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Abstract : Using a contactless method, the ac response given by a2Uv)/a^(a))t the ratio of the real (a*) 
and imaginary (a2) parts of conductivity, was measured over wide frequency (0 1 to 10 MHz) and temperature 
(80 to 300 K) ranges for HTSCs(RE)BCO (RE = Y, Sm, Nd, Dy) Analysis of ac response in the normal state clearly 
indicates that both tunnelling and hopping of earners are responsible for ac transport and relaxation in these 
materials A master curve is obtained for each material when \a2/a^\ is scaled against reduced frequency QJ/T" 
and the shape of the master curve is similar for all the materials 
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1. Introduction 

Measurement of frequency dependent response of a sample is a well established 
technique of studying relaxation processes in a solid [1,2]. After the discovery of oxide 
superconductors with remarkably high transition temperatures by Bednorz and Muller [3] 
and others [4], we studied the frequency dependent response (5 Hz to 13 MHz) of 
YBa2Cu307 at room temperature and liquid nitrogen temperature by using a contactless 
method developed by us [5] . A suitable cryostatic arrangement, which did not interfere 
with ac measurements in our contactless method, had to be developed for measurements 
at other intermediate temperatures and we reported our measurements on YBCO over 
wide frequency (0,1 to 10 MHz) and temperature (79 to 254 K) ranges [6]. It was 
suggested there that for ac conduction, in the normal state of YBCO, relaxation occurs 
through tunnelling and/or hopping of the charge carriers. In order to be more definite 
about the nature of transport and relaxation processes, we have extended our 
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measurements to other 123 type rare earth (RE) HTSCs which have transition 
temperatures (Tc ~ 90 K) similar to YBCO (Y, At. No. 39, electron configuration [Kr] 
4c/15s2). In this paper, we report our measurements of frequency dependent conductivity 
of YBCO and other (RE)Ba2Cu307 [RE = Nd (60,[Xe]4f46s2), Sm (62,[Xe]4f66s?) and Dy 
(66t[Xe]4f*°6s?)] samples. Instead of fitting an intuitively suggested formula to the data 
as was done in our previous work [6], we have tried, in this work, to arrive at an 
appropriate formula giving to and T dependence from an analysis of the measured data. 
We are again led to conclude that in the ceramic 123 HTSCs studied ac conduction 
occurs through both tunnelling and hopping of carriers. 

2. Experimental details 

(i) Sample preparation and characterization : 

Cylindrical ceramic samples were prepared by solid state reaction method. The details 

of the method are given in a previous paper [6]. 

These samples were characterized by four probe dc resistance measurement (Tc 

» 89-91 k) using a Janis CCR. The samples were further characterized by X-ray 
diffraction pattern using Rigaku Miniflex XRD. 

(ii) Experimental method : 

A contactless method [6] was used for measuring frequency dependent conduction. A 
coil of 15-20 turns were wound (close fitting) around the cylindrical sample at its 
central region. The ends of the coil were connected to the input terminals of an L.F. 
impedance analyser HP4192A while the sample was placed in a gas flow cryostat. The 
temperature was varied from room temperature to about 80 K. At each temperature the 
frequency of measurement was swept from 0.1 MHz to 13 MHz in steps of 0.1 MHz. 
At each frequency the measured quantities were f? and X where the impedance of the 
coil is given by Z = R + iX. 

We define two dimensionless quantities. 

Air A ffsample(^)-fla,r(ft>) 
A{co) = -Qo da) 

and 

B((o) __ * s a m ^ M - * a > ) 

L,co (1b) 

Here the subscript 'air* means 'without sample' and L0 is the self-inductance of the coil. 

Since the measurements were done at high frequencies with samples of low 

resistivity, a pertinent question is whether the measurements described bulk or surface 

properties of the samples. The penetration depth S is given by [7]. 

with ii = 1 
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Taking p - Mo -0.5 m Q cm for good samples in the normal state 

« 0.5 x 10"3 x 1/9 x 10"11 sec 

S (0.4 MHz) = 2.4 mm 

S (10 MHz) = 0.36 mm 

It is thus reasonable to consider the measured properties to be bulk properties. A 
number of control experiments were done to confirm this. 

3. Experimental results 

In Figure 1, the values of A(co) and B(w) for SmBCO have been plotted against 
frequency ranging from 0.3 MHz to 8 MHz at two temperatures 98 K and 235 K. 
On this same graph we have also plotted the function graphs of 

M 1 + fiTT,' 

and 

B(o*) = ±Ct 
1 

1 + <tf2T.2 
-1 

(2a) 

(2b) 

where the major relaxation times rf (/ = 1 to 5 ) were obtained from the plot of \B(w)\ 
vs. A(co)/co. The procedure for obtaining r, and C, has been described in Ref. [5]. The 
excellent fit of the experimental points with the function plot suggests that our system 
is consistent with the Debye model so far as ac transport is considered in the normal 
state of these samples. Results are similar for other (RE)BCO samples reported in this 
paper. 

< 

SmBCO 

98K 

• i »—i—•—r—•—r—"«—i • r 
2 3 4 5 6 / 

•0.3 ^ 

•0.5 

w/27i(in MHZ) 

Figure 1. A(o>) and B((o) vs. a)/2x(m MHz) for SmBCO at 98 K and 235 K. The solid lines are function graphs of 
eq. 2(a) for A(aj) and eq. 2(b) for B((o). 

As has been shown in the Appendix, A(co) is proportional to e2(a>) Thus our 
method gives a simple way of finding how e2((o) varies with co. It is known that ac 
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dielectric loss starts at * w the frequency at which t2(<o) (or A(co)), becomes 

maximum In case of SmBCO, for example, comax/2x is in the range 1 5 to 2 5 MHz 

increasing approximately linearly with temperature 

The quantities A(co) and B(co) at a particular temperature 7 are related to the real 

and imaginary parts of conductivity cr(co) = cr,(co) + ICT2(CO) (see Appendix) It has been 

shown that the ratio \B(co)/A(o))\ gives \a2(co)/cr^w)\ unambiguously In fact 

\B((o)/A(o))\T = \cr2(co)/a,(co)\T = X(coJ) (say) (3) 

We next consider the frequency and temperature dependence of \o2lo<\ 

co and 7 dependence of |<%/oi| 

The raw data of \B(co)/A(co)\ for SmBCO are plotted in Figure 2 as a function of T at 

different fixed frequencies to j2n It is seen from inspection that \B{co)/A(co)\ increases 

monotonically with co at fixed T and decreases monotonously with T at fixed co The 

trend is similar for other samples studied 

20H 

*r »H 
3-

00 

SmBCO 
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• 4MH/ 
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I — I — T — r — | — i — | — i — , — r - T — i — | — i — , 
75 100 125 150 175 200 225 250 275 300 125 

T(K) 

Figure 2. Plot of \B(co)/A{w)\ = |<Vcr,| vs Tat different io/2n\(T2/ay\ monotonically decreases with Tat fixed 
m/2n and increases with o)/2n at fixed T 

To find the temperature dependence of \a2/^\ we consider T\a2/a^\ vs T at fixed 
co's and examine linear (which gives \<J2/CT^\ = A'/T + B') and polynomial (which gives 
\o2/oi\ = A'/T + 8, + B2T) fits and consider T\a2/aA\ vs T2 and examine linear fit 
(which gives | < T 2 M | = A'/T + B'T) 

It is seen, by examining x2 »n each case, that the relation 

\a2/ax\ = A/T + B, + B2T (4) 

best represents the data 

Various pair approximation type (PAT) models [8-10] and random walk type [RWT] 
models [11-13] have been applied to account for temperature and frequency dependence 
of ac conduction in various systems, particularly amorphous and disordered systems 
Our samples are polycrystalline ceramic HTSCs 
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We first show that if small polaron tunneling (SPT) and correlated barrier hopping 

(CBH) processes [6] occur simultaneously and independently then \(r2/cr,\ must have 

the form given by eq. (4). 

Taking linear combinations of eqs (23) and (24) in Ref. [6], we can write 

C, \no)Tc 1 + - A 
T\no)T0 

+ C2[lnwr0(1 + A>Tlnwr0)], where we have assumed r0 to be 

the same for both the processes. 

CA = (C, +C2 )ln(w0) + - ^ HC2A2)T[\n(m0))
2
 = a\n(m0) + - + cT[\n(m0)]

2 
(5) 

Eq (5) has the same temperature dependence as eq. (4) 

In order that eq. (5) represent our experimental data the following conditions 

must hold, namely, 

A'(AJ) = b (6a) 

B^co) = a\n(an0) = a\nco + alnr0 (6b) 

S>)=c[ln(6>r0)]2 (6c) 

In Figure 3 we plot A' [co) against w/2n We find that k\(o) varies linearly with co 

Writing A'(a>) = b[w) = b0(1 + fico), we determine b0 and /? for all the samples 
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3 TO-

oH 

-50 

o SmBCO 
A YBCO 
° NdBCO 
• DyBCO 

i ' i • i — » — i > I • I 
1 2 3 4 5 6 

CD/271 (MHZ) 

Figure 3. A » vs ry/2/rplot for Sm (o), Y(A), Nd (D) and Dy (•) based 123 HTSCs 

We note that if eq. 6(b) is true then B^(co) should be a linear function of In a;. 

In Figure 4(a) we have plotted B^co) against \nco for all the samples and find that B^((o) 

varies linearly with In co. From the linear fit we get a and r0 for all the samples 

IflfeH In Figure 4(b), we plot 
[ln(ft>r0)f 

c(co) with co/2n. c(co) can be given by the 
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Figure 4. (a) B,(UJ) VS In ^ a n d (b) I ^ M I / I N " ^ ) ] 2 vs w/2n\or Sm(o), Y (A), Nd ( • ) and Dy (•) based 123 
HTSCs 

relation c((o) = rj/o), the parameter rj being determined from the fit. 

Since in all PAT theories <x2M
 IS always proportional to [~\n(cuT0)] where r0 is 

some cut-off relaxation time we cast eq (5) in a form in which \n(ajrQ) has been 

factored out, i.e., 

or5 = aln(a>r0) 1 + 
b^ 1 
aT\n(coT0) a 

+ -7"ln(et>T0) (7) 

We summarize in Table 1 the parameters a, r0, b0t J3, rj for all the four HTSCs. In 

Figure 5, we fit eq. (7) (unbroken line) to the experimental data [given as •] for 

SmBCO. 

We therefore suggest that the ac conduction in these HTSCs occurs through 
both tunnelling and hopping of carriers, hopping being the predominant mechanism at 
higher temperatures and frequencies. 

Master curve and ac universality : 

In many amorphous semiconductors, ionic conductors and polycrystalline substances 
ac conductivity has the form 

a(co)=A(T)cos (8) 

at high frequencies, where the exponent s is generally less than or equal to 1 and at 
low frequencies cr(co) is frequency independent. 

Table 1. Values of the parameters a, r0. fy. A *? tor all the four HTSCs. 

Sample 

SmBCO 

YBCO 

NdBCO 

DyBCO 

a 

0 77026 

0.98087 

1.1120 

0 79155 

TQ (// sec) 

0 4476 

0.4339 

0.4534 

0.3726 

b0 

12.3302 

30.7515 

10.1958 

5.5994 

P 
0.0679 

0.0262 

0.0013 

-0.0379 

r? 

0.0048 

0.0055 

0.0096 

0.0120 
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Figure 5. Plot of \B(co)/A(co)\ = | < V i \ vs w/2rrior 98 and 235 K The unbroken lines through the exptal points 
(•) are due to eq (7) 

It is usually possible to scale ac data at different temperatures for one solid into 
one single curve This so called master curve gives the dimensionless ac conductivity 
5 = (CT(O))/O(Q)) as a function of dimensionless frequency a)-(iof(om) The existence of 
such a curve is referred to as the lime temperature superposition principle* (TTSP) The 
shape of the master curve is roughly the same for all disordered solids This is known 
as ac universality [14-17] 

We have tried to find whether an appropriate scaling can give a master curve for 
102/011 If the dimensionless quantity 102/0*11 IS plotted against the dimensionless 
frequency co/com the data at different temperatures for one solid do not give a single 
curve However if we consider \ozla<\ as a function X(x) of reduced frequency 
x = (co/Ta) where a is characteristic of the solid we obtain a master curve 

In Figures 6(a), 6(b), 6(c) and 6(d) we present respectively the master curves for 

SmBCO, YBCO, NdBCO, DyBCO In each case the master curve can be represented 

by a formula 

X(x) = A0x<> (9) 

We note that X(x) is a homogeneous function of x since 

X(Ax) = ApX(x) (10) 

The scaling behaviour is similar for all the HTSCs studied In Table 2 we collect the 

values of a, p and A0 for the materials 

We are not aware of any theoretical model which predicts such a master curve 

for |<T2/0I| and identical scaling behaviour for polycrystalline ceramic 123 type HTSCs 

in their normal state 

SmBCO 

Calculated data 
Lxpeomental data 
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Figure 6. Plots of |«%/ai| vs. co/Ta for (a) SmBCO, a= 0.40, (b) YBCO, a = 0.46, (c) NdBCO, a = 0.40 and (d) 
DyBCO, a = 0.35 These master curves incorporating data from wide frequency and temperature ranges are 
quite impressive. 

Table 2. Values of a , p and AQ for different materials. 

Sample A0 

SmBCO 

YBCO 

NdBCO 

DyBCO 

0.40 

0.46 

0.40 

0.35 

0.52967 

0.50155 

0.50716 

0.64858 

0.9757 

1.5274 

1.2433 

0.55501 

4. Discussion 

We chose to represent the experimental data as a ratio azlox of the imaginary and 
T B(<w)l 

real parts of ac conductivity a(co) as this ratio is directly related to " I T T . The 

reason for representing data in terms of the components of conductivity a(co) is two 
fold. Firstly, cr(w) is directly related to equilibrium current-current fluctuation through the 
Kubo formula 

(T((0)-
1 

3kJV 
]<J(0)J(t) > eimtdt 
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where J is the total current in volume V. Kubo formula may be the starting point for 
any theoretical treatment of a(co). Secondly, (ry(o))/2 times the absolute square of the 
current density gives the dissipation per unit volume per unit time. The ratio o2l<J\ gives 
the extent of dispersion vis-a-vis dissipation. In the present paper we analysed the 
experimental data step by step and arrived at a form (giving w and T dependence) 
involving only five frequency and temperature independent parameters. This equation_ (eq. 
(7)) with only five parameters represent the vast amount of experimental data extremely 
well. It is, however, more intriguing to discover that the same data can be represented 
by a master curve when \O2!<JJ\ is scaled against co/Ta, a being characteristic of a 
particular material. In a wide temperature and frequency range the data can be 
represented by a homogenous equation involving only three parameters. The existence 
of the master curve and the universality in its shape can not be related to disorder 
since the HTSCs we are dealing with, are polycrystalline (composed of granular 
crystals). In going from grain to grain, however, there is a random change in the 
orientation of the crystal axes of the grains. We suggest that this element of 
randomness is responsible for the existence of such a master curve and its universality. 
The dichotomy between a five parameter equation suggesting tunnelling and hopping as 
transport mechanism and a three parameter homogenous equation describing a master 
curve can be explained by noting that the former describes the microscopic aspect of 
transport within the crystalline grains and the latter is a manifestation of randomness 
of orientation of the grain crystals on a macroscopic scale. 
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Appendix 

\j(J*-E)d3x+4io)j(we-wm)d3x+2 j (sn)da Z=R+iX = -\ 

•• flMll + M f * Ce - nCJ + j l 2 | (s • n)da 

Therefore. Zsample(ry) - ZJu) = iw [( f*s a m p i» - e*M)Ce - (ti^e{co) - uM)Cm] 

In the normal state of the sample 

/^sample = A air = 

1 for non-ferromagnetic substances 
- sample ~ *1 = f i " It* 

air 

So, 

£* - 1 
C air — I 

Zsample(^) ~ Za.r(^) = M fa - /f2 - 1)C e 

- u>e2(w) Ce + m (f,(flj) - 1)C, 

(W) 

BW^^^^PM^m 

B(u)_ c r » 
Therefore, ;777\*~' / "» ' A((o) a,(w) 

B(w) . a2((o) 
The relation - ^ 9|ves — unambiguously in the normal state of the sample. 


