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Abstract : For some excited levels, transition energies, wavelengths, oscillator strengths and transition 
probabilities calculations in neutral silver (Ag I) have been calculated within the framework multiconfiguration 
Hartree-Fock approximation with relativists corrections (Breit-Pauli Hamiltonian). The wavefunctions and some 
relativistlc corrections have been obtained using MCHF + BP atomic package Comparisons with other some 
calculations and experiments are presented 
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1. Introduction 

Such characteristics as energies, oscillator strengths, wavelengths, transition probabilities 
and rate coefficients of different elementary processes, occurring in laboratory and astrophysical 
plasmas, are of highly interest in investigations of plasma-kinetic problems, development of 
new laboratory ion and atom sources, plasma spectroscopy and modelling and other. Recently, 
data for these characteristics including theoretical computations, laboratory experiments and 
astronomical measurements for most atoms were compiled. In this work, we presented transition 
energies, wavelengths, weighted oscillator strengths and transition probabilities for electric 
dipole transition in neutral silver (Ag I) using multiconfiguration Hartree-Fock approximation 
and Breit-Pauli Hamiltonian for relativistic corrections development by Fischer et al [1]. 

Relativistic oscillator strengths were calculated with a semiempirical method for 

transitions in the principal, sharp and diffuse series of Ag I [2]. A model potential for 

including correlation effects was used to computations of oscillator strengths for the 

lowest transitions in Ag I [3]. The influence of core polarization effects on oscillator 
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strengths was discussed [4]. Ionization energies and oscillator strengths for transitions 

in principal, sharp and diffuse series of neutral silver spectra were obtained using 

relativistic single-configuration Hartree-Fock method [5]. Local approximations to 

interelectronic exchange were tested by frozen-core relativistic Hartree-Fock calculations 

by Migdalek and Baylis [6-8], and Migdalek and Banasiriska [9]. Calculations of 

energies and oscillator strengths for Ag I using single-and multiparameter model 

potentials were presented [10]. The ability of the relativistic ab initio model potential 

approach with explicit local exchange to produce oscillator strengths in agreement with 

Dirac-Fock data was tested for some transitions in silver by Migdalek and Garmulewicz 

[11]. Excitation energies and oscillator strengths for electric dipole transitions between 

low-lying states in the silver isoelectronic sequence were studied using relativistic 

Hartree-Fock wavefunctions by Cheng and Kim [12]. Chou and Johnson performed 

relativistic many-body perturbation theory calculations through third order to study 

amplitudes of the principal transitions in silverlike ions [13]. Energies of 5/; (/ = 

s,p,d,f,g) and 4fy states were obtained using relativistic many-body perturbation theory 

and oscillator strengths, transition rates and lifetimes were calculated for the 5/y - 5/';< 

and 4fj - 5/r electric dipole transitions by Safronova et al [14]. 

The corrections and extension of the series of the silver was given by Blair [15]. 

The absorption spectra of silver were investigated by Paul [16]. Shenstone analyzed the 

arc spectrum of silver [17]. Optical cross sections corresponding to spectral line of 

silver were determined by Hinnov and Kohn [18]. Oscillator strengths of the resonance 

doublets of Ag I were measured by Penkin and Slavenas [19]. Lawrence et al 

measured f values of thirty-eight lines in the spectra of neutral Ag by the atomic-beam 

technique [20]. Transition rates of atomic transitions of silver were determined by Moise 

[21]. Lifetime measurement of the first excited states in neutral atoms belonging to 

first, second, and third group of the periodic system were performed by the beam-foil 

technique by Andersen et al [22]. The mean life of 5p2P3 / 2 resonance level in Ag I was 

measured by Klose [23]. Radiative lifetimes of resonance levels of Ag I using dye laser 

excitations were measured by Selter and Kunze [24]. Plekhotkina compiled systematically 

experimental and theoretical study of such radiative constants as the oscillator 

strengths and probability of spontaneous transitions exist for the silver atom [25]. 

Verner ef al presented atomic data for absorption lines from the ground level [26]. In 

the Ag I sequences some spectral lines were identified by Sugar [27]. The lifetime 

measurements in the sequences of 2S1 / 2 and 2D3 / 2 states for the alkali-like 4c/10 nstnd 

configurations of neutral silver were performed by Zhankui et al [28]. Relativistic 

oscillator strengths for transitions in the principal spectral series of the silver isoelectronic 

sequence were reported by Martin ef al [29]. The radiative lifetimes of the 7/72P3/21/2 

states of silver were measured by Bengtsson [30]. Carlsson et al measured the 

lifetimes of the silver 5p?P states with high accuracy time-resolved laser spectroscopy 

[311. 

In this paper, we considered two interesting subjects in the theoretical study of 
atomic structure : one deals with the electron correlation and the other deals with the 
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relativistic effects It is used the multiconfiguration Hartree-Fock approximation within 
the framework Breit-Pauli relativistic corrections for neutral silver (Ag I) And, transition 
energies, wavelengths, weighted oscillator strengths and transition probabilities have 
been obtained for electric dipole transitions between ns (n = 5, 6, 7), nd (n = 5, 6) 
and 5g (for even-parity) and 5p, 6p, 4f and 5f (for odd-parity) outside the core [Kr]4c/10 

states in neutral silver using the MCHF atomic-structure package [32] In particular it 
is selected highly excited states which are not in literature besides lower states 
Because, these data may be essential inputs to a wide range of problems are 
encountered in many areas of science, such as astrophysics, plasma physics and 
atmospheric and environmental research 

2. Method of calculation 

The multiconfiguration Hartree-Fock (MCHF) approximation is a Configuration Interaction 
(CI) method [1] In this approximation the MCHF Hamiltonian is used for obtaining the 
best radial functions for the set of non-relativistic energies of the interacting terms The 
wavefunction is 

M M 

nYLS)=2cl<t>(Y,LS), £cf = 1 (1) 
» 1 I 1 

Where 0(y,LS), y, and c, represent configuration state function in LS coupling, 
configurations and mixing coefficients of configurations, respectively The non-relativistic 
energy expansion becomes 

/ 1 y - 1 

The Breit-Pauli Hamiltonian includes relativistic effects This Hamiltonian can be written 

HBP = HNR + HRS + HFSi (3) 

where HNR is the non-relativistic many-electron Hamiltonian and HRS is the relativistic 
shift operator including mass correction, one- and two-body Darwin terms, spin-spin 
contact term and orbit-orbit term, 

"MC = --Atf)lV>, (4) 
O /=1 

"*-~Z<*T>|7l' (5) 

(6) 

Sna2-*-Hsso=—=-l(*. *i^C, r/)- (7) 
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u _ a2£ P,P, , r,Mv- P>)P, 
_ (8) 

Fine-structure Hamiltonian HFS consist of the spin-orbit, spin-other-orbit and spin-spin 

terms. 

27 N 
Hso = -^-tfil'rs, 0) 

Ji. N r„xp, 
"soo = - " Sr"/'|(s, + 2s ;), (10) 

*.-«•£,! M - » ^ - I ! (ID 

The Breit-Pauli wavefunctions are obtained as linear combinations 

nrJM^^c^y^JMj). (12) 

Where 0(yLSMJj) are LSJ coupled configuration state functions (CSFs), that is 

<P(YLSJMj)= £ (LMLSMS I LSJMJ)0(YLMLSMS) . (13) 

The orbital L, and the spin S, angular momenta are coupled to give the total angular 
momentum J. The mixing (or expansion) coefficients c, are obtained by diagonalizing 
the Breit-Pauli Hamiltonian. The radial functions building the CSFs are taken from a 
previous non-relativistic MCHF calculation and only the expansion coefficients are 
optimized. 

The matrix eigenvalue problem becomes 

He = Ec. (14) 

Where H is the Hamiltonian matrix with elements 

H,=(r^S,JMl\H„\rlLlSiJMJ) (15) 

and c « fa cM)f the column vector of the expansion coefficients. The Breit-Pauli 

Hamiltonian is a first-order perturbation correction to the non-relativistic Hamiltonian. 

The transition rate (or probability) for emission transition is 

*V.r,j). *4[.(^ - ̂ f'^^M m 

where, Ck is Ck = (2/c + 1)(fr + l)//c((2/t + 1)!!)2, and S*\y'J',yJ), k and g, denote 
line strength, rank of a spherical tensor operator and statistical weight of the upper 
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level, namely gs = 2J + 1, respectively. The oscillator strength may refer to transition 
either in absorption or emission. For absorption weighted oscillator strength is, 

gfnk(yjyj') = ±ck [a(ErJ. - EYJ)]
2k~' s«k(Yjyj'). (17) 

Most experiments yield the lifetime of the upper level because of easy measuring. 
In this case the sum over multipole transitions to all lower lying levels must be taken. 
The lifetime of upper level is 

J 

The strongest transitions are the electric dipole (E1) transitions. If n and n' 
denote the parity of two levels, then electric multipole operator is in the form 

^ - - M ) * . (19) 
It 

Where k is angular momentum of the emitted or absorbed photon. The electric dipole 
operator (E1) combines states of different parity. 

3. Results and discussion 

In this work, transition energies, AE (cm"1), wavelengths, A (A), weighted oscillator 
strengths, gff and transition probabilities (or rates), Akj (s~1), have been obtained for 
electric dipole transitions (E1) between ns (n = 5, 6, 7), nd {n = 5, 6) and 5g for even-
parity, and 5p, 6p, 4f and 5f for odd-parity outside the core [Kr]4c/10 states in neutral 
silver (Ag I, Z = 47) using the MCHF atomic-structure package [32]. We obtained the 
42 possible E1 transitions for selected these levels. Results obtained are presented 
and compared with other works in Table 1. Frequently, the 5s-5p, 5s-6p, 5p-6d, 5p-6s 
and 5p-Zs transitions had been studied in literature. We also added transitions for new 
and some highly excited levels. In table, the number in brackets represents the power 
of 10. In addition, only odd-parity states are indicated by "°" superscript. Besides, for 
simplicity, we used n*S, 2P, 2D, 2F, 2G instead of nl 2S, 2P, 2D, 2F, 2G. Some values 
of other works in columns for gf and Akl are converted from f and log(flr/)» and lifetime, 
respectively, for comparing. These cases are defined in references below the table with 
superscript lowercase letter. 

Except for some transitions an agreement is seen when our results are 
compared with other works. Especially calculation results for 5s-5p, 5p-5d, 5p-6cf, 4f-5g 
and 5p-7s transitions are in very good agreement with other results. In conclusion, we 
reported new and large-scale data including valence correlation and Breit-Pauli relativistic 
corrections in neutral silver. Data on atomic radiative characteristics and elementary 
processes occurring in astrophysical and laboratory plasma are important. In this paper, 
it is reported energies, transition probabilities, wavelengths and oscillator strengths for 
electric dipole transition in Ag I. We hope that a large number of results obtained will 
be useful for some research and, particularly, astrophysical applications. 



Table T. Transition energies, bE(cm^), wavelengths, v*(A), weighted oscillator strengths, oY.and transition probabilities, Akl{s~*), for 
between even- and odd- panty states in Ag I 

electric dipole (E1) transitions 

States AE 

Initial J, Final This Work Other Works This Work Other Works 

52S 1/2 S2P° 3/2 24551 61 30472 71a, 

30472 703b 
4073 05 

52S 1/2 52P° 1/2 2405195 29552 050a, 
29552 061b 

4157 67 

3280 679a, 

3280 680bt 
4025°, 

3455h, 

3280 66', 

3280 680» 

3281*, 

3280 68', 

3280 68m, 

3280 68", 

3281 °, 

3280 7p 

3281 627\ 

3282\ 3282u 

3382 889a, 

3382 887b, 

41269, 

3562h, 

3382 86', 

3382 893'. 

3383\ 

3382 89!, 

3382 89m, 

3382 89n, 

3283 836r, 

3384', 

3384° 

gf 
This Work 

148816 

727691 (-1) 

Other Works This Work Other Works 

0 89125* 
2688c1, 1 784c2

> 

3 288d\ 
1 652* 
3 288e\ 
1 776e2 

1 848*. 1 78'\ 
2 6649, 
2 0536", 1 56'' 
2 054', 1 8m, 
1 836", 2 0°, 
1 76p 1 808' 
192* 

4 1975(-1)a 

6 58(-1)c \ 
4 30(-1)c2, 
8 06(-1)d \ 
3 gen)*2. 
4 26(-1)e2, 
8 06(-1)e1, 
4 46(-1)t2, 

4 2 8 H ) " , 
6 58(-1)fl, 
4 994(-1)h, 
0 4 4 \ 4 94(-1)', 
4 3(-1)m, 

3 92(-1)", 

4 20(-1)r 

4 60(-1)' 

1 49586(8) 

1 40397(8) 

1 380(8)a, 
1 42(8)b 

1 36986(8)«, 
1 4347(8)h 

1 424(8)", 
1 53(8)° 
1 37(8)p, 
1 48809(8)'. 
1 49253(8)w 

1 223(8)a, 
1 35(8)b, 
1 28205(8)°, 
1 3123(8)h, 
1 143(8)n, 
1 3495(8)\ 
1 333(8)w 



Tablet. (Contd) 

States A£ Akt 

Initial Final 

52P° 1/2 52D 3/2 

52P° 3/2 52D 5/2 

52P° 3/2 52D 3/2 

52P° 1/2 62D 3/2 

This Work 

22896 44 

2240160 

22396 78 

24217 59 

Other Works 

19191 95a. 

19191 908b 

18291 51a. 

18291 516b, 

18271 29a. 

24651 08a. 

This Work 

4367 49 

4463 97 

4464 93 

4129 23 

Other Works 

5209 068a, 

5209 078b, 

67419 

5209 04', 

5209 078', 

5209 07q. 

5211u 

5465 498a, 

5465 497b. 

69989, 

5465 47', 

5465 503J. 

5465 49q. 

5476u 

5471 547a, 

5471 52', 

5471 547 

4055 472a, 

4055 27'. 

4055 476*. 

4055 46q 

This Work 

00788306 

0138252 

015425H) 

042944(-1) 

Other Works 

1 1168a. 

2 408c1. 

2 23202, 

3 528d1, 

2 248d2. 2 2e2, 

3 582e1.2 256M, 

2 332®, 2 8449, 

2 3092\ 2 52s 

2 118a.3 18c2 

3 414c1,4 92d \ 

3 192d2, 4 92e1. 

3 144e2, 3 252M, 

3 33,2.4 0149 

3 2946h 

0 23658, 

0 254c1, 

0 2368c2. 

0 364d1, 0 2A^, 

0 366e1
f 

0 2344e2, 

0 244t1, 0 224f2 

0 2452*. 0 244s 

2 2803(-1)a 

5 32(-1)c\ 

4 56(-1)c2 

6 2(-1)e1 

4 48(-1)e2 

This Work Other Works 

0 689145(7) 6 860(7)a, 

y 5(7»b, 

7 75(7)q 

0 771291(7) 7 879(7)a, 

8 6(7)b, 

7 46(7)q 

0 129031(7) 1 317(7)a 

0 420002(7) 2 311(7)a. 

3 31(7)q, 



Table l.fContd) 

States AE gf A<, 
Initial J, Final J, This Work Other Works This Work 

425162 

4216 22 

2039 90 

2039 93 

368669 

Other Works 

4210 956a, 

4210 94', 

4210 960', 

4210 94q 

4212 814a, 

4212 68' 

4212 817' 

4212 68Q 

2061 164a 

2061 21' 

2061 830' 

2061 827' 

2069 845a 

2069 81', 

2070 514 

2070 511' 

8273 515a, 

8273 509b, 

8273 73' 

8273 519' 

This Work 

0 76404H) 

0 84166(-2) 

0 30380H) 

0 01521 (-2) 

0 21072(-1) 

Other Works 

4 159(-1)a, 

7 14(-1)c\ 

6 24(-1)c2, 

8 22(-1)e\ 

6 06(-1)e2 

4 645(-2)a, 

5 32(-2)c1 

4 64(-2)c2, 

6 08(-2)e\ 

4 48(-2)e2 

0 8994(-2)a 

1 156(-1)e1, 

1 08(-2)e2, 

158' 

0 2197(-2)a 

7 86(-4)e2, 

2 2(-2)e\ 

1928' 

6 637H)a, 

3 08(-1)c1 

3 32(»1)c2, 

4 48(-1)e\ 

3 32(-1)*2, 

3 40(-1)M, 

3 40(-1),2
t 

3 0(-1)s 

This Work Other Works 

0 477954(7) 2 606(7)a, 

3 22(7)q 

0 789542(6) 4 362(6)a 

1 21747(9) 3 528(6)a 

121944(9) 1 710(6)a 

0 517080(7) 3 232(7)a 

52P 3/2 62D 5/2 2372130 23740 89a 

52P° 3/2 62D 3/2 23717 94 23730 42a 

52S 1/2 62P° 3/2 4902213 48500 770a 

52S 1/2 62P° 1/2 4902125 48297 380a 

52P° 3/2 62S 1/2 27124 58 12083 44a 

12083 449* 



Table 1.(Contd.) 

States 

Initial J, Final Jf 

A£ 

This Work Other Works 

k 

This Work Other Works 
gf 

This Work Other Works 
Akt 

This Work Other Works 

52P° 1/2 &S 1/2 27624.23 

52P° 1>2 7*S 1/2 24658.11 

52P° 3/2 ^ S 1/2 24158.45 

62P° 

62P° 

52D 

52D 

42F° 

42F° 

42F° 

1/2 

3/2 

3/2 
3/2 

7/2 

7/2 

7/2 

6 ^ 

^ S 

62P° 

62P° 

526 

52G 

52D 

1/2 

1/2 

1/2 

3/2 

9/2 

7/2 

5/2 

2654.94 

2654.06 

2072.86 

2073.74 

2917.58 

2917.58 

2980.78 

13004.1*, 

13004.091b 

22334.93* 

21414.27* 

3620.01 

4055.46 

4139.34 

37665.65 

37678.14 

48242.58 

48222.11 

34274.95 

34274.97 

33548.21 

7687.766", 

7687.772*, 

7688.12', 

7687.7791 

4476.036*, 

4476.06', 

4476.042' 

4668.476*. 

4668.50', 

4668.478', 

4668.48q 

404509, 

39900" 

195709 

0.15266(-1) 

0.88683(-2) 

1.80836(-2) 

5.35350(1) 

1.07035(2) 

1.29752(-4) 

2.56367(-5) 

1.23511(1) 

3.52887(-1) 

8.16964(-2) 

3.1405(-1)», 

2.90(-1)c\ 

S.Uf- l)0 2 , 

3.14(-1)*2, 

4.32(-1)*\ 

3.22(-1)f2
l 

3.22(-1)f1, 

2.80(-1)$ 

3.162(-2)*( 

3.0(-2) c \ 

3.36(-2)*\ 

3.32(-2)*2 

6.123(-2)a 

2.92(-2)c1, 

s.oe^)62, 
Z.iei-2)92, 

3.18(-2)e1 

1.308(1)fl, 

1.3405(1 )h 

3.064(-1)h 

6.099, 

5.8068h 

0.388532(7) 1.771(7)* 

1.79833(6) 5.261(6)* 

? 
& 

1 
§ 

3.51993(6) 9.365(6)* 

2.40(7)' 

1.25851(8) 

2.51454(8) 

1.85936(2) 

1.83844(1) 

7.01280(6) 

2.50457(5) 

8.06963(4) 

CO 



Table l.(Contd) 

States 

Initial J, Final Jf 

SE 

This Work Other Works 

A 

This Work Other Works 
gf 

This Work Other Works 
A*, 

This Work Other Works 

42F° 5/2 52G 7/2 2917 59 

4 2P 

A2F° 

52P 

4 2P 

52P 

52D 

42F° 

A2F° 

52F° 

52P 

5 2F 

52P 

52P 

52P 

52P 

62D 

62D 

62D 

72S 

?S 

5/2 

7/2 

5/2 

5/2 

5/2 

5/2 

5/2 

5/2 

7/2 

7/2 

5/2 

7/2 

5/2 

7/2 

5/2 

3/2 

3/2 

5/2 

1/2 

1/2 

620 

620 

62D 

52D 

52D 

62P 

520 

62D 

52G 

52G 

52G 

520 

520 

62D 

62D 

S2P° 

e2p° 
62P 

62P 

62P 

3/2 

5/2 

3/2 

32 

3,2 

3/2 

5/2 

5/2 

9/2 

7/2 

7/2 

5/2 

5/2 

5/2 

5/2 

3/2 

1/2 

3/2 

3/2 

1/2 

429713 

430049 

1827 79 

2975 98 

506 64 

2068 92 

298079 

430050 

448 25 

448 24 

448 25 

51145 

51145 

1831 15 

1831 16 

752 58 

75170 

749 22 

312 07 

311 19 

34274 90 

2327133 

23253 16 

54710 78 

33602 42 

197379 92 

48334 34 

3354814 

23253 13 

223091 68 

223092 77 

223090 59 

195523 29 

19552161 

5461039 

5461026 

132875 99 

133031 56 

133472 70 

320443 74 

321350 01 

404509, 

39900" 

193209 

4(7)9 

4(7)9 

9 52793 

122411(-2) 

1 77787(-2) 

8 77627(-2) 

5 72257(-2) 

3 35300 

2 27589(-4) 

4 08453(-3) 

8 88949M) 

3 06595 

8 75982(-2) 

2 36518 

4 83795 

2 41900H) 

1 1§779(-1) 

5 83897(-3) 

3 22279(-5) 

1 61736(-4) 

2 89698(-4) 

1 26974(-1) 

6 33127(-2) 

10 768^, 

11 04h 

4 292s, 

4 0472h 

2 904(-1)h 

0 02s 

0 0249 

6 76234(6) -

3 76927(4) 

3 65531(4) 

4 88928(4) 

8 45143(4) 

1 43519(5) 

1 62450(2) 

4 03454(3) 

1 82769(3) 

4 10903(4) 

1 46749(3) 

3 96235(4) 

1 40687(5) 

7 03453(3) 

4 35316(4) 

217659(3) 

3 04382 

3 04795(1) 

2 71170(1) 

2 06202(3) 

2 04477(3) 

•Atomic Spectral Line database from R L Kurucz's CD-ROM 23 [35, log(o7)]T
 bNIST Atomic Spectra Database [36],c1 ̂ Migdalek [2,f ],dt ^Migdalek and Baylis [3,f], 

•'^Migdalek and Baylis [5,f], " GMigdalek and Garmulewicz [11 ,f], 9Cheng and Kim [12 f,T(ns)], hSafronova et a/[14,fj(ns)], 'Blair [15], 'Shenstone [17], kHinnov 
and Kohn [18.fl, 'Penkin and Slavenas [19,f], mLawrence et a/[20,f], "Moise [21,f] °Klose [23 f,T,(ns)], pSefter and Kunze [24,f]r

 qPlekhotkina [25,x(ns)], rVemer 
et at [26,(1 'Zhankui et ai [28, f ], 'Carlsson et al [31 ,f,i(ns)], uMoore [33] "Cunningham and Link [34,t(ns)] 

I 
I 
i 
8? 
5" 

^ 

I 

http://18.fl
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