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Abstract : Nonlinear dust acoustic waves are studied in a four component dusty plasma The existence of 
soliton solution is determined by pseudo-potential approach It is shown that in small amplitude approximation our 
result reproduces the result obtained by Sayed and Mamun [Phys Plas 14 014501 (2007)] 
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1. Introduction 

Dust and plasmas are omnipresent in the universe. It plays significant role in space 
plasma, astrophysical plasma, laboratory plasma and environment. The presence of 
dusty plasmas in cometary tails, asteroid zones, planetary ring, intersteller medium, 
lower part of earth's ionosphere and magnetosphere [1-8] makes this subject increasingly 
important. Dusty plasmas also play a vital role in low temperature physics, radio 
frequency plasma discharge [9], coating and etching of thin films [10], plasma crystal 
[11] etc. 

Nonlinear wave phenomena like soliton, shocks and vortices in dusty plasmas 

have also been studied by several investigators for the last two decades or so [12-

22]. Bliokh and Yarashenko [14] first theoretically observed such waves while dealing 

with waves in Saturn's ring. Later the discovery of dust-acoustic wave (DAW) [15,16], 

dust ion-acoustic wave (DIAW) [17,18] and dust lattice (DL) waves [19,20], gave a 

new impetus to the study of waves in dusty plasmas. Due to the dust grain dynamics 

few new eigen modes like Dust-Berstain-Greene-Kruskal (DBGK) mode, Shukla-Verma 
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mode [21], Dust-drift mode [22] etc. are also introduced. 

Dust-acoustic solitary waves in the one dimensional and unmagnetized plasma 
have been investigated by several authors. However, most of them considered the 
three-component dusty plasma system consisting of ions and electrons and negatively 
charge dust particles [23-25]. But both negative as well as positive dust particles also 
present in different areas of space [26-28]. Fortov et al [29] explained the mechanism 
by which a dust grain can be positively charged. Chow et al [28] also explained the 
situations under which smaller dust particles become positively charged and larger 
particles become negatively charged. It was also investigated that both positively and 
negatively charged dust present simultaneously in different space plasmas [28-30j 
Recently Sayed and Mamun [31] investigated solitary waves in four component 
plasmas where they considered both positively and negatively charged dust particles 
To obtain the solitary wave solution they used Reductive Perturbative Technique (RPT) 
But few years ago, Malfliet and Wieers [32] reviewed the studies of solitary waves in 
plasma and found that the RPT is based on the assumption of smallness of amplitude 
and so this technique can explain only small amplitude solitary waves. But there are 
situations where the excitation mechanism gives rise to large amplitude waves, and to 
study such situation one should employ a non-perturbative technique. Sagdeevs [33. 
pseudo-potential method is one such method to obtain solitary wave solution. This 
method has been successfully applied in various cases [34,35]. 

In this paper, we consider a four component unmagnetized dusty plasma system 
consisting of Boltzmann distributed electrons and ions and also positively (smaller size) 
and negatively (larger size) charged dust grains. The existence of solitary waves is 
studied by Sagdeev's pseudo-potential technique. It is shown that in small amplitude 
approximation our result reproduces that of Sayed and Mamun [31]. 

The organization of this paper is as follows. In Section 2 basic equations are 
written for four component dusty plasma and Sagdeev's pseudo-potential is derived 
Conditions for the existence of soliton solution are also discussed in Section 3. Small 
amplitude approximation solutions are given in Section 4. Section 5 is kept for result 
and discussions and Section 6 is kept for conclusion. 

2. Basic equations 

We consider a four-component dusty plasma consisting of Boltzmann distributed ions 
and electrons and also negatively and positively charged dust grains. The basic 
equations are (see Ref. [31]) 

at dxK ' v 
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| M A <„,„,). o. (3, 

+ u. — - = -oili — /4v 

L -^ = ^ - (1 - / i f f Me) n2 + M e ^ ' ~ /^e"1", (5) 

where ^ and n2 are the negative and positive number density normalized by the 

equilibrium values n10 and n20 respectively, i/j and u2 are negative and positive dust 

7k T k T 
fluid speed normalized by 1 B ' . V, the electric potential is normalized by - £ - i . x 

and t are normalized by \D = (Z,kBTl/4nZ?e2n,0) and u;p1 = (m1/47rZ1e n10) . 

n , ^ t 0 = ^ , Mf i = - ^ - , / ; , = Jk_t <, = ! . , z, and Z2 are the number of 
Z, m2 Z^nw Z,nw Te 

electrons or protons residing on a negative and positive dust particle respectively, m^ 

and m2 are masses of the negative and positive dust particle respectively. T, and Te 

are ion and electron temperatures respectively, kB is the Boltzmann constant and e is 

the charge of the electrons. In order to search for solitary waves which solves eqs. 

(1) to (5), we introduce a linear substitution £ = x - Mt admitting only solution which 

depend in space and time in the form of the wavy variable x - Mt. By 

d d
 M

 d ** d 

substitution— = — and TTt" d£ e q s ' ( 1 H 5 ) reduce to 

. . du. du. dil> 

AMdu7 du7 ndty 
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- = n, - (1 - /x, + PL,) n2 + n,eT* - ^e"* , 

The boundary conditions are :ip, uu u 2 - > 0 , n,, n 2 - + 1 , n, 

From (6) we get, 

M 
n. = . 

1 Af-u, 

Similarly from (8) we get, 

M 
2 M-u2 

From (7) we get, 

(10; j 

/*, a n d n 9 - / J e a s 

1 2 

and from (9) 

(Hi 

(12) 

(13) 

a(ii> = Mu2 , 

Now using (11)—(14) in (10) we get 

cfy; dV{4>) 

d? d\j> 

where 

VW) = M2 1 + 
24>) 

M2 

1/2 

1 - 1 -
2a/ty)' 

1/2 

M' 

+ i k ( i _ e ^ ) + M l ( i - e - * ) . 

(14) 

(15) 

Multiplying both side of eq. (15) by 2 — and integrating w.r.t. £ with the boundary 
d£ 

conditions)^ _• oo, V - » 0 and - ^ O w e get, 
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VW + -
(dfi>) 

[da 
= 0. (17) 

3. pseudo-potential and soliton solution 

Eq. (15) can be considered as a motion of a particle (whose pseudo-position is i/t at 

pseudo-time 0 with pseudo-velocity (di>/d0 in a pseudo-potential well 1/(0). That is 

why Sagdeev's potential is called pseudo-potential. Here the pseudo-particle starts at 
cfy> 

a position tp = 0 with a small velocity -37 and it will be reflected back at some y = y>m 

and then come back to t/> = 0. 

Whether the solitary wave solution of eq. (15) exists or not, can be determined 

from the nature of the pseudo-potential l/(y). To discuss the possibility of solution we 

may consider the cases in classical mechanics when a conservative force field is 

given. It is known that between to single roots (0 and ipm here) of 1/(0) if l/(y>) < 0 

(hen 0 is periodic and that leads to a periodic nonlinear waves. But when a single root 

on the one side of the interval is considered, and a double root on the other end, a 

solitary wave is generated (see Ref. [6]). Due to initial conditions incorporated in l/(y>), 

the double root is in y = 0. It takes an infinite large time to get away from it and the 

</ reaches a maximum or minimum in ym and then again taking infinite long time to 

returned to 0. Hence, conditions for the existence of soliton solution are 

(i) vtyt) = 0 at <0 = 0 and 0 = ipm 

(ii) 
d \ / 

v=o 
0 but — 

aw 
* 0 . 

V-t/^ 

There is also one requirement that the double root at tp = 0 corresponds to a local 

maximum at y = 0. 

Hence another condition is 

d2V 
(iii) dip2 < 0 . 

(/'=0 

Also, it can be noted that physically complex V will not be allowed because this 

implies complex dust density which is not allowed. Hence there exists a nonzero ym> 

the maximum (or minimum) value of ip where V(ipm) = 0 (i.e. Vtym) crosses the y axis 

from below). Then ipm is the amplitude of the solitary wave. If ipm is positive then the 

solitary wave is called compressive solitary wave and if V;m is negative then the solitary 

wave is called refractive solitary wave. Obviously, V{4>) is negative in the interval 

(0, ym). 
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4. Small amplitude approximation 

To obtain KdV type solution we obtain the small amplitude approximation of V(</>) We 

expand V(tp) about v> = 0. Using the boundary condition V -> 0 a n d — - > Q a s 

dip 

V>2
 A V' 3 

V> — 0, we get 

V ( 0 ) - A y + * 2 ~ , (18) 

when 

4> = ^ j 7 + (1 - /*, + A*.) - j j j j r - - ffW2 - Mi/2. (20) 

Hence the KdV type soliton solution is given by 

0 = t/>0 sec r r - (21) 
o 

when 

. 34 
V'0 = ~ " ^ ' (22) 

is the amplitude of the solitary wave and 

2 
b = V 1 ^ (23) 

is the width of the solitary wave. Sayed and Mamun [31] studied the same model for 

small amplitude solitary wave using RPT and they obtained the KdV equation as 

when 

= 1 [/., _ + \ a2 /?2 _ g _ V«(^^2 _ „ )| 

1/3 
e = 3L_ 

where V0, the phase speed of the DA wave is given by 

(25) 

(26) 
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VS 
2 _ 1 + (l + /i.-A«,)"fl 

<T/te + /X, 
(27) 

To get the steady state solution they use a transformation £ = // - L/0T and the usual 
boundary conditions, where U0 is the velocity of the frame of the transformed 
coordinate. By usual technique one can obtain 

de B «w-£ 
A01 

whence 

V,(0i) = - ^ 0 i 2 + 3^V'i 

(28) 

(29) 

Now to compare the small amplitude approximation of V(*p) of eq. (18) with the values 
of Vi(4>) of eq. (29) obtained by RPT (Ref. [31]), we first replace M by V0 + U0 when 
UQ IS small. Then Keeping only first-order terms (in U0) it can easily be verified that 
\Z(c) in eq. (18) reduces to the M,(</',) given in eq. (29). Hence the l/t(</>,) obtined by 
RPT in Ref. ([31]) is nothing but a small amplitude approximation of V(</') of eq. (18). 

5. Results and discussion 

Figure 1 shows the plot of V(V) vs. ib for v = 1.57, 1.75 and 1.925. Other parameters 
are and a = .01, ft = 50, //, = .5, fie = .2, a = .5. It is seen that V(fi) crosses the 
c axis for negative values of </' for 1.57 < v < 1.925. Hence rarefractive solitary 
waves exists for 1.57 < u < 1.925. For r = 1.75, !/(</;) crosses the </> axis at 
c = -1.35. Hence |0min| = </»0 = 1.35 is the amplitude of the rarefractive solitary waves 
for the above set of parameters with v = 1.75. It is also seen from this figure that 
the amplitude of the solitary waves increases with the increase of velocity. 

- 0 5 

Figure 1. Plot of V\tp) vs. $ for t; = 1.57, 1.75 and 1.925 Other parameters are and a = .01, (3 = 50, / i , * .5, 
/^. = .2,(TS .5. (read ip in place of y, £ in place of z and tf in place of b tn all Figures). 
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Figure 2 shows the plot of V/(V) vs. il> for v = 1.85, 2.85 and 3.41. J - 15Q 

Other parameters are the same as those in Figure 1. It is seen that V(IJJ) crosses the 

^ axis for positive values of ^ for 1.85 < v < 3.41. Hence compressive solitary waves 

exists for 1.85 < v < 3.41. For v = 2.85, l/(V) crosses the t/> axis at ^ = 2.45. Hence 

m̂ax = V'o = 2.45 is the amplitude of the compressive solitary waves. It is also seen 

from this figure that the amplitude of the solitary waves increases with the increase 

of velocity. 

The shape of the solitary wave is obtained from the formula 

/
•</ 1 

<t> J-2VM 
and Figure 3 depits the soliton solution 0(0 plotted against £ for t> = 2.85. 

The other parameters are same as those in Figure 2. 

Figure 2. Plot of V(V>) vs V for v =1 85, 2 85 and 3 41 fi = 150 Other parameters are same as those in Figure 1 

-7.5 -5 -2.5 2 5 5 7.5 
Figure 3. Plot of r/> vs. £ for v = 2.85. Other parameters are same as those in Figure 2. 
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To see the effect of /? on the amplitude of the solitary wave Figures 4(a) and 
4(b) are drawn. For Figure 4(a) v is taken as 2.5. Other parameters are same as 
those in Figure 3. Here it is seen that for compressive solitary waves, the amplitude 
of the solitary waves increase with the increase of 0. 

For Figure 4(b) t; - 1.75. Other parameters are same as those in Figure 1. 
Here it is seen that the amplitude of the rarefractive solitary waves decreases with the 
increase of 0. Hence 0 has a significant effect on the shape of solitary waves. It can 
also be shown that the amplitude of the solitary waves also depends upon other 
parameters. 

yO 

4 r 

100 150 200 250 300 350 400 

Figure 4a. ipQ is plotted vs. ft for v = 2.5. Other parameters are same as those in Figure 3. 

y0 

.ft 
20 40 60 80 100 120 

Figure 4b. ip0 is plotted vs. ft for v « 1.75. Other parameters are same as those in Figure 1. 

6. Conclusion 

Existence of both the rarefractive and compressive solitary waves in four component 
dusty plasma are investigated using Sagdeev's pseudo-potential approach. It is also 
seen that in small amplitude approximation our result completely agrees with the RPT 
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result obtained by Syaed and Mamun [31]. The shape of the solitary wave is done 
using the integration (30). It is shown that 0 has a significant effect on the amplitude 
of the solitary wave. This technique can be extended to the study of non-thermal 
distribution of electrons in four component plasmas. Work in this direction is m 
progress. 
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