited model maybe give more 

reasonable prediction. C4 metabolism behaves in different mechanism in which CO2 is 

saturated at low Ca, and A is less sensitive to the increase in Ca (Ghannoum et al., 2000). 

Functionally different groups of plants can significantly affect the model 

performance. Previous studies had indicated that, for C3 plants, the magnitude of a 

decrease in Rubisco activity or increase in the capacity for RuBP regeneration varied 

among the different functional groups. For example, Ainsworth et al. (2007) has shown 

that trees had the smallest reduction in Rubisco activity when compared to grasses, crops, 

and shrubs. It was also found that crops reduced Rubisco activity at elevated CO2 to a 

greater extent than the capacity for RuBP regeneration (Long et al., 2006). The C4 plants 

are different because they are CO2 saturated at current CO2, and when CO2 rises, the 

competitive advantage conferred by C4 metabolism will be reduced (Sage, 2004). 

3.4.3 Evaluation of model performance under environmental different conditions for 

dryland data 

The CO2 assimilation models such as the Ball-Berry model and Leuning’s modified 

version work well under conditions of ample water supply. In this study, I am interested 

to know whether these models could perform well under water-stressed conditions. Given 

the limited data available, I tested the performance of Leuning’s modified Ball-Berry 

model and the two optimization models using semi-controlled field measurement data 

collected at dryland sites. It is not surprising to find that neither model provides a good 

estimation of gs as a function of Ca, A, and D (Figure 3.8). But it was found that plant 
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functional groups and life forms might pose a significant influence on the results . The 

linear correlation of gs dependence of the function of Ca and A had been considerably 

improved when data were separated into different plant and life forms (e.g., perennial C3 

grass or annual C3 grass) (Figure 3.9). The R2 values generally ranged from 0.65 to 0.90 

on linear fitting with Leuning’s modified Ball-Berry model and RuBP limited model.  

However, the predictability of gs on perennial C3 herb and annual C3 grass was still low for 

Rubisco limited model, with the R2 values of 0.02 for annual C3 grass and 0.16 for 

perennial C3 herb (Figure 3.9). This is consistent with the overall trend as we discussed in 

the previous section.  

3.4.4 Development of a modeling framework to link gs and soil water content 

To develop a conceptual relationship to link stomatal conductance and soil 

moisture potential, I selected a hydromechanical model that was originally developed by 

Gao et al. (2002). Although the model has some limitations that may affect the 

performance at short timescales (e.g., sub-daily) (Emanuel et al. , 2007), Gao’s model was 

selected because it did not require a priori assumption of a threshold for soil water 

limitation (Dewar, 2002; Katul et al., 2003). The model simply assumed there was a linear 

dependence of stomatal conductance on soil water potential. The water-limited 

conductance sub-model was used to develop the linkage between 𝑔𝑠 and soil moisture 

because the availability of soil water is the limiting factor for growth of vegetation in 

drylands.  
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Gao’s model shows a relation between soil water potential 𝜓𝑠  and stomatal 

conductance 𝑔𝑠 as: 

 

𝑔𝑠 =
𝑔0𝑚+𝑘𝜓𝜓𝑠+𝑘𝛼𝛽𝐼𝑝

1+𝑘𝛽𝑔𝑑𝑣𝑝
, (7) 

where 𝑔0𝑚 is the maximum residual stomatal conductance at saturated soil conditions, 𝐼𝑝 

is photosynthetic active radiation (PAR), and 𝑘𝜓, 𝑘𝛼𝛽 , and 𝑘𝛽𝑔  are model-specific 

parameters, 𝑑𝑣𝑝 is D normalized by atmospheric pressure.  

By re-arranging the equation (7), and computing a derivative (see Appendix C), it can find 

that the relative effect of a change in 𝑔𝑠 on 𝜓𝑠 is given by:  

 

𝑑𝜓𝑠
𝜓𝑠

= 1
𝑘𝜓

𝑑𝑔𝑠
𝑔𝑠

+ 𝑘𝛽𝑔

 𝑘𝜓
(𝑑𝑔𝑠

𝑔𝑠
+ 𝑑𝐷𝑣

𝐷𝑣
) −  𝑘𝛼𝛽

𝑘𝜓

𝑑𝐼𝑝

𝐼𝑝
, (8) 

 

Next, the dependence of 𝑔𝑠  on 𝐷𝑣  can be further modeled by taking 𝑑𝑔𝑠
𝑔𝑠

 as being 

proportional to 𝑑𝐷𝑣−0.5

𝐷𝑣
−0.5 . Similarly, the dependence of 𝑔𝑠 on 𝐼𝑝 can be modeled by taking 

𝑑𝑔𝑠
𝑔𝑠

 as being proportional to 
𝑑(1+𝛽 𝐼𝑝⁄ )−1

(1+𝛽 𝐼𝑝⁄ )−1 . Further, a relation between soil water potential 

and water content can be modeled by taking 𝑑𝜓𝑠
𝜓𝑠

 as being proportional to 𝑑(𝜃)−𝑎

(𝜃)−𝑎  (see 

Appendix C for details). By replacing with all these approximations, it can eventually find 

that 

𝑑𝜃
𝜃

=
(− 1

𝑘𝜓
+

𝑘𝛽𝑔
101.3 × 𝑘𝜓

+
 𝑘𝛼𝛽
𝑘𝜓

)

𝑘×𝑎
𝑑𝑔𝑠
𝑔𝑠

, (9) 

where 𝑘𝜓, 𝑘𝛼𝛽, 𝑘𝛽𝑔, 𝛽 and 𝑎 are model-specific parameters.   
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3.5 Conclusions 

This study evaluated the performance of three commonly-used gs models to predict 

the stomatal conductance response to CO2 enrichment under different environmental 

conditions. This is one of the first studies that have attempted to test these models using 

the same set of measurements from various environmental conditions. Although there 

could be a potential limitation of using leaf level gs models to test canopy-scale 

measurements (i.e., FACE data), Leuning’s modified Ball-Berry model and RuBP limited 

optimization model generally provided a good estimate of gs for all the tested datasets. In 

addition, the results of this study indicate that variables such as functional groups (e.g., 

C3 versus C4 species) and life form (e.g., annual versus perennial species) may play an 

important role in determining the stomatal response to changes in environmental factors, 

and therefore need to be explicitly considered in future modeling framework.  
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Table 3.1 Model sensitivity of key parameters for Leuning’s modified Ball-Berry model, 

RuBP limited optimization model, and Rubisco limited optimization model. 

  Leuning’s modified 
Ball-Berry model 

Optimization model 
for RuBP limited 

Optimization 
model for Rubisco 
limited 

Parameters Step Interval Average 
sensitivity 

(%) 

Interval Average 
sensitivity 

(%) 

Interval Average 
sensitivity 

(%) 
Assimilative 
rate A (µmol 
m-2 s-1) 

1% [1.8, 
39.0] 

1.68 [1.8, 
39.0] 

1.68 [1.8, 
39.0] 

1.68 

CO2 

concentration 
Ca (µmol 
mol-1) 

1% 
[100, 
998] 

-1.25 
[100, 
998] 

-1.25 
[100, 
998] 

-0.63 

Vapor 
pressure 
deficit (kPa) 

1% 
[0.45, 
3.2] 

-0.57 
[0.45, 
3.2] 

-0.64 
[0.45, 
3.2] 

-0.64 
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Figure 3.1 Instantaneous measurements of stomatal conductance gs as a function of Ca, A, 

and D for the Leuning’s modified Ball-Berry model (red open circles), RuBP limited 

optimization model (grey open squares), and Rubisco limited optimization model (blue 

open triangles), with Ca ranging between 200 and 1000 ppm.  
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Figure 3.2 Semi-controlled measurements of stomatal conductance gs as a function of Ca, 

A, and D for the Leuning’s modified Ball-Berry model (red open circles), RuBP limited 

optimization model (grey open squares), and Rubisco limited optimizat ion model (blue 

open triangles).  

 
 

0.0 

1.0 

2.0 

3.0 

0.0 0.1 0.2 

S
to

m
at

al
 C

on
du

ct
an

ce
 m

ol
 H

2O
 m

-2
s-

1  
  

f(A, Ca, D) 

Leuning's model 

RuBP model 

Rubisco model 

Leuning's model: y = 12.54x + 0.13, R2 = 0.28, p < 0.05, n = 110 
RuBP model: y = 7.29x + 0.13, R2 = 0.31, p < 0.05, n = 110 
Rubisco model: y = 10.93x + 0.09, R2 = 0.21, p < 0.05, n = 110  



 

 56 

 

Figure 3.3 The response of stomatal conductance gs as a function of Ca, A, and D for two 

functional groups (C3 plant vs. C4 plant), for the Leuning’s modified Ball-Berry model 

(A), RuBP limited optimization model (B), and Rubisco limited optimization model (C). 

The data are from semi-controlled measurements. 
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Figure 3.4 The responses of stomatal conductance gs as a function of Ca, A, and D for 

different life forms (annual vs. perennial plant), for the Leuning’s modified Ball-Berry 

model (A), RuBP limited optimization model (B), and Rubisco limited optimization 

model (C). The data are from semi-controlled measurements. 
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Figure 3.5 The response of stomatal conductance gs as a function of Ca and A for the 

Leuning’s modified Ball-Berry model (A), RuBP limited optimization model (B), and 

Rubisco limited optimization model (C). The data are from FACE measurements. 
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Figure 3.6 The response of stomatal conductance gs as a function of Ca and A for different 

functional groups, for the Leuning’s modified Ball-Berry model (A), RuBP limited 

optimization model (B), and Rubisco limited optimization model (C). The data are from 

FACE measurements. 
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Figure 3.7 The response of stomatal conductance gs as a function of Ca and A for different 

life forms (annual vs. perennial plant), for the Leuning’s modified Ball-Berry model (A), 

RuBP limited optimization model (B), and Rubisco limited optimization model (C). The 

data are from FACE measurements 
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Figure 3.8 Regression of stomatal conductance gs as a function of Ca, A, and D for the 

Leuning’s modified Ball-Berry model (red open circles), RuBP limited optimization 

model (grey open squares), and Rubisco limited optimization model (blue open triangles). 

The data are from semi-controlled measurements in drylands.  
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Figure 3.9 The responses of stomatal conductance gs as a function of Ca, A, and D for 

different species and life form, for Leuning’s modified Ball-Berry model (A), RuBP 

limited optimization model (B), and Rubisco limited optimization model (C). The data 

are from semi-controlled measurements in drylands. 
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CHAPTER 4: A MULTI-SCALE ANALYSIS OF NAMIBIAN RAINFALL OVER 

THE RECENT DECADE – COMPARING TMPA SATELLITE ESTIMATES 

AND GROUND OBSERVATIONS   

4.1 Abstract 

In many dryland regions, the lack of ground observations has long been a major 

obstacle in studying rainfall patterns, particularly in African where rainfall data is 

extremely scarce. In this study, a continuous 6-year (2008-2013) daily record of ground 

observations was collected from Weltevrede Farm at the edge of the Namib Desert. The 

ground observations were used to evaluate Tropical Rainfall Measuring Mission (TRMM) 

0.25° daily satellite rainfall estimates of this area. The result showed the agreement 

between ground and satellite rainfall data was generally good at annual scales but large 

variations were observed at daily scales. Then we conducted a Mann-Kendall trend 

analysis using bias-corrected annual satellite data (1998-2013) to examine long-term 

patterns in rainfall amount, intensity, frequency and seasonal variations over four 

locations across a rainfall gradient. The trend analyses showed there were significant 

changes in frequency, but insignificant changes in intensity and no changes in total 

amount for the driest location. No changes were found in total rainfall, intensity or 

frequency among another three locations, which emphasized the spatial variability of 

dryland rainfall. Contrary to IPCC prediction of drying trend in Namibia, our trend 

analysis did not reveal any significant changes in rainfall amount from any site over the 

recent decade, but frequency changes were observed in the driest location.  
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4.2 Introduction 

Rainfall is one of the main components of hydrologic cycle and the major source 

of water for natural vegetation as well as agriculture and livestock production in dryland 

regions (Wang and D'Odorico, 2008). About 90% of the world’s dryland population is in 

developing countries (Wang et al. , 2012), where the vast majority of drylands consist of 

rangelands (Millennium Ecosystem Assessment, 2005) (i.e., 69%). Dryland rangelands 

support approximately 50% of the world’s livestock and its production is particularly 

vulnerable to climate variability, of which rainfall is the most important component 

(Millennium Ecosystem Assessment, 2005). African rangelands are of critical importance 

since they cover 43% of Africa’s inhabited surface and are home to 40% of the 

continent’s population (AU-IBAR, 2012). Though the proportion of rainfed cropland is 

not as significant as rangeland, rainfed agriculture is most prominent in some regions of 

Africa such as Sub-Saharan Africa where more than 95% of the cropland is rainfed 

(Rockström et al., 2010). Changes in rainfall amount, intensity and rain patterns could 

significantly affect dryland agriculture leading to decreased resource productivity and 

production (Daryanto et al., 2016). Erratic rainfall patterns in Nigeria, for example, made 

it difficult for farmers to plan their operations and resulted in low germination in 

cropping season, reduced yield and crop failure (Oriola, 2009). Study of maize 

production in Zimbabwe also indicated that more accurate climate predictions would be 

valuable in crop management decisions in that it reduced risk in agricultural production 

associated with rainfall variability at the site level (Phillips et al., 1998). 
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However, most areas of Africa lack sufficient observational data to study long-term 

rainfall trend and variability. Apart from the scarcity of data, an additional complication is 

that, in many regions of Africa, discrepancies exist between different observed rainfall data 

sets (Barros, 2014). Intergovernmental Panel on Climate Change (IPCC) has predicted a 

likely decrease in annual rainfall over parts of the western and eastern Sahel region in 

northern Africa as well as a likely increase over parts of eastern and southern Africa during 

the period of 1951–2010 (Barros, 2014). Particularly, a reduction in late austral summer 

rainfall has been observed and projected over western parts of southern Africa extending 

from Namibia, through Angola, and towards Congo during the second half of the 20th 

century (Barros, 2014). As shown in the IPCC AR5, signal of future change in precipitation 

is not obvious (less agreement) until the middle of the 21st century over southern Africa. 

IPCC prediction using General Circulation Models (GCMs) is run at a coarse spatial 

resolution of 150–300 km while the rainfall process has a much higher spatial variability, 

and thus high-resolution data is needed for better prediction. IPCC prediction has great 

uncertainty and ground data is therefore very important to constrain the model prediction 

for the future. 

Rain gauges have historically been considered the most accurate form of local 

rainfall measurement (Villarini et al., 2009). However, they can only capture the variability 

of small areas and therefore in many cases, precipitation estimates from rain gauges are 

subject to uncertainty when representing the entire observation site. Errors and omissions 

or power outages from the recording devices, human operators, and data transmission 
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could also cause valuable data to be lost, damaged, or altered and result in poor data quality 

(Kneis et al., 2014). In many regions of the world, rain gauge data is difficult to access due 

to technical or administrative reasons (Kneis et al., 2014). Particularly in many remote 

parts of developing countries, ground-based rainfall measurements are rare or nonexistent. 

Radar and satellite-based rainfall estimates have been shown to provide a potential solution 

to the limitations of rain gauge data (Ward and Trimble, 2003). But satellites do not 

measure rainfall directly, so combining of ground observations with radar and satellite 

remote sensing of rainfall estimates could be a viable approach to produce a consistent, 

long sequence of climate data records (Villarini et al., 2009). 

Although previous studies have documented some characteristics of Namibia 

rainfall (Eckardt et al., 2013), rarely have they looked at how well satellite-based rainfall 

data is correlated with ground-based observations. More importantly, no attempt has been 

made to comprehensively analyze the long-term changes in rainfall in Namibia, where the 

rainfall is highly variable both spatially and temporally with the greatest rainfall variation 

coefficient over Southern Africa (Eckardt et al. , 2013). A normal rainy season spans from 

October to April (Foissner et al., 2002), and October, as the transition month from dry 

season to wet season, is characterized by very high inter-annual rainfall variability 

(Eckardt et al., 2013). There hasn’t been a rainfall observation site from the Namibia 

Meteorological Services at the edge of the Namib Desert, so the ground rainfall 

measurements from this region are very valuable. Moreover rainfall in this region could be 

highly localized with large inter- and intra- annual variation as the area is located right on 
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the steep rainfall gradient from the desert interior to the Namibian highland (Eckardt et al., 

2013; Kaseke et al., 2016). As a result of strong the NE-SW rainfall gradient across, 

Southern Africa rainfall events mainly occur in the north-eastern, northern and central 

parts, and the southern parts of Namibia are largely hot and dry having only isolated 

rainfall occurrences, and ultimately the west Namib coast is hyper-arid (Eckardt et al., 

2013). Therefore, another focus of this study is to evaluate the rainfall pattern changes at 

different locations along the rainfall gradient; and for each location, the detailed rainfall 

trend analyses will be conducted (e.g., total rainfall trend, rainy season rainfall trend, the 

average rainfall depth per storm, and the average storm frequency). 

In this study, we compared the Tropical Rainfall Measuring Mission (TRMM) 

Multi-satellite Precipitation Analysis (TMPA) satellite data with available ground 

observations from the local rain gauges. The TMPA satellite estimates were then used to 

resolve the spatial and temporal distributions of rainfall over the study area. TMPA satellite 

is a US-Japan joint mission launched in November 1997 (Simpson et al., 1988), and its 

primary goal is to measure precipitation in the Tropics where surface observations are 

scarce (Bowman, 2005). It operates in a low-inclination (35°), low-altitude orbit (Bowman, 

2005), and the primary merged microwave-infrared product is computed at finer scale with 

the 3-h, 0.25° x 0.25° latitude–longitude resolution (Huffman et al. , 2007). In this study, we 

aim to address the following questions: 1) are satellite based rainfall data useful to study 

the rainfall characteristics at regions with the lack of ground observations traditionally? 2) 

if so, what are the temporal scales at which the satellite rainfall data are comparable with 
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ground observations? and 3) are there any significant long-term changes in rainfall 

characteristics over multiple locations in Namibia across a rainfall gradient? 

4.3 Methods 

To examine the spatial variations and assess the long-term rainfall trends as well as 

long-term rainfall variability, we analyzed TMPA rainfall estimates from four locations 

across a rainfall gradient (Figure 4.1). The four locations are Farm 1 and Farm 2 within the 

Weltevrede Guest farm, the Gobabeb Research and Training Center (GRTC, TMPA pixel 

centered at 23.625°S, 15.125°E) located within hyper-arid Namib Desert (long-term 

annual average rainfall <60 mm) (NMS, 2015), and Windhoek (WDH, TMPA pixel 

centered at 22.625S°, 17.125E°) that is subject to a long-term annual average rainfall up to 

400 mm (NMS, 2015). The time period covered is January 1, 1998 to December 31, 2015 

(17 years) and TRMM mission ended in April 2016. A summary of TMPA satellite rainfall 

data for the above-mentioned four locations was provided in Appendix D.  

In the Weltevrede Guest Farm site, we have ground rainfall records at two locations 

for validation of TMPA data. The Weltevrede Guest Farm is located in the escarpment of 

the southern Namib Desert, and is characterized by semi-desert and savanna transition in 

biomes (Foissner et al. , 2002). The farm is next to the road C19, around 300 kilometers 

southwest of Windhoek, and bordered on three sides by the Namib Naukluft Park (24°10′S, 

15°58′E, Elev. 1087 m) (Figure 4.1). It is nestled amidst rugged mountains, shifting dunes, 

harsh gravel plains, dusty prehistoric riverbeds and camelthorn trees. The farm covers an 

area of about 11.6 km2 and there are two local rain gauges situated at Farm House (Farm 1) 
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and Brine Tank (Farm 2), respectively (Figure 4.1). Most of the rain falls in summer, and 

only very rare rainfall occurs through the winter. The two rain gauges within the 

Weltevrede Guest Farm are the only two sites with available ground records to validate the 

TMPA data. A major limitation is that although the ground observations collected from the 

Weltevrede Farm are likely very reliable since local farmers tend to take rainfall 

measurements faithfully, we have to assume they are the “correct” values. A similar 

approach has been used in other data scarce regions, such as the central Kenyan highlands 

(Franz et al., 2010). 

This study uses version 7 of the TMPA 3B42 data product with a spatial resolution 

of 0.25° × 0.25° (∼ 25 km) at the finest scale of 3-h interval (Huffman et al., 2007). The 

raw TMPA data was averaged into daily time-scale to match the ground record. For the 

Weltevrede Guest Farm, Farm 1 is located within the TMPA pixel centered at 24.125°S and 

15.875°E; and Farm 2 is within the immediate next pixel (24.125°S, 16.125°E). The 

quality of TMPA rainfall estimates was evaluated by comparing 6-year daily, monthly and 

annual data with ground observations from rain gauges at Farm 1 and Farm 2 shown 

in Figure 4.1. Furthermore, the cumulative distribution functions (CDFs) of TMPA rainfall 

data and ground observations were compared. 

Rainfall trends were analyzed using non-parametric rank based statistical test, 

namely Mann-Kendall (MK) test to detect monotonic trends. The MK test has been widely 

used to assess the significance of trends in hydro-metrological time series including 
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rainfall. Based on the null distribution of the MK test, the critical regions of the MK 

statistic S can be approximately given by 

|𝑆| > 𝑧1−𝛽 2⁄ √𝑉(𝑆) , (1) 

where 𝛽 is the preselected significance level, 𝑧1−𝛽 2⁄  are the 1 − 𝛽 2⁄  quantile’s of the 

standard normal distribution, and 𝑉(𝑆)  is the sample variance of the MK statistic S. In 

this study, the significance level 𝛼 is set to be 0.05. In this study, besides the total 

rainfall amount, we also analyzed the temporal trends of two important hydrological 

parameters decomposed from the total rainfall: the average rainfall depth per storm, α 

(mm), and the average storm frequency or average inter-storm arrival rate, λ (day-1) using 

the Mann-Kendall statistical test (Franz et al., 2010).  

Three measures of the rainfall variability in annual rainfall were analyzed 

including the standard deviation, the coefficient of variation (CV), and precipitation 

variability index (PVI).  PVI is a new dimensionless index defined as the standard 

deviation of the ratio (𝑅𝑖) between a time series of cumulative precipitation measurement 

(𝐶𝑖) and a time series of cumulative mean precipitation rate (𝐸𝑖) (Gu et al., 2014) (Eq. 

(2)). From the measured daily precipitation 𝑝𝑗 , a time series of cumulative rainfall 𝐶𝑖 

(Eq. (4)) and mean precipitation rate 𝑝̅ (Eq. (5)) were computed. The time series of 

cumulative mean 𝐸𝑖 then were computed based on mean precipitation rate 𝑝̅ (Eq. (6)), 

and 𝑅𝑖 is the ratio of the cumulative precipitation to the cumulative mean (Eq. (3)). 𝑅̅ 

is the average of 𝑅𝑖 over n. Study shows that PVI can simultaneously capture the 

characteristics of both intensity distribution and event spacing of precipitation, whereas 
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the commonly used index such as CV can only quantify intensity distribution (Gu et al., 

2014).  

𝑃𝑉𝐼 = √∑ (𝑅𝑖−𝑅̅)2𝑛
𝑖=1

𝑛
 , (2) 

where 

𝑅𝑖 = 𝐶𝑖
𝐸𝑖

 , (3) 

𝐶𝑖 = ∑ 𝑝𝑗
𝑖
𝑗=1 , 𝑖 = 1, … , 𝑛, (4) 

𝑝̅ = ∑ 𝑝𝑖
𝑛
𝑖=1

𝑛 , (5) 

𝐸𝑖 = 𝑖𝑝̅, 𝑖 = 1, … , 𝑛, (6) 

4.4 Results and discussion 

4.4.1 TMPA data validation using two ground gauges  

A significant issue with comparing satellite and rain gauge data is that the satellite 

data are estimates of area-averaged precipitation amount while rain gauges make point 

measurements (Bowman, 2005). For example, TMPA might observe rainfall in the area 

surrounding a rain gauge while it is not raining at the gauge itself. Conversely, the gauge 

sometimes observes a localized heavy rainfall, but TMPA tends to average the localized 

high measurements with the nearby lower measurements in order to obtain the 

area-averaged estimates, and consequently reduce the reliability of data. Prior to using 

TMPA satellite data to study long-term rainfall patterns in the studied areas, it is therefore 

necessary to make quantitative estimates on how well the TMPA data represents rainfall 

characteristics as compared to ground observations. In this study, data from two locations 
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(Farm 1 and Farm 2 rain gauges) were used to evaluate the TMPA retrievals at daily, 

monthly, and annual time scales. 

TMPA data was compared with in-situ rain gauge measurements for a 6-year 

evaluation period from 1 January 2008 to 31 December 2013. Figure 4.2 shows results of 

the evaluation for Farm 1 and Farm 2. The performance of the satellite data varies between 

the two locations, and generally, the bias of the satellite data in measuring daily mean 

values is larger than that of monthly and annual values. The results showed that the 

monthly and annual estimates correlate relatively well for both locations with R2 of 

0.47–0.64 (Figure 4.2), with the daily estimates having the lower agreements 

(R2 = 0.24–0.25). Our R2 values were lower than other studies conducted in wetter 

environments such as the La Plata Basin in South America (Su et al., 2008), and the Upper 

Midwest and far Northeast over the United States (Ebert et al., 2007). In general, at daily 

time scales, there were a number of high intensity rain days (e.g., 30 mm day−1) on which 

rainfall was considerably higher for ground observations relative to TMPA data. The 

opposite was observed on a number of low intensity rain days (e.g., <10 mm day−1) on 

which the rainfall was considerably higher for TMPA data relative to ground observations.  

The rainfall pattern of rain gauge Farm 2 was generally well reproduced by TMPA 

data, with a slope of 0.94 and 1.02 at monthly and annual scales, respectively (Figure 4.2). 

However, the satellite data tended to slightly underestimate the mean precipitation amount 

at Farm 1 (Figure 4.2). Satellite data averages the estimates of rainfall amount over a 

25 × 25 km area, which may induce bias by averaging localized high measurements with 
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nearby lower measurements. According to the Namibia Meteorological Services (NMS, 

2015), total rainfall is the lowest along the arid west coast, increasing towards the east and 

north, with extreme variability experienced across the central and northern Namibia 

(Eckardt et al. , 2013). The Weltevrede Guest Farm is located across a steep rainfall 

gradient from the desert interior to the Namibian highlands, with the eastern part less arid 

than the hyper-arid western part. This may be responsible for the mismatch between Farm 

ground observations and satellite data. 

Figure 4.3 shows the CDF comparisons for daily, monthly and annual rainfall at 

Farm 1 and Farm 2. As seen from Figure 4.3, the ground observation CDFs for Farm 1 

generally agreed well with the TMPA data, but the discrepancy became larger for Farm 2 

data, particularly at annual scale. A close examination showed that the Farm 2 gauge is 

allocated to the TMPA pixel immediately next to Farm 1. However, the Farm 2 gauge is 

actually located at the edge of two pixels and thus may be influenced by its neighboring 

pixels. This point is illustrated in Figure 4.9 that shows the CDFs for ground observations 

from Farm 2 were closer matched to TMPA data from the same pixel as Farm 1. So 

considering the results from both scatter-plots (Figure 4.2) and CDF analyses (Figure 4.3), 

using the uncorrected TMPA data for the trend analysis is a viable approach without 

introducing additional bias. 

In this study, two factors limit the amount of data available for our analysis; one is 

the relatively short period for which the TMPA rainfall est imates are available (17 years 

because TRMM mission ended in April 2016), and the other is the limited availability of 
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rain gauge data. A previous study has found that the gaps in the data available at the NMS 

are serious enough to place the required level of confidence in the analysis results in doubt 

(Ministry of Agriculture, 1999). Therefore the ground observations that we collected from 

Weltevrede Farm could help improve the rainfall analysis in this region. In addition, 

although the number of rain gauge is limited in this study, our validation results are in 

agreement with other studies that indicate even if the network density is high, TMPA 

achieves reasonable performance at monthly scale but not at daily time scales (Ebert et al., 

2007; Huffman et al., 2007; Su et al., 2008). 

4.4.2 Mann-Kendall trend analysis 

Namibia’s climate is characterized by hot and dry spells with scarce and 

unpredictable rainfall, and is second in aridity only to the Sahara within Africa (Foissner et 

al., 2002). The combination of a cold, subantarctic upwelling ocean current on the Atlantic 

coast and a hot subtropical interior have led to 69% of the country being semi-arid, and 16% 

being arid, where the average rainfall of under 250 mm per year is coupled with annual 

mean evaporation of up to 3700 mm (Foissner et al., 2002). Besides, the rains have been 

erratic in recent years with many parts of country enduring severe drought, which poses a 

threat to rangeland owners and crop farmers (Haeseler, 2013). 

Trend analyses were conducted for both annual and rainy-season rainfall for total 

rainfall, frequency (λ), rainfall intensity (α) and rainfall variability parameters. Annual 

rainfall did not show any significant trend for all the four locations (Figure 4.4). However, 

some location differences in the patterns of trends were observed for the α and λ 
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parameters. There was a significant decreasing trend for λ (p = 0.006, Figure 4.4), along 

with increasing trend for α at GRTC, which is located in the hyper-arid central Namib 

subject to a mean annual rainfall of about 20 mm per year. The changes in rainfall 

frequency became less significant at Farm 1 (p = 0.733, Figure 4.4) and Farm 2 (p = 

0.383, Figure 4.4) where the mean annual rainfall was much more than that of the Namib 

Desert. There was no significant change in either frequency or rainfall intensity at 

Windhoek (p > 0.05, Figure 4.4), the wettest station among the four stations. Trend 

analyses of all the rainfall variability parameters (standard deviation, coefficient of 

variation, and precipitation variability index) did not reveal significant change in any of 

the locations for the annual rainfall (p > 0.05, Figure 4.6) except for the coefficient of 

variation of GRTC with increased variability. 

The spatial patterns of trends in total rainfall, frequency and rainfall intensity for 

rainy season were similar to those for the annual ones. A decreasing trend in λ and 

increasing trend in α was observed at GRTC; the changes were significant in frequency (λ) 

(p = 0.019, Figure 4.5), but not in intensity (α) (p > 0.05, Figure 4.5). The total rainfall, α 

and λ did not change significantly in either Farm sites or Windhoek station (p > 0.05, 

Figure 4.5).  

Although IPCC’s model projection has found there is likely a drying trend in 

annual average rainfall over mid to late 21st century (with large uncertainty), our trend 

analysis did not show any significant changes in total rainfall amount for all sites over the 

period of 1998 to 2015. Even though our TMPA rainfall estimates were limited to a 
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relatively short period, the TMPA data have a much finer spatial resolution than those of 

GCMs for IPCC predictions.   

4.4.3 Rainfall seasonality and errat ic rain pattern with extreme rainfall events and 

droughts 

Typically there are two seasons in Namibia: cool and dry winter (May to 

September), and hot and rainy summer (October to April). Rainfall in all the four 

locations was highly seasonal in occurrence, with 99% or more of the annual rains 

occurring during the rainy season. More than 55% of the annual rains fell in late summer 

– February, March, and April but was highly dependent on location. The lowest 

proportion was seen in Windhoek (55%), which had the highest total annual rainfall, 

while the other three locations saw more than 65% of the annual rains during the late 

summer period. 

The seasonality pattern derived from TMPA data showed the total rainfall was 

generally higher in February but with greater inter-annual variation (Figure 4.7). There 

were two rainfall peaks during the rainy season: the strong one in February or March, and 

the weak one in the early summer (November or December). These summer rainfall 

peaks are most likely associated with Tropical Temperate Troughs (TTTs), the most 

significant southern African summer rainfall producing systems that link an easterly wave 

in the tropics to a westerly wave in the south through a trough and cause cloud band and 

precipitation (Eckardt et al., 2013; Kaseke et al., 2016). Moreover, a reduction has been 

reported in late austral summer precipitation (February-March-April (FMA) response) 
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associated with an upward trend in tropical Indian Ocean sea surface temperature (SST) 

(Hoerling et al. , 2006; New et al., 2006). Our trend analysis, however, did not show any 

significant changes in late summer precipitation at any of the sites (Figure 4.8). 

The results showed an increase in extreme precipitation such as heavy rainfall and 

drought over our study area. Particularly, the extreme rainfall events seemed to increase 

in recent years with higher monthly peak rainfall amount in February, and more storm 

events in the peak month. In addition, the 2013 drought of Namibia has been captured in 

both rain gauge data and TMPA satellite rainfall estimates, which is consistent with the  

findings from NMS that reported the rainy season from October 2012 to April 2013 was 

very dry over the north, middle and the south of the country. The increased frequency of 

major storms caused damage to farmland, crops and livestock, as well as the roads. In the 

2013 drought of Namibia, for example, water shortage during the main cropping season 

(November to June) resulted in the death of several thousand livestock and crop failure, 

and severely affected the local agrarian economy (Haeseler, 2013). 

4.5 Conclusions 

In this study, we evaluated the feasibility of utilizing satellite-based rainfall 

estimates for examining the changes in rainfall patterns in data scarce dryland regions. 

The TMPA satellite data were evaluated against the ground observed rain gauge data. In 

general, the TMPA estimates agreed well with the rain gauge data at monthly and annual 

time scales. The agreement between TMPA and gauge precipitation estimates became 
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lower at daily time scale, particularly for high intensity rain (>30 mm day−1) and low 

intensity rain (<10 mm day−1). 

One of the most important findings from this study is the difference in trends of 

rainfall amount, frequency and intensity between drier and wetter regions. In a very arid 

and hot GRTC area, though the total rainfall amount does not change, there is a decrease 

(significant) in frequency (λ) of storm accompanied by an increase (non-significant) in 

storm intensity (α). However, neither of these two indices shows significant changes at 

Windhoek, a much wetter site. The Weltevrede Farm, as located in the transition zone 

from the dry Namib Desert to less arid highland (Windhoek), shows less significant 

results compared to GRTC. The results also show increased rainfall variability for the 

driest location as indicated by the increasing trend of coefficient of variation. In addition, 

the long-term rainfall pattern and late summer precipitation (FMA response) based on 

TMPA satellite derived rainfall dataset, are contrary to the IPCC predictions (with large 

uncertainties) of a drying trend in Namibia, again emphasizing the spatial variability of 

dryland rainfall and the necessity of obtaining ground observations in data scarce regions. 

This study provides rare long-term ground observations of rainfall record at a daily scale 

from a data scarce region. More importantly, this study provides a useful approach of 

using annual TMPA data associated with trend analysis to facilitate the understanding of 

temporal and spatial rainfall variations in the areas of Africa where the in situ 

observations are scarce.  
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Figure 4.4 Time series of annual rainfall (mm), average rain depth per storm (mm) α, and 

the average storm arrival rate (day−1) λ for (a) Windhoek (WDH), (b) Weltevrede Farm 

Location 1 (Farm 1), (c) Weltevrede Farm Location 2 (Farm 2), and (d) Gobabeb Research 

and Training Center (GRTC). Record length = 17 years, and m = Sen’s slope. 
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Figure 4.5 Time series of seasonal precipitation (mm), the average rain depth per storm 

(mm) α, and the average storm frequency (day−1) λ for (a) Windhoek (WDH), (b) 

Weltevrede Farm Location 1 (Farm 1), (c) Weltevrede Farm Location 2 (Farm 2), and (d) 

Gobabeb Research and Training Center (GRTC). Rainy season is from October to April, 

record length = 17 years, and m = Sen’s slope. 
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Figure 4.6 Time series of standard deviation, coefficient of variance (CV), and 

precipitation variability index (PVI) of annual rainfall (mm) for (a) Windhoek (WDH), (b) 

Weltevrede Farm Location 1 (Farm 1), (c) Weltevrede Farm Location 2 (Farm 2), and (d) 

Gobabeb Research and Training Center (GRTC). Record length = 17 years, and m = Sen’s 

slope. 
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Figure 4.7 Seasonality of annual precipitation (mm) for (a) Windhoek (WDH), (b) 

Weltevrede Farm Location 1 (Farm 1), (c) Weltevrede Farm Location 2 (Farm 2), and (d) 

Gobabeb Research and Training Center (GRTC). Median represented by dark solid line, 

box represents the 1st and 3rd quartile range. The boxes are drawn with widths proportional 

to the square roots of the number of observations in the groups. The whiskers extend to the 

most extreme data point which is no more than two times the inter quartile range from the 

box. Circles represent outliers. 
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Figure 4.8 Time series of late summer (February-March-April) precipitation (mm) for (a) 

Windhoek (WDH), (b) Weltevrede Farm Location 1 (Farm 1), (c) Weltevrede Farm 

Location 2 (Farm 2), and (d) Gobabeb Research and Training Center (GRTC). Record 

length = 17 years, and m = Sen’s slope.
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CHAPTER 5: PARTITIONING OF EVAPOTRANSPIRATION USING A 

STABLE ISOTOPE TECHNIQUE IN AN ARID AND HIGH TEMPERATURE 

AGRICULTURAL PRODUCTION SYSTEM 

5.1 Abstract 

The agricultural production in the arid and high temperature low-desert systems 

of Southern California is heavily relied on the irrigation. To better manage these 

agricultural production systems with increasingly limited water resources, it is very 

important to understand how much and to what extent the irrigated water is transpired by 

crops relative to being lost through evaporation. In this study, we examined the 

evapotranspiration (ET) partitioning over a field of forage sorghum (Sorghum bicolor), 

which was used for biofuel production, based on the isotope measurements of three 

irrigation cycles at the vegetative stage. We used the customized transparent chambers 

coupled with a laser-based isotope analyzer to continuously measure the stable isotopic 

composition of evaporation (E, δE), transpiration (T, δT) and ET (δET) to partition the total 

water flux. Due to the extreme heat and dryness, δE and δT were very similar, which is 

rarely seen in the literature and reflect the unique aspects of this system. It was also 

interesting to find that δE, δT, and δET increased initially as water was depleted following 

irrigation, but decreased with further soil drying in the mid to late irrigation cycles. These 

changes are likely caused by root water being transported from deeper to shallower soil 

layers. Results indicated that about 46% of the irrigated water delivered to the crop was 

used as transpiration, with 54% lost as direct evaporation during the crop development 
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for this biofuel production system. This implies that about 28 - 39% of the total source 

water was used by crops, considering the typical 60 - 85% efficiency of flood irrigation 

system. Therefore there is a need to improve the water management in these systems to 

minimize unproductive water losses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  100 

5.2 Introduction 

Agriculture is the largest single user of fresh water globally, accounting for 

approximately 70% of the total withdrawn for human consumption (Hoekstra and 

Mekonnen, 2012; Wada et al., 2014). In the United States (US), irrigated agriculture is 

the second largest primary user of fresh water, accounting for 31% of the developed 

water resource (Vörösmarty et al., 2000). The Imperial Valley, in the low elevation desert 

of southern California, a region characterized by extreme heat and evaporation, has been 

considered as a promising area for biofuel feedstock production (Oikawa et al., 2015). 

This area produces more than two-thirds of winter vegetables consumed in the US and 

about three-quarters of summer hay and other field crops in southern California 

(Medellín-Azuara et al., 2012). At present, there is a lack of data addressing the 

sustainability, including water use efficiency, of biofuel production in this high 

temperature agricultural site.  

The Colorado River is a key source of water for California’s irrigated desert 

agriculture, accounting for approximately one-third of annual flow (Cohen et al., 2013). 

A growing demand for water, coupled with the limited supplies and impacts of climate 

change (Vörösmarty et al., 2000), has placed enormous pressures on California’s water 

supply. Recent years of drought have exacerbated this water scarcity challenge, 

especially in the Imperial Valley.  
Evapotranspiration (ET) represents one of the largest components of the global 

water cycle, with approximately 65% of precipitation returned to the atmosphere via ET 
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at the global scale (Trenberth et al., 2007). However, ET loss can reach up to 95% in 

some dryland systems (Wang et al., 2014; Wilcox and Thurow, 2006). 

Evapotranspiration consists of two distinct components: evaporation from soil and plant 

surfaces (E) and transpiration taken up by roots and lost through stomatal pores (T). 

These two components are controlled by different processes and have different water use 

implications. Transpiration is mainly controlled by atmospheric evaporative demand and 

soil water status, and modified by plant physiological controls on leaf stomata. Because 

photosynthetic carbon dioxide fixation is concurrent with water vapor loss, and shares the 

stomatal diffusion pathway, irrigated water transpired by crops is productive in that it 

facilitates photosynthesis and leads to leaf cooling. Evaporation from soil, in contrast, is 

not directly linked to biological processes, but rather results from diffusion of water 

through the soil matrix and evaporation at the surface, and is controlled solely by 

physical factors. Although it may lead to local evaporative cooling, this water loss is  not 

directly linked to biological productivity. Because of the different controlling 

mechanisms, E and T are likely to have different responses to environmental drivers such 

as temperature and soil water content (Kool et al., 2014; Wang et al., 2014). As 

competition for available irrigation water increases, a better understanding of how much 

is transpired relative to that lost through evaporation, and the factors controlling this 

partitioning, could contribute to improved water resource management (Wang and 

D'Odorico, 2008).  
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Separating E and T has proven to be difficult. Various methods have been 

proposed, including empirical measurements and modeling-based approaches. Empirical 

measurements can include lysimeters, large tree potometers, whole tree chambers, eddy 

covariance measurements of above- and below-canopy fluxes, up-scaling of sap-flow 

measurements, and flux-variance similarity partitioning, as well as using stable isotopes 

(Kool et al., 2014). Modeling approaches include the FAO-56 dual crop coefficient 

model (Ding et al., 2013), modeling of canopy and subcanopy fluxes driven by energy 

balance measurements (Ershadi et al., 2014; Kalma et al., 2008) or combining 

process-based modeling and isotope tracer measurements (Cai et al. , 2015; Wang et al., 

2015). The recent development of techniques using stable isotopes of water has provided 

a useful tool to separate E and T, that can be applied across broad spatial and temporal 

scales. Besides facilitating ET partitioning, the stable isotopic composition of E and T 

can also provide insights regarding plant water use dynamics as well as the nature of 

land-atmosphere interactions (Parkes et al., 2016).  

The basis for using the isotopes of H and O in water to partition ET is that 

evaporation significantly fractionates the surface soil water, enriching the source with the 

heavier isotopes, while transpiration does not lead to fractionation when T is large (Wang 

et al., 2012; Wang et al., 2013). Therefore, the isotopic composition of transpiration (δT) 

remains similar to the isotopic composition of the plant source water, while the  isotopic 

composition of evaporated water differs from that of the source. This results in distinct 

isotopic signatures of δE and δT (Wang et al., 2013; Zhang et al., 2011).  
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The development of field-deployable laser-based instruments with similar 

precision to traditional isotope ratio mass spectrometers (e.g., (Wang et al., 2009)), has 

provided a promising tool to separate T from E in agricultural systems (Wang et al., 2012; 

Wang et al., 2013). The application of such methods to direct measurement of the 

isotopic composition of E, T and the combination, ET, in a hot, arid agricultural 

production system has not previously been attempted.  

The objectives of the current study are to: (1) use a laser-based isotope analyzer 

and customized T, E and ET chambers to measure the respective isotope signatures, δT, 

δE, and δET; (2) combine the estimates of δT, δE, δET and total ET to partition the 

evaporative flux and to quantify the fraction of irrigat ion that is partitioned to productive 

T in this sorghum production system. These measurements provide important information 

for regional water issues, for crop management scenarios, and offer substantial insight 

into currently temperate production systems that may become warmer.   

5.3 Materials and methods  

5.3.1 Study site  

The study was conducted at the University of California’s Desert Research and 

Extension Center (DREC) located in the Imperial Valley, southern California (32.867◦N 

115.448◦W) (Figure 5.1a). This area is an interior desert valley about 18.3 m below sea 

level. The weather represents a desert climate with over 350 days of sunshine. The 

nearest automatic weather station (Meloland, 32.806◦N 115.446◦ W) is managed by the 

California Management Information System (CIMIS) (http://www.cimis.water.ca.gov). 
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Routine meteorological variables, including solar radiation, wind, humidity, air 

temperature, precipitation and soil temperature, as well as reference ET (ET0), have been 

recorded hourly since December 1989. The mean annual precipitation from 1990 to 2015 

was 80.3 mm year−1 , while the mean annual ET0 reached 1846 mm year−1 (Figure 5.1b). 

Most of the rainfall occurs in late summer, with June being the driest month (Figure 5.1b). 

The mean annual temperature is 22.4◦C with a monthly mean temperature of 12.6◦C in 

January and 32.9◦C in August (for the period 1990–2015) (Figure 5.1c). The mean annual 

relative humidity of the study area is around 46% (Figure 5.1d). The experimental field 

has been used for agricultural production since the establishment of DREC in 1912. 

Irrigation water is supplied through the All-American Canal, distributed by gravity from 

the Colorado River. Irrigation is provided by regularly scheduled flooding of furrows. 

Soils in the regions are moderately to well-drained deep alluvial soils (42% clay, 41% silt 

16% sand) with sub-surface drainage tile, and pH of 8.3 (Oikawa et al., 2014).  

The Sorghum bicolor (cv. Photoperiod LS; Scott Seed Inc.) was planted in 

February 2012 for biofuel production, and was cut three times each year at the end of the 

vegetative stage. Ten extensive field measurements of δT, δE and δET were conducted on 

July 24, 26, 28, 30 and August 4, 6, 7, 13, 18 and 20, 2014. Measurements covered the 

three irrigation cycles of one of the three vegetative harvests obtained each year. Plants 

were harvested for biomass before substantial flowering had occurred, and thus remained 

in the vegetative stage throughout the experiment. The irrigation events occurred on July 

22, July 31 and August 9, 2014, each lasting 24 h. Isotope sampling was conducted one 
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full day after irrigation to allow for drainage. There were two minor rainfall events during 

the measurement period, with a total rainfall of 1.27 mm. The mean monthly air 

temperature was 33.5 ◦C and 31.9 ◦C in July and August 2014.  

5.3.2 Isotope-based partitioning  

The technique developed by Wang et al. (2012; 2013) was modified to fit our 

specific needs. The isotopic compositions of the three component vapor fluxes (δT, δE and 

δET) were directly quantified using a field deployable Triple Water Vapor Isotope 

Analyzer (T-WVIA, Los Gatos Research, Inc., Mountain View, CA, USA). Samples were 

obtained using customized transparent acrylic chambers containing circulation fans and 

directly linked as a closed system with the T-WVIA. δT was measured at 1 Hz with a 

customized leaf chamber (2 × 4 × 12 cm) having leaves sealed ins ide the chamber for 1-2 

min. The GE and GET were measured using a larger customized chamber (50 × 50 × 50 cm) 

placed over bare soil or over areas with both soil and vegetation. Chamber measurements 

were obtained under sunny conditions between 11:00 and 14:00 when stomata were as 

open as soil moisture allowed. This method has been shown to capture the short-term 

variations in δT, δE and δET, including fast δT responses to radiation (Wang et al., 2012).  

The fraction of ET partitioned to T is found through measurement of isotopic 

signatures δE, δT and δET. Assuming a two-component mixing model, the transpired 

fraction of ET is given by:  

𝑇
𝐸𝑇

= 𝛿𝐸𝑇−𝛿𝐸
𝛿𝑇−𝛿𝐸

, (1) 
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where 𝛿𝐸, 𝛿𝐸𝑇, and 𝛿𝑇 are the isotope signatures of E, ET and T, respectively (Wang et 

al., 2010).  

Keeling plot and mass balance approaches have been used to estimate the isotopic 

composition of vapor fluxes. The Keeling plot approach assumes constant concentration 

and isotopic compositions of the ambient water vapor (𝛿𝐴). Source water vapor isotopic 

composition (e.g., δE, δT or δET) was calculated as:  

𝛿𝑀 = 𝐶𝐴(𝛿𝐴 − 𝛿𝑆) ( 1
𝐶𝑀

) + 𝛿𝑆, (2) 

where 𝛿𝑀, 𝛿𝐴 and 𝛿𝑆 are the isotopic compositions of mixed water vapor, ambient 

water vapor and source water vapor in ET, E or T. 𝐶𝑀 is the mixed water vapor 

concentration and 𝐶𝐴 is the ambient water vapor concentration at the measurement 

location (Wang et al., 2010).  

The calculation of source water vapor isotopic composition using a mass balance 

approach was given as:  

𝛿𝑆 = 𝐶𝑀𝛿𝑀−𝐶𝐴𝛿𝐴
𝐶𝑀−𝐶𝐴

, (3) 

Under our measurement conditions, the maximum concentration of water vapor 

before condensation occurred in August was 49,100 ppm. Measurements were terminated 

when water concentration approached 45,000 ppm in order to prevent condensation. The 

δE, δT and δET were measured at random locations with four repeated measurements from 

each sampling time. Data were excluded due to instrumental malfunction and obvious 

data errors (e.g., the fraction of ET is greater than 1 or less than 0). ET partitioning was 

not possible for August 13, August 18, and August 20, as chamber-based δET was not 
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available. Both δ18O and δD data were used to demonstrate the temporal changes in 

δE, δT or δET, while only δD data were used for ET partitioning. A summary of isotopic 

signatures for transpiration (T), evaporation (E), and evapotranspiration (ET) over our 

measurement was provided in Appendix E.  

5.3.3 Total ET measurements  

Total ET was monitored at 10 Hz using the eddy-covariance technique via an 

open-path infrared gas analyzer (IRGA) (Li7500, LI-COR, Lincoln, NE, USA) and a 3-D 

sonic anemometer (CSAT3, CSI, Logan, Utah, USA) (Oikawa et al. , 2015). The 

instrument was mounted on a tower located within 10 m of the chamber measurements, at 

a height of 2.5 m above the canopy. Data processing was conducted in EddyPro 5.2 

(LI-COR, Lincoln, NE, USA) and followed standard flux calculations over 30 min 

intervals. The footprint of the tower was determined using an approximate analytical 

model (Hsieh et al., 2000). Evapotranspiration fluxes with 70% of the footprint exceeding 

the edge of the field were removed.  The ET data were gap-filled following Reichstein 

et al. (2005).   

5.4 Results 

This study was conducted under extremely hot and arid conditions (Figure 5.1). 

Figure 5.2 shows the hydrogen and oxygen isotopes in the evaporation and transpiration 

waters. The δ18O of transpiration water (δT) ranged from -6.07 to 6.99‰, with a mean 

value of 0.04‰ and standard deviation of 3.60‰, while δD of δT ranged from -89.75 to 

-70.44‰, with a mean value of -83.27‰ and standard deviation of 7.28‰ (Figure 5.2). 
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The least squares fitting between δD and δ18O in transpiration was: δD = 1.4 × δ18O – 

83.3 (R2 = 0.47, p < 0.05). The δ18O of evaporation water (δE) ranged from -4.99 to 

5.10‰, with a mean value of -1.35‰ and standard deviation of 3.52‰, while δD of δE 

ranged from -97.33 to -71.07‰, with a mean value of -83.48‰ and standard deviation of 

8.39‰ (Figure 5.2). The least squares fitting between δD and δ18O in evaporation was: 

δD = 1.5 × δ18O – 82.0 (R2 = 0.38, p < 0.05). The local meteoric water line (LMWL) 

determined via least squares fitting of the irrigation water isotopic values was: δD = 7.3 × 

δ18O + 3.6.  

All δE values fell to the right side of the irrigation waters line of best fit, revealing a 

strong evaporation effect on of δE (Figure 5.2). The δD–δ18O regression lines for both δT 

and δE deviated substantially from their corresponding local meteoric water line (LMWL), 

producing very negative values of deuterium excess (i.e., d-excess: defined as d-excess = 

δD - 8.0 × δ18O) of δT = -83.6 and δE = -70.0‰. Although such negative d-excess values 

are not commonly seen, the values are comparable to those obtained in a recent study in 

one of the driest regions in China. In that study, a negative d-excess value of -85.6‰ in 

leaf water was reported (Zhao et al., 2014). In the present study, the slopes of the 

δD–δ18O regression lines for δT and δE were much lower than 8.0, suggesting substantial 

water loss through direct evaporation and transpiration drawn from isotopically enriched 

soil water. Moreover, the intersections of δD–δ18O regression lines for δT and for δE and 

irrigation water line fell within the range of the isotopic compositions of irrigation waters, 

supporting an E and T origin from this source (Figure 5.2).  
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In contrast to the expectation that the isotopic signatures of T, E, and ET would 

become increasingly enriched as soils became drier, our results present a more complex 

pattern. Here, the isotopic signatures of E, T and ET increased (less negative) initially as 

water was depleted, but then decreased at the end of each irrigation cycle (Figure 5.3a 

and b). Both δD and δ18O followed similar patterns and it was replicated in all three 

irrigation cycles (Figure 5.3a and b).  

ET partitioning was calculated using a simple 2-source model, as defined in Eq. 

(1). It was estimated that about 46% ± 5.6% of the irrigated water was used as 

transpiration by crops after runoff as tailwater and drainage, while 54% was lost as direct 

evaporation from the soil (Table 5.1). Transpiration between May and October 2014 

ranged from 0.59 to 6.08 mm/day, with a mean value of 3.04 mm/day (Figure 5.4). Both 

T/ET and LAI increased as the crop developed (Figure 5.5a) during the vegetation stage 

and the relationship between T/ET and LAI was T/ET=0.45 x LAI0.19 (Figure 5.5b). 

5.5 Discussion 

An increasing number of studies have used the stable isotope technique to 

separate ET components, and predict ET partitioning changes under both agricultural and 

natural settings. Here we present one of the first studies testing the field application of a 

chamber method to directly measure isotopic composition of all three components (E, T 

and ET), in an extreme agricultural production environment. By using this approach, we 

could also predict the patterns of plant water use based on the changes in the isotopic 

composition of transpired water. Particularly we monitored the plant water use pattern at 
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the vegetative stage. Water loss by evaporation can be much higher at the vegetative 

stage than during the later growing stages (Wang et al. , 2014), so improvement in water 

management can be most beneficial at this stage.  

Of particular interest was the examination of these evaporative processes under 

extremely hot and arid condition of southern California, with local conditions having a 

mean ET0 of more than 20 times the mean annual precipitation. Due to the extreme heat 

and aridity, δE and δT were very similar, which is rarely seen in the literature, 

underscoring the unique environmental conditions at the study site (see Figure 5.6). The 

small difference between δT and δE makes it challenging to accurately discriminate the 

isotopic compositions of these two fluxes, and ultimately to partition total ET into 

relative rates of E and T. Despite this complexity, our chamber method generally worked 

well for δT, δE, and δET estimates, based on agreement between the Keeling plot and mass 

balance approaches.  

Our results yield interesting insights into how isotopic signatures of T, E and ET 

can change with depletion of water within the irrigation cycles. Contrary to the 

expectation that the isotopic signatures of T, E, and ET would continuously become 

enriched as soils became drier, we have observed that the isotopic signatures of E, T and 

ET increased as water was depleted, but decreased at the end of each irrigation cycle. The 

observed pattern of depleted isotopic signatures of T, E, and ET in mid to late irrigation 

cycles might be caused by lateral roots accessing water from deeper soil depths when 

shallow water is reduced, redistributing the deeper water to shallower layers (Ahmed et 
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al., 2016; Stone et al., 2001). The root system of maize, a related C4 grass, consists of 

pre-embryonic primary and seminal roots formed during embryogenesis and lateral roots 

formed during post-embryonic development (Ahmed et al., 2016). A recent study using 

neutron radiography to examine the mechanism of maize root water uptake has found that 

the function of lateral roots is to uptake water from the soil while the function of primary 

and seminal roots is to axially transport water to the shoot (Ahmed et al., 2016). As 

sorghum has similar root water uptake dynamics to corn (Srayeddin and Doussan, 2009), 

this rooting mechanism might explain why the isotopic signatures of E, T, and ET 

increase but then decrease within an irrigation cycle. As sorghum roots grow steadily 

throughout the season, when the shallow water is depleted and soil dries out, the lateral 

roots could extract water from the subsoil and redistribute it to the surface layer for 

transpiration and evaporation, leading to isotopic depletion of E, T and ET.  

Other factors such as soil properties and precipitation could also influence the 

amount and the isotopic composition of different components of ET. The small 

precipitation events occurring on August 2 and August 3, 2014 likely caused a higher 

value of δE on August 4 and 6 (Figure 5.5) due to a strong evaporation of the rainwater on 

soil surface. The δT is lower than δE for these two cases because transpiration response is 

likely damped due to the crop water use from deeper soil layers, in addition to the use of 

limited surface rain- fall water. The daily average soil moisture varies between 0.17 and 

0.42 cm3 cm−3 (Oikawa et al., 2014), and all samplings were conducted after irrigation 

when the field is still at field capacity. Transpiration values measured at our site were 
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comparable to those measured in other dryland agriculture sites. However, the ratio of 

transpiration to evapotranspiration (T/ET) was considerably lower. For example, a study 

in China found that measured T ranged from 1.02 to 4.91mm/day, accounting for 60% to 

83% of the total ET (Zhang et al. , 2011). Based on this study, the ratio of transpiration to 

evapotranspiration (T/ET) slightly increased with the increasing trend of leaf area index 

(LAI) as crops develop (Figure 5.5). The relationship between T/ET and LAI from our 

study is well within the range reported in a previous study of early season water loss and 

LAI (Wang et al., 2014). We have estimated that the rate of evaporation could be as high 

as 54% at the vegetative stage, thus it may be possible to improve water use efficiency of 

sorghum at the early growing stage in such systems with extremely limited water 

resources. The vegetative stage may play a dominant role in seasonal T/ET (Kang et al., 

2003; Wang et al. , 2014), particularly in forage and lignocellulosic biofuel systems which 

remain in the vegetative stage. Our measurements from one vegetative harvest cycle may 

be representative of the water use dynamics of the entire growing season.  

Like many crops in the Imperial Valley, the forage sorghum evaluated here was 

irrigated through flooding of furrows. Compared to the other irrigation systems such as 

drip and spray irrigation, flood irrigation exhibits some inefficiency due to surface runoff, 

deep percolation and unproductive evaporative losses (Cooley et al., 2009). However, 

flood systems have advantages such as simplic ity of design, low capital investment, and 

low energy requirement. Deep drainage to the tile system is critical in this environment to 

leach salts that have accumulated from the irrigation water (Oikawa et al., 2015). The 
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Colorado River, at the point of interception of the All American Canal, has a salinity of 

879 mg L−1 TDS (Forum, 2011). It has been estimated that the potential irrigation 

efficiency (defined as the volume of water used by the plant divided by the volume of 

irrigation water applied to the field minus changes in surface and soil storage) for flood 

irrigation systems ranges from 60 to 85% (Cooley et al., 2009). Combining the current 

analysis and the typical efficiency of flood irrigation system, the amount of water used by 

the plant via transpiration relative to the amount of water delivered to the field in this 

case ranged from 28 to 39%. This indicates that although the production of biofuel 

feedstock is extremely high under the climate and soil conditions of this region (Oikawa 

et al., 2015), the water use and water use efficiency may need to be taken into 

consideration for the sake of sustainability.  

5.6 Conclusions 

This study presents a novel application of the combined use of customized 

chambers and a laser-based isotope analyzer to directly quantify isotopic signatures of T, 

E and ET in situ and examine ET partitioning over a field of forage sorghum in an 

extreme field condition. As a consequence of strong evaporation under extreme heat and 

arid conditions, the studied system showed similar δT and δE values, which is rarely seen 

in the literature and increases the difficulty in discriminating isotopic signatures and to 

partition ET. The strong evaporative gradient in this ecosystem was supported by the fact 

of very low slopes of δD and δ18O relationship for both δT and δE.  
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The results revealed an interesting pattern of the isotopic signatures of E, T, and 

ET. All components increased as the soil dried, but decreased at the mid to end of each 

irrigation cycle. These changes were likely a result of the lateral roots extracting water 

from the subsoil and redistribution to the surface layer, so both crop and surface soil 

evaporation would access water from deeper layers when the shallow water is depleted. 

For the studied ecosystem, approximately 46% of the irrigated water delivered to the 

crops was transpired, with 54% lost via direct evaporation from the soil during the 

vegetative stage. Considering inherent irrigation inefficiencies, approximately 28 − 39% 

of the total source water was used by crops, suggesting potential for improved water use 

efficiency.  
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Table 5.1 Evapotranspiration partitioning calculations at representative sampling dates.  
 

 

Note: SD refers to standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date %T %E 

7/24/2014 40.2 59.8 

7/28/2014 39.3 60.7 

7/30/2014 51.8 48.2 

8/4/2014 47.3 52.7 

8/6/2014 52.3 47.7 

8/7/2014 45.0 55.0 

Mean 46.0 54.0 

SD 5.6 5.6 
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Figure 5.1 Location of the University of California Desert Research and Extension 

Center (DREC). Monthly mean precipitation (mm), reference evapotranspiration (ETo) 

(mm), temperature and relative humidity over 1990 – 2015 for the Meloland station of 

the California Irrigation Management Information System (CIMIS), located within a few 

hundred meters of the experimental field.  
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Figure 5.2 The δD-δ18O relationships of leaf transpiration (δT, blue circles) and soil 

evaporation (δE, red circles). Black circles depict the measured isotopic composition of 

the irrigation water. The dashed black line is the Local Meteoric Water Line, determined 

via least-squares fitting of the irrigated water isotope values. The solid gray line is the 

Global Meteoric Water Line (GMWL). VSMOW is Vienna Standard Mean Ocean Water.  
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Figure 5.3 Patterns of deuterium and oxygen isotope signatures for transpiration (T), 

evaporation (E) and evapotranspiration (ET) over the irrigation cycles. (a) observed 

pattern for deuterium (δD), (b) observed pattern for oxygen (δ18O). VSMOW stands for a 

standard of Vienna Standard Mean Ocean Water. 
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Figure 5.4 Daily variation of transpiration (T) and evapotranspiration (ET) during the 

vegetative stage, calculated by combing isotope partitioning and total ET results obtained 

from concurrent eddy covariance measurements. 
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Figure 5.5 Variations of leaf area index (LAI) during crop development (a) and the 

relationship between T/ET and LAI (b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  121 

 

 

Figure 5.6 Comparison of deuterium isotope signature of leaf transpiration (δT) and soil 

evaporation (δE) over the measurement period. VSMOW stands for a standard of Vienna 

Standard Mean Ocean Water. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This dissertation has filled some important knowledge gaps to understand and 

predict the climate change effects on hydrological cycles and soil-water-vegetation 

interactions in drylands. To address these knowledge gaps, I used some recent technical 

advances in terms of monitoring dryland water dynamics and vegetation water use, 

including remote sensing and stable isotopes. This dissertation has several important 

findings. The first part of this dissertation contributed to resolve a paradox in our intuitive 

understating of dryland greening. Results of the meta-analysis have supported a 

hypothesis that higher concentrations of atmospheric CO2 induce plant water saving and 

that consequent available soil water increases are a likely driver of the observed greening 

phenomena. The study shows that an increase in atmospheric CO2 to between 1.2 to 2.0 

times the ambient CO2 level has a positive effect on soil water content. A higher CO2 

levels results in an 11% increase in soil water content across all systems. Importantly, 

elevated CO2 has significantly enhanced soil water levels in drylands than it has in 

non-drylands, with soil water content increasing by 9% in non-drylands compared to 17% 

in drylands. By identifying a new mechanism in global dryland greening, these findings 

provide important insights into plant-water interactions.  

My hypothesis for greening mechanism is based on increasing atmospheric CO2 

inducing decreases in plant stomatal conductance (gs) and enhancing vegetation WUE, 

further work was conducted in the second part of this dissertation to evaluate three 

commonly used gs models for their estimation of the stomatal response to environmental 

stimuli using in-situ measurements under different environmental conditions. This is the 
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first study to test these different gs models under diverse conditions. The testing data were 

made under different environmental conditions, including the instantaneous 

measurements, semi-controlled measurements and the FACE experiments. The results 

show that Leuning’s modified Ball-Berry model and RuBP limited optimization model 

generally provide good estimates of gs for all the tested datasets. This finding supports the 

previous modeling analysis that has suggested RuBP regeneration limited model 

generally simulates more reasonable Ca response because the RuBP limited formulation 

could mimic a stomatal closure at rising Ca while the Rubisco limited formulation 

stimulates stomata to open at rising Ca. The variables such as functional groups (e.g., C3 

versus C4 species) and life form (e.g., annual versus perennial species) may play an 

important role in determining the stomatal response to changes in environmental factors, 

and therefore these variables need to be explicitly considered in the modeling framework.  

Rainfall is another most critical factor determining the impact of climate change on 

the dynamics of water and vegetation in drylands. The third part of this dissertation has 

evaluated the feasibility of utilizing satellite-based rainfall estimates to examine the 

changes in rainfall patterns in data scarce dryland region. The TMPA rainfall estimates are 

used to assess the spatial variations and long-term rainfall variability from four locations 

across a rainfall gradient in Namibia. One of the most important findings from this study is 

the difference in trends of rainfall amount, frequency and intensity between drier and 

wetter regions. In a very arid and hot GRTC area, though the total rainfall amount does not 

change, there is a decrease (significant) in frequency (λ) of storm accompanied by an 

increase (non-significant) in storm intensity (α). However, neither of these two indices 
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shows significant changes at Windhoek, a much wetter site. The Weltevrede Farm, as 

located in the transition zone from the dry Namib Desert to less arid highland (Windhoek), 

shows less significant results comparing to GRTC. The results also show increased rainfall 

variability for the driest location as indicated by the increases in coefficient of variation. 

The long-term rainfall pattern and late summer precipitation (FMA response) based on 

TMPA satellite derived rainfall dataset, are contrary to the IPCC predictions (with large 

uncertainties) of a drying trend in Namibia. The results have emphasized the spatial 

variability of dryland rainfall, as well as the necessity of obtaining ground observations in 

data scarce regions. This study provides a useful approach to help understand the temporal 

and spatial variations of precipitation in the areas of Africa where the in situ observations 

are scarce by using annual TMPA data to extend the data record with trend analysis. 

Irrigation is the largest single consumer of fresh water on the planet. In the final 

part of this dissertation, I have presented a novel application to use the customized 

chambers and a laser-based isotope analyzer to directly quantify isotopic signatures of T, E 

and ET in situ and examine ET partitioning over a field of forage sorghum under an 

extreme environmental condition. An interesting pattern of plant water use for sorghum is 

observed, which implies that sorghum may use the lateral roots extracting water from the 

subsoil and redistribution to the surface layer, so both crop and surface soil evaporation 

would access water from deeper layers when the shallow water is depleted. Results also 

show for the studied ecosystem, approximately 46% of the irrigated water delivered to the 

crops is transpired, with 54% lost via direct evaporation from the soil during the vegetative 
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stage. Combining with the inherent irrigation inefficiencies, only 28 − 39% of the total 

source water is used by crops, therefore there could be a potential for improved water use 

efficiency.  

6.2 Suggestions for Future Work 

The research that has been undertaken for this dissertation has highlighted a 

number of topics that would certainly merit further investigations.  

The dryland greening has been a very interesting topic that presents something of 

a paradox in our intuitive understanding of plant-water-CO2 interaction. A number of 

open issues are worth further investigations. For example, how long the observed trend of 

greening can last, and whether the greening would occur more preferably for C3 or C4 

plant dominated systems? It is challenging to predict how an ecosystem will response to 

CO2 enhancement since the indirect CO2 feedback may lead to amplification or 

dampening of the direct leaf-level response to CO2. This idea was touched upon in our 

study, and led to the use of SEM approach to test the relative importance of direct versus 

indirect links between CO2 enrichment and vegetation productivity. A further 

understanding of this complex feedback process is required.  In addition, in the future 

work, it would be interesting to test the relative importance of regional drivers versus 

global driver (CO2 enhancement) on vegetation greening. The time scale of the CO2 

enrichment effect may be the key in understanding these problems.  

My current modeling framework has investigated how CO2 changes can affect 

stomatal conductance, and linked the relative effect of a change in stomatal conductance 
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to the soil water status. It would be worthwhile to investigate if there is a possibility to 

link the changes of CO2 to soil water status through stomatal conductance changes. Given 

the challenges in predicting the response of gs in the mixed vegetation communities, it 

may require developing such models being species specific.  

The result for the ET partitioning study shows that the isotopic signature is similar 

between E and T due to strong evaporative enrichment, which is rarely seen in the previous 

studies. My practical interest for the next step of this work would be to investigate the best 

management practices to control evaporation and improve the water use and water use 

efficiency in those harsh agricultural production systems.   
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Appendix C: Stomatal conductance and soil water model framework 

 

In Gao’s water-limited conductance sub-model, the relation between soil water 

potential 𝜓𝑠 and stomatal conductance 𝑔𝑠 can be expressed as: 

 

𝑔𝑠 =
𝑔0𝑚+𝑘𝜓𝜓𝑠+𝑘𝛼𝛽𝐼𝑝

1+𝑘𝛽𝑔𝑑𝑣𝑝
, (1) 

where 𝑔0𝑚 is the maximum residual stomatal conductance at saturated soil conditions, 𝐼𝑝 

is photosynthetic active radiation (PAR), and 𝑘𝜓, 𝑘𝛼𝛽 , and 𝑘𝛽𝑔  are model-specific 

parameters, 𝑑𝑣𝑝 is D normalized by atmospheric pressure.  

By re-arranging the equation (1), it can find that  

 

𝜓𝑠 =
𝑔𝑠 (1+𝑘𝛽𝑔𝑑𝑣𝑝) − 𝑔

0𝑚
− 𝑘𝛼𝛽𝐼𝑝

𝑘𝜓
, (2) 

In the next step, by taking derivatives, the relative effect of a change in 𝑔𝑠 on 𝜓𝑠 is given 

by 

 
𝑑𝜓𝑠
𝜓𝑠

= 1
𝑘𝜓

𝑑𝑔𝑠
𝑔𝑠

+ 𝑘𝛽𝑔

 𝑘𝜓
(𝑑𝑔𝑠

𝑔𝑠
+ 𝑑𝐷𝑣

𝐷𝑣
) −  𝑘𝛼𝛽

𝑘𝜓

𝑑𝐼𝑝

𝐼𝑝
, (3) 

 

Next, it can find some relation between 𝑔𝑠  and 𝐷𝑣 , and 𝑔𝑠  and 𝐼𝑝 . The 

dependence of 𝑔𝑠  on 𝐷𝑣  can be observed and modeled by taking 𝑑𝑔𝑠
𝑔𝑠

 as being 

proportional to 𝑑𝐷𝑣−0.5

𝐷𝑣
−0.5 . Similarly, the relation between 𝑔𝑠 and 𝐼𝑝 can be approximated by 

a hyperbola with a form 𝑓(𝐼𝑝) =  1 (1 + 𝛽
𝐼𝑝

)⁄ , where 𝛽 is model specific parameter, so the 

changes in 𝐼𝑝can be modeled by taking 𝑑𝑔𝑠
𝑔𝑠

 as being proportional to 
𝑑(1+𝛽 𝐼𝑝⁄ )−1

(1+𝛽 𝐼𝑝⁄ )−1 . With 

these two approximations, equation (3) becomes: 
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𝑑𝜓𝑠
𝜓𝑠

= 𝑑𝑔𝑠
𝑔𝑠

( 1
𝑘𝜓

− 𝑘𝛽𝑔

101.3 × 𝑘𝜓
−  𝑘𝛼𝛽

𝑘𝜓
), (4) 

The soil water potential is then converted to the volumetric water content using 

water retention curves generated from pressure plate analysis in soil cores, and it follows 

an exponential relationship: 

𝜓𝑠 =  𝑘 × 𝜃−𝑎, (5) 

where 𝑎 is a model specific parameter related to soil type. So the relation between soil 

water potential and water content can be modeled by taking 𝑑𝜓𝑠
𝜓𝑠

 as being proportional to 

𝑑(𝜃)−𝑎

(𝜃)−𝑎 .  

By combining this approximation with equation (4), we can find that 

𝑑𝜃
𝜃

=
(− 1

𝑘𝜓
+

𝑘𝛽𝑔
101.3 × 𝑘𝜓

+
 𝑘𝛼𝛽
𝑘𝜓

)

𝑘×𝑎
𝑑𝑔𝑠
𝑔𝑠

, (6) 

where 𝑘𝜓, 𝑘𝛼𝛽, 𝑘𝛽𝑔, 𝛽 and 𝑎 are model-specific parameters.   
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