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Synopsis

When normal physiological functions go awry, disorders and disease occurs. This is universal, 

even for the osteocyte, a cell embedded within the mineralized matrix of bone. It was once thought 

that this cell was simply a place-holder in bone. However, within the last decade, the number of 

studies of osteocytes has dramatically increased leading to the discovery of novel functions of 

these cells. But with the discovery of novel physiological functions came the discoveries of how 

these cells can also be responsible for not only bone diseases and disorders, but also those of 

kidney, heart, and potentially muscle.
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Introduction

Before osteocytes were recognized as active essential bone cells necessary for bone health, it 

was assumed that all the action took place on the bone surface and not within the bone. 

Osteoblasts and osteoclasts were the major players, osteoblasts making bone and osteoclasts 

resorbing bone to maintain bone homeostasis. It was assumed that osteoblasts and 

osteoclasts were regulated by external factors such as parathyroid hormone, PTH or 1,25 

dihydroxyvitamin D3, and other external regulatory factors. It has also been proposed that 

osteoblasts make factors that regulate osteoclast activity and conversely that osteoclasts 

make factors that could regulate osteoblast activity. Therapeutics were generated that would 

target either osteoclasts or osteoblasts. Osteocytes were left out of the picture.

With new technology and new tools, it became possible to study osteocytes. The normal 

functions of osteocytes expanded rapidly to include: regulation of osteoblast and osteoclast 

activity to control bone remodeling, as regulators of both phosphate and calcium 

homeostasis, as mechanosensory cells that coordinate the skeleton’s response to loading or 
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unloading, and as endocrine cells targeting other tissues such as kidney. These cells are also 

one of the longest lived cell types in the body, some living for decades, therefore survival 

and normal function is paramount. (See box 1). A number of pathologic or disease 

conditions can now be ascribed to abnormal or missing osteocyte functions including 

sclerosteosis, hypophosphatemic rickets, osteoporosis, necrotic bone, aging and others. (See 

Figure 1). Now therapeutics are being generated that target osteocyte factors. (For reviews 

see1,2)

Normal osteocyte functions

Mechanosensation

When early histomorphomists peered through their microscopes and began to visualize 

osteocytes in bone, the morphology and connectedness suggested a network perhaps similar 

to the neural system. One of the earliest functions ascribed to osteocytes was 

mechanosensation based on Julius Wolff’s descriptions of the capacity of bone to adapt to 

mechanical loading or lack of loading by adding or removing bone3. Over a century later, 

experiments have been performed supporting the hypothesis that osteocytes are responsible 

for bone adaption in response to loading. By performing targeted deletion of osteocytes in 

mice expressing the diphtheria toxin receptor specifically in osteocytes, it was shown that 

these mice were resistant to unloading-induced bone loss4.

The osteocyte and its dendritic processes are constantly exposed to canalicular fluid that 

flows through the lacunocanalicular system. A baseline flow of canalicular fluid flow is 

driven by the extravascular pressure and intermittent mechanical loading superimposes rapid 

alterations in canalicular fluid flow5. This results in the cells being exposed to different types 

and magnitudes of fluid flow shear stress. Almost every cell responds to mechanical loading, 

however osteocytes appear to be most sensitive when compared to osteoblasts and 

fibroblasts6,7.

In both primary osteocytes and MLO-Y4 osteocyte-like cells, fluid flow shear stress has 

been shown to have numerous sequential effects2. The first event is the release of 

intracellular calcium followed by the release of nitric oxide, ATP and prostaglandins, and the 

opening of connexin 43 hemichannels enhancing gap junction functions. Soon after the rapid 

change in calcium signaling (within seconds) nitric oxide, ATP, and prostaglandin (within 

seconds to minutes) are released. Deleting any one of these three early small molecules will 

inhibit bone’s anabolic response to loading. Shear stress has also been shown to induce the 

bending of osteocyte cilia, and to initiate signaling pathways such as the wnt/β-catenin and 

PKA pathways. Shear stress also activates gene transcription and translation, and promotes 

dendrite elongation. One very important effect of fluid flow shear stress is the protection of 

osteocytes against apoptosis and cell death. Ideally, it would be important to identify early 

regulators of anabolic signaling in osteocytes in addition to calcium, nitric oxide, ATP, and 

PGE2 in order to develop new therapeutics. (For review see8.

A major source of prostaglandin in the body appears to be from bone. Osteocytes are 

prodigious producers of prostaglandin in response to loading9, PGE2 has paracrine effects on 

osteocytes to enhance gap junction function10, it protects and maintains osteocyte viability11 
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and PGE2 appears to be one of the key initiators of anabolic bone formation. Administration 

of prostaglandin increases bone mass and inhibitors of prostaglandin production, such as 

indomethacin, block the effects of anabolic loading12,13. One of the most important effects 

of prostaglandin released in response to loading may be to activate a very important 

signaling pathway in the osteocyte, the Wnt/β-catenin signaling pathway.

Fluid flow shear stress activates the Wnt/β-catenin signaling pathway through the rapid 

release of prostaglandin which acts through EP receptors to bypass Low Density Lipoprotein 

receptor, LRP receptor, activation14,15. Components of the β-catenin pathway are essential 

for osteocyte viability, mechanosensation and transduction, and release of important factors 

essential for bone homeostasis. The central molecule through which all molecules must go is 

β-catenin. β-catenin regulates expression of both the positive activators of this pathway, the 

wnts, and the negative regulators of this pathway, sclerostin and Dkk1 (For review see16). 

Global deletion of b-catenin is embryonically lethal, but deletion in osteocytes using the 

Dmp1-Cre results in dramatic bone loss characterized by perforated cortises17. Interestingly, 

deletion of only one allele in osteocytes results in mice with a normal skeleton but a 

completely abrogated response to anabolic loading18. β-catenin plays an important role in 

bone integrity, osteocyte communication, osteocyte viability, but also in bone response to 

loading. This extends to other components of this signaling pathway.

Two of the most famous and well-studied components of this pathway are the Lrp5 receptor 

and the negative regulator of the β-catenin pathway, sclerostin encoded by the gene Sost. 
Lrp5, a major co-receptor for Wnt signalling is expressed by many cells in the body, but 

sclerostin is relatively osteocyte specific. Deletion of Lrp5 results in mice with impaired 

response to anabolic loading19. As Sclerostin is expressed in mature osteocytes and 

mechanical loading reduces sclerostin levels downregulation of sclerostin most likely creates 

a permissive environment in which Wnt proteins already present can activate the Wnt/β-

catenin pathway. The role of the β-catenin pathway in disease is discussed below.

It has been shown that osteocyte specific or selective genes are regulated by loading or 

unloading. These genes include the markers for early osteocytes, E11/gp38, Phosphate 

Regulating Neutral Endopeptidase on Chromosome X, (PHEX), Dentin Matrix Protein 1, 

(DMP1), and the markers for late osteocytes, sclerostin, Matrix Extracellular 

phosphoglycoprotein, (MEPE), and Fibroblast Growth Factor, (FGF23). (The function of 

these and their relationship to disease will be discussed below.) Regulators of mineralization 

and phosphate homeostasis such as Phex, MEPE, and DMP1 are upregulated in response to 

mechanical loading20–22 as is E11/gp38, a marker for the early osteocyte23. It would be 

expected that genes involved in bone formation would be upregulated in response to 

anabolic load and genes responsible for resorption would be downregulated. It has been 

shown that unloading increases RANKL, an essential promoter of osteoclast formation, in 

osteocytes24, that may be responsible for the bone loss associated with unloading. Sost/
sclerostin, a marker for the late osteocyte and an inhibitor of osteoblast function, is down-

regulated by anabolic mechanical loading and is increased in response to hindlimb 

unloading25,26.
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In summary, the osteocyte’s response to mechanical loading may be one of the major 

cellular mechanisms responsible for the positive effects of exercise not only on bone but on 

the function of other tissues and organs in the body.

Calcium homeostasis

Probably the earliest proposed function of osteocytes was a capacity to remove their 

perilacunar matrix, a process referred to by Belanger as ‘osteocytic osteolysis’27. In 1910, 

over 100 years ago, Von Recklinghausen described enlarged lacunae in patients with rickets 

or osteomalacia suggesting ‘pericellular digestion’28. Belanger created the term “osteocytic 

osteolysis” for the enlarged lacunae induced by parathyroid hormone or a by low-calcium 

diet. ‘Osteocytic osteolysis’ was viewed as being a feature of pathological conditions, 

especially due to high or continuous PTH.27,29,30. The stimulating effects of parathyroid 

hormone on lysosomal vesicles in osteocytes was described in the 1970s31,32 and in 1977, 

“perilacunar osteolysis” was described in rats sent into space33 and alveolar bone of 

hibernating ground squirrels34. However, the number of publications began to decrease for 

various reasons35 until technology had advanced sufficiently to address critics of this 

concept. Baylink and Wergedal had described Tartrate Resistant Acid Phosphatase, TRAP, 

activity in osteocytes in 196936, which was criticized as being a diffusion artifact from 

osteoclasts but later validated by in situ hybridization, a technology no available in the 60s 

and 70s37.

Baylink also showed tetracycline binding to the perilacunar matrix, which led to the 

hypothesis that osteocytes can replace their perilacunar matrix38 which was later reproduced 

in egg-laying hens39. This suggested that under non-pathological conditions osteocytes 

could remove and replace their perilacunar matrix. Qing and colleagues proposed that the 

term ‘perilacunar modeling’ be used in place of ‘osteocytic osteolysis’ for non-pathological 

conditions such as lactation40. These investigators showed an increase in lacunar area with 

lactation, that the PTH type 1 receptor was responsible and described a return to normal 

lacunar area with weaning. They showed that genes thought to be osteoclast specific such as 

TRAP and Cathepsin K were elevated in osteocytes during lactation and returned to normal 

with weaning. This study shows that healthy osteocytes can both remove and replace their 

perilacunar matrix thereby playing a role in mineral homeostasis during calcium demanding 

conditions. Recently it has been shown that the Calcitonin Receptor may also play a role by 

inhibiting perilacunar remodeling with lactation41.

As the PTH type 1 receptor is most highly expressed in osteocytes, the osteocyte may be the 

target of PTH in hyperparathyroidism and conversely, the positive effects of intermittent 

PTH on bone formation may also be due to effects on the osteocyte. The target of the 

therapeutic Forteo may be osteocytes in the mature skeleton.

Bone Repair

Repair of microdamage and bone fatigue in bone is a normal, physiological process. Bone is 

constantly sustaining damage in the form of microcracks that is repaired by osteoclasts 

targeting the damaged bone. Osteoclasts are responsible for initiating a cutting cone, but 

how does the osteoclast know the location of the microdamage? It appears that the osteocyte 
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sends signals to the osteoclast providing information on where to resorb and where not to 

resorb bone (For review see42). Microdamage and bone fatigue is associated with of 

osteocyte apoptosis where an anti-apoptotic factor, BAX, is found in osteocytes around the 

cutting cone, while the pro-apoptotic factor, Bcl2, is found in osteocytes in the path of the 

cutting cone43. The suggests that the osteocytes in the path are undergoing programmed cell 

death, while those in the periphery are preserving viability44. A number of in vitro studies 

using MLO-Y4 osteocyte-like cells have investigated potential mechanisms. Apoptotic 

bodies are released by MLO-Y4 cells and primary osteocytes, but not osteoblasts45, serum 

starved MLO-Y4 cells will secrete soluble RANKL which is necessary for osteoclast 

formation46, and damaged MLO-Y4 cell networks in 3 dimensional gels express elevated 

RANKL and lower osteoprotegerin, OPG, an inhibitor of the RANK receptor47.

Pathological osteocyte cell death is associated with thiazolidinediones48, high dose 

alcohol49, and methotrexate used for cancer treatment50. Osteocytes express markers of 

apoptosis in response to withdrawal of estrogen51, to oxygen deprivation as occurs during 

immobilization52, and in response to glucocorticoid treatment53. TNFαand Interleukin-1 

(IL-1) are potent inducers of osteocyte apoptosis54. Osteonecrosis, or dead bone, is due to 

osteocyte cell death but the mechanisms responsible are still debated. Aging is associated 

with increased numbers of empty osteocyte lacunae (See below). Therefore, a major 

research focus has been on osteocyte viability and approaches to prevent osteocyte cell 

death.

Osteocytes are endocrine cells

Potentially osteoblasts have the capacity to release factors into the circulation, but they 

compose approximately 3–5% of bone cells compared to 1% osteoclasts, whereas 90–95% 

of bone cells in the adult human skeleton are osteocytes. It has not been appreciated that the 

total mass of osteocytes and their dendritic processes in bone that are equivalent to or greater 

than the mass of the brain55, therefore these cells are most likely a major source of 

circulating bone factors. Bone is highly vascularized and secretes factors such as FGF23 into 

the bloodstream to affect distant targets56, it must be defined as an endocrine organ2. 

Interestingly, FGF23 is also able to act on the parathyroid gland to decrease PTH secretion, 

identifying the parathyroid gland as another endocrine target of osteocyte signaling57,58. The 

vascular system has a close, connecting association with the osteocyte lacuna-canalicular 

system with its bone fluid. Osteocytes also produce other circulating factors such as 

sclerostin. Osteocytes may also target muscle (See below). It has recently been shown that 

two factors, prostaglandin E2 and Wnt3a, both produced by osteocytes in response to shear 

stress support myogenesis and muscle function59–62. Therefore, mechanical loading of the 

skeleton especially in the form of exercise is important to ensure that osteocyte factors are 

released into the circulation.

In addition to cross talk with muscle, osteocytes may also send signals to hematopoietic 

cells. Studies showed that osteocytes and GPCR signaling were important in controlling 

myeloid cells proliferation63 and mice lacking osteocytes were shown to have defective 

hematopoietic stem cell mobilization and lymphopenia64,65. Osteocyte may also have a role 

in regulating fat. Using a mouse model in which osteocytes can be ablated by use of 
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diphtheria toxin, it was shown that osteocytes may also regulate adipose tissue65. Studies 

have shown that sclerostin may play a role in inducing adipocyte differentiation66. 

Osteocytes may be an important reservoir of factors that target other unknown organs and 

tissues.

Role of osteocytes in bone disease

Osteoporosis

Estrogen deficiency, glucocorticoid treatment, oxidative stress caused by disuse and 

oxidative stress with aging may be responsible for osteocyte cell death and therefore bone 

fragility and osteoporosis67. As described above, osteocyte cell death is important for repair 

of damaged bone43,44,68 so any condition that compromises osteocyte health and function 

most likely compromises the skeleton. A number of factors and cytokines have been shown 

to induce osteocyte cell death including glucocorticoids, IL-1 and TNFalpha and conversely, 

a number of molecules have been shown to protect osteocytes from cell death such as 

estrogen, Parathyroid Hormone, bisphosphonates (For review see69–71), and secreted muscle 

factors59. Osteocyte viability is crucial not only for the normal functioning of the skeleton 

but for other organs such as kidney as discussed above and muscle as discussed below. As 

osteocytes appear to have multiple, very important functions, it is important to maintain 

normal viability and function of these cells2.

Aging

The osteocyte is a long lived, non-dividing, aging cell headed for senescence. While some 

osteocytes are removed from bone with remodeling many osteocytes can reside in human 

bone for decades in contrast to osteoblasts and osteoclasts that live for only days or weeks. 

Recently it has been shown that primary osteocytes from old 22 mo mice have 6 fold more 

telomere dysfunction-induced foci than osteocytes from young 6 mo old mice72. Senescent 

osteocytes predominately develop the Senescence Associated Secretory Phenotype, SASP, 

compared to other bone cells types which may contribute to age related bone loss. Once the 

cell dies, micropetrosis can result where mineral fills the lacuna resulting in a cell that 

becomes a ‘living fossil’73. Fewer numbers of osteocyte lacunae were found in patients 

suffering from fractures compared to controls74 and an age-dependent decrease occurs in 

osteocyte lacunar density with an increased amount of hypermineralized calcium phosphate 

occlusions caused by micropetrosis75. The aging and dying osteocyte in a compromised 

lacuno-canalicular system is less likely to produce secretory factors, less likely to repair 

bone, and less likely to respond to anabolic load. Therefore, it is important to maintain 

osteocyte viability with age.

Hypophosphatemic Rickets

Several phosphate regulating hormones and enzymes, Phosphate Regulating Neutral 

Endopeptidase on Chromosome X, PHEX, Dentin Matrix Protein 1, DMP1, Matrix 

Extracellular phosphoglycoprotein MEPE and Fibroblast Growth Factor 23, FGF23, are 

mainly produced by late osteoblasts and by early and late osteocytes. PHEX is the earliest 

regulator of phosphate homeostasis to be expressed in the late osteoblast/early osteocyte. 

PHEX is the mutated gene in the Hyp mouse, which is also widely used as a model of X-
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linked hypophosphatemic rickets76 which leads to increased levels of FGF23 and 

hypophosphatemia77. Hypophosphatemic Rickets in humans is caused by inactivating 

mutations of Pex (HYP Consortium Nat Gen 1995). PHEX also interacts with DMP1 to 

regulate phosphate homeostasis by mechanisms that still have not been clearly elucidated. 

DMP1 is produced by early osteocytes and mice lacking DMP-1 are hypophosphatemic and 

have increased FGF23 levels56. Two teams of investigators independently showed that 

Autosomal Recessive Hypophoshatemic Rickets (ARHR) was caused by a mutation in 

DMP1 that affected FGF23 circulating levels56,78. Both PHEX and DMP1 are negative 

regulators of FGF23 but again the mechanisms have not been clearly determined. MEPE is 

predominantly expressed by osteocytes79 and is not believed to act on FGF23 directly but 

through Phex80. The ASARM peptide of MEPE can bind to PHEX inhibiting its activity 

which results in an increase in FGF2380,81.

The molecule at the center of phosphate regulation is FGF23. FGF-23 was identified in 

200082 as the phosphate-regulating hormone responsible for Autosomal Dominant 

Hypophosphatemic Rickets (ADHR), and for phosphate-wasting in Tumor-Induced-

Osteomalacia (TIO) and X-linked hypophosphatemia (XLH). Osteocytes are also a main 

source of FGF23 and recent work showed that targeted ablation of FGF23 in bone cells, 

recapitulates the hypophosphatemia observed in FGF23 null mice83. Clinkenbeard84,85 

targeted FGF23 deletion using Col2.3-cre in osteoblasts and using DMP1-cre in early 

osteocytes and showed that most likely both osteoblasts and osteocytes are the physiological 

source of FGF23. FGF23 is not normally expressed at high levels in osteocytes in the 

healthy state but is dramatically upregulated in both DMP1 and PHEX associated 

hypophosphatemic rickets77 and osteocytes appear to be the main source of the elevated 

circulating levels of FGF23.

Genetic High and Low Bone Mass Diseases

Many of the mutations resulting in high or low bone mass are due to mutations in 

components of the wnt/b-catenin signaling pathway. One of the most well known are 

mutations in SOST which is highly expressed in mature osteocytes, but also expressed in 

articular chondrocytes (Hinton, 2009, Chan et al,2011). As stated above, the protein, 

sclerostin, is an inhibitor of bone formation and the gene, Sost is increased in response to 

unloading, decreased in response to loading, but also decreased in response to PTH86. 

Patients with sclerosteosis carry a point mutation in the SOST gene whereas patients with 

van Buchem disease are characterized by a 52kb deletion downstream of the gene87. 

Recently, craniodiaphyseal dysplasia, a rare and severe bone dysplasia characterized by 

sclerosis of the skull and facial bones has also been linked to a “de novo” mutation in the 

SOST gene88. The pathological role of mutations in sclerostin has been reproduced in 

knock-out and transgenic animal models that also show the high-bone mass phenotype of 

sclerosteosis and van Buchem patients26,89. Sclerostin binds to low-density lipoprotein 

(LDL)-related protein 5, 6 and 4 to inhibit Wnt/β-catenin signaling90.

Genetic mutations in the receptors for sclerostin have also been shown to result in bone 

disease. Loss-of-function of LRP5 results in the condition Osteoporosis Pseudoglioma, 

OPPG91. The condition is homozygous recessive and affected individuals had a Z-score of 
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−4.7. Conversely, gain-of-function of LRP5 results in highly increased bone mass92. The 

condition is autosomal dominant and individuals had BMDs 5–8, yet had normally shaped 

bones. These individuals never broke bones but could not float in water. Mutations in Lrp4 

have also resulted in bone overgrowth93. Genetically modified mice have replicated these 

human phenotypes.

Role of osteocytes in non-bone disease

Chronic Kidney Disease

FGF23 secreted from osteocytes plays a pathological role in Chronic Kidney Disease, CKD. 

FGF23 is elevated in osteocytes in CKD94 and serum levels of FGF23 are increased, 

particularly in the later stages of the disease95,96. FGF23 levels predict cardiovascular events 

before but not after dialysis and FGF23 is a risk factor for adverse outcomes in patients with 

CKD and End Stage Renal Disease (for review see97). Therefore, considerable effort is 

being put towards blocking or reducing FGF23 levels in these patients.

Cardiac Function

High circulating levels of FGF23 have negative effects on cardiac muscle (For review see98). 

Elevated levels of circulating FGF23 have been linked to increased risk of heart disease and 

independently associated with left ventricular hypertrophy in human population 

studies99,100. Increased serum FGF23 has also been linked with impaired vascular 

function99, vascular calcification101 and increased fat mass102.

Sarcopenia?

It is not clear if osteoporosis and sarcopenia are concurrent or if one precedes the other. 

Dogma has been that the main interaction between muscle and bone is the mechanical 

loading of bone through muscle contraction. Osteocytes secrete factors that regulate muscle 

mass and function. MLO-Y4 osteocyte-like cells and primary osteocyte factors induce 

muscle myogenesis and activate the Wnt/βcatenin pathway6061. Two factors produced by 

osteocytes in response to shear stress, PGE2 and Wnt3a, were found to enhance myogenesis 

and ex vivo primary muscle function62. The hypothesis that osteocytes can support 

myogenesis and muscle function is now supported by several lines of evidence.

Very recently, in vivo data has been published to support the concept that bone regulates 

muscle mass and function. In 2015 it was shown that osteocalcin partially restored muscle 

mass in a model of deletion of Cx43 in osteocytes103. In 2016 it was shown that osteocalcin 

can have positive effects on muscle mass104. Also in 2015, it was shown that cancer induced 

release of Transforming Growth Factor beta, TGFβ from bone was responsible for muscle 

cachexia105. That same year it was shown that deletion of a protease, MBTPS1, in 

osteocytes had little effect on bone but significantly increased muscle mass and function 

with aging106. A reduction in members of the TGFβ superfamily was observed. This 

suggests that bone produces osteocalcin which has positive effects on muscle, but also that 

bone and in particular osteocytes can produce negative regulators of muscle. It is not known 

if osteocyte dysfunction will play a role in sarcopenia.
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Conversely, muscle also appears to secrete factors that affect osteocyte viability and 

function. In 2007 Pedersen coined the term ’myokines,’ for muscle secreted factors opening 

the door to new concepts regarding muscle interaction with bone. Conversely, secreted 

factors from electrically stimulated skeletal muscle and from myotubes but not from 

myoblasts was shown to protect MLO-Y4 osteocytelike cells from dexamethasone induced 

cell death107. Other muscle factors are being identified that have positive effects on bone.

Therapeutics targeting osteocyte factors

Anti-sclerostin antibody

In animal studies, anti-sclerostin antibody has consistently been shown to increase bone 

mass. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, 

and bone strength in aged male rats108. Neutralizing antibody to Sclerostin is being 

developed as a therapeutic to treat osteoporosis (For review see109). The antibody blocks or 

reduces bone loss and supports bone formation-promotes fracture healing110 and is a 

potential therapeutic for a number of conditions of low bone mass such as OI111. 

Romosozumab (AMG 785) has been tested in Phase 1 and II and Blosozumab has been 

tested in Phase 1 clinical trial with good results. These antibodies increase bone mass to a 

greater extent than any previously developed therapeutic for osteoporosis including 

bisphosphonates, Forteo, and Denosumab. Phase III clinical trials in progress.

Anti-RANKL antibody

MLO-Y4 osteocyte like cells support osteoclast formation112 and apoptotic bodies released 

from MLO-Y4 cells express RANKL113. Primary osteocytes express RANKL114. 

Osteocytes express greater amounts of RANKL than osteoblasts and are better supporters of 

osteoclast formation115,116. Deletion of RANKL using the 10kb Dmp1-Cre results in mice 

with increased bone mass. This suggests that anti-RANKL antibody is mainly targeting 

osteocytes. Human anti-RANKL monoclonal antibody, Denosumab, is now available for 

treatment of osteoporosis. The antibody decreases osteoclast differentiation, function and 

survival. It reduces risk of spine, hip and nonvertebral fractures and does not require dose 

adjustment for decreased kidney function. For treatment of osteoporosis, SQ dosing every 6 

months is applied and the effect is reversible within 6–12 months of stopping117.

Anti-FGF 23 antibody

There are several conditions that could potentially benefit from treatment with anti-FGF23 

antibody. In bone, Autosomal dominant hypophosphatemic rickets, caused by gain of 

function mutations in FGF23 that prevent proteolytic cleavage118 and homozygous mutation 

in FAM20, a regulatory molecule of FGF23, resulting in hypophosphatemic osteomalacia119 

may benefit from anti-FGF23 antibody. In kidney, as FGF23 is elevated in osteocytes94 and 

in serum in Chronic Kidney Disease, CKD95,96, these would also benefit from reducing 

FGF23 circulating levels. In heart disease, studies have linked raised levels of circulating 

FGF23 to an increased risk of heart disease, left ventricular hypertrophy in human 

population studies100,120, impaired vascular function, vascular calcification, and increased 

fat mass101. All of these conditions could potentially benefit from FGF receptor inhibitors 

and anti-FGF23 antibody. Treatment with FGF23 antibody restored serum phosphate levels 
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and corrects bone defects in the Hyp mouse and Dmp1 null model121 and treatment with 

anti-FGF23 antibody KR23 increases serum phosphate in X-linked hypophosphatemic 

rickets122. (For review see123).

Other therapeutics to treat bone disease

Could other therapeutics targeted to either osteoclasts or osteoblasts be also having effects 

on osteocytes? The is a distinct possibility. Calcitonin, bisphosphonates (Fosamax, Boniva, 

etc.), Anti-RANKL (Denosumab) and Cathepsin K inhibitors (odanacatinb) have been 

developed to target osteoclasts. However, bisphosphonates have also been shown to reduce 

osteocyte apoptosis69, osteocytes can also express Cathepsin K under certain conditions40, 

and as shown above, the anti-RANKL antibody may be targeting osteocytes. Hormone 

replacement therapy, Selective Estrogen Receptor Modulators (Evista), and Parathyroid 

Hormone peptides (Forteo) have been thought to mainly target osteoblasts, but these could 

also be having significant effects on osteocytes.

Are there other osteocyte factors?

Much attention has focused on osteocalcin produced by osteoblasts. This bone specific 

factor has been shown to have effects on glucose metabolism, fertility, calcification and 

others124. The osteoblast has been ascribed the production of osteocalcin and the osteoclast 

as the releaser of uncarboxylated, the ‘active’ form of osteocalcin from the bone matrix to 

target other tissues. However, in the adult skeleton, osteoclasts make up less than 1% of bone 

cells, and osteoblasts less than 5%. Osteocytes have been shown to also produce osteocalcin 

so it will be interesting to see if osteocalcin production by osteocytes has a role in normal 

physiology and pathophysiology. Gene arrays have been performed on primary osteocytes 

and osteocyte cell lines. As with any gene arrays analysis, it is difficult to identify specific 

genes. It is likely that there are osteocyte factors responsible for normal function that may 

also play a role in disease that have not yet been identified.

Summary

When normal physiological functions go awry, disorders and disease occurs. This is 

universal, and as discussed here, even for the osteocyte, a cell thought to not be in contact 

with the rest of the body. It was once thought that this cell was simply a place-holder in 

bone. The early functions proposed for this type of bone cell were mechanosensation and the 

capacity to remove their perilacunar matrix called “osteocytic osteolysis”. Considerable 

skepticism existed even for these ascribed functions for decades. Within the last decade, the 

number of studies of osteocytes has dramatically increased leading to the discovery of novel 

functions of these cells. Along with these discoveries came the discoveries of how these 

cells can also be responsible for not only bone diseases and disorders, but also those of 

kidney, heart, and potentially muscle. Osteocytes have entered the realm of therapeutic 

targets for bone disease and now potentially kidney disease. It will be important not to 

overlook these cells with regards to the health of other systems and organs.
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Key Points

• Within the last decade, the number of studies of osteocytes has dramatically 

increased leading to the discovery of novel functions of these cells.

• Along with these discoveries came the discoveries of how these cells can also 

be responsible for not only bone diseases and disorders, but also those of 

kidney, heart, and potentially muscle.

• Osteocytes have entered the realm of therapeutic targets for bone disease and 

now potentially kidney disease.

• It will be important not to overlook these cells with regards to the health of 

other systems and organs.
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Box 1

Normal Functions of Osteocytes

➢ Control mineralization through Phex126, Dmp156, and MEPE127,128

➢ Regulate phosphate homeostasis through FGF2356,129

➢ Play a role in calcium homeostasis in response to PTH/PTHrP40,130

➢ Can recruit osteoclasts through expression of RANKL with or without cell 

death112,115,116

➢ Can regulate osteoblast activity through Sclerostin131,132

➢ Are mechanosensory cells through β-catenin signaling133,134

➢ Have autocrine/paracrine effects through prostaglandin production135–137.

➢ Under calcium restriction, osteocytes remove calcium from bone through the 

Vitamin D Receptor138

➢ Osteocytes regulate myelopoiesis/hematopoiesis through G-CSF63

➢ G-CSF targets osteocytes that mediate mobilization of Hematopoietic Stem/

Progenitor Cells and is prevented by surgical sympathectomy64

➢ Osteocytes regulate primary lymphoid organs and fat metabolism65

➢ Osteocytes can dedifferentiate to become a source of matrix-producing 

osteoblasts139

➢ Can increase muscle myogenesis and muscle function60,62,140 and can inhibit 

muscle mass with aging141

➢ Can have effects on heart123,142 and liver143 through FGF23.

➢ Play a role in fracture healing through IGF-1144,145

➢ Regulate bone formation through Bmpr1a signaling146, Notch activation147, 

and ERαsignaling148,149

➢ Suppress breast cancer growth and bone metastasis150

Data from references 1, 2, 125.
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Figure 1. 
Defective Osteocyte Function and Disease.
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