
Indian J. Phys. 82 (5), 561-565 (2008) 

IP 
Algebraic approach to analyze the vibrational spectra of 

tetrahedral molecules 

Joydeep Choudhury1 , Nirmal Kumar Sarkar2 and Ramendu Bhattacharjee1* 
1 Department of Physics, Assam University, Silchar-788 Oil, Assam, India 

1 Deparment of Physics, Kanmganj College , Kanmganj-788 710, Assam, India 

E-mail choudhuryjoyC" rediffmail com 

Abstract Molecular spectroscopy is undergoing a considerable attention in last few decades There is a 
considerable current research interest in the study of vibrational ground and excited states of polyatomic 
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1. Introduction 

Molecular spectroscopy has received a lot of attention in last few decades. There is 
considerable current research interest in the study of vibrational ground and excited states 
of polyatomic molecules using Lie algebraic method. U(4) and U(2) algebraic model have 
been used so far in the analysis of experimental data. The algebraic approach to molecules 
was first introduced by Wulfman [1] in the study of Morse oscillator, lachello, Levine and 
co-workers [2,3] described the rotation-vibration spectra of molecules using U(4) algebra. 
Later on the U(4) algebra was used for each bond in case of linear triatomic and four 
atomic molecules [5,6]. It is to be noted that the U(4) model becomes complicated when 
the number of atoms in a molecule increases more than four. In 1984, Van Roosmalen 
et a/, proposed an algebraic model to describe stretching vibrational modes of ABA 
molecules [7]. This model is based on the isomorphism between one dimensional Morse 
potential and SU(2) algebra and correspond to the algebraic version of coupled Morse 
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oscillator method developed by Halonen and Child [8]. Michelot, Moret -Bailly and Leroy 
[9,10] proposed an algebraic approach to study the vibrational stretching mode m a 
polyatomic molecule using unitary group U(n) with (n -1) vibrational degrees of freedom 
In order to study vibrational modes of medium sized molecules, one usually chooses a 
tetrahedral molecules as one of good samples. In 1994, Lemus and Frank proposed an 
algebraic SU(2) model based on group theoretical ideas to calculate the stretching and 
bending vibrational energy levels of methane like molecules[12]. Recently, using Lie 
algebraic method we have reported better results [11,22] for the vibrational frequencies of 
HCN than those reported earlier. The U(2) model was used successfully in explaining the 
stretching vibrations of polyatomic molecules like octahedral and benzene molecules [13,14] 
.Later on, lachello and Oss has developed the algebraic model to incorporate the bending 
modes in case of benzene [15] and acetylene [16]. As the algebraic approach emphasizes 
anharmonicity (and cross anharmonicity) even in the zeroth order, higher order coupling 
can be introduced in a systematic and sequential fashion. As such the approach is 
particularly appropriate for many challenges of modern spectroscopy. This approach is 
important for the representation of higher accuracy spectroscopic data and especially so 
far larger molecules. The algebraic approach starts with a Hamiltonian and hence such a 
fit provides more than just a compact parametrization of the data. Rather, it determines 
some of the parameters in the Hamiltonian and so provides explicit predictions (including 
information on the potential). 

In this paper, the fundamental vibrational modes of tetrahedral molecules like GeH4 

GeCI4 ,SiF4 and CCI4 are calculated by using an algebraic model Hamiltonian. The values 
of boson numbers N1 and N2 can be found out by knowing anharmonic constant ioe and 

coexe of stretching and bending bonds of different diatomic molecules under study. The 

result obtained by this model are in good agreement with the observed data. Therefore 
this study will give "a general approach" to solve the vibrational energy levels accurately 
for tetrahedral molecules. 

2. Algebraic model 

The model is based on the isomorphism of the U(2) Lie algebra and one dimensional 
Morse oscillator whose eigen states may be associated with U(2) D 0(2) states[13]. For 

Figure 1. Assignment of the Ui (2) algebra to tetrahedral molecule. 
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a tetrahedral molecule, AB4 , we introduce four U,(2) (1 < / < 4) algebra to describe A-
B interactions and six 11,(2) algebra (5 < j < 10) for B-B interaction [Figure 1] 

The two possible chains of molecular dynamical groups in tetrahedral molecules are 
given by the product 

U1(2) x .. .x U10(2) 3 01(2) x ... . xO10(2) D 0(2) (21) 

U1(2)x x U10(2) 3 U(2) 3 0(2). (2.2) 

Which corresponds to local and normal coupling respectively. For these two situations 
the Hamiltonian operator can be diagonahsed analytically 

The Hamiltonian upto two body interactions is given in terms of 10 operators, 
representing ten one dimensional Morse oscillator, plus two types of bond-bond interaction 

C2(0
,j(2)) and M|j(2) known as Casimir and Majorana operators respectively of OIJ(2) 

group. 

For tetrahedral molecules , the Hamiltonian can be written as 

H = Hs+ HB+ Vs-*. (2 3) 

The term Hs denotes the stretching degrees of freedom (A-B bond), HB is the bending 
contribution (B-B bond) and Vs - B represents the stretching bending interaction which is 
neglected in case of first order approximation The common algebraic model Hamiltonian 
in case of stretching and bending mode for tetrahedral molecules can be considered as 
[13,17] 

n n n 

"=E0 + £4C,+£4yC,y + XAA (24) 
( - 1 I(I >() 

Where / runs from 1 to n = 4 for calculation of stretching and / runs from 5 to n = 10 for 
bending vibrational energy level. In the eq. (2 4) , C, is an invariant operator with eigen 
values 4{v? - A/, v,) and the operator C is diagonal with matrix elements 

(A/, l l / /;A/y ,^|C ( / |A/„V /;A/y ,^) = 4[ ( i / / + ^ ) 2 - ( ^ + ^)(A/ / + /Vy) (2.5) 

while the operator Mu has both diagonal and non-diogonal matrix element. 

(A/,, v- Nt, v, \M„\ N„ v,\ Nr Vj, = (N,v, + N,v, -2v,v,) 

(A/„ v, +XNr v, -1 |M„ N„ v,;Nr v, =-[v,(v, +1)(/VI -vl)(Nj -v, +1)]V 2 (26) 

(N„ v, - 1 ; Nr v, +1|M,| N„ v,\ Nr v,) = -[v,(vt +1) (N, - v,)(A/, - v, +1)]V 2 
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For a tetrahedral molecule AB4, we choose the parameters A/,= Nv At= A, (for / -
1 to 4) , Av= Ay2 (any / and j ) and A 12 for stretching mode and A/y = A/2, At= A5 (for , 
= 5 to 10) , An = A56 (any / and y) and A5 6 for bending mode respectively. 

3. Results and discussion 

We report in Table I the results of fundamental vibrational energies Av F2 (stretching) and 
E ,F2 (bending) for four tetrahedral molecules like GeH4, GeCI4 ,SiF4 and CCI4 taken 
from references 18,19,20 and 21. The estimated values of six parameters (A,, A12, A 

for stretching and A5 , A5 6 , A 5 6 for bending mode) along with boson numbers N1 and 
N2 are also shown in the Table 1 for four molecules . We have reported the vibrational 
fundamental modes v v v2> v 3 and v 4 for four tetrahedral molecules , but we can 
obviously calculate overtone and combination bands up to higher number of quanta as 
well. The model Hamiltonian (2.4) appears to describe the vibrational frequencies with 
good accuracy. 

Table 1. Comparison of calculated and observed fundamental vibrational frequencies of GeH4 GeCi 
,S(F4 and CCI4 

Normal 

mode of 

vibration 

GeH4 GeCL S»R CCI4 

1 ^1 

1 v2 

1 V3 

1 v4 

A i 

E 

F2 

F
2 

Stretching Parameters 

2106 2105 88 

930.9 930.94 

2111.78 2111.66 

819 3 819 31 

GeH4 

398 

132 

450 

172 

398 04 

132.35 

449 94 

172 33 

GeCI4 

800 8 

264.2 

1031.39 

388 44 

SiF 

800 58 

264.20 

1031.3 

388 45 

4 

460 

2142 

792 

3135 

CCI 

459 96 

214 5 

791 83 

312 9 

4 

N, 

A, 

A12 

^ 

Bending Parameters 

N* 

A 5 

A 5 . 6 

*S.6 

55 

-8.215 

0.2534 

0 0263 

28 

-29 475 

2 5595 

-0.9968 

299 

-0 34 

-0.0010 

0 0434 

140 

-1 

-0.0958 

0.0714 

100 

-1 175 

0.1404 

0 5769 

15 

-13.94 

1.113 

2.070 

342 

-0 155 

-0 0431 

0 2426 

140 

-1 

-.0765 

0.1758 

All values are in cm1, except Nt and N2 which are dimensionless. Observed values 
are taken from references 18, 19, 20 and 21. 
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4. Conclusions 

Using model Hamiltonian, we have calculated the vibrational fundamental modes of four 
tetrahedral molecules, GeH4: v1 = 2105.88, v2 = 930 94, \'3 =r 2111 66, r4 = 819 31 cm 
1 GeCI4 : V) = 398.04, v2 = 132.35, v3 =449 94, r4 = 172 33 cm1 , SiF4 v, = 
800 58, v>2 = 264.2, v3 =1031 3 , n4 = 388 45 cm"1 and CCI4 ^ = 459 96, v2 s 214 5, 
v3 =791.83, v4 = 312.9 cm"1 with good accuracy As it is already reported that AB4 is 
an important member of the family of molecules. Hence, we can claim that using this 
model ,the vibrational fundamental modes of some tetrahedral molecules can be found out 
accurately. It is obvious that once we calculate the vibrational fundamental modes of a 
molecule accurately, the overtone and combination bands can be calculated with the help 
of such a model Hamiltonian by fitting the experimental data with the help of computer 
programming. 
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