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Abstract RIZZI and Ruggiero and later Ruggiero independently have shown that it is possible to calculate 
Sagnac effect in flat, Schwarzschild, Lense-Thirring (slowly spinning sphere), Kerr and Godel metrics in 
analogy with Aharonov-Bohm effect 

One may reasonably wonder Is it possible to derive this effect independently, / e by some direct method ,} 

In this paper, we show that the answer to this question is indeed in the affirmative 

Keywords Sagnac effect, general relativity 

PACS No. 04 20 q 

1. Introduction 

M.G. Sagnac predicted the so-called Sagnac effect [1] in 1905 and experimentally verified 
it in 1913 [2] for light. Since then, a lot of experimental and theoretical studies have been 
carried out on this effect [see Ref [3] and Ref. [4] and other references therein] It has 
been found that this effect holds for both luxons (light-like particles) and tardyons (material 
particles). 

The subject of derivation of the Sagnac effect has attracted much attention. Recently 
Rizzi and Ruggiero [3] and later Ruggiero [4] have derived the effect in analogy with 
Aharonov-Bohm effect. One may reasonably wonder : Is it not possible to calculate the 
effect independently, i.e. by some direct method ? We show in this paper that it is 
indeed possible to derive this effect by a direct, simple method in different types of metrics 
viz., flat, Schwarzschild, Lense-Thirring, Kerr and Godel metrics. 
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2. Direct derivation of Sagnac effect in some metrics 

We first demonstrate the method of derivation in a flat metric and then apply it to some 
other metrics. 

2.1. Flat metric: 

We start with the following flat metric : 

ds2 - c2dt2 - dr2 - r2dd2 - r2 sine2 eft2 

For r= R (constant) and 6 =n/2 (constant), eq.(1) becomes 

ctf^ctdf-tfdj2 

We apply the transformation 

0 =0 + 12 t 

where Q is an angular speed. 

Using eq. (3) in eq. (2), 

ds2 = 1-
FPQ1 

c2di* - fl2^2 - 2R2Q d<t> dt. 

(1) 

(2) 

(3) 

(4) 

From eq. (4), the proper time-interval is 

dx = 
R2£22 / 2 

dt 

d$ 
*%* ^ * % * i 2t f*f l* 

r tfa2^ 2/\ tfQ2\ 
1 • 

1- c2 
1--

R2Q2 > 

(5) 

From eq. (5), for a beam of particles co-propagating along a semicircular path, we 
have, 

n-}* 
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2R2Q d0 

c*h-£rf vd-^!f vfi-^L2' 

= /4 (1s t integral) + B (2nd integral) + -
2nR2tt 

(6) 
fl2^2) 

Again, from eq. (5), for a similar beam of particles counterpropagating along a 
semicircular path, we have, 

•I-r2 = I dx 

ds ds 

.j_*Il*ll_J.+ J 
(-0» . f l 2 ^ ^ ) » 

dt 

c2 c2 

i 2R2Q(-d<t>) 

v[i-*£r % - * £ ? vfi-^fl8^ 
c2 

= A (1st integral) + B (2nd integral) - -
2nR2Q 

\_f?a?\ 
(7) 

The proper time-difference between the two beams therefore is 

An R2® 
4 T = T 1 - T 2 = J 

° ' tfQ2)2 

1 - -
c2 

(8) 

This is the same as eq.(33) in [3]. Obviously eq. (8) is true for all types of particles — 
luxons as well as tardyons. 
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2.2. Schwarzschild metric: 

The Schwarzschild metric for a spherical object is 

ds* 1-
2GM 

re2 
c2dt2 ' 2GM^ 

~ re2 
dr2 -r2 de2-r2s\n26 d <t>2 

(9) 

where M is the mass of the object. 

For r = R (constant) and 0 - — (constant), 

ds2 = 1-
2GM\ 

Re2 J 
c2dt2-R2dd>2 

Using the transformation (3) in eq. (10) 

2GM tfQ2 

ds< = 1 - -
Re2 c2 

c2dt2 - R2d <p2 - 2R2nd$ dt 

(10) 

(11) 

From eq. (11), the proper time-interval is 

dr = 
2GM tfQ 2 \ 

Rc2 c2 
dt 

ds ds , t 
— dd> 

dt (d<t>) v 

2/-»2 \ 
1-

2GM _ R'Q 

Rc2 c2 

R2«±d<t, 
dt v 

2GM R2n2^ 

Rc2 c2 

2R2® d<t> 

L 2GM R2Q2 )2 
1-

Rc2 c2 

(12) 

From eq. (12), for a beam of particles co-propagating along a semicircular path, we 
have 

r,=\dr = \-

ds ds 
dt d<t> 

d<t> 

c< 1-
2GM tfQ 2 \ 

Rc2 c2 
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,2 d$ 
* Ff — d<l> * _ 
f 0? | T 2R2Qd0 

c21'., _ 2GM _ fl2£>2 ^ o ^ 2G/W R2r22 )2 

Rc2 c2 Re2" c2 

= A (1st integral) + B (2nd integral) 

2nR2Q 

o\ 2GM tfn2)* 
° ^ RcT~~cT 

(13) 

Similarly, from eq.(12), for a similar beam of particles counterpropagating in a semicircular 
path, we have, 

. „ 2nR2Q 
r2 = A+B-- (14) 

{ 2GM R2Q2 

Re2 ~~'c2 

Hence, the proper time-difference between the two beams is 

An PpQ 

2GM R2®2 

Rc2 c2 

(15) 

This is the same as eq. (27) in [4]. 

2.3. Lense-Thirring metric (slowly spinning sphere) 

The Lense-Thirring metric is [5] 

ds2 =11 J l - ^ c 2 dt2 -(: + ^}\dr2 + r2d62 +r2s\n26d02] 
rc2 ) { rc2 jL 

^ sin2 0oty edt (16) 
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For r = R (constant) and 6 =/r/2 (constant), eq. (16) becomes 

ds2 = 
' 2GM\ 

Re2 J 
C2 dt2 - 1 + 

2GM 

Rcz 
R2 d(t> 

-o 4GJ _,-
o~3 

dQcdt, 

Using the transformation (3) in eq. (17), 

(17) 

ds2 = 1 -
2GM 

Re2 
1 + 

2GM 

Re2 

Rz£22 AGJQ 

RcA 
C2dt2 

1 + 2GM \„2 ,1*2 

Re2 
R< d<S>d - „^EWQ_^J 

Rcd RcJ 
dQ dt (18) 

Now, proceeding as before, we can find that the proper time-difference between two 
identical oppositely circulating beams of particles is 

1 + 
2GM 

AT = 
An LI Ac 2 j 

R2Q-
2GJ 

Re2 

C2 r 
1 2GM (^ t 2GM\R2Q2

 | AGJQ 

Re' Re2 c2 Rcq 

(19) 

This is the same as eq. (11) in [4]. 

2.4. Kerr metric: 

The usual form of Kerr metric is 

PC2 A 

?o\ 
2 2 2GMafrs\rf6 

r +ar + T-T, 

P2c2 

. 2 n - / i 2 4G/War sin2 6 , r .. 
sinz0 d 0 z + — c/0 cdt 

P cr 
(20) 

where 

p2 = r2 + a 2 cos 2 0 , 

A = r * - 2 ^ + *9Ma = j/<*t 
cr 

J being the absolute value of angular momentum. 
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For r= R (constant) and 6 = - (constant), (20) becomes 

<*? = 1 -
2GMr fdi2-
Re2 ) 

Using the transformation (3) in (21), 

tf+a2 2GMaP 

Re2 

.« 4GMa^ ^ 
FfcP (21) 

ds2 = 1 -
2GM 

Re2 
R2

 + a2
 + 

2GMa2 

Re2 

Q2 AGMaQ 

c2 Re2 
c2 dt2 

„ 2 2 2GMad 

Fr+ar + - „ 
Re2 

d<t>2-2 
,2 2 2GM32 ) 

R< + ad + ' 
fte2 r2-

2G/Wa 
flc 

d0 dt (22) 

Now, proceeding as usual, we can find that the proper time-difference between two 
indentical oppositely circulating beams of particles is 

AT = x 

,2 2 2GMa2 * 
Ff + af* 

Re2 
Q-

2GMa 
Re 

1 -
2GM 

Re2 
R2 + a2 + 

2GMa 

Re2 

2 ^ AGMaQ 

c2 Re2 

(23) 

This is the same as eq. (17) in [4]. 

2.5. Gddel metric: 

The Godel metric is 

ds2 = c2 df2 dr< 

1 + 
l 2a J 

I2aj 
d <!>2 - dz2 + 2r2-^d 0 cdt (24) 

V2a 

where a is a constant > 0. 

Now, for r = R (constant) and z = constant, 

ds2 = c 2 dt2 - R2 1 l 2 a J d02 + ^ d<p cdt 
•42a 

(25) 
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Using the transformation (3) in eq. (25) 

ds2 = 1 - R 2 R) 2\ 
1-'ii 

2 2Rl 

Q'-
•ht 

Qc <? 

xtftf-R2 

1 2 a J 
2" 

d<t>2- 2R2£2 
< 

1-
2aJ 

2\ 

) 

_2R2c 
yfeai j 

d0dt (26) 

One can see that in this case the proper time-difference between two identical oppositely 
circulating beams of particles is 

Ar= x 
cr 

R*Q 
2a 

L 
•J2~B 

1 - R2 

2a 
n2-*™n 

& a 
<? 

(27) 

This is the same as eq. (21) in [4]. 

3. Concluding remarks 

Thus we find that it is possible, without having recourse to any analogy or any external 
aid, to derive Sagnac effect in a number of metrics in a straight-forward manner. 
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