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Abstract : We have applied projection operator method of group theory in deriving the symmetry adapted 
wavefunctions defined by ¥l which represents the surface electronic states in the case of a strong periodic 
potential. The method involves the defining of basis function pertaining to a particular symmetry point of Cu(110), 
from which v, is formulated by the LCAO method This has been applied to calculate photocurrent from Cu (110) 
surface state. We have also used this method of calculation for a metal like Al 
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1. Introduction 

For the use of Projection Operator for the case of strongly bonded metals, we define the 
crystal potential by a Kronig-Penney 8 -potential which is periodic with the periodicity of 
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FJgurt 1. Schematic representation of Kronig-Penney 3 -potential model. 
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the lattice as shown in Figure 1. In our calculation, the Schrodinger equation will then be 
solved to obtain the solution in terms of Green function [1]. 

The method involves the projection operator operating on linear combination of atomic 
orbitals (LCAO) representation of the surface states giving the basis function and this 
basis function has been incorporated in defining y/t. This had been applied to calculate 
photocurrent from the Cu (110) surface state. The calculation has been carried out in one-
dimension and it was found that the basis function derived in one dimensional form can 
be extended to a metal like Al. 

2. Formalism 

2.1. Derivation of basis function by projection operator method: 

For Cu (110), surface state occurs [2] in L? - L, band gap. The LCAO representation for 

L2- point is -r=r(x+ y + z) . The projection operator formula [3] is given by 
v3 

y T 

Here lp is the dimension of the unitary irreducible representation of the group g, g is 

order of g and 2 ^ extends over all the transformation T of g. 
T 

Eq.(1) operating on the LCAO representation for L2, gives a set of basis functions 

—f=\x + y + z). This basis function in one dimensional form is incorporated in the derivation 

of initial state wave functions. 

2.2. Derivation of initial state wavefunction: 

The solution of Schrodinger equation in terms of Green function, in one dimensional form 
may be written by the integral equation 

V{y)\i/(y)G(z,y)dy m (2) 

Let the Kronig-Penney potential be represented by a linear Dirac 5 -function i.e 

V{y)>*[2£] X*(y-na) (3) 

where P = Km ^:Xt * b with Xo : = 2 ( v i ~ Ei). Here, b is the width of Kronig-Penny potential 
b-~*0 £ 

moad and V1 is the height of the potential, p is the strength of the s -function barrier 
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and it is assumed to be positive. The final electronic wavefunction after substitution of the 
above value (eq.3) in eq. (2) gives 

^ (z )= -^Lre / / c a s in /c / z~s in /c / ( z -a ) l iM 

sin/c,aL ' /V 'J (4) 

2C/psin2fc,a 
where r(0) = —— - —_ - . (5) 

kla(e,ka-e~,H,a)(ooska-coskta) 

Introducing the atomic orbital <j>(z) which includes the basis function derived by P.O 

method as discussed above the initial state wavefunction can be represented by 

, . IvWQWe*'^ k, cos k,z- xs\n k,z), z<0 (bulk& surface) 

[if/l(0)kle
xz, z>0( vacuum) v ' 

2/sin/ca r(0) 
kt cos k,a - k,e~lk a - x sin k,a 

where * , « » - , --_,z _._,;.' ..._.._• < 7 > 

2.3. Photocurrent calculations: 

The photocurrent density formula from golden rule approximation can be written as 

ffi.^ry^^iH'I^H2 5(E-Ef)S(Ef - E, -hw)10(E -»<«>)[1- f0{E)] (8) 
d£2 ti ^ 

where ^ ( fF , ) refer to the initial (final) state wavefunctions and perturbation H ' can be 
written as 

mc "*.«5+i!*M (9) 

where > \ , ( z ) = ^ d ^ , / ^ ( z ) is the component of vector potential along z-axis. The 

final state wavefunction |V,) used is the scattering state of the step potential[4] which is 

encountered by the electron. The matrix element / - (v, | H' |y/,) in eq. (8) can be written 

in one dimensional form as : 

The integrals in Eq. (10) are evaluated numerically by writing FORTRAN programmes. 
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3. Results and discussions 

3 1 Copper 

The plot of photocurrent against the photon energy ho) for Cu is shown in Figure 2 For 
the same value of surface state [5] energy (2.72 eV below Fermi level) and potential 
barrier height (11.4 eV) , photocurrent was calculated for two values of surface widths 
We find that for d= 10 a.u., a maximum in the value of photocurrent occurs at fico = 14 
eV. With further increase of photon energy, photocurrent decreases to a minimum value 
at h(D = 19 eV and the next hump occurs again at ttw = 23 eV But for a narrow 
surface width (of = 0), the behaviour of photocurrent is quite different as shown in Figure 
2. We do not find any peak for values of photon energy below and above 19 eV The 
behaviour of photocurrent shows a qualitative agreement with those shown by other 
metalslike W, Si, etc. in which Kronig-Penney potential model was also used [5] 
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Figure 2. Plot of variation of photocurrent with photon energy for surface widths d = 10 a u and d = 0 

in copper using Kronig-Penney 5 -potential where y/t is derived by projection operator method of Group 

Theory 

3.2. Aluminium: 

Figure 3 shows the plot of photocurrent versus photon energy (hco ) for the surface width 
d= 10 a.u and narrow surface width d= 0 a.u. We have chosen the initial state energy 
£, for a high lying surface state occurring at 0.41 eV below Fermi level, the location of 
the Fermi level and the work function 0 for AI are taken as 11.7 eV and 4.25 eV, 
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respectively. The photocurrent profile for d = 10 a.u. showed a strong photoemission at 
photon energy too = 9 eV, which was followed by a decrease in photocurrent and the 
minimum occurring at too =15 eV (the plasmon energy of Al is lnop = 15.3 eV). There 
is another hump in the photocurrent data at hco = 20 eV. The behaviour of photocurrent 
in the case of narrow surface width is quite different. For example, almost a flat peak in 
a photon energy range 10 eV-14 eV was obtained. Although the minima in photocurrent 
was seen at hco = 15 eV, contribution to photoemission was far less important. However 
the photoemission results for d = 10 a.u. seems to be in qualitative agreement with the 
experimental results of Levison et al [7] (see Figure 3 (inset)). For example, the experimental 
data of Levinson etal [7] showed a maxima in photocurrent at hw = 13 eV with occurrence 
of a minima at the plasmon energy (^ 15.3 eV). Also, it showed similar behaviour with 
the calculated results of Thapa et al [8,9]. 
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Figure 3. Plot of photocurrent variation against photon energy In the case of aluminium, tor surface width 
d = 10 a.u. and d = 0 by employing Kronig-Penney tf-potential where v, is derived by projection 
operator method of Group Theory. 
Inset • Experimental results for aluminium and beryllium as obtained by Levinson et al [7]. 

4. Conclusion 

In our calculations of photocurrent, we have seen that photoemission was considered to 
take place in metal, for location of surface state below the Fermi level. Symmetry state 
or direction to the existence of surface state in a particular band gap was ignored. 
Therefore, to include band structure effect, we have applied projection operator method of 
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group theory to derive initial state wavefunction ^, pertaining to a particular band gap 
When compared to experimental data and other previous theoretical results like Kronig* 
Penney potential model of Thapa et al [6], we find that calculated data with this approach 
of calculations seemed to agree in a better way. This is quite evident from the photoemission 
result from Al especially for which also experimental result is available. However, there 
are still certain drawbacks remaining for further corrections. For example, we have not 
considered the nature and type of potentials which defines the bulk and surface regions 
This plays equally important role in the definition of dielectric response function too. From 
all the above facts, the model employed in our calculations seems to be highly simplified 
However, as evidenced from the comparison with other approach of calculations, as well 
as with experimental results [7], our method seems to be quite appropriate. 
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