Electric dipole transitions for some excited states in neutral silver

Leyla Özdemir*, Betül Karaçoban and Güldem Ürer
Sakarya University, Department of Physics, 54140, Sakarya, Turkey
E-mal lozdemır(ω sakarya.edu tr

Received 11 May 2007, accepted 28 June 2007

Abstract

For some excited levels, transition energies, wavelengths, oscillator strengths and transition probabilites calculations in neutral silver (Ag I) have been calculated within the framework multiconfiguration Hartree-Fock approximation with relativistic corrections (Breit-Pauli Hamiltonian). The wavefunctions and some relativistic corrections have been obtained using MCHF + BP atomic package Comparisons with other some calculations and experiments are presented

Keywords : MCHF method, relativistic corrections, wavelengths, oscillator strengths, transition probabilities
PACS Nos. : $31.15 \mathrm{Ne}, 3125 . \mathrm{Jt}, 31.30 \mathrm{Jv}, 3130$-I, 3270 Cs

1. Introduction

Such characteristics as energies, oscillator strengths, wavelengths, transition probabilities and rate coefficients of different elementary processes, occurring in laboratory and astrophysical plasmas, are of highly interest in investigations of plasma-kinetic problems, development of new laboratory ion and atom sources, plasma spectroscopy and modelling and other. Recently, data for these characteristics including theoretical computations, laboratory experiments and astronomical measurements for most atoms were compiled. In this work, we presented transition energies, wavelengths, weighted oscillator strengths and transition probabilities for electric dipole transition in neutral silver (Ag I) using multiconfiguration Hartree-Fock approximation and Breit-Pauli Hamiltonian for relativistic corrections development by Fischer et al [1].

Relativistic oscillator strengths were calculated with a semiempirical method for transitions in the principal, sharp and diffuse series of $\mathrm{Ag} \mid$ [2]. A model potential for including correlation effects was used to computations of oscillator strengths for the lowest transitions in $\mathrm{Ag} \mid$ [3]. The influence of core polarization effects on oscillator
strengths was discussed [4]. Ionization energies and oscillator strengths for transitions in principal, sharp and diffuse series of neutral silver spectra were obtained using relativistic single-configuration Hartree-Fock method [5]. Local approximations to interelectronic exchange were tested by frozen-core relativistic Hartree-Fock calculations by Migdalek and Baylis [6-8], and Migdalek and Banasiniska [9]. Calculations of energies and oscillator strengths for $\mathrm{Ag} \mid$ using single-and multiparameter model potentials were presented [10]. The ability of the relativistic ab initio model potential approach with explicit local exchange to produce oscillator strengths in agreement with Dirac-Fock data was tested for some transitions in silver by Migdalek and Garmulewicz [11]. Excitation energies and oscillator strengths for electric dipole transitions between low-lying states in the silver isoelectronic sequence were studied using relativistic Hartree-Fock wavefunctions by Cheng and Kim [12]. Chou and Johnson performed relativistic many-body perturbation theory calculations through third order to study amplitudes of the principal transitions in silverlike ions [13]. Energies of $5 /$, $1=$ $s, p, d, f, g)$ and $4 f$ states were obtained using relativistic many-body perturbation theory and oscillator strengths, transition rates and lifetimes were calculated for the $51,-5 I^{\prime}$,' and $4 f_{j}-51$, electric dipole transitions by Safronova et al [14].

The corrections and extension of the series of the silver was given by Blair [15]. The absorption spectra of silver were investigated by Paul [16]. Shenstone analyzed the arc spectrum of silver [17]. Optical cross sections corresponding to spectral line of silver were determined by Hinnov and Kohn [18]. Oscillator strengths of the resonance doublets of $\mathrm{Ag} \mid$ were measured by Penkin and Slavenas [19]. Lawrence et al measured f values of thirty-eight lines in the spectra of neutral Ag by the atomic-beam technique [20]. Transition rates of atomic transitions of silver were determined by Moise [21]. Lifetime measurement of the first excited states in neutral atoms belonging to first, second, and third group of the periodic system were performed by the beam-foil technique by Andersen et al [22]. The mean life of $5 p^{2} P_{3 / 2}$ resonance level in $\mathrm{Ag} I$ was measured by Klose [23]. Radiative lifetimes of resonance levels of Ag I using dye laser excitations were measured by Selter and Kunze [24]. Plekhotkina compiled systematically experimental and theoretical study of such radiative constants as the oscillator strengths and probability of spontaneous transitions exist for the silver atom [25]. Verner et al presented atomic data for absorption lines from the ground level [26]. In the Ag I sequences some spectral lines were identified by Sugar [27]. The lifetime measurements in the sequences of ${ }^{2} S_{1 / 2}$ and ${ }^{2} D_{3 / 2}$ states for the alkali-like $4 d^{10} n s, n d$ configurations of neutral silver were performed by Zhankui et al [28]. Relativistic oscillator strengths for transitions in the principal spectral series of the silver isoelectronic sequence were reported by Martin et al [29]. The radiative lifetimes of the $7 p^{2} P_{3 / 2,1 / 2}$ states of silver were measured by Bengtsson [30]. Carisson et al measured the lifetimes of the silver $5 p^{2} P$ states with high accuracy time-resolved laser spectroscopy [31].

In this paper, we considered two interesting subjects in the theoretical study of atomic structure : one deals with the electron correlation and the other deals with the
relativistic effects it is used the multiconfiguration Hartree-Fock approximation within the framework Breit-Pauli relativistic corrections for neutral silver (Ag I) And, transition energies, wavelengths, weighted oscillator strengths and transition probabilities have been obtained for electric dipole transitions between $n s(n=5,6,7)$, $n d(n=5,6$) and $5 g$ (for even-parity) and $5 p, 6 p, 4 f$ and $5 f$ (for odd-parity) outside the core $[\mathrm{Kr}] 4 d^{10}$ states in neutral silver using the MCHF atomic-structure package [32] In particular it is selected highly excited states which are not in literature besides lower states Because, these data may be essential inputs to a wide range of problems are encountered in many areas of science, such as astrophysics, plasma physics and atmospheric and environmental research

2. Method of calculation

The multiconfiguration Hartree-Fock (MCHF) approximation is a Configuration Interaction (CI) method [1] In this approximation the MCHF Hamiltonian is used for obtaining the best radial functions for the set of non-relativistic energies of the interacting terms The wavefunction is

$$
\begin{equation*}
\Psi(\gamma L S)=\sum_{1}^{M} c, \Phi(\gamma, L S), \quad \sum_{11}^{M} c_{1}^{2}=1 \tag{1}
\end{equation*}
$$

Where $\boldsymbol{\Phi}(\gamma, L S), \quad \gamma$, and c, represent configuration state function in $L S$ coupling, configurations and mixing coefficients of configurations, respectively The non-relativistic energy expansion becomes

$$
\begin{equation*}
\varepsilon(\gamma L S)=\sum_{i=1}^{M} \sum_{j-1}^{M} c_{l} c_{l}\left\langle\Phi\left(\gamma_{1} L S\right)\right| H|\Phi(\gamma, L S)\rangle \tag{2}
\end{equation*}
$$

The Breit-Pauli Hamiltonian includes relativistic effects This Hamiltonian can be written

$$
\begin{equation*}
H_{B P}=H_{N R}+H_{R S}+H_{F S}, \tag{3}
\end{equation*}
$$

where $H_{N R}$ is the non-relativistic many-electron Hamiltonian and $H_{R S}$ is the relativistic shift operator including mass correction, one- and two-body Darwin terms, spin-spin contact term and orbit-orbit term,

$$
\begin{align*}
& H_{M C}=-\frac{\alpha^{2}}{8} \sum_{1=1}^{N}\left(\nabla_{1}^{2}\right)^{\dagger} \nabla_{l}^{2} \tag{4}\\
& H_{D 1}=-\frac{\alpha^{2} Z}{8} \sum_{l=1}^{N}\left(\nabla_{1}^{2}\right)\left(\frac{1}{r_{1}}\right) \tag{5}\\
& H_{D 2}=\frac{\alpha^{2}}{4} \sum_{i<1}^{N}\left(\nabla_{1}^{2}\right)\left(\frac{1}{r_{i j}}\right) \tag{6}\\
& H_{S S O}=-\frac{8 \pi \alpha^{2}}{3} \sum_{i<1}^{N}\left(s_{1} s_{j}\right) \delta\left(r_{1} r_{l}\right) \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\left.H_{O O}=-\frac{\alpha^{2}}{2} \sum_{1<1}^{N} \frac{p_{1} \cdot p_{1}}{r_{11}}+\frac{r_{11}\left(r_{11} \cdot p_{1}\right) p_{1}}{r_{11}^{3}}\right] . \tag{8}
\end{equation*}
$$

Fine-structure Hamiltonian $H_{F S}$ consist of the spin-orbit, spin-other-orbit and spin-spin terms.

$$
\begin{align*}
& H_{S O}=\frac{\alpha^{2} Z}{n} \sum^{N}\left(\left.\frac{1}{r^{3}} \right\rvert\, l_{1} \cdot s_{1},\right. \tag{9}\\
& H_{S O O}=-\frac{\alpha^{2}}{2} \sum_{k j}^{N}\left(\left.\begin{array}{c}
r_{11} \times p_{1} \\
r_{11}^{3}
\end{array} \right\rvert\,\left(s_{1}+2 s_{1}\right),\right. \tag{10}\\
& H_{S S}=\alpha^{2} \sum_{k j}^{N} r_{11}^{1} s_{1} \cdot s_{1}-3 \frac{\left(s_{1} \cdot r_{11}\right)\left(s_{1} \cdot r_{11}\right)}{r_{11}^{2}} \tag{11}
\end{align*}
$$

The Breit-Pauli wavefunctions are obtained as linear combinations

$$
\begin{equation*}
\Psi\left(\gamma J M_{J}\right)=\sum_{i=1}^{\cdots} c_{1} \Phi\left(\gamma_{1} L_{,} S_{,} J M_{J}\right) \tag{12}
\end{equation*}
$$

Where $\Phi\left(\gamma L S M J_{j}\right)$ are LSJ coupled configuration state functions (CSFs), that is

$$
\begin{equation*}
\Phi\left(\gamma L S J M_{J}\right)=\sum_{M_{1} M_{s}}\left\langle L M_{L} S M_{S} \mid L S J M_{J}\right\rangle \Phi\left(\gamma L M_{L} S M_{S}\right) \tag{13}
\end{equation*}
$$

The orbital L, and the spin S, angular momenta are coupled to give the total angular momentum J. The mixing (or expansion) coefficients c, are obtained by diagonalizing the Breit-Pauli Hamiltonian. The radial functions building the CSFs are taken from a previous non-relativistic MCHF calculation and only the expansion coefficients are optimized.

The matrix eigenvalue problem becomes

$$
\begin{equation*}
H c=E c . \tag{14}
\end{equation*}
$$

Where H is the Hamiltonian matrix with elements

$$
\begin{equation*}
H_{11}=\left\langle\gamma_{i} L_{,} S_{1} J M_{j}\right| H_{B P}\left|\gamma_{j} L_{j} S_{j} J M_{J}\right\rangle \tag{15}
\end{equation*}
$$

and $c=\left(c_{1} \ldots \ldots, c_{M}\right)^{t}$ the column vector of the expansion coefficients. The Breit-Pauli Hamiltonian is a first-order perturbation correction to the non-relativistic Hamiltonian.

The transition rate (or probability) for emission transition is

$$
\begin{equation*}
A^{\pi k}\left(\gamma^{\prime} J, \gamma J\right)=2 C_{k}\left[\alpha\left(E_{\gamma^{\prime} J^{\prime}}-E_{\gamma J}\right)\right]^{2 k+1} \frac{S^{\pi k}\left(\gamma^{\prime} J^{\prime}, \gamma J\right)}{g_{J^{\prime}}} \tag{16}
\end{equation*}
$$

where, C_{k} is $C_{k}=(2 k+1)(k+1) / k((2 k+1)!!)^{2}$, and $S^{\pi k}\left(\gamma^{\prime} J^{\prime}, \gamma J\right), k$ and g_{J} denote line strength, rank of a spherical tensor operator and statistical weight of the upper
level, namely $g_{J^{\prime}}=2 J^{\prime}+1$, respectively. The oscillator strength may refer to transition either in absorption or emission. For absorption weighted oscillator strength is,

$$
\begin{equation*}
g f^{\pi k}\left(\gamma J, \gamma^{\prime} J^{\prime}\right)=\frac{1}{\alpha} C_{k}\left[\alpha\left(E_{\gamma^{\prime} J^{\prime}}-E_{\gamma J}\right)\right]^{2 k-1} S^{\pi k}\left(\gamma J, \gamma^{\prime} J^{\prime}\right) \tag{17}
\end{equation*}
$$

Most experiments yield the lifetime of the upper level because of easy measuring. In this case the sum over multipole transitions to all lower lying levels must be taken. The lifetime of upper level is

$$
\begin{equation*}
\iota_{r^{\prime},}-\frac{1}{\sum_{\pi k, \gamma J} A^{\pi k}\left(\gamma^{\prime} J^{\prime}, \gamma J\right)} . \tag{18}
\end{equation*}
$$

The strongest transitions are the electric dipole (E1) transitions. If π and π^{\prime} denote the parity of two levels, then electric multipole operator is in the form

$$
\begin{equation*}
E^{(k)}: \frac{\pi^{\prime}}{\pi}=(-1)^{k} \tag{19}
\end{equation*}
$$

Where k is angular momentum of the emitted or absorbed photon. The electric dipole operator (E 1) combines states of different parity.

3. Results and discussion

In this work, transition energies, $\Delta E\left(\mathrm{~cm}^{-1}\right)$, wavelengths, $\lambda(\AA)$, weighted oscillator strengths, $g f$, and transition probabilities (or rates), $A_{k j}\left(s^{-1}\right)$, have been obtained for electric dipole transitions (E1) between $n s(n=5,6,7)$, $n d(n=5,6)$ and $5 g$ for evenparity, and $5 p, 6 p, 4 f$ and $5 f$ for odd-parity outside the core $[\mathrm{Kr}] 4 d^{10}$ states in neutral silver (Ag I, Z = 47) using the MCHF atomic-structure package [32]. We obtained the 42 possible E1 transitions for selected these levels. Results obtained are presented and compared with other works in Table 1. Frequently, the $5 s-5 p, 5 s-6 p, 5 p-6 d, 5 p-6 s$ and $5 p-7 s$ transitions had been studied in literature. We also added transitions for new and some highly excited levels. In table, the number in brackets represents the power of 10. In addition, only odd-parity states are indicated by "0" superscript. Besides, for simplicity, we used $n^{2} S,{ }^{2} P,{ }^{2} D,{ }^{2} F,{ }^{2} G$ instead of $n l{ }^{2} S,{ }^{2} P,{ }^{2} D,{ }^{2} F,{ }^{2} G$. Some values of other works in columns for $g f$ and $A_{k 1}$ are converted from f and $\log (g f)$, and lifetime, respectively, for comparing. These cases are defined in references below the table with superscript lowercase letter.

Except for some transitions an agreement is seen when our results are compared with other works. Especially calculation results for $5 s-5 p, 5 p-5 d, 5 p-6 d, 4 f-5 g$ and $5 p-7 s$ transitions are in very good agreement with other results. In conclusion, we reported new and large-scale data including valence correlation and Breit-Pauli relativistic corrections in neutral silver. Data on atomic radiative characteristics and elementary processes occurring in astrophysical and laboratory plasma are important. In this paper, it is reported energies, transition probabilities, wavelengths and oscillator strengths for electric dipole transition in Ag I . We hope that a large number of results obtained will be useful for some research and, particularly, astrophysical applications.

Table 1. Transition energies, $\Delta E\left(\mathrm{~cm}^{-1}\right)$, wavelengths, $\lambda(\AA)$, weighted oscillator strengths, $g f$, and transition probabilities, $A_{k i}\left(s^{-1}\right)$, for electric dipole ($E 1$) transitions between even- and odd- parity states in Ag I

States				ΔE		λ		gf		$A_{k 1}$	
Initial	J,	Final	J	This Work	Other Works						
$5^{2} S$	1/2	$5^{2} P^{\circ}$	$3 / 2$	2455161	$3047271^{\text {a }}$,	407305	$3280679^{\text {a }}$,	148816	$089125^{\text {a }}$	$149586(8)$	$1380(8)^{2}$,
					$30472703^{\text {b }}$		$3280680^{\text {b }}$,		2688 ${ }^{\text {c1, }} 1784^{\text {c2 }}$,		$142(8)^{\text {b }}$
							4025^{9}		3288^{dr}		$136986(8)^{9}$,
							$3455{ }^{\text {n }}$,		$1652^{\text {d2, }}$,		$14347(8)^{n}$
							3280 66',		$3288{ }^{\text {e1 }}$,		$1424(8)^{n}$,
							3280680^{\prime}		$1776^{\text {e2 }}$		$153(8)^{\circ}$
							$3281{ }^{\text {k }}$,		$1848^{12} .178^{\prime \prime}$,		$137(8)^{p}$,
							3280 68',		2664^{9}		$148809(8) \text { ', }$
							3280 68 ${ }^{\text {m, }}$		$20536^{n}, 156^{k}$		
							$328068{ }^{\text {n }}$,		$2054{ }^{\prime}, 18^{\text {m }}$,		
							$3281{ }^{\circ}$,		$1836^{\prime}, 20^{\circ}$,		
							$32807^{\text {P }}$		$176^{\mathrm{p}} 1808^{\circ}$		
							3281 627 ${ }^{\text {', }}$		192		
							3282', 3282 ${ }^{\text { }}$				
$5^{2} S$	$1 / 2$	$5^{2} P^{\circ}$	$1 / 2$	2405195	$29552050^{\text {a }}$	415767	$3382889^{\mathrm{a}},$	$727691(-1)$	4 1975(-1) ${ }^{\text {a }}$	$140397(8)$	$1223(8)^{\text {a }}$
					29552061^{b}		3382887°		$658(-1)^{c 1}$,		$135(8)^{\text {b }}$,
							4126°,		$430(-1)^{c 2}$		$128205(8)^{〔},$
							3562^{n}		$806(-1)^{\text {d1 }}$,		$13123(8)^{n}$
							3382 86',		$396(-1)^{\text {d2 }}$,		1 143(8) ${ }^{\text {n }}$,
							$3382 \text { 893́, }$		$426(-1)^{e 2}$		$1 \text { 3495(8)', }$
							3383^{k}		$806(-1)^{e 1}$,		$1333(8)^{w}$
							3382 89',		$446(-1)^{12}$		
							$338289{ }^{\text {m }}$,		$428(-1)^{14}$		
							3382 89 ${ }^{\text {n }}$,		$658(-1)^{9}$,		
							$3283836 \text { ', }$		$4994(-1)^{n}$.		
							$3384 \text { ', }$		$044^{k}, 494(-1)^{\prime}$		
							3384 ${ }^{\text {² }}$		$43(-1)^{m}$		
									$392(-1)^{n}$,		
									4 20(-1) ${ }^{\text {r }}$		
									$460(-1)^{1}$		

Table 1. (Contd)

States				ΔE		λ		$g f$		$A_{\text {k }}$	
Initial	J_{1}	Final	J	This Work	Other Works						
$5^{2} \mathrm{Po}^{\circ}$	1/2	$5^{2} D$	3/2	2289644	19191 95 ${ }^{\text {a }}$,	436749	$5209068{ }^{\text {a }}$,	00788306	$11168{ }^{\text {a }}$,	0 689145(7)	$6860(7)^{\text {a }}$,
					$19191908{ }^{\text {b }}$		$5209078{ }^{\text {b }}$,		$2408{ }^{\text {cı, }}$		$75(7)^{\text {b }}$,
							67419,		$2232^{\text {c2, }}$		$775(7)^{9}$
							5209 04',		$3528{ }^{\text {d1 }}$,		
							5209 0781,		$2248^{\text {d2 }}, 22^{\text {e2 }}$,		
							$520907^{\text {a }}$,		$3582^{\text {el }}$, 2 256 ${ }^{\text {11, }}$		
							5211°		$2332{ }^{12}, 2844^{9}$,		
									$23092^{\text {h, }} 252^{\text {s }}$		
$5^{2} P^{0}$	$3 / 2$	$5^{2} D$	5/2	2240160	$1829151^{\text {a }}$,	446397	5465 498 ${ }^{\text {a }}$,	0138252	$2118^{\text {a }}$, $318^{\text {c2 }}$	0771291 (7)	$7879(7)^{a}$,
					$18291516^{\text {b }}$,		$5465497^{\text {b }}$,		$3414^{\text {c1 }}, 492^{\text {d1 }}$,		$86(7)^{\mathrm{b}},$
							69989,		$3192^{\text {d2 }}, 492^{\text {e1 }}$.		$746(7)^{\text {a }}$
							5465 47',		$3144^{\text {e2 }}, 3$ 252 ${ }^{\text {11 }}$,		
							5465 503,		$333^{12}, 4014^{9}$		
							$546549^{\text {a }}$,		$32946{ }^{\text {h }}$		
							$5476{ }^{\text { }}$				
$5^{2} P^{\circ}$	$3 / 2$	$5^{2} D$	3/2	2239678	$1827129^{\text {a }}$,	446493	$5471547^{\text {a }}$,	0 15425(-1)	$02365^{\text {a }}$,	0 129031(7)	$1317(7)^{\text {a }}$
							5471 52',		$0254{ }^{\text {c } 1,}$		
							5471 547'		$02368{ }^{\text {c2 }}$,		
									$0364^{\text {d1 }}, 024^{\text {d2 }}$,		
									$0366^{\text {e }}$,		
									$02344^{\text {e2 }}$,		
									$0244{ }^{11}, 0224^{12}$		
									$02452^{\text {n }}, 0244^{\text {s }}$		
$5^{2} P^{0}$	1/2	$6^{2} D$	$3 / 2$	2421759	$246510{ }^{\text {a }}$,	412923	4055 472 ${ }^{\text {a }}$,	0 42944(-1)	$22803(-1)^{\text {a }}$	0 420002(7)	$2311(7)^{\text {a }}$,
							4055 27',		$532(-1)^{c 1}$,		$331(7)^{\text {a }}$,
							4055 476,		$456(-1)^{\text {c2 }}$		
							405546^{9}		$62(-1)^{\text {e9 }}$		
									$448(-1)^{\text {e2 }}$		

Table 1. (Contd)

States				ΔE		λ		gf		$A_{k t}$	
Inital	J	Final	J_{1}	This Work	Other Works						
$5^{2} \mathrm{Po}$	3/2	$6^{2} D$	5/2	2372130	$2374089{ }^{\text {a }}$	425162	$4210956^{\text {a }}$,	$076404(-1)$	$4159(-1)^{\text {a }}$,	$0477954(7)$	$2606(7)^{2}$,
							4210 94',		7 14(-1) ${ }^{\text {c }}$,		$322(7)^{\text {a }}$
							4210960 ,		$624(-1)^{c}$.		
							421094°		$822(-1)^{\text {el }}$,		
									$606(-1)^{\text {e2 }}$		
$5^{2 p o}$	3/2	$6^{2} D$	$3 / 2$	2371794	$2373042^{\text {a }}$	421622	4212814^{4},	084166(-2)	$4645(-2)^{2}$,	$0789542(6)$	$4362(6)^{\text {a }}$
							4212 68'		$532(-2)^{\text {c1 }}$		
							4212817^{1}		$464(-2)^{22}$,		
							4212 689		$608(-2)^{\text {e1 }}$,		
									$448(-2)^{\text {e2 }}$		
$5^{2} S$	$1 / 2$	$6^{2} \mathrm{PO}^{0}$	3/2	4902213	$48500770^{\text {a }}$	203990	$2061164^{\text {a }}$	$030380(-1)$	$08994(-2)^{\text {a }}$	121747(9)	$3528(6)^{\text {a }}$
							2061 21'		$1156(-1)^{\text {el }}$,		
							$2061830{ }^{\prime}$		108(-2) ${ }^{22}$,		
							2061 827'		$158{ }^{\prime}$		
$5^{2} S$	$1 / 2$	$6^{2} \mathrm{Po}$	1/2	4902125	$48297380^{\text {a }}$	203993	$2069845^{\text {a }}$	001521(-2)	$02197(-2)^{\text {a }}$	121944 (9)	1710(6) ${ }^{\text {a }}$
							2069 81',		$786(-4)^{22}$.		
							2070514		$22(-2)^{e{ }^{e}}$,		
							2070 511'		$1928{ }^{\prime}$		
$5^{2 p o}$	$3 / 2$	$6^{2} S$	1/2	2712458	$1208344^{\text {a }}$	368669	8273 515 ${ }^{\text {a }}$,	021072(-1)	$6637(-1)^{\text {a }}$,	0517080(7)	$3232(7)^{\text {a }}$
					$12083449^{\text {b }}$		8273 509, ${ }^{\text {b, }}$		$308(-1)^{\text {c1 }}$		
							8273 73'		$332(-1)^{c 2}$,		
							82735191		$448(-1)^{81}$,		
									$332(-1)^{\text {e2, }}$,		
									$340(-1)^{\prime \prime}$,		
									$340(-1)^{12}$,		
									$30(-1)^{\text {s }}$		

Table 1. (Contd.)

States				ΔE		λ		gf		$\boldsymbol{A}_{\text {kt }}$	
Initial	J_{1}	Final	$J 1$	This Work	Other Works						
$5^{2} p^{\circ}$	1/2	$6^{2} S$	1/2	27624.23	13004.1 ${ }^{\text {a }}$,	3620.01	7687.766 ${ }^{\text {a }}$,	0.15266(-1)	3.1405(-1) ${ }^{2}$,	0.388532(7)	$1.771(7)^{\text {a }}$
					$13004.091^{\text {b }}$		$7687.772^{\text {b }}$		2.90(-1) ${ }^{c 1}$,		
							7688.12',		$3.14(-1)^{c 2}$,		
							7687.779 ${ }^{\text {' }}$		$3.14(-1)^{e 2}$		
									$4.32(-1)^{01}$		
									$3.22(-1)^{12}$		
									$3.22(-1)^{11}$		
									2.80(-1) ${ }^{\text {s }}$		
$5^{2}{ }^{0}$	$1 / 2$	$7{ }^{2} S$	$1 / 2$	24658.11	22334.93 ${ }^{\text {a }}$	4055.46	4476.036 ${ }^{\text {a }}$,	0.88683(-2)	3.162(-2) ${ }^{\text {a }}$,	1.79833(6)	$5.261(6)^{\text {a }}$
							4476.06',		3.0(-2) ${ }^{\text {ct }}$,		
							4476.042		$3.16(-2)^{c 2}$,		
									$3.36(-2)^{91}$,		
									$3.32(-2)^{\text {e2 }}$		
$5^{2}{ }^{\text {Po}}$	$3 / 2$	$7^{2} S$	$1 / 2$	24158.45	21414.27 ${ }^{\text {a }}$	4139.34	4668.476 ${ }^{\text {a }}$,	1.80836(-2)	6.123(-2) ${ }^{\text {a }}$	3.51993(6)	$9.365(6)^{4}$,
							4668.50',		2.92(-2) ${ }^{c 1}$,		$2.40(7)^{4}$
							4668.478',		$3.06(-2)^{c 2}$,		
							$4668.48{ }^{9}$		$3.16(-2)^{e 2}$,		
									$3.18(-2)^{e 1}$		
$6^{2} P^{0}$	1/2	$6^{2} S$	$1 / 2$	2654.94	-	37665.65	-	5.35350(1)	-	1.25851 (8)	-
$6^{2} P^{0}$	$3 / 2$	$6^{2} S$	$1 / 2$	2654.06	-	37678.14	-	1.07035(2)	-	2.51454(8)	-
$5^{2} \mathrm{D}$	3/2	$6^{2} P^{0}$	$1 / 2$	2072.86	-	48242.58	-	$1.29752(-4)$	-	1.85936(2)	-
$5^{2} \mathrm{D}$	3/2	$6^{2} p^{0}$	3/2	2073.74	-	48222.11	-	2.56367(-5)	-	1.83844(1)	-
$4^{2} \mathrm{~F}^{\circ}$	7/2	$5^{2} G$	9/2	2917.58	-	34274.95	40450,	1.23511(1)	1.308(1) ${ }^{9}$,	7.01280(6)	-
							39900"		$1.3405(1)^{\text {h }}$		
$4^{2} F^{\circ}$	7/2	$5^{2} \mathrm{G}$	7/2	2917.58	-	34274.97	-	3.52887(-1)	3.064(-1) ${ }^{n}$	2.50457(5)	-
$4^{2} F^{\circ}$	7/2	$5^{2} \mathrm{D}$	5/2	2980.78	-	33548.21	19570^{9}	8.16964(-2)	6.09 ${ }^{\text {, }}$	8.06963(4)	-
									$5.8068^{\text {h }}$		

Table 1. (Contd)

States				ΔE		1		gt		A_{k}	
Intial	$J 1$	Final	J	This Work	Other Works						
$4^{2} F^{\circ}$	5/2	$5^{2} G$	7/2	291759	-	3427490	40450°,	952793	10768^{9},	$676234(6)$	-
							$39900^{\prime \prime}$		$1104^{\text {n }}$		
$4^{2} F^{\circ}$	5/2	$6^{2} D$	$3 / 2$	429713	-	2327133	-	$122411(-2)$	-	376927 (4)	-
$4^{2} \mathrm{~F}^{\circ}$	7/2	$6^{2} D$	5/2	430049	-	2325316	-	$177787(-2)$	-	$365531(4)$	-
$5^{2} \mathrm{~F}^{\circ}$	5/2	$6^{2} D$	3/2	182779	-	5471078	-	$877627(-2)$	-	$488928(4)$	-
$4^{2} F^{0}$	5/2	$5^{2} D$	32	297598	-	3350242	19320^{9}	$572257(-2)$	4292^{9}	8 45143(4)	-
									$40472^{\text {n }}$		
$5^{2} F^{\circ}$	5/2	$5^{2} D$	3,2	50664	-	19737992	-	335300	-	$143519(5)$	-
$5^{2} D$	5/2		3/2	206892	-	4833434	-	2 27589(-4)	-	1 62450(2)	-
$4^{2} F^{\circ}$	5/2	$5^{2} D$	5/2	298079	-	3354814	-	$408453(-3)$	$2904(-1)^{n}$	$403454(3)$	-
$4^{2} \mathrm{~F}^{\circ}$	5/2	$6^{2} D$	5/2	430050	-	2325313	-	$888949(-4)$	-	$182769(3)$	-
$5^{2} F^{\circ}$	7/2	$5^{2} G$	9/2	44825	-	22309168	4(7) ${ }^{\text {g }}$	306595	0029	4 10903(4)	-
$5^{2}{ }^{\circ}$	7/2	$5^{2} G$	7/2	44824	-	22309277	-	$875982(-2)$	-	$146749(3)$	-
5^{2} Fo	5/2	$5^{2} G$	712	44825	-	22309059	$4(7)^{9}$	236518	0024^{9}	3 96235(4)	-
$5^{2} F^{\circ}$	712	$5^{2} D$	5/2	51145	-	19552329	-	483795	-	140687 (5)	-
$5^{2} \mathrm{~F}^{\circ}$	5/2	$5^{2} D$	5/2	51145	-	19552161	-	$241900(-1)$	-	$703453(3)$	-
$5^{2} \mathrm{~F}^{\circ}$	712	$6^{2} D$	5/2	183115	-	5461039	-	$116779(-1)$	-	4 35316(4)	-
$5^{2} \mathrm{FO}$	5/2	$6^{2} D$	5/2	183116	-	5461026	-	$583897(-3)$	-	2 17659(3)	-
$6^{2} D$	$3 / 2$	$6^{2} p^{\circ}$	$3 / 2$	75258	-	13287599	-	3 22279(-5)	-	304382	-
$6^{2} D$	$3 / 2$	$6^{2} P^{\circ}$	1/2	75170	-	13303156	-	$161736(-4)$	-	$304795(1)$	-
$6^{2} D$	5/2	$6^{2} p^{\circ}$	$3 / 2$	74922	-	13347270	-	$289698(-4)$	-	$271170(1)$	-
$7{ }^{2} S$	$1 / 2$	$6^{2 P 0}$	3/2	31207	-	32044374	-	$126974(-1)$	-	$206202(3)$	-
Tes	1/2	$6^{2} p^{\circ}$	1/2	31119	-	32135001	-	$633127(-2)$	-	204477(3)	-

[^0]
References

[1] C F Fischer, T Brage and P Jönsson Computational Atomic Structure-an MCHF approach (Bristol and Philadelphia : Institute of Physics Publishing) (1997)
[2] J Migdalek J. Quant. Spectrosc. Radiat. Transfer 2081 (1978)
[3] J Migdalek and WE Baylis J. Phys. B: Atom Molec. Phys. 11 L497 (1978)
[4] J Migdalek and WE Baylis J. Quant. Spectrosc. Radiat. Transfer 22113 (1979)
[5] J Migdalek and WE Baylis Can. J. Phys. 571708 (1979)
[6] J Migdalek and WE Baylis Phys. Rev. A22 22 (1980)
[7] J Migdalek and WE Baylis Phys. Rev. A24 649 (1981)
[8] J Migdalek and WE Baylis Phys. Rev. A24 2228 (1981)
[9] J Migdalek and E Banasińska J. Quant. Spectrosc. Radiat. Transfer 39409 (1988)
[10] J Migdalek and E Banasinska J. Quant. Spectrosc. Radiat. Transfer 48341 (1992)
[11] J Migdalek and M Garmulewicz J. Phys. B: Atom Mol. Opt. Phys. 331735 (2000)
[12] K-T Cheng and Y-Ki Kim J. Opt. Soc. Am. 69125 (1979)
[13] H-S Chou and W R Johnson Phys. Rev. A56 2424 (1997)
[14] U I Safronova, I M Savukov, M S Safronova and W R Johnson Phys. Rev. A68 062505 (2003)
[15] H A Blair Phys. Rev. 361531 (1930)
[16] F W Paul Phys. Rev. 52923 (1937)
[17] A G Shenstone Phys. Rev. 57846 (1940)
[18] E Hinnov and H Kohn J. Opt. Soc. Am. 47156 (1957)
[19] N P Penkin and I-Yu Slavenas Opt. Spectrosc. 153 (1963)
[20] G M Lawrence, J K Link and R B King Astrophys. J. 141293 (1965)
[21] N L Moise Astrophys. J. 144774 (1966)
[22] T Andersen, K A Jessen and G Sørensen Nuclear Instruments and Methods 9035 (1970)
[23] J Z Klose Astrophys. J. 198229 (1975)
[24] K P Selter and H-J Kunze Astrophys. J. 221713 (1978)
[25] G L. Plekhotkina Opt. Spectrosc. 51106 (1981)
[26] D A Verner, P D Barthel and D Tytler Astronomy \& Astrophysics Supplement Series 108287 (1994)
[27] J Sugar J. Opt. Soc. Am. 671518 (1977)
[28] J Zhankui, P Jönsson, J Larsson and S Svanberg Zeitschrifi für Physik D Atoms, Molecules and Clusters 171 (1990)
[29] I Martin, M A Almaraz and C Lavin Zeitschrift für Physik D Atoms, Molecules and Clusters 35239 (1995)
[30] G J Bengtsson, P Jönsson, J Larsson and S Svanberg Zeitschrifi für Physik D Atoms, Molecules and Clusters 22437 (1991)
[31] J Carlsson, P Jönsson and L Sturesson Zeitschrifi für Physik D Atoms, Molecules and Clusters 1687 (1990)
[32] C F Fischer Computer Physics Communications 64369 (1991)
[33] C E Moore Atomic Energy Levels (Circular of the National Bureau of Standards) Vol III 497 (1958)
[34] P T Cunningham and J K Link J. Opt. Soc. Am. 571000 (1967)
[35] http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html
[36] http://physics.nist.gov/PhysRefData/ASD/index.html

[^0]:

 et al [26,f], 'Zhankui et al [28, f], 'Carlsson et al [$31, \mathrm{f}, \mathrm{f}(\mathrm{ns})$], "Moore [33] "Cunningham and Link [34, $\tau(\mathrm{ns})$]

