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Abstract Rizz1 and Ruggiero and later Ruggiero independently have shown that it is possible to calculate
Sagnac effect in flat, Schwarzschild, Lense-Thirring (slowly spinning sphere), Kerr and Godel metiics
analogy with Aharonov-Bohm effect

One may reasonably wonder s it possible to derive this effect independently, 1 e by some direct method #
In this paper, we show that the answer to this question 1s indeed In the atfirmative
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1. Introduction

M.G. Sagnac predicted the so-called Sagnac effect [1] in 1905 and experimentally verified
it in 1213 [2] for light. Since then, a lot of experimental and theoretical studies have been
carried out on this effect [see Ref [3] and Ref. [4] and other references therein] It has
been found that this effect holds for both luxons (light-like particles) and tardyons (material
particles).

The subject of derivation of the Sagnac effect has attracted much attention. Recently
Rizzi and Ruggiero [3] and later Ruggiero [4] have derived the effect in analogy with
Aharonov-Bohm effect. One may reasonably wonder : Is it not possible to calculate the
effect independently, i.e. by some direct method ? We show in this paper that it i1s
Indeed possible to derive this effect by a direct, simple method in different types of metrics
viz., flat, Schwarzschild, Lense-Thirring, Kerr and Gddel metrics.
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2. Direct derivation of Sagnac effect in some metrics

We first demonstrate the method of derivation in a flat metric and then apply it to some
other metrics.

2.1.Flat metric :

We start with the following flat metric :
ds? = c?dt® - adr® - r?de? - r? sin6? dg? (1)
For r= R (constant) and 6 = /2 (constant), eq.(1) becomes
ds? = Adf? - Rd ¢ @)
We apply the transformation
d=0+Qt &)

where () is an angular speed.

Using eq. (3) in eq. (2),

2 RPQ%\ , » R2dé? 2
ds® =|1-"" 3= |c"dt® -R°d¢” ~2R°Q d¢ dt . (@)

c

From eq. (4), the proper time-interval is
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From eq. (5), for a beam of particles co-propagating along a semicircular path, we
have,
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ds ds d
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Again, from eq. (5), for a similar beam of particles counterpropagating along a
semicircular path, we have,
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c c
= A (1% integral) + B (2" integral) — 2n R : @
22
02[1-52?—]
c

The proper time-difference between the two beams therefore is

g__ﬂz_%_T. ®)
==

02

AT =1T,~-T, =

This i1s the same as eq.(33) in [3]. Obviously eq. (8) Is true for all types of particles —
— luxons as well as tardyons.
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2.2. Schwarzschild metric :

The Schwarzschild metric for a spherical object is

e =(1_2GQ/1 _2GM

rc?

rc

c?df? —[1 )cir2 ~r? d6% - r?sin?0 d ¢ ©

where M is the mass of the object.

For r = R (constant) and 0 =% (constant),

2GM -
ds® =| 1-==o | c?dt® - R?d ¢
( RCZ ) (10)
Using the transformation (3) in eq. (10)
2
d52=(1—2§ﬁ”—ﬁ2f Jc2d12—92d¢2—2l?2!2d¢ dt (1)
Cc c

From eq. (11), the proper time-interval 1s

1
22 \2
dr = 1—29‘—,‘/1—}?"Q dt
Ac? c?
ds ds do
= 2 d 2 YUY
A A%
= 1--1— .1
2 {_2GM RPQ2 2 |_2GM R?Q2 \2
Cl\lm—mz =% C\l"Fga T
Rc c Rc c
2R%Q do

(12)

-

2. 2GM RPQ% )2

cl1- > 5
Rc c

From eq. (12), for a beam of particles co-propagating along a semicircular path, we
have

. . dsads
r-fdt— dt de
17 - 1

0 L, 2GM R?Q? )2
cCl-—% -2
Rc c

do
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n @ d¢ n
J‘ . [ 2R%Q do

1
2GM _R2Q%% © ,  26M RPQ?

2l1- )
Rc c? Rc? o2

= A (1st integral) + B (2nd integral)

2nR?Q
(13)

212 \5
02[1_2GA2/1_R.Q \2
Rc c?

Similarly, from eq.(12), for a similar beam of particles counterpropagating in a semicircular
path, we have,

=A+B-- (14)

Hence, the proper time-difference between the two beams 1s

4ar RQ
26M _RQ*
Rc®  ¢f

This is the same as eq. (27) in [4].
2.3.Lense-Thirring metric (slowly spinning sphere) :

The Lense-Thirring metric is [5]

d52=f1_g_cihi}c dt? - ( ZGyJ[dr +r2de? + r? sin 6d¢? ]
rc? rc

——46;1 sin 6d¢ cdt (16)

rc
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For r = R (constant) and 6 = /2 (constant), eq. (16) becomes

d32=(1—2,§:;M]c at? - ( fM]H? do* +ﬁ‘1d¢cdt (17)

Using the transformation (3) in eq. (17),

2GM 2GM \ RQ?  4GJQ
as® =[1-=" - 1+ + c? dt?
{ Rc? [ Rc? ] ¢ At }

_(1 2GMJR2d¢ [( 2GM)2R2 4GJ]d¢dt
Rc? Rc? Rc®

(18)

Now, proceeding as before, we can find that the proper time-difference between two
identical oppositely circulating beams of particles is

2GM\ 2GJ
1+ = RQ-—
ap o m = J Ac? ]
T=—
e 7 (19)
2GM 2GM\R’Q? 4GJQ 2
- 1+ - 4
Rc? L Rc? | c? Rc*

This is the same as eq. (11) in [4].
2.4. Kerr metric :

The usual form of Kerr metric is

2
ds® = f 1 2GMr )czdt"’ -P_ar? - p24p?
2.2

p°c a4

2 o2 2
drera?s 2GM a‘r sin“6 sin20 d 32 + 4GMar sin“ 6 dp cdt 20)
22c2 02c? (

where
p? =r? + a®cos?0,

A=r?- 2i2Mr+a Ma = J/c?,

J being the absolute value of angular momentum.
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n
For r= R (constant) and 0 = P (constant), (20) becomes

e @

Using the transformation (3) in (21),

ds? = [1~ 2GM _

2 2GM32
Rc? *

R°+a 0
Rc

2
.(22 N 4GM¢:.Q & d?
c Rc

2
- R +a% + 2GMa
Rc?

d¢? -2[( R?+a%+

2GMa* 2GMa
e ].Q - Re :ldd) at (22)

Now, proceeding as usual, we can find that the proper time-difference between two
indentical oppositely circulating beams of particles is

R2+a24g9Mai Q - 2_(;_5,13
4n Rc? Rc
AT = > X A r (23)
° [1_@4- e, g2, 2GMa 9159@}2
Rc? Rc? | ¢? Rc?

This is the same as eq. (17) in [4].

2.5. Goédel metric :
The Godel metric is

2 2 - -—
ds? = ¢? dtz—-——d-'——,z—ﬁ{%(—f-) ]dq?z —dZ +2rP - d § cdt (24)

2a J2a

where a is a constant > 0.

Now, for r = R (constant) and z = constant,

RY|, - 2R -
2_242_R21-| =1 |d = d¢ cdt
ds“=c“dt“-R [1 (2&) ] "+ Ba ¢ (25)
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|

A\ 2R%c (26)
1- % agat
(23)] \/Ea} ?

Using the transformation (3) in eq. (25)

ds® {1_[;:;2[1_(_’1)2 ]92—27.2—: Qc

R 2
xczdt"’-Rz[F(é;] }dcpa— 2R%Q

One can see that in this case the proper time-difference between two identical opposttely
circulating beams of particles is

2
R0l 1- ﬂ) _Bff
an L -Q[ (28 J J2a

aAr = X
R 1—(-’3J2

C2
{1 )

This is the same as eq. (21) in [4].

(@7)

3. Concluding remarks

Thus we find that it is possible, without having recourse to any analogy or any external
aid, to derive Sagnac effect in a number of metrics in a straight-forward manner.
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