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Abstract

Alcohol use disorders are chronically relapsing conditions that pose significant health challenges 

for our society. Stress is a prevalent trigger of relapse, particularly for women, yet the mechanisms 

by which alcohol and stress interact, and how this differs between males and females, remain 

poorly understood. The glutamatergic circuit connecting the basolateral (BLA) and central (CeA) 

nuclei of the amygdala is a likely locus for such adaptations, yet the impact of alcohol, 

corticosterone and their interaction on this circuit has been understudied. In particular, no studies 

have addressed sex differences in these effects or potential differential responses between the 

lateral and medial subdivisions of the central nucleus. Thus, we assessed the effects of alcohol and 

corticosterone treatments on BLA-evoked compound glutamatergic responses in medial and lateral 

CeA neurons from male and female rats. We observed minimal differences between medial and 

lateral CeA responses to alcohol and corticosterone in male rats, which were primarily sensitive to 

alcohol-induced inhibition of glutamatergic postsynaptic potentials. Unlike male neurons, cells 

from female rats displayed reduced sensitivity to alcohol’s inhibitory effects. In addition, female 

neurons diverged in their sensitivity to corticosterone, with lateral CeA neuronal responses 

significantly blunted following corticosterone treatment and medial CeA neurons largely 

unchanged by corticosterone or subsequent co-application of alchol. Together these data highlight 

striking differences in how male and female amygdala respond to alcohol and the stress hormone 

corticosterone, factors which may impact differential susceptibility of the sexes to alcohol- and 

stress-related disorders.
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1. Introduction

Alcohol use disorders, which affect 5–10% of the population worldwide (World Health 

Organization, 2014), are characterized by their chronically relapsing nature. Stress is a 

primary trigger of alcohol craving and relapse (Seo and Sinha, 2014), and females display 

stronger relationships between stress, craving in heavy drinkers and relapse in former 

drinkers than males (Hartwell and Ray, 2013; Heffner et al., 2011). Females are more likely 

to develop anxiety-related disorders (McLean et al., 2011) and show a stronger relationship 

between lifetime trauma and alcohol relapse propensity (Heffner et al., 2011). Post-traumatic 

stress disorder (PTSD) more often precedes the development of alcohol use disorders in 

females than in males (Sonne et al., 2003), and women with PTSD and alcohol use disorders 

are more likely to drink alcohol as a stress coping mechanism than men with the same 

diagnoses (Lehavot et al., 2014). These data suggest females have an enhanced sensitivity to 

the impact of stress on alcohol use, yet the neural mechanisms underlying this sexual 

dimorphism remain poorly understood.

The close relationship between stress and alcohol use implicates common underlying 

neurocircuitry, and the greater susceptibility of females to stress-related disorders suggests 

enhanced stress-related adaptation of this common circuitry in females, relative to males. 

One brain region particularly suited to support stress-alcohol interactions is the amygdala, a 

group of interconnected nuclei centrally involved in reward processing, anxiety-like 

behavior and aversive conditioning (Aggleton, 2000). In particular, the intra-amygdala 

circuit connecting the basolateral nucleus (BLA) to the central nucleus (CeA) participates in 

the neural patterning of behavioral responses and adaptations to both positive and negative 

reinforcers (Janak and Tye, 2015). This circuit presents an intriguing locus for cross-

sensitization to stress and alcohol (ethanol), since both independently alter neuronal activity 

in the BLA and the CeA. Ethanol acutely potentiated GABAergic responses in both 

amygdala subdivisions (Roberto et al., 2003; Silberman et al., 2008; Zhu and Lovinger, 

2006), but modulation of glutamatergic activity differed by region. Ethanol significantly 

reduced the amplitude of locally evoked excitatory postsynaptic potentials (EPSPs) in the 

CeA of ethanol-naïve and chronic ethanol-treated male rats (Roberto et al., 2004), although 

individual cells varied in the magnitude and direction of ethanol’s effects (Herman et al., 

2016). After chronic intermittent ethanol treatment in male rats, postsynaptic alterations 

were accompanied by increased presynaptic glutamate release in the male rat CeA (Roberto 

et al., 2004), and one source of this may be the glutamatergic BLA afferents. In support of 

this, chronic intermittent ethanol exposure increased the amplitude of spontaneous excitatory 

postsynaptic currents in the BLA of male rats (Lack et al., 2007), an adaptation which could 

generate the observed increase in glutamate release in the CeA.

Like chronic ethanol, stress enhanced glutamatergic activity in the male mouse BLA, with in 
vivo stress exposure increasing miniature excitatory postsynaptic current (mEPSC) 

frequency (Karst et al., 2010) and enhancing long-term potentiation (Sarabdjitsingh et al., 

2012). Molecular mimicry of stress-induced HPA axis activation, achieved by acute 

application of corticosterone to slices, generated similar enhancements of excitability in 

BLA principal neurons. Corticosterone elevated resting membrane potential and input 

resistance in BLA neurons from male mice, shifting the population towards slower post-
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tetanus spike adaptation (Duvarci and Pare, 2007) and increased mEPSC frequency (Karst et 

al., 2010). Importantly, the BLA neuronal response to a second pulse of corticosterone in 

stress-naïve mouse slices looked identical to the response to a single corticosterone 

treatment in slices from mice exposed to stress prior to euthanasia (Karst et al., 2010). 

Although similar alterations in membrane properties and presynaptic event frequency were 

not observed in the CeA (Karst et al., 2010), it remains unknown how corticosterone might 

alter BLA-evoked CeA responses or how female neurons respond to these treatments.

To understand communication between the BLA and CeA, as well as stress and ethanol 

effects on this communication, it is crucial to consider the architecture of the CeA. Like the 

amygdala, the CeA can be further reduced into its subdivisions, of which the medial (CeM) 

and lateral (CeL) subdivisions have long been acknowledged to differ in neuropeptide 

expression and connectivity (Cassell and Gray, 1989; Cassell et al., 1986). BLA 

glutamatergic projections terminate on both CeL and CeM GABAergic neurons (Tye et al., 

2011), but activating these two CeA subpopulations has opposite effects on CeA output due 

to the intrinsic circuitry of the CeA, since CeL neurons tonically inhibit CeM neurons 

(Cassell et al., 1999). Most investigations of functional differences in CeL and CeM neurons 

have focused on anxiety-like behaviors or stress-induced conditioning. Inhibiting CeL 

neurons prevented acquisition of fear conditioning in male mice, whereas activation of BLA 

projections to CeL reduced anxiety-like behavior (Ciocchi et al., 2010; Tye et al., 2011). 

Conversely, optogenetic activation of BLA projections to CeM generated freezing behavior, 

while inactivation of CeM neurons blocked expression of fear conditioning in male mice 

(Ciocchi et al., 2010; Tye et al., 2011). Taken together with the central involvement of CeA 

neuropeptides in behavioral adaptations accompanying ethanol dependence in male rats 

(Economidou et al., 2008; Foster et al., 2004; Funk et al., 2006; Gilpin et al., 2011), this 

intra-amygdala circuit presents a likely locus regulating the interaction between stress and 

ethanol. Understanding how stress and ethanol similarly, or differentially, regulate the BLA-

CeL vs. BLA-CeM circuits is of key importance for understanding how this circuit might 

adapt to produce stress-related increases in drinking. What remains largely unexplored, 

however, is whether this circuit differs in its stress- or ethanol-responsiveness in males vs. 

females.

We set out to elucidate whether sexual dimorphism exists in the glutamatergic circuit 

connecting the BLA to the CeA, both at baseline and following ethanol or corticosterone 

treatment. We were particularly interested in whether these effects would differ between 

CeM and CeL neurons, as well as whether corticosterone alters ethanol’s effects. We 

hypothesized, based on sexual dimorphism in stress-induced corticosterone release (Rivier, 

1993), that female CeA neurons would differ from male neurons in sensitivity to 

corticosterone. We also hypothesized, based on sex differences in ethanol consumption 

(Almeida et al., 1998), that ethanol might differentially alter BLA-evoked EPSPs. Finally, 

we hypothesized that sexual dimorphism in acute ethanol and corticosterone effects would 

result in sex differences in the interaction between corticosterone and ethanol treatments.
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2. Materials and methods

2.1. Animals

Male and female Wistar rats were obtained from Charles River Laboratories (Raleigh, NC, 

USA), aged approximately 8 weeks old upon arrival. Rats were group housed (2–4 per cage) 

in Plexiglas cages, with food and water available ad libitum. The temperature- and humidity-

controlled housing room was on a 12h:12h light:dark cycle. Following arrival, rats were 

housed in the facility for a minimum of 1 week prior to experimentation, with recordings 

performed on slices from 9- to 14-week-old rats. All procedures were approved by The 

Scripps Research Institute’s Institutional Animal Care and Use Committee, and conform to 

the National Research Council’s Guide for the Care and Use of Laboratory Animals.

2.2. Estrous cycle synchronization and monitoring

To obtain desired estrous cycles on recording days, for most female subjects, estrous cycles 

were synchronized using [D-Trp6, Pro9-NEt]-gonadotropin releasing hormone (GnRH), a 

synthetic analog of GnRH, generously provided by Dr. Jean Rivier of The Salk Institute for 

Biological Studies. The peptide was dissolved in 0.1 N acetic acid (0.5 μg/μl), then diluted in 

sterile phosphate buffered saline to a concentration of 10 μg/ml. Two 2-μg doses of the 

GnRH analog were administered 5 h apart to mimic the onset of proestrus. Because fidelity 

of this synchronization protocol is imperfect (Ogilvie and Rivier, 1997), vaginal smears were 

obtained from all female rats under light anesthesia immediately prior to brain collection to 

confirm estrous cycle. All cycles were confirmed via methylene blue staining.

2.3. Electrophysiology

2.3.1. Slice preparation—To prepare slices for recording, rats were anesthetized with 

isoflurane and rapidly decapitated, and brains were quickly chilled in an oxygenated (95% 

O2/5% CO2) icy slurry of high-sucrose solution containing, in mM: 206 sucrose, 2.5 KCl, 

0.5 CaCl2, 7 MgCl2, 1.2 NaH2PO4, 26 NaHCO3, 5 glucose, 5 HEPES. Coronal slices of 400 

μm thickness were prepared on a vibrating microtome (VT1000S, Leica Biosystems Inc., 

Buffalo Grove, IL). Slices were transferred to a holding chamber of oxygenated (95% 

O2/5% CO2) artificial cerebrospinal fluid (aCSF), containing, in mM: 130 NaCl, 3.5 KCl, 

1.25 NaH2PO4, 1.5 MgSO4·7 H2O, 2 CaCl2, 24 NaHCO3, 10 glucose. Slices were incubated 

in an interface configuration for ~15 min, then completely submerged and continuously 

superfused with aCSF (flow rate 2–4 ml/min). After immersion, slices recovered for at least 

1 h prior to recording. This procedure was normally performed during the early portion of 

the light cycle so that rats would be near the nadir of the corticosterone (CORT) circadian 

cycle, within 4 h of the start of the light cycle.

2.3.2. Intracellular recording—Using sharp micropipettes, we recorded intracellularly 

from 126 CeA neurons, with 69 located in the lateral subdivision (CeL) and 57 located in the 

medial subdivision (CeM). Recording micropipettes (70–90 MΩ) were filled with 3 M KCl 

and recordings were performed using discontinuous current-clamp mode (Kallupi et al., 

2014; Roberto et al., 2003; Roberto et al., 2004), with most neurons held near their resting 

membrane potentials. Postsynaptic responses were evoked using a bipolar stimulating 

electrode placed in the neighboring BLA. Compound evoked excitatory postsynaptic 
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potentials (EPSPs) were pharmacologically isolated via addition of the GABAA receptor 

blocker bicuculline (30 μM) and the GABAB receptor blocker CGP 55845A (1 μM) to the 

superfused aCSF. Synaptic response parameters were determined for each cell using an 

input–output (I/O) protocol as described previously (Kallupi et al., 2014; Roberto et al., 

2006; Roberto et al., 2004), with 5 stimuli [most were between 0.5 and 6.0 nA; range: 0.032 

to 9.9 nA], delivered in succession with an 8-second interstimulus interval. Responses to 

paired stimuli separated by 50-, 100- and 200-msec intervals were assessed at the stimulus 

intensity that produced the half maximal amplitude of the EPSP, as determined by the I/O 

relationship. Hyperpolarizing and depolarizing current steps (200 pA increments, 750 msec 

duration) were applied to generate current-voltage (I/V) curves, with stability of membrane 

resistance across the experiment determined from the response to the 200-pA 

hyperpolarizing voltage step. Data were acquired with an Axoclamp-2A preamplifier and 

stored for later analysis using pClamp software (Axon Instruments, Foster City, CA). Cells 

with very low amplitude stimulus responses, defined as less than having a baseline maximal 

stimulus response at or below 3 mV, were excluded from the analyses; this eliminated 1 

neuron (0.79% of all recorded cells).

2.3.3. Drug treatments—CGP 55845A, bicuculline and corticosterone (CORT; 100 nM) 

were purchased from Sigma Aldrich (St. Louis, MO) and ethanol (44 mM) was purchased 

from Remet (La Mirada, CA). All drugs were applied through the perfusion solution, with 

corticosterone experiments performed in the dark due to its light sensitivity. Corticosterone 

was dissolved in DMSO, then diluted 1:10,000 in aCSF. Stimulus responses at the half 

maximal intensity were collected every 30 sec throughout drug wash-on periods, averaged 

across 2-min bins for time course presentation.

2.4. Data analysis

Data were quantified using Clampfit Software (Axon Instruments) and analyzed using Systat 

and SigmaPlot software (Systat Software Inc., San Jose, CA). In all experiments, cells with 

greater than 20% shifts in series resistance over the course of the experiment were excluded 

from the analyses. Maximal treatment effects were calculated as the greatest difference 

observed over a 4-min period commencing at least 6 min after ethanol wash-on or at least 15 

min after CORT addition, relative to an 8-min baseline average. The paired pulse response 

(PPR) was calculated as the ratio between the second and first EPSPs in response to 

temporally paired stimuli. Values are expressed as mean ± standard error of the mean 

(SEM). For each cell, maximal treatment effects and I/O data for the 3 middle intensity 

stimuli were normalized to average baseline response in the same condition. Normalized 

data were analyzed with one-sample t-tests to determine whether individual groups’ 

treatment responses differed from baseline. Raw values were used for statistical analyses by 

two-way or three-way ANOVA with repeated measures, as indicated.
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3. Results

3.1. Male and female CeA neurons display similar baseline properties for BLA-evoked 
glutamatergic potentials

To investigate sex differences in the BLA-CeA circuit, compound glutamatergic EPSPs were 

evoked in the BLA and recorded from neurons in the medial (CeM) and lateral (CeL) 

subdivisions of the CeA, in the presence of bicuculline (30 μM) and CGP 55845A (1 μM). 

As this is the first investigation into sex differences in CeA neuronal responses, we first 

compared baseline evoked responses from males and diestrus females (n=90) to ascertain 

whether a priori sex or amygdala subdivision differences exist in this circuit. Females in the 

diestrus phase of the estrous cycle at euthanasia were specifically selected for this analysis 

as that cycle was common to all experiments and thus provided the greatest statistical power 

and comparable group sizes to the males. As shown in Table 1, I/O and PPR were similar for 

males and diestrus females in both CeM and CeL neurons. Analyses by two-way ANOVA 

with repeated measures indicated no significant effects for the between-subjects factor sex, 

nor interactions between sex and the within-subjects factors stimulus intensity (I/O) or 

interstimulus interval (PPR) in either subdivision (F’s<1.20, p’s>0.29). Significant main 

effects of stimulus intensity were observed in all I/O analyses (F’s>82.97, p’s<0.001), 

independent of sex. Direct testing of CeA subdivision differences in I/O responses using 3-

way ANOVA with repeated measures yielded main effects of CeA subdivision (F1,86=4.84, 

p<0.05) and stimulus intensity (F4,344=216.69, p<0.001), as well as an interaction between 

those factors (F4,344=3.00, p<0.05). Although no significant main effects or interactions 

were observed for the factor sex, the effect of CeA subdivision was mainly supported by 

differences in CeL vs. CeM I/O responses in male neurons. Analysis of male neurons’ I/O 

responses by two-way ANOVA with repeated measures showed a main effect of stimulus 

intensity (F4,168=128.47, p<0.001), as well as an interaction between the stimulus intensity 

and CeA subdivision (F4,168>2.50, p<0.05), whereas similar analysis of female neurons’ I/O 

responses showed no significant effects or interactions for CeA subdivision. Unlike I/O, 

interrogation of CeA subdivision effects on PPR by 3-way ANOVA with repeated measures 

generated no significant main effects or interactions (F’s<2.89, p’s>0.05).

To confirm that the lack of sexual dimorphism in baseline properties did not result from 

exclusion of estrous cycles, all female neurons included in the study were analyzed by two-

way ANOVA with repeated measures. No significant impact of cycle on I/O responses was 

observed in either CeL neurons (cycle: F2,40=0.60, p=0.56; cycle x stimulus intensity, 

F8,160=1.30, p=0.25) or CeM neurons (cycle: F2,27=0.21, p=0.81; cycle x stimulus intensity, 

F8,108=0.46, p=0.88). Unlike I/O, differential cycle effects by CeA subdivision were 

observed for PPR. A significant interaction was found between cycle and interstimulus 

interval for CeM neurons (F4,34=3.86, p<0.05), whereas no significant cycle effects or 

interactions were observed in CeL neurons (F’s<0.56, p’s>0.69). Together, these data 

demonstrate that male and female CeA neurons do not display marked baseline differences 

in stimulus-response properties, although estrous cycle may modulate presynaptic release 

properties in the medial, but not lateral, CeA.

Logrip et al. Page 6

Neuropharmacology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Sexual dimorphism in acute ethanol responses of CeA neurons

Previously we showed that acute ethanol treatment reduced the amplitude of locally evoked 

EPSPs in male CeM neurons (Roberto et al., 2004). Here we asked whether these effects 

would be reproduced with BLA stimulation, whether ethanol would similarly alter male CeL 

activity, and whether female neurons would be impacted by ethanol treatment similarly to 

male neurons. To address these gaps in knowledge, BLA-evoked compound glutamatergic 

responses were recorded before and during ethanol superfusion (44 mM, 6–12 min).

3.2.1. Acute ethanol treatment of CeL neurons—Ethanol reduced BLA-evoked 

EPSP amplitude in CeL neurons, as depicted in the representative traces from male (Fig. 1A) 

and female (Fig. 1B) neurons. Specifically, EPSPs (half-maximal intensity stimulation) were 

significantly reduced over the period of treatment, depicted in the time course (Fig. 1C), to 

89.6 ± 2.7% of control in male CeL neurons (one-sample t-test, t12=−3.79, p<0.01), whereas 

in female CeL neurons, reduction to 95.4 ± 2.8% of control was not significant (one-sample 

t-test, t33=−1.69, p=0.10). Analysis by two-way ANOVA with repeated measures yielded a 

significant main effect of ethanol treatment (F1,45=11.46, p<0.01), but no main effect of sex 

or interaction between the factors (F’s<1.92, p’s>0.17). I/O curves displayed similar effects 

(Fig. 1D), with ethanol inhibition to 91.4 ± 4.5% to 81.7 ± 3.3% of control for males and 

90.7 ± 3.8% to 86.9 ± 3.1% of control for females (t’s<−2.44 p’s<0.05 for male stimuli 2 

and 3 and all female stimuli by one-sample t-test). Analysis by three-way ANOVA with 

repeated measures yielded main effects of treatment (F1,43=32.81, p<0.001) and stimulus 

intensity (F2,86=84.28, p<0.001), as well as an interaction between these factors (F2,86=8.52, 

p<0.001), without significant main effect or interactions for sex (F’s<1.11, p’s>0.33). 

Together these data show significant ethanol-induced reduction in CeL eEPSPs in both 

males and females, with possibly greater amplitude effects in males.

For statistical comparison to male data, female cells were considered as a single entity; 

however, estrogen itself as well as the estrous cycle of the female alter neuronal activity in 

multiple brain regions (Grassi et al., 2012; Schiess et al., 1988; Smejkalova and Woolley, 

2010). To determine the impact of estrous cycle on ethanol’s modulation of CeL EPSPs (Fig. 

1E) and I/O relationships (Fig. 1F), female data were analyzed with the inclusion of estrous 

cycle as a between-subjects factor. Ethanol minimally reduced EPSPs over the treatment 

time course (half-maximal intensity stimulation, Fig. 1E), so that no individual cycle was 

significantly changed relative to control, as assessed by one-sample t-tests (proestrus: 92.4 

± 5.9% of control, t7=−1.29; estrus: 98.8 ± 6.3% of control, t9=−0.19; diestrus: 94.7 ± 3.4% 

of control, t15=−1.58; all p’s>0.13). Nonetheless, two-way ANOVA with repeated measures 

yielded a trend towards a treatment effect (F1,31=3.70, p=0.06), without significant effect of 

estrous cycle or interaction between cycle and treatment (F’s<0.48, p’s>0.62). I/O curves 

displayed both larger amplitude effects and greater variability in response by cycle (Fig. 1F), 

with a maximal reduction by ethanol to 81.4 ± 6.1% of control observed during proestrus, 

whereas a mild increase to 102.9 ± 10.1% of control was observed at one stimulus intensity 

during estrus. Individual stimulus comparisons to control via one-sample t-test indicate 

significant reductions for all stimulus intensities during diestrus and for the lowest stimulus 

intensity in proestrus (t’s<−3.01, p’s<0.05), whereas no significance was observed for estrus 

or the higher stimulus intensities in proestrus (t’s>−2.02, p’s>0.08). As demonstrated for 
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EPSP magnitude, I/O analysis via three-way ANOVA with repeated measures demonstrated 

a significant main effect of treatment (F1,29=17.96, p<0.001), as well as a main effect of 

stimulus intensity (F2,58=64.59, p<0.001) and an interaction between the two factors 

(F2,58=3.29, p<0.05). No main effect or interactions were observed for estrous cycle 

(F’s<1.46, p’s>0.22). Together these data indicate that in the CeL, the primary difference in 

sensitivity to acute ethanol’s effects is between males and females, but that there may be 

mild differences in ethanol responsiveness across the phases of the estrous cycle as well.

3.2.2 Acute ethanol treatment of CeM neurons—As in CeL neurons, representative 

traces (Fig. 2A–B) show that ethanol reduced BLA-evoked EPSP amplitude in CeM neurons 

over the course of drug application (Fig. 2C). Quantification of these effects at half maximal 

intensity stimulation (Fig. 2C, inset) showed significant reduction in EPSPs following 

ethanol treatment in male CeM neurons, to 89.7 ± 3.2% of control (one-sample t-test, t11=

−3.24, p<0.05), but not in female CeM neurons, at 97.0 ± 3.5% of control (one-sample t-test, 

t21=−0.87, p=0.40). Analysis by two-way ANOVA with repeated measures yielded a main 

effect of ethanol treatment (F1,32=4.96, p<0.05) as well as trend towards an interaction 

between sex and treatment (F1,32=3.22, p=0.09). Examination of I/O data by three-way 

ANOVA with repeated measures (Fig. 2D) generated significant main effects of treatment 

(F1,28=19.22, p<0.001) and stimulus intensity (F2,56=39.66, p<0.001), but no main effect of 

sex or interactions between variables (F’s<1.29, p’s>0.26). Closer examination of CeM I/O 

data, relative to their respective baselines, showed slightly greater ethanol inhibition to 

87.4% ± 8.1% to 79.2 ± 4.6% of control for males and 94.7 ± 6.9% to 88.4 ± 5.3% of 

control for females. For both males and females, responses to the two higher stimulus 

intensities were statistically significant relative to control (t’s<−2.32, p’s<0.05), whereas 

responses to the lowest stimulus intensity were not (t’s<‘−1.52, p’s>0.14). Together these 

data show that ethanol reduces CeM EPSPs in both males and females, with possibly greater 

amplitude effects in males.

Subdividing the female CeM data by estrous cycle revealed a striking difference in ethanol’s 

effects on EPSP amplitude according to estrous cycle, as shown in the treatment time course 

(Fig. 2E). Analysis of ethanol superfusion effects at half-maximal stimulus intensity (Fig. 

2E, inset) via two-way ANOVA with repeated measures yielded a significant interaction 

between estrous cycle phase and treatment (F2,19=9.10, p<0.01). Post hoc analyses using 

Tukey’s test revealed significant differences between baseline and ethanol treatment during 

both proestrus (p<0.01) and estrus (p<0.05), but not diestrus (p=0.46). Particularly 

noteworthy is the increase in EPSPs following ethanol treatment of proestrus neurons, to 

116.1 ± 5.1% of control (one-sample t-test, t3=3.17, p=0.05), as compared to no effect 

during diestrus, 94.7 ± 3.4% of control (p=0.14), and reduction to 85.4 ± 4.4% of control 

during estrous (one-sample t-test, t4=−3.29, p<0.05). Cyclic variability was also observed in 

I/O relationships (Fig. 2F): cells from proestrus females showed nonsignificant EPSP 

increases during ethanol treatment, ranging from 100.6 ± 6.9 to 111.1 ± 22.3% of control, 

whereas cells from diestrus and estrus females showed ethanol-induced reductions or no 

change in EPSP amplitude (diestrus: 94.9 ± 111.0% to 81.6 ± 5.3% of control, estrus: 83.2 

± 9.4% to 76.4 ± 8.1% of control; t’s<−2.95, p’s<0.05 for diestrus intensities 2 and 3 and 

estrus intensity 3). Despite this cyclic variability, analysis of I/O data by three-way ANOVA 
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with repeated measures yielded main effects of treatment (F1,15=4.71, p<0.05) and stimulus 

intensity (F2,30=27.51, p<0.001), with no effect of cycle or interactions between any factors. 

Together these data suggest that male CeM neurons are more sensitive to ethanol’s 

inhibitory effects on BLA-evoked compound glutamatergic potentials than female neurons 

and that estrous cycle at the time of slice collection plays a significant role in female CeM 

neurons’ ethanol responses.

3.3. Ethanol modulation of BLA-evoked CeA EPSPs does not alter paired pulse facilitation

To investigate the presynaptic component of the observed reductions in EPSPs following 

acute ethanol treatment in the CeA, neuronal responses to temporally paired stimuli 

delivered 50, 100 and 200 msec apart were assessed. In the CeL, both male (Fig. 3A, left, B) 

and female (Fig. 3A, right, C-E) neurons displayed no significant difference in paired pulse 

ratios (PPRs) between control and ethanol treatment conditions at any interstimulus interval 

or estrous cycle tested (F’s<3.33, p’s>0.11), as measured by within-sex and within-cycle 

two-way ANOVA with repeated measures. Additional three-way ANOVA analyses to 

investigate the impact of sex on the relationship between treatment and interstimulus interval 

generated no main effect of sex (F1,37=0.59, p=0.45) or treatment (F1,37=0.67, p=0.42) and 

no interactions between sex, treatment and interstimulus interval (F’s<0.89, p’s>0.35). 

Estrous cycle also did not significantly affect PPR in CeL neurons, demonstrated by the lack 

of either main effects of cycle (F2,25=0.03, p=0.97) and treatment (F1,25=2.80, p=0.11) or 

any interactions between cycle, treatment and interstimulus interval (F’s<1.05, p’s>0.37). 

Thus, neither sex nor estrous cycle generated significant ethanol-related changes in CeL 

PPR, indicative of a postsynaptic locus of neuroadaptation. Analyses for male (Fig. 3F) and 

female (Fig. 3G–I) CeM neurons produced similar but distinct results. Three-way ANOVA 

with repeated measures yielded significant main effects of sex (F1,25=5.04, p<0.05) and 

interstimulus interval (F2,50=3.61, p<0.05), without other significant main effects or 

interactions (F’s<2.33, p’s>0.14). When analyzed by within-sex two-way repeated measures 

ANOVA, no significant main effects or interactions were observed for male or female 

neurons (F’s<2.08, p’s>0.14). Further investigation of estrous cycle effects in female CeM 

cells yielded a three-way interaction between interstimulus interval, ethanol treatment and 

estrous cycle (F4,26=5.26, p<0.01). Follow-up analyses at each interstimulus interval 

revealed significant facilitation by ethanol during estrus for the 50 msec interstimulus 

interval (Fig. 3H; F1,3=16.20, p<0.05) and a trend for facilitation by ethanol for the 100 

msec interstimulus interval during diestrus (Fig. 3I; F1,10=4.60, p=0.06), without any 

additional ethanol treatment effects for other cycle phases or interstimulus intervals. 

Together these CeM results indicate that ethanol’s effects are primarily postsynaptic, 

although presynaptic changes might occur in females during various phases of the estrous 

cycle.

3.4. Corticosterone has sexually dimorphic effects on CeA neurons

To simulate changes observed following stress exposure in vitro, we utilized corticosterone 

application to reproduce one molecular component of the stress response, thereby partially 

mimicking neuronal responses during a stressful encounter. To minimize activation of the 

endogenous corticosteroid system at the time of euthanasia, slices were prepared near the 

nadir of the circadian corticosteroid cycle. All female slices were collected during diestrus, 

Logrip et al. Page 9

Neuropharmacology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the most representative phase of the estrous cycle, comprising 2–3 days of the 4–5-day 

cycle, or more than 50% of the female rat’s life. Diestrus is characterized by low 

progesterone levels throughout and low estrogen levels for most of the interval (Freeman, 

2006). This allowed us to focus on corticosterone effects due to sex differences rather than 

cyclic hormone-specific effects.

3.4.1. Corticosterone occludes ethanol effects in female but not male CeL 
neurons—To assess the impact of corticosterone pretreatment on subsequent acute 

responses to ethanol, 100 nM corticosterone (CORT) was superfused onto slices for at least 

15 min prior to co-application of 44 mM ethanol. Corticosterone alone did not reduce EPSPs 

in CeL neurons from males (representative traces, Fig. 4A, top), but did reduce EPSPs in 

female CeL neurons (representative traces, Fig. 4A, bottom). Maximal changes in EPSP 

amplitudes at half-maximal stimulation intensity over the course of drug wash-on (Fig. 4B) 

were significantly reduced to 83.8 ± 3.8% of control in female CeL neurons (one-sample t-

test, t9=−4.28, p<0.01), whereas in male CeL neurons, EPSP reductions to 91.0 ± 4.9% of 

control were not statistically significant (one-sample t-test, t10=−1.86, p=0.09). Subsequent 

addition of ethanol in the presence of CORT additionally reduced male CeL EPSPs to 85.9% 

± 3.6% of control, a significant change from the pretreatment baseline (one-sample t-test, 

t10=−3.91, p<0.01), while females remained at the same reduced EPSP magnitude observed 

after CORT treatment, 83.1± 7.3% of control (one-sample t-test vs. control, t9=−2.31, 

p<0.01). Evaluation of within-sex treatment effects by one-way ANOVA with repeated 

measures yielded significant main effects of treatment for both males (F2,20=5.87, p<0.05) 

and females (F2,18=8.40, p<0.01). However, post hoc analyses by Tukey’s test demonstrated 

that whereas for female CeL cells both CORT and CORT plus ethanol were significantly 

lower than untreated control, for male CeL cells only CORT plus ethanol was significantly 

reduced. Because of the similar direction of effects in both sexes, analysis by two-way 

ANOVA with repeated measures only yielded a main effect of treatment (F2,38=14.19, 

p<0.001) without main effect of sex or sex by treatment interaction, despite the differential 

CORT and ethanol responsiveness observed in male and female CeL cells.

CORT’s impact on I/O relationships (Fig. 4C) demonstrated a slightly different pattern than 

observed during drug wash-on, as males displayed greater sensitivity to CORT’s effects, 

with EPSPs decreased to 81.9 ± 5.5% to 80.4 ± 5.3% of control across the 3 stimuli, all of 

which were significant reductions (t’s<−3.32, p’s<0.05, one-sample t-tests vs. control). The 

addition of ethanol decreased EPSPs by an additional 4 to 12%, resulting in significant 

cumulative decreases to 76.5 ± 4.1 to 68.4 ± 4.5% of control (t’s<−4.43, p’s<0.01). Analysis 

of male I/O data by two-way ANOVA with repeated measures yielded main effects of 

stimulus intensity (F2,18=31.67, p<0.001) and treatment (F2,18 =16.03, p<0.001), as well as 

an interaction between the factors (F4,36=3.15, p<0.05). Post hoc analyses by Tukey’s test 

demonstrated that whereas the lowest stimulus intensity only significantly differed from 

control in the presence of CORT and ethanol (p<0.001), both CORT alone (p’s<0.05) and 

CORT plus ethanol (p’s<0.001) differed from control for the stronger stimuli. CORT with 

ethanol did not differ significantly from CORT alone for any of the stimulus intensities in 

the male cells (p’s>0.07). As observed during drug wash-on, female neurons displayed a 

greater reduction following CORT treatment than male neurons, to 82.6 ± 5.3% to 74.0 
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± 3.6% of control (t’s<−3.25, p’s<0.05, one-sample t-tests). Co-application of ethanol 

marginally enhanced CORT’s effects by 3 to 8% (total combined treatment effect, 78.9 

± 6.8% to 71.4 ± 4.2% of control), but this was not significantly different from CORT 

treatment alone. Analysis by two-way ANOVA with repeated measures yielded main effects 

of stimulus intensity (F2,18=15.23, p<0.001) and treatment (F2,18=23.10, p<0.001), with only 

a trend towards interaction between the factors (F4,36=2.32, p=0.08). Post hoc analyses by 

Tukey’s test confirmed that both CORT and CORT plus ethanol significantly reduced EPSP 

magnitude relative to control (p<0.001), whereas CORT treatment did not differ from CORT 

plus ethanol treatment (p=0.63). Comparison of male and female treatment effects by three-

way ANOVA with repeated measures confirmed the similar patterns observed across the 

sexes, with main effects of treatment (F2,36=37.66, p<0.001) and stimulus intensity 

(F2,36=39.95, p<0.001), as well as an interaction between the factors (F4,72=4.71, p<0.01), 

but no main effects or interactions for the factor sex.

As observed for acute ethanol treatment, no significant changes were found in PPRs for 

male (Fig. 4D) or female (Fig. 4E) neurons following CORT treatment alone or upon co-

application of ethanol. This suggests a postsynaptic locus for the observed reductions in 

EPSPs.

3.4.2. Female, but not male, CeM neurons are insensitive to corticosterone 
and ethanol—To assess the impact of acute corticosterone and subsequent response to 

ethanol co-application, EPSPs were recorded in CeM neurons as described above for CeL 

neurons. As shown in the representative traces in Figure 5A, male (Fig. 5A, top) and female 

(Fig. 5A, bottom) CeM neurons showed small changes in EPSP magnitude following acute 

corticosterone treatment at the half maximal intensity stimulation. The maximal reduction in 

EPSP magnitude during corticosterone wash-on, as quantified in Figure 5B (inset), was 92.7 

± 3.7% of control in male CeM neurons (one-sample t-test, t7=−1.96, p=0.09) and 95.4 

± 5.5% of control in female CeM neurons (one-sample t-test, t8=−0.85, p=0.42). Following 

co-application of ethanol, male CeM neurons displayed a significant reduction in EPSP 

amplitude to 77.0 ± 3.3% of control (one-sample t-test, t7=−6.92, p<0.001), whereas female 

CeM neurons continued to show no significant reductions relative to baseline responses, at 

87.5 ± 7.8% of control (one-sample t-test, t8=−1.61, p=0.15). Comparison of drug treatments 

within sex by one-way ANOVA with repeated measures yielded a significant main effect of 

treatment in males (F2,14=15.70, p<0.001) but only a trend in females (F2,16=3.47, p=0.06). 

Post hoc Tukey’s test analyses demonstrated significant differences between drug co-

application and both baseline and CORT treatment alone in males. Despite these differences 

in response patterns between the sexes, statistical analysis of sex differences by two-way 

ANOVA with repeated measures produced only a main effect of treatment (F2,30=14.00, 

p<0.001), but no main effects or interactions for the factor sex. Tukey post hoc tests showed 

significant differences between CORT/ethanol co-application and both control and CORT-

only conditions.

CORT modulation of I/O relationships (Fig. 5C) displayed a very similar pattern, although 

males showed slightly greater reductions in EPSPs following CORT treatment, to 92.3 

± 13.5% to 80.7 ± 9.2% of control across the 3 stimuli, yielding a significant reduction from 

control only for the highest stimulation intensity (t7=−2.67, p<0.05, one-sample t-test). 
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Subsequent co-application of ethanol reduced EPSP magnitudes to 79.4 ± 7.2% to 75.5 

± 5.9% of control, yielding significant reductions relative to control for the middle and high 

intensity stimuli (t’s<−2.85, p’s<0.05, one-sample t-tests). Analysis of these data by two-

way ANOVA with repeated measures produced significant main effects of stimulus intensity 

(F2,14=12.67, p<0.001) and treatment (F2,14=6.23, p<0.05), without interaction between the 

factors. Post hoc analyses by Tukey’s tests demonstrated significant differences between 

control and both CORT alone and CORT/ethanol co-application, but no significant 

differences between the two drug treatment conditions. Unlike the males, females displayed 

minimal sensitivity to either CORT or ethanol modulation of EPSP amplitude, similar to 

what was observed during drug wash-on, with responses ranging from 101.1 ± 11.1% to 

87.2 ± 6.5% of control in the presence of CORT alone, and from 95.3 ± 13.0 to 87.8 ± 7.9% 

of control following co-application of ethanol. Analysis of these effects relative to the 

control condition by one-sample t-test indicated no significant changes in I/O following 

either application of CORT alone or co-application of ethanol (t’s>−1.97, p’s>0.08). 

Comparison of CORT and ethanol effects in female CeM neurons across all stimulus 

intensities by two-way ANOVA with repeated measures yielded a significant main effects of 

stimulus intensity (F2,16=7.07, p<0.05) but no main effect of treatment or interaction 

between the factors (F’s<2.70, p’s>0.09). Direct investigation of sex differences by three-

way ANOVA with repeated measures yielded main effects of treatment (F2,30=9.32, p<0.01) 

and stimulus intensity (F2,30=15.60, p<0.001) with no main effect of sex or interactions 

between any factors.

As seen for acute ethanol treatment in all neurons and CORT/ethanol treatments in CeL 

neurons, no significant changes were observed in paired pulse ratios from male (Fig. 5D) or 

female (Fig. 5E) CeM neurons following either CORT treatment alone or CORT plus 

ethanol treatment. These data continue to support a postsynaptic locus for the observed 

effects of CORT and ethanol treatments.

4. Discussion

Here we demonstrate intrinsic sexual dimorphism in both ethanol and corticosterone 

modulation of CeA neuronal responses to stimulated glutamate release from BLA inputs. To 

our knowledge, this is the first study to investigate sex differences in CeA activity, as well as 

the first examination of CeA subdivision differences in acute ethanol and corticosterone 

modulation of BLA-evoked glutamatergic activity. As a region proposed to integrate ethanol 

and stress effects, these findings are central to understanding CeA function. Importantly, 

with the exception of ethanol effects in CeM during proestrus, the differences observed 

between males and females affected the sensitivity to drug effects, rather than the direction 

of change in neuronal activity. As depicted in the schematic of Fig. 6, acute ethanol effects 

were reduced and CORT effects were increased in the female CeL, relative to male neuronal 

responses, while female CeM neurons had reduced or absent responses to both treatments. 

Thus, male CeM and CeL neurons showed similar responses across the treatments, with 

ethanol, not CORT, primarily responsible for significantly reducing eEPSPs. Conversely, 

female CeM and CeL neurons displayed qualitatively different responsivity to acute ethanol, 

CORT and their co-application, with CeL neurons significantly inhibited by CORT alone, 

occluding any further efficacy of ethanol, whereas female CeM neurons showed minimal 
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sensitivity to either CORT or ethanol. Despite these sexually dimorphic findings, since 

treatments reduced EPSPs relative to control in both sexes, we did not observe significant 

main effects of sex in our analyses. Nonetheless, we demonstrate sex differences in drug 

sensitivity, with greater responsivity of male CeL and CeM neurons to ethanol as well as 

enhanced responsivity of female CeL neurons to CORT, which occluded any subsequent 

response to ethanol treatment. Together these data support the hypothesis that males and 

females display differential neuronal responsivity to ethanol and CORT, which may underlie 

behavioral differences in alcohol- and stress-related behaviors between the sexes.

Female rodents have long been known to release greater levels of CORT in response to 

behavioral stressors, including acute ethanol exposure (Rivier, 1993), and to have higher 

amplitude circadian fluctuations in CORT (Atkinson and Waddell, 1997), which might be 

expected to result in adaptative blunting of neuronal responses to CORT. Contrary to this 

hypothesis, corticosterone more effectively reduced BLA-evoked EPSPs in female vs. male 

CeL neurons. The corticosterone procedure utilized for our studies would more likely 

function though mineralocorticoid (MR), rather than glucocorticoid (GR), receptors, based 

on previous CORT slice treatment experiments in the basolateral amygdala, using the same 

dose and temporal parameters employed herein and in which MR deletion blocked the 

ability of acute CORT to increase BLA excitability (Karst et al., 2010). Different behavioral 

requirements for MR in males and females has been demonstrated for flexibility of fear 

extinction, with postnatal forebrain deletion of MR causing inflexible fear behavior in 

females but not males, such that female mice were unable to extinguish learned freezing 

behavior and instead showed generalization of freezing in the conditioning chamber even in 

the absence of the shock cue (Ter Horst et al., 2012). Future investigations will determine the 

involvement of MR vs. GR in the current treatment effects, as well as whether sex 

differences in MR and GR levels might contribute to the observed sexual dimorphism in 

electrophysiological efficacy of CORT.

In addition to the novel findings of sexual dimorphism in CORT modulation of the BLA-

CeA circuit, the current results also extend previous findings from our laboratory regarding 

ethanol’s acute and chronic effects on glutamatergic postsynaptic responses in the medial 

CeA (Roberto et al., 2006; Roberto et al., 2004) in several ways. First, we have now shown 

that, in males, CeM and CeL neurons display similar reductions in glutamatergic 

postsynaptic responses following acute ethanol, acute CORT, and their co-application. Thus, 

CeM and CeL neurons are qualitatively similar in their pharmacological response to these 

treatments. Second, we have expanded greatly our understanding of ethanol’s effects on 

glutamatergic responses in CeA neurons to include direct BLA stimulation, which generates 

qualitatively similar effects as previously observed with local stimulation in the CeA. Finally 

and most importantly, we have studied females.

A key unexpected discovery in extending our work to females was the observation that 

ethanol increased EPSPs in all CeM neurons recorded during proestrus. This elevated EPSP 

magnitude suggests that cycling hormones may temporarily adjust postsynaptic 

glutamatergic receptor composition or signaling. While the effect of ovarian hormones on 

the synaptic composition of CeA neurons is not known, estrogen has been shown to enhance 

NMDA receptor-mediated activity and increase spine formation in hippocampal neurons 
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(Woolley et al., 1997). This is proposed to involve increased expression of GluN2B subunits 

at synapses, although total protein expression or phosphorylation levels are not altered in 

hippocampal neurons by estrogen treatment (Snyder et al., 2011). While these hippocampal 

data suggest estrogen-induced alteration in NMDA receptor function might underlie the 

excitations by acute ethanol observed during proestrus in CeM neurons, it is of great interest 

for future studies to elucidate the molecular underpinnings of this and other sex differences 

described in the current studies.

5. Conclusions

The studies described herein demonstrate sex differences in neuronal responses to acute 

ethanol and acute corticosterone, one molecular component of the stress response. Our data 

suggest heightened corticosterone responsiveness in female CeL neurons, a possible source 

for enhanced female susceptibility to stress-related mental illnesses. Conversely, male 

neurons displayed greater inhibition by ethanol, which could contribute to the higher 

propensity towards alcohol use disorders in males vs. females. Overall, the data outline a 

role for the CeA as a locus for interaction between stress and alcohol, showing sexually 

dimorphic modulation of neuronal activity by these two treatments. These studies not only 

highlight intrinsic sex differences in the BLA-CeA circuit which is central to both anxiety 

and substance use disorders, but they also emphasize the need to identify how male and 

female brains differentially adapt to drug exposures in order to better design novel 

treatments for stress and alcohol use disorders.
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HIGHLIGHTS

• Male CeA neurons are more sensitive to inhibition by ethanol than female 

neurons

• Estrous cycle affects ethanol response: ethanol excites CeM neurons in 

proestrus

• Female CeL neurons are inhibited by CORT, occluding ethanol’s effects

• Female CeM neurons are insensitive to CORT and alcohol co-application
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Figure 1. Ethanol acutely reduced the amplitude of BLA-evoked compound glutamatergic EPSPs 
in the lateral CeA
A,B. Representative evoked glutamatergic-EPSPs (eEPSPs) in CeL, at baseline (Control) 

and during 44 mM ethanol (EtOH) superfusion onto slices obtained from male (A) and 

diestrus female (B) rats. C. Time course of treatment effects, with ethanol application 

following an 8-min baseline. Inset shows quantification of the peak alcohol-induced change 

in eEPSPs over a 4-minute bin beginning not less than 6 min into ethanol application in 

males vs. all females. Histograms depict mean ± standard error percent change in eEPSPs 

relative to control. D. Quantification of ethanol’s effect on I/O responses to the 3 middle 

intensity stimuli in males vs. all females. Data are depicted as mean ± standard error percent 

change in eEPSP after ethanol treatment, normalized to control. E. Time course of treatment 

effects by estrous cycle, with ethanol application following an 8-min baseline. No significant 

effects were observed in females based on estrous cycle status at the time of euthanasia. 

Logrip et al. Page 18

Neuropharmacology. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Histograms (inset) depict mean ± standard error percent changes in peak alcohol effect 

relative to control. F. Estrous cycle impacts stimulus responsiveness as measured by the I/O 

relationship at 3 stimuli of increasing intensity. Data are depicted as mean ± standard error 

percent change in eEPSP relative to control. n’s = 8–34, as listed on each panel of the graph; 

cells becoming unstable after drug wash-on were excluded from I/O analyses. *p<0.05 

relative to control (one-sample t-test).
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Figure 2. Ethanol acutely reduced the amplitude of BLA-evoked compound glutamatergic EPSPs 
in the medial CeA, particularly in males
A,B. Representative evoked glutamatergic-EPSPs (eEPSPs) in CeM, at baseline (Control) 

and during 44 mM ethanol (EtOH) superfusion onto slices obtained from male (A) and 

diestrus female (B) rats. C. Time course of treatment effects, with ethanol application 

following an 8-min baseline. Inset shows quantification of the peak ethanol-induced change 

in eEPSP over a 4-minute bin beginning not less than 6 min into ethanol application in males 

vs. all females. Data are depicted as mean ± standard error percent change in eEPSP relative 

to control. D. Quantification of ethanol’s effect on I/O responses to 3 intermediate intensity 

stimuli in males vs. all females. Data are depicted as mean ± standard error percent change 

in eEPSP after ethanol application, normalized to control. E. Time course of treatment 

effects by estrous cycle, with ethanol superfusion ollowing an 8-min baseline. Estrous cycle 

affects ethanol’s modulation of peak eEPSP amplitude. Histograms depict mean ± standard 
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error percent changes in peak ethanol effect relative to control. F. Estrous cycle impacts 

CeM neurons’ stimulus responsiveness, as measured by the I/O relationship at 3 

intermediate intensity stimuli. Data are depicted as mean ± standard error percent change in 

eEPSP relative to control. n’s = 3–22, as listed on each panel of the graph; cells becoming 

unstable after drug wash-on were excluded from I/O analyses. *p<0.05 relative to control 

(one-sample t-test).
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Figure 3. Ethanol did not significantly alter paired pulse ratios in lateral or medial CeA neurons 
of either sex
A. Representative traces of paired pulse EPSPs evoked by two pulses delivered 50 msec 

(left), 100 msec (center) or 200 msec (right) apart, assessed at baseline (Control) and during 

superfusion of 44 mM ethanol (EtOH) onto slices from male and female rats. B-I. 

Quantification of the relationship between peak responses to the paired stimuli (paired pulse 

ratio), calculated as the ratio between the second stimulus response (eEPSP2) and the first 

stimulus responses (eEPSP1). Histograms depict mean ± standard error paired pulse ratios 

for CeL male (B) and proestrus (C), estrus (D), and diestrus females (E) and CeM male (F) 

and proestrus (G) estrus (H), and diestrus females (I) cells. n’s = 10–16, as listed on the 

graph panels.
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Figure 4. Corticosterone acutely reduced lateral CeA EPSPs and occluded further ethanol effects 
in females, while males responded more to ethanol
A. Representative evoked glutamatergic-EPSPs (eEPSPs) in CeL, at baseline (Control) and 

during superfusion of 100 nM corticosterone (CORT) and subsequent co-application of 44 

mM ethanol (EtOH) onto slices obtained from male (top) and diestrus female (bottom) rats. 

B. Time course of treatment effects, with CORT application following an 8-min baseline and 

alcohol co-application beginning 20 min after CORT application. Inset shows quantification 

of the peak CORT- and ethanol-induced changes in eEPSPs over a 4-minute bin beginning 

not less than 15 min into CORT treatment and not less than 6 min into ethanol co-
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application. Histograms depict mean ± standard error percent change in eEPSP relative to 

control. C. Quantification of CORT and ethanol effects on I/O responses to 3 intermediate 

intensity stimuli in males (squares) vs. diestrus females (diamonds). Data are depicted as 

mean ± standard error percent change in eEPSP after CORT treatment (black and white 

shapes) and subsequent ethanol co-application (gray shapes), normalized to control. D–E. 

Histograms depict mean ± standard error paired pulse ratios for male (D) and female (E) 

cells. n’s = 9–11, as listed on the graph panels; cells becoming unstable after drug wash-on 

were excluded from I/O analyses. *p<0.05 relative to control (one-sample t-test).
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Figure 5. Corticosterone minimally affects medial CeA responses but blocks ethanol’s effects in 
females, but not males
A. Representative evoked glutamatergic-EPSPs (eEPSPs) in CeM at baseline (Control) and 

during superfusion of 100 nM corticosterone (CORT) and subsequent co-application of 44 

mM ethanol (EtOH) onto slices obtained from male (top) and diestrus female (bottom) rats. 

B. Time course of treatment effects, with CORT treatment following an 8-min baseline and 

alcohol co-application beginning 20 min after CORT application. Inset shows quantification 

of the peak CORT and ethanol-induced changes in eEPSPs over a 4-minute bin beginning 

not less than 15 min into CORT treatment and not less than 6 min into ethanol co-
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application. Histograms depict mean ± standard error percent change in eEPSP relative to 

control. C. Quantification of CORT and ethanol effects on I/O responses to 3 intermediate 

intensity stimuli in males (squares) vs. diestrus females (diamonds). Data are depicted as 

mean ± standard error percent change in eEPSP after CORT treatment (black and white 

shapes) and subsequent ethanol co-application (gray shapes), normalized to control. D–E. 

Histograms depict mean ± standard error paired pulse ratios for male (D) and female (E) 

cells. n’s = 5–9, as listed on the graph panels; cells becoming unstable after drug wash-on 

were excluded from I/O analyses, and one female cell with incomplete data was omitted 

from the time course. *p<0.05 relative to control (one-sample t-test).
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Figure 6. Schematic representation of observed sex differences
Ethanol (EtOH) and corticosterone (CORT) differentially modulate male (A) and female (B) 

lateral (CeL) and medial (CeM) central amygdala synaptic responses to basolateral 

amygdala (BLA) stimulation. (A) In males, EtOH reduces EPSPs, whether the sole drug 

treatment or following CORT treatment, in both CeL and CeM, while CORT has a reduced 

effect on eEPSPs relative to EtOH and to CORT’s effects in females. (B) In females, CORT 

significantly reduces CeL, but not CeM, eEPSPs, whereas EtOH has a reduced ability to 

inhibit eEPSPs in females vs. males that is blocked in the presence of CORT.
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TABLE 1

Baseline properties of compound glutamatergic responses in male and diestrus female medial and lateral 

central amygdala neurons across experiments.

CeL CeM

Measure Male Female Male Female

Input/Output N = 24 N = 25 N = 20 N = 21

 Stimulus 1 4.08 ± 0.35 4.07 ± 0.50 2.90 ± 0.25 4.20 ± 0.39

 Stimulus 2 5.30 ± 0.37 6.15 ± 0.59 4.89 ± 0.42 5.25 ± 0.40

 Stimulus 3 7.27 ± 0.49 8.05 ± 0.67 6.54 ± 0.57 6.60 ± 0.53

 Stimulus 4 9.12 ± 0.62 9.62 ± 0.70 7.87 ± 0.67 8.28 ± 0.71

 Stimulus 5 11.58 ± 0.66 11.52 ± 0.90 9.17 ± 0.78 9.74 ± 0.86

Paired-Pulse Ratio N = 22 N = 23 N = 15 N = 15

 50 msec ISI 1.14 ± 0.14 1.14 ± 0.16 1.36 ± 0.10 1.33 ± 0.14

 100 msec ISI 1.16 ± 0.08 1.03 ± 0.11 1.35 ± 0.09 1.09 ± 0.08

 200 msec ISI 1.14 ± 0.07 1.02 ± 0.08 1.18 ± 0.07 1.12 ± 0.10
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