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A numerical model for studying glass dissolution in water 
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Abstract Glass, a multicomponent vitreous system, can be considered as a random mixture of the constituent 
oxides Due to random local environment, the binding energy of silica in the solid is expected to be randomly 
distributed Dissolution of this random solid in water is modeled via a Monte Carlo (MC) algorithm Time evolution 
o\ such a system under normal conditions shows that the system becomes rough to porous with the formation 
of dry silica gel layer It is found that the chemical reaction of corrosion occurs at a constant speed in the steady 
state As an effect, a self-established potential gradient is established and the system evolves into a critical 
state 
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1. Introduction 

Since multicomponent silicate glasses are used as the disposal media for radioactive and 
toxic wastes [1], it is important to understand the dynamics of corrosion or dissolution of 
glass in an aqueous solution. Glass, a multicomponent vitreous system, can be considered 
as a random mixture of the constituent oxides with random binding energy of silica in the 
solid. Such a solid could be called as a random solid. A random solid is then a 
multicomponent vitreous system in which, due to random local chemical environment, the 
binding energies of the constituent molecules of the solid are randomly distributed. If 
such a solid is in contact with an aqueous solution, the solid element dissolves at a slow 
rate and forms a complex with the solution. The complex breaks almost instantaneously 
and the solid element in the solution is available for redeposition on the rough or irregular 
solid surface exposed to the solution. As the process continues, the solution penetrates 
into the solid and the solid becomes porous. A self-established potential gradient drives 
the solution molecules inside the solid with a constant drift velocity. The solution molecule 
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forms cluster of different sizes inside the solid At the non-equilibrium steady state 5 

power law distribution of the cluster size is found This is then a self-organized cntica 
state between a random solid and an aqueous solution driven by a self-established potentia 
gradient Below, we will present the model and discuss the results obtained 

2. The model 

In order to study the time evolution of a random solid in contact with an aqueous solution 
a numerical model of corrosion or dissolution is developed in 2 dimensions (2D) In th»<; 
model, it is assumed that the random binding energy is uniformly distributed between c 
and 1 The solid shown in Figure 1(a) is a dense structure of elements with randon 
binding energy r( The solid of width L is infinitely long in the y-direction The aqueojr 
solution, infinite in volume, is placed at the bottom of the semi infinite solid The white 
space in Figure 1 represents the solution The initial solid-solution interface is marked b/ 
a thick line Random solid element R dissolves slowly in the solution S, makes a compound 
RS and the compound breaks instantaneously into R and S The chemical reaction o* 
dissolution could be represented as 

R + S-+RS->R + S '1 

The solid element R in the solution is now available for redeposition on the interface 
Assuming diffusion of the solid element R is very fast in the solution, redeposition ^ 
made at a randomly chosen site on the externally accessible perimeter with unit probability 
Generally, dissolution is a slow process and redeposition is faster It is mimicked here by 
considering no further dissolution during redeposition The slowest possible dynamics o* 
the system then involves dissolution and redeposition processes together with reconstruction 
of the rough interface at the single particle level This is usually the case of qlass 
dissolution in aqueous solutions in the macroscopic scale [2] Different physical processes 
involved in a single Monte Carlo (MC) step are explained with the help of Figure 1 The 
process are (i) extraction of externally accessible perimeter of the solid, (H) dissolution of 

the site with minimum random number (minimum binding energy) on the perimeter with 
unit probability (in Figure 1(b), it is r3), (in) modification of the external perimeter, (ivi 
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Figure 1. A single MC step is represented here (a) The arrangement of random numbers rt represents a 
random solid, (b) r3 is identified as minimum random number on the solid-solution interface and it is 
dissolved, (c) the solid element is redeposited at a randomly chosen site r, of the modified solid surface 
A new random number rci is assigned with the redeposited site The process is then repeated 
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redeposition of the solid element present in the solution on a randomly chosen site of the 
modified external perimeter (r, in Figure 1(c)), (v) assignment of a new random number ru 

to the redeposited site The whole process is then repeated and time is increased from t 
to f+1 Note that the total number of particles is conserved and the system evolves at 
equal solid to liquid and liquid to solid flux rate (one particle per time step) throughout the 
simulation 

In Figure 3, the system morphology is shown for a system of width L = 64 at time 
steps t = 211 The solution is represented by light gray scale and the random solid is 
represented by dark gray scale The black dots represent the perimeter sites It can be 
seen that the interface becomes rough and the solution has penetrated into the solid 
leaving behind a restructured solid like a dry silica gel as observed in glass alteration 
experiments [2] It should be noted here that in the study of self-stabilized etching of 
random solids by finite etching solution [3] (infinite solid and finite solution) final stable 
morphology obtained was fractal as it was observed by Balazs in the corrosion of thin 
metal films [4] 

f=2 1 1 

Figure 2. Morphology of the random solid system at f=211 Dark gray scale represents the random solid 
and the light gray scale represents the solution Black dots are the externally accessible perimeter sites in 
contact with the solution The solid line represents the lattice boundary at r=0 

3. Results and discussion 

Simulations have been performed on the square lattice of widths ranging from L = 64, 128 
and 256 Data are averaged over maximum 1000 samples It is seen from the system 
morphology that the solution molecules enter into the system The solution molecules 
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inside the solid form clusters and move collectively In order to characterize the motion o' 
the solution molecules inside the solid, the profile of solution molecules are calculated as 
a function of the penetration depth along y The solution profile is defined as the average 
number of solution molecules per row A/W(y) and plotted in Figure 3(a) against y the 
coordinate of rows It can be seen that the solution molecules move inside the solid as a 
Gaussian profile leaving behind a restructured solid To distinguish the restructured sold 
from the original random solid, the average energy per row < r(y) > has been calculates 
as a function of y In Figure 3(b) < r(y) > is plotted against y It can be seen that ? 
gradient in the average energy has developed spontaneously The region of higher potentia1 

corresponds to the restructured solid whereas lower potential region corresponds to the 
unexplored random solid with average energy 0 5 Note that the solution profile is just n 
front of the potential gradient It seems that the spontaneously developed potential gradient 
pushing the solution profile deeper and deeper into the solid with time 
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Figure 3 (a) Water profile number of water molecules per row as a function of y the row index inside 
the solid (b) Plot of average energy <r(y)> versus y A self-established potential gradient is observed n 
the system 

The motion of solution profile can be studied measuring the average peak position <yN 

of the profile with time Peak positions of the solution profile is the distance of the peak 
from the initial interface at t = 0 It is measured as a function of time t for L = 64,128 and 
256 In Figure 4, <y > is plotted against scaled time tIL Different symbols correspond to 
the system sizes circle for L = 64, squares for L = 128, and triangles for L = 256 It 
should be noticed that the data for different width of the systems collapse onto a single 
curve when f is scaled as tIL The time scale of the system is thus proportional to the 
width L of the system The solid line represents a straight line with slope one It can be 
seen that the data in double logarithmic scale is parallel to the solid line Thus, <yp> the 
mean displacement is proportional to time t This means that the solution profile is drifted 
by the potential gradient into the solid with a constant velocity v = d < yp >/dt [5] 
Therefore in the t -»oo limit, the whole random solid will dissolve completely leaving a 
pure silica gel 
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During the motion of solution molecules through the random solid, the solution molecules 
occupy nearest neighbour sites and form clusters The clustering of solution molecules 
occur on its own due the dynamics of the system without fine tuning of any parameter of 

Figure 4. Plot of average peak position of the solution profile <yp> inside the solid as a function scaled 
time tIL Different symbols corresponds to different system sizes circle for L=64, squares for /.=128, and 
triangles for L=256 The solid line represents a straight line with slope one It is found the profile is drifted 
with a constant velocity into the solid 

the system from outside The size of a cluster $s$ is defined as the number of solution 
molecules connected by nearest neighbour bonds The probability to have a cluster of 
$s$ number of solution molecules (size s) at time t for a given system size L is given by 

Ps(t)-ns(t)INtot(t) (2) 

where ns(t) is the number of clusters of size s out of Ntot(t) clusters at time t The 
probability distribution P$(t) of cluster size is plotted in Figure 5 for a system size 
L = 1024 Different symbols correspond to different time steps circle for f = 218, square 
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Figure 5. Plot of cluster size distribution P8(t) against s Different symbols correspond to different time 
steps circle for t = 218, square for t = 219, and triangle for t = 220 The solid line represents a straight line 
with a slope - 2 A power law distribution of cluster size is observed 
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for t = 219, and triangle for t = 220. The solid line represents a straight line with a slope 

-2. It can be seen that the cluster size has a power law distribution Ps{t)-ss
r with an 

exponent rs * - 2 . It should be mentioned here that the exponent obtained here is close 

to that of the cluster size distribution in the case of percolation [6]. The system driven by 

a self-established potential gradient thus evolves into a critical state through the self 

clustering of solution molecules This demonstrates self-organized criticality [7] in the 

process of dissolution of a random solid in a solution driven by a self-established potential 

gradient. This is a new observation. 

4. Conclusion 

The process of glass dissolution in a solution is modeled considering the glass as a 

random solid The molecules in solution penetrate the solid at a constant speed A self 

established potential gradient develops in the system which drives the solution profile 

deep into the solid. During the drift of the solution profile it is found that there is self-

clustering of solution molecules The cluster size distribution is found to be a power law 

with an exponent approximately -2. The non-equilibrium steady state is then a self 

organized critical state of a random solid and an aqueous solution driven by a self-

established potential gradient 
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