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Abstract : An analysis is presented to study the effect of radiation on magnetohydrodynamic mixed convective 
unsteady laminar boundary layer flow of an optically thick electrically conducting viscous micropolar fluid past an 
infinite vertical plate. A uniform magnetic field is applied perpendicular to the plate By taking the radiation heat 
flux in the differential form, and imposing an oscillatory time-dependent perturbation, the coupled nonlinear problem 
is solved for the angular velocity, temperature and velocity profiles ft is observed that, when the radiation parameter 
increases the velocity and temperature decrease in the boundary layer, whereas when Grashof number increases 
the velocity increases. As the magnetic parameter increases, the velocity and microrotation decrease The magnetic 
field can be used effectively for controlling the rate of heat transfer as required in magnetohydrodynamic applications 
like MHD generators, nuclear reactors, where it is used to control enormous temperature In comparison with the 
Newtonian fluid, the micropolar fluids have considerably different features from the Newtonian fluid in Nusselt 
numbers wall skin friction and wall couple stress 
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1. Introduction 

Micropolar fluids are fluids with microstructure belonging to a class of fluid with 
non-symmetrical stress tensor referred to as polar fluids. Physically they represent 
fluids consisting of randomly oriented particles suspended in a viscous medium. The 
classical theories of continuum mechanics are in adequate to explicate the microscopic 
manifestations of microscopic events; a new stage in the evolution of fluid dynamic 
theory is in progress. Eringen presented the earliest formulation of a general theory 
of fluid micro continua taking into account the inertial characteristics of the substructure 
Particles, which are allowed to undergo rotation. Eringen's actual theory of a fluid 
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micro continuum was presented in 1964 in his paper on simple micro fluids [1]. This 
theory has been extended by Eringen [2] to take into account thermal effects. The 
theory of micropolar fluids and its extension thermo-micropolar fluids [3] may f0rrr 

suitable non-Newtonian fluid models which can be used to explain the flow of colloida: 
fluids, liquid crystals, polymeric suspensions, animal blood, etc. 

The present problem finds application in MHD generators with neutral fiuia 
seeding in the form of rigid micro-inclusions. Also, many industrial applications involve 
fluids as a working medium, and in such applications nuclear fluids are rule and clean 
fluids exception. The porous media heat transfer problems have several practical 
engineering applications such as geothermal systems, crude oil extraction and ground 
water pollution. Hassanien [4] investigated boundary layer flows and heat transfer on 
continuous accelerated sheet extruded in an ambient micropolar fluid. Several classes 
of different solutions of micropolar fluids have been obtained by various investigators 
[5,6]. The boundary layer flow of micropolar fluid has been studied by Peddieson and 
Mcnitt [7] through a finite difference scheme. Ahmadi [8] has studied the boundary 
layer flow of a micropolar fluid over a semi-infinite plate. He obtained a self-similar 
solution with a constant micro-inertia. Nath [9,10] has obtained similar and non-similar 
solutions of boundary layer equations of micropolar fluids. Gorla [11] has studied the 
similar solution of micropolar boundary layer flow at a stagnation point on a moving 
wall. Rajagopal et al [12] studied a boundary layer flow of a non-Newtonian over a 
stretching sheet with a uniform free stream. Hady [13] studied the solution of a heat 
transfer to a micropolar fluid from a non-isothermal stretching sheet with injection. Na 
and Pop [14] investigated the boundary layer flow of a micropolar fluid due to a 
stretching wall. Hassanien et al [15] studied the numerical solution for heat transfer m 
a micropolar fluid over a stretching sheet. Desseaux and Kelson [16] studied a 
micropolar fluid bounded by a stretching sheet. Hassanien and Gorla [17] studied the 
heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction 
and blowing in all the above studies, the authors have taken the stretching sheet to 
be oriented in horizontal direction. However, of late, the effects of magnetic field to the 
micropolar fluid problem are very important. Mansour and Gorla [18] studied the Joule 
heating effects on unsteady natural convection from a heated vertical in a micropolar 
fluid. Recently, Abo-Eldahab and Ghanim [19] studied convective heat transfer in an 
electrically conducting micropolar fluid at a stretching surface with uniform free stream. 
Siddeshwar and Pranech [20] investigated the magneto-convection in a micropolar 
fluid. Tien and Vafai [21] reported the extent of research on this topic and discussed 
the importance of the non-Darcian boundary and inertia effects that account for the 
presence of solid boundary and moderate velocity flow in the porous medium. The 
open literature is rich with references dealing with natural convection flow in porous 
medium (Chen and Lin [22], Bejan [23], Takhar and Pop [24], Nakayama and Koyama 
[25] and Singh and Tewari [26]). 
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The purpose of the present paper is to study the effect of radiation and 
dissipation on magnetohydrodynamic mixed convection unsteady laminar boundary 
layer flow of an electrically conducting viscous micropolar fluid past an infinite vertical 
plate. Numerical results are shown in tabular form and graphically for the velocity, 
angular velocity and temperature distributions as well as the local skin friction 
coefficient, wall couple stress and the local Nusselt number. Numerical results of 
velocity profile of micropolar fluids are compared with the corresponding flow problems 
for a Newtonian fluid. It is observed that when the radiation parameter increases the 
velocity and temperature decrease in the boundary layer, where as when Grashof 
number increases the velocity increases. 

2. Mathematical formulation of the problem 

We consider a two-dimensional unsteady flow of a laminar incompressible micropolar 
fluid past an infinite vertical porous plate moving steadily and subjected to a thermal 
radiation field. The x-axis is taken along the vertical plate with the direction opposite 
to the direction of the gravity, while the y-axis is taken normal to the plate. A uniform 
magnetic field of strength H0 is applied normal to the plate in the y-direction which 
produces a magnetic effect in the x-direction. It is assumed here that the size of holes 
in the porous plate is much larger than a characteristic microscopic length scale of the 
micropolar fluid to simplify formulation of the boundary conditions. The magnetic 
Reynolds number is taken to be small enough so that the induced magnetic field can 
be neglected. Under these conditions, the governing conservation equations can be 
written as [28] : 

Dy 0) 

ft ac
H0 , 0_ 

P K 

x(u-U) + gp(T-Tx) + 2vr 

dt dy pCP 

<d2f 

aF_V* + 

ON 
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where, fw is the wall temperature, 7^ is the reference temperature, 0 is the 
dimensional free stream velocity, (u,V) are the dimensional velocity components 
(x, y) are the dimensional Cartesian coordinates, 7 is the dimensional time, g is the 
acceleration due to gravity, l/0 is the dimensional suction velocity, &l is the constant 
transverse magnetic field, K is the dimensional porosity parameter, CP is the specific 
heat capacity, /; is the fluid density, a2 is the absorption coefficient, ac is the electrical 
conductivity, /x is the permeability, v is the kinematic viscosity, ur is the kinematic 
rotational viscosity and (J Stephan-Boltzman constant. 

With the boundary conditions 

u = 0, f = fw, N=-n^L, y = 0 
dy 

u = 0(1) = V0 (l + e e ' s ' ) , f = 7^, N-+0 as y ^ oo (6a,b) 

where, e is the small positive parameter, u> is the dimensional free stream frequency 
of oscillation. Since the medium is optically thin with relatively low density and 
a « 1 the radiative heat flux given by eq. (4) in the spirit of Cogley et al [27] 
becomes : 

dy 

where, 

ZL = 4ad(T-Ta}) (7a) 

dB 2 f n ao 

n =J6XW ™ 
o 

where, A is the frequency, 8 is the radiation absorption coefficient, B is the Planck's 

function, qy is the radiative heat flux and k is the dimensional porosity parameter 

Further, from eq. (1), it is clear that V is a constant or a function of time only 
and so we assume 

V = - l / 0 ( l + e>»etoF) (8) 

where, e is small positive parameter, A is a real positive constant and eA « 1, V0 

is a scale of suction velocity which has non-zero positive constant and the negative 
sign indicates that the suction velocity is towards the plate. 

Proceeding with the analysis, we state the dimensionless quantities 

u V0 - 4v _ . f u n f - 7U 
u = — , y = — y , " = 7^(4/, U = — , e = U0 ' " ' V* U, Tw-T„ 
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(9) 

where, Gr is the Grashof number, R is the radiation parameter, Ec is the Eckert 
number, M is the non-dimensional magnetic parameter, P, is the Prandtl number, \ is 
the Darcy number and Tw is the wall temperature. Furthermore, the spin-gradient 
viscosity 7, which defines the relationship between the coefficients of viscosity and 
micro-inertia, is given by : 

7 = (M + 0 . 5 K ) / = /X/(1 + 0.5{) ; { = -

it 

where, £ denotes the dimensionless viscosity ratio. 

In view of eqs. (4), (7), (8), (9) and (10), eqs. (2) and (3) become 

(10) 

1 du /. . .^,\du ^^U . ,^ . ^d'u i.M, . ,\. ... . _ _ ON 
dt v ' dy 4 dt Ov v ; c) 0y< 

01) 

4 ' dt r[ 'dy 
M_ 
dy dy2 -R2 0 + PrEc du) 

[0y\ 
(12) 

dN ZH-h + eAf)* 
at \ I > 

dN 1 d2N 
dt dy ri dy (13) 

where, n- i*J • By setting the last term on the R.H.S. of eq. (11) and £ 
7 2 + £ 

equal to zero and ignoring eq. (13), eqs. (11) and (12) reduce to those reported by 
Israel-Cookey [28]. 

The transformed boundary conditions (6a, 6b) are then given by 

u = 0, 0 = 1, N = -n— at y = 0 
dy 

</->1+ £©"", 0->O, A / - *0 as / - + o c (14) 

where e is a small value, we can use a regular perturbation expansion of the form 

o(y.0 = "o(y) + eui(y)e/u" <15a) 



420 

O(y,t) = oo(y) + e0,(y)e'-" (15c) 

N(y,t) = N0{y) + eN,(y)e"' (15 b , 

Substituting eq. (15) in to eqs. (11)—(13). neglecting the terms of 0(e2), we obtain the 
following sequence of approximations 

(1 I Ou0yy i u0y - (M2 + x2) u0 - - (M2 + X2)- Gr0o - 2$N0y (16) 

%y + PAy - R% = -PrECuly (17) 

N0yy+vN0y = 0 (18) 

(1 + 0 « V + "iy - (/W2 + \ 2 + /w/4) U, 

= - (M2 + X
2 + /w/4) - G,0, - 2£A/1y - /4u0y (19) 

01yy + P,01y - ( f l 2 + /wPr/4) 0, = -2PrEcu0yu,y - PrABQy (20) 

rV1yy + »/A/1y - iu)Ny = -AriN0y (21) 

with the boundary conditions 

u0 = 0 , u, = 0, rV0 = -nu 0 y , A/, = -nu1 y , 0O = 1, 0, = 0 at y = 0 (22) 

u0 - * 1. u i - • 1. wo -* 0, W, -> 0, 0O - » 0 0 , - 0 as y - • oo (23) 

To solve the simultaneous nonlinear coupled eqs. (16H23), we now assume 
that the viscous dissipation parameter (Eckert number Ec) is small and thus its general 
solution which is due to the dissipation. 

u0(y) = "oi(y) + £c"o2(y). <A(y) = «n(y) + £cw«(y) 

<Wy) = «oi(y) + ^ « ( y ) . W = M y ) + *cMy> 

/Vo(y) = Woi(y) + ecWo2(y). Ni(y) = /v„(y) + Ec/v12(y) (24) 

Inserting these trial solutions into eqs. (16)-(23), sorting powers of Ec, and 

ignoring terms promotional to E2, we obtain the following set of equations : 

(1 + 0 u01yy + u01y - (M2 + x2)u01 = - (M2 + x 2 ) - GAi - W 0 i (25) 

< W + P r V " ^ 0 1 = 0 (26) 

Noiyy + »/W0iy = 0 (27) 

(1 + I) "<*„ + "02/ ~ fa2 + X2 ) U02 = - ^ 0 2 ~ 2^02 (28) 
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9<)2yy + PrS02y ~ R #02 - - Pru01y 

N02yy + vN02y ~- ° 

(l + 0unyy + u i i y - ( M 2 + AZ+/W4)u1 1 

= - (M2 + x2 + /w/4) - Gr0u - 2ZNUy - Au0,y 

0„„ + Pr0Uy -(R2 + i"Pr/4)l>U = - Pf^01y 

A/11yy + */A/,1y - iur]Nu = ->A;//V01y 

(1 + 0 «12wr + U12/ - ( M 2 + V2 4 /W4) "12 = -Gr^12 ~ 2$/Vl2y - >4lV02y 

«12yy + P&2, - ( « 2 + i*>P,/4)0n = - P r ^ B y " 2PfU01yU11y 

A/12yy + //A/12y - /a>7/A/21 = ~Ai/N02y 

The boundary conditions are : 

« s r O = u02l 0O1 = 1, 0O2 = 0, W0, = -nuWy, N02 = -nu, 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

02y on y - 0 

"01 = 1. u02 = 0, 0O1 - 0 = 0Q2, A/01 = 0, NQ2 = 0 on y »-> oo 

uu - 1̂2 = 0, flu = 012 = 0 A/n - - nuUyt A/12 = -nu1 2 y on y = 0 

(37) 

uu = 1, i/12 = 0, 01t = 0, 012 = 0 A/n = 0, A/12 = 0 on y — oo (38) 

The solutions of eqs. (25)-(30) satisfying the boundary conditions (37) and eqs. (31)-
(36) satisfying the boundary conditions (38) and substituting into eq. (24) and using 
eq (15), we obtain the angular velocity, the temperature and the velocity of the flow 
respectively as : 

N{ytt) = (Cte'ny + EC2e-ny)-eeUjt c^e-v+ * £ * * ! + £ d6e^y-^^eny 

iu> 
)) 

9(y, t) = e-«
y + Efae—' + be-2™ + bAe'2"y + b^e'^ + 6fee(*+a*)y 

+b7&-l«+«» + t^e-^"^ J+ ee1*" {-b„e*>y + b„e+'+ E(d5e 

+*fe3«--rt' + tfe4«-2*y + b26e
2a*y + bne-2a*+ b^e^^ 

+b20e'^',)y + /329©-^+")y + bJ0e-(a3+a»)y 

w 
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+4 t e e - ( " + * , ' + frJ6e-("^)r+ ft^e ("+a*)y + ^ 4<r ( "+ a 5 ) y ) ) 

u(y. f) = (1 + d,e **y + to,e * " + tfee_w) + E ^ " * * + b^"" + to,0e
 2 * y 

+*>,,* 2"y + to,2e
 2*y + to,3e

 ( * + * " + to,4e-(-1 >",y + ft,,©"**f",y 

+to,6e " ' ) ee'u' (1 + d ^ * 5 ' + b,8e *y + b,9e ^ + b20e"y 

+fife,«-v + fife2tf-*y + E(d7e~asy + J * , * " * ' + to40e"y + o41e-2*' 

+to42e
 2"" + b43e'2«y+ b„e-{«^)y+ b45e~^+")y + b^e'^'^ 

+b„e " "+ to^e -<*»+«*» + b49e^y + b^e <"*"*>' + &51e<a4+"2)r 

+to52e- (as^ ,y + b53e-(fl3+a,)y + bMe~{«+,u)y+ b^e-^"* 

+b56e-{"+a*)y + bsye-^^* + b^e'^fj 

where, the constants are given in Appendix. 
Not only the velocity, pressure and temperature fields are interest, but also the 

wall shear stress rw and the heat flux at the wall qw Oimesionless the skin friction 

coefficient C, = — and the Nusselt number Nu Re:1 = , where, 

Re;1 = V0x/v is the Reynolds number. 

3. Results and discussion 

The formulation of the problem that accounts for the effect of Radiation on unsteady 
MHD micropolar fluid along an infinite heated vertical plate in a porous medium with 
time-dependent suction has been carried out in the preceding section. This enables us 
to carry out the numerical computations for the velocity, microrotation and temperature 
fields for various values of the flow conditions and fluid properties. Results for the skin 
friction and heat transfer rate results are presented in Table 1 for various values of 
M, Gn n, £, Pn ft. Comparison between Newtonian and micropolar fluids are given in 
Table 2. In Figures 1-16, we have prepared some graphs of the stream wise velocity 
and micro-rotation as well as temperature profiles for a micropolar fluid with the fixed 
flow conditions and fluid properties, which are listed in the figure caption. Figures 1, 2 



Radiation and dissipation effect on unsteady MHD micropolar flow past an infinite verticie plate etc 423 

Table 1. Effects of variations of flow conditions and fluid properties on the coefficients of 
skin friction and heat transfer. 

dp NuRe"1 

M 

0 

0.5 

2 

5 

4.30513 

2.98136 

3.615423 

3.934458 

1.542226 

1.357077 

1.42696 

1.432654 

a 

-10.0 

-5.0 

0.0 

5.0 

10.0 

~1.567314 

1.59311 

1.888497 

3.615423 

5.335271 

1.455885 

1.434087 

1.424446 

1.42696 

1.441631 

0 

0.1 

0.5 

1.0 

3.189276 

3.289459 

3.688339 

4.181377 

2.403134 

2.431761 

2.541969 

2.670114 

0.1 

0.5 

1.0 

2.0 

3.289459 

2.67632 

2.167378 

1.591142 

2.431761 

2.412348 

2.40591 

2.384696 

P, 

0.71 

1.0 

7.0 

10.0 

3.289459 

3.192263 

2,414157 

2.280656 

2.431761 

2.605943 

7.567222 

10.42942 

0.0 

0.5 

1.0 

2.0 

4.332877 

4.023325 

3.615423 

3.289459 

0.7431459 

0.9926894 

1.42696 

2.431761 

illustrate the variation of angular velocity distribution across the boundary layer against 
spanwise coordinate y for various values of viscosity ratio. For the case of different 
values of viscosity ratio, the microrotation profiles in the boundary layer are shown in 
Figure 1. As expected, it is observed that an increase in £ leads to enhancement in 
buoyancy force. The effect of viscosity ratio on the velocity profiles is presented in 
Figure 2. The results show that the velocity gradient near the plate decreases as the 
viscosity ratio { increases. Also the velocity distribution across the boundary layer is 
lower for a Newtonian fluid, for the same flow conditions and fluid properties, as 
compared with a micropolar fluid, except for near the wall of the porous plate. For 
different values of the magnetic field parameter M, the microrotation, temperature and 
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Table 2. Comparison between Newtonian and micropolar fluids 

Y 

00 

02 

04 

06 

08 

1 0 

1 2 

1 4 

1 6 

1 8 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

44 

46 

48 

50 

N 

1 292328 

1 059059 

8678083 

711031 

5825303 

4772188 

3909208 

3202105 

26222769 

21481553 

1759351 

1440868 

118 

09663346 

07913373 

06480162 

05306415 

04345188 

03558025 

02913419 

02385565 

01953326 

01599386 

01309568 

01072258 

008779448 

Q O 

0 

1 015777 

6292927 

3902096 

2420622 

15018788 

09319036 

05782472 

03588014 

02226334 

0138141 

008571414 

005318397 

003299999 

00204756 

001270472 

000788304 

000489129 

000303496 

000188315 

000116846 

000072501 

000044986 

000027913 

000017319 

000010746 

000006668 

u 

00055356 

4989446 

76017551 

8898312 

9486413 

9706693 

9746506 

9706136 

9637184 

8561594 

9499134 

9444348 

9400347 

936581 

933899 

9318188 

9301938 

9289057 

9278629 

92669965 

9262556 

9256034 

9250133 

9244665 

9239497 

9234536 

N 

1353156 

1188858 

1044096 

09166367 

08044819 

07058489 

06191509 

05429776 

04760779 

04173438 

0365795 

03205656 

02808909 

0246097 

02155895 

01888455 

01654404 

01448618 

01268614 

01110905 

00972746 

00851725 

00745726 

00652891 

00571591 

00500397 

z = \ 
e 

1 006729 

624075 

3869863 

2400194 

1488884 

09236789 

05730784 

03555756 

02206321 

01369054 

00849541 

0052718 

00327146 

00203017 

00125988 

00078185 

00048521 

00030112 

00018687 

00011597 

00007197 

00004466 

00002777 

00001719 

00001067 

00000662 

u 

00027052 

3392327 

557237 

6979486 

7890285 

848075 

8863389 

911051 

9268854 

9368824 

9430325 

946647 

9485955 

9494579 

9496225 

94935 

9488165 

9481394 

9473971 

9466414 

9459056 

9452103 

944567 

9439636 

94346 

9429978 

velocity profiles against spanwise coordinate y are plotted in Figures 3, 4 and 5, 
respectively It is obvious that the effect of increasing values of magnetic field 
parameter results in a decreasing microrotation distribution across the boundary layer 
Furthermore, the results show that the values of temperature distribution on the plate 
are decreased as M increases. It is observed also, that the values of velocity 
distribution on the plate are decreased as M increases. The microrotation and velocity 
profiles against spanwise coordinate y for different values of Grashof number Gf are 
described in Figures 6 and 7, respectively. It is observed that an increase in Gr leads 
to a decrease in the values of microrotation distributions, but increases due to velocity 
due to enhancement in buoyancy force. Here, the positive value of Gr corresponds to 
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Figure 1 Microrotation profile for various values of 

viscosity ratio with, * = 0 5, n = 0 1, fl = 2, Pr = 0 71, 

M=2 Ec = 0 01, A = 0 01, yj = 2, / = 2, G, = 5, 
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Figure 2. Velocity profile for various values ot viscosity 
ratio with, \ = 0 5, n = 0 1, R = 2, P, = 0 71, M = 2, 
Ec = 0 01, A = 0 01 u> = 2, t = 2 Gr = 5, t = 0 1 
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Figure 3. Microrotation profile for various values of 
magnetic parameter, with ( = 0 1 , \ = 0 5 , n = 0 1 , 
fl= 1, Pr = 0 71, £c = 0 01, 4 = 0 01, u = 2, f a 2, 
G f=5.f = 0 1 

000 
2 00 

Temperature profile 
Figure 4. Temperature profile for various values of 
magnetic parameter, with £ = 0 1, * = 0 5, n = 0 1, 
R= 1, P,= 0 71, Ec = 0 01, >4 = 0 01, u> = 2, f = 2, 
G,= 5, e = 0 1 
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Figure 5. Velocity profile for various values ot magnetic 
parameter, with ( • 0 1 , x » 0 5 , n » 0 1 , f l s i , 
^ = 0 71, Ec = 0 01, A « 0 0 1 , u ; » 2 f f = 2, G, = 5, 
- = 0 1 
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Figure 6. Microrotation profile for various values of 
Grashof number, with £ = 0 1, \ = 0 5, n = 0 1 fl = 1, 
P r = 0 7 1 , Ec = 001, /* = 0 01,u> = 2, f = 2 , M = 2 0 

£ = 01 
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Figure 7. Velocity profile for various values of Grashof 
number, with f = 0 1, \ = 0 5, n s 0 1 , fl = 1, 
P, = 0 71, Ec= 0 01, >4 = 0 0 1 , ^ = 2, f = 2, M = 2 0 , 
e = 0 1 
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Figure 9. Temperature profile for various values of 
Radiation parameter, with £ = 0 1 , \ = 0 5, n = 0 1, 
M = 2 , P, = 0 71, Ec = 0 01, A = 0 01, a, = 2 , t = 2, 
G,= 5, E = 0 1 

Figure 8. Microrotation profile for various values of 
Radiation parameter, with £ = 0 1, \ = 0 5, n = o i 
M = 2. P r = 0 71, Ec= 0 01 , A = 0 01 , u, = 2, f = 2 
Gf = 5, f = 0 1 
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Figure 10. Velocity profile for vanous values of Radiation 
parameter, with £ = 0 1 , \ = 0 5, n = 0 1, M = 2 
P r = 0 71, Ec= 0 01, A = 0 01 , w « 2, f = 2, Gr = 5 
f = 0 1 

000 t 
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Microrotation prof ile 

Figure 11. Microrotation profile for vanous values ot 
micro-gyration parameter, with £ « 0 . 1 , x » 0.5, 
R « 2.0, M m 2 , P, «0 .71 , E c » 0.01, A « 0.01, u;« 2, 
f a 2, G , * 5 , e » 0 . 1 . 

2 00 3 00 
Velocity profile 

Figure 12. Velocity profile for vanous values of micro 
gyration parameter, with £ * 0.1, \ * 0.5, R * 2 0, 
M * 2, P, * 0.71, £c * 0.01, A * 0.01, u; = 2. / = 2, 
G f =5. f = 0.1. 
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Figure 13. Temperature profile for various values of 
micro-gyration parameter, with £ = 0 1, \ = 0 5, 
R = 2 0, M = 2, Pr = 0 71, Ec = 0 01. A = 0 01, u, = 2, 
/=2 Gr = 5,£ = 0 1 
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Figure 14. Microrotation profile for various values of 
Prandtl number, with £ = 0 1, \ = 0 5, r? = 0 1, M = 2, 
fl=2,Ec=001,4 = 001 u;=2 t = 2 Gr = 5 , - = 0 1 

120 

080 A 

0 40 

000 4 

-0 40 

- ^ - 0 71 
10 

- • - 7 0 
Ar 1Q0« 

1 20 

0 80 4 

040-^ 

0 00 

- 0 40 

[ Prandtl number 

—+. 
4m 

0 71 
1 0 
7 0 
too 

0 00 1 00 2 00 3 00 
Velocity profile 

4 00 5 00 0 00 1 00 2 00 3 00 4 00 
Temperature profile 

5 00 

Figure 15. Velocity profile for various values of Prandtl 
number, with £ = 0 1 , ; \ = 0 5, n = 0 1 , / t f = 2 , fl = 2, 
Ec = 0 0 1 , 4 = 0 0 1 , u> = 2, f = 2 , G r =5 , e = 0 1 

Figure 16. Temperature profile for various values of 
Prandtl number, with ( = 0 1 , \ = 0 5 , n = 0 1, M = 2, 
/=?=2, £c= 0 01.4 = 0 01, u) = 2 t = 2, G, = 5,t =0 1 

a cooling of the surface by natural convection. In addition, the curves show that the 
peak value of velocity increases rapidly near the wall as the Grashof number 
increases and then decays to the free stream velocity. For different values of the 
radiation parameter fl, the microrotation, temperature and velocity profiles are plotted 
»n Figures 8," 9 and 10 respectively. It is obvious that an increase in the radiation 
parameter R results in decreasing velocity, microrotation and temperature within the 
boundary layer, as well as a decreased thickness of the velocity and temperature 
boundary layers. This is because the large fl-values correspond to an increased 
dominance of conduction over radiation thereby decreasing buoyancy force and 
thickness of the thermal and momentum boundary layers. For the case of a micropolar 
fluid, the profiles of microrotation and stream wise velocity against the spanwise 
coordinate y for the vanations of the parameter (n) in the boundary condition for micro 
gyration vector are shown in Figures 11 and 12 respectively. The results show that 
increasing values of (n) parameter results in increasing the microrotation profiles as 
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the n-parameter increases. However, increasing values of n-parameter results in an 
increasing velocity within the boundary layer, which eventually approaches to the 
relevant free stream velocity at the edge of boundary layer. Figure 13 depicts the 
temperature profiles against spanwise coordinate y for different values of micro-
gyration parameter n. The numerical results show that an increase of micro-gyration 
parameter results an increasing thermal boundary layer thickness and more temperature 
distribution a cross the boundary layer. Figures 14, 15 and 16 depict the microrotation, 
velocity and temperature profiles against spanwise coordinate y for different values of 
Prandtl number Pr The numerical results show that the effect of increasing values of 
Prandtl number results in a decreasing microrotation and velocity profiles and then 
approaches a constant value, which is relevant to the free stream velocity at the edge 
of boundary layer. The results also reveal that the peak value of velocity decreases 
as PT decreases. Typical variations of the temperature profiles along the spanwise 
coordinate are shown in Figure 16 for different values of Prandtl number Pr The 
numerical results show that an increase of Prandtl number results in a decreasing 
thermal boundary layer thickness and more uniform temperature distribution across the 
boundary layer. The reason is that smaller values of Pt are equivalent to increasing 
the thermal conductivities, and therefore heat is able to diffuse away from the heated 
surface more rapidly than for higher values of Pr. Hence, the boundary layer is thicker 
and the rate of heat transfer is reduced, for gradients have been reduced. It should 
be mentioned that in the absence of the micropolar fluids effects, all of the flow and 
heat transfer solutions reported above are consistent with those reported earlier by 
Israel-Cookey [28]. 

4. Conclusions 

We have used the theory of micropolar fluids due to Eringen to formulate a set of 
ordinary differential governing equations for an unsteady, incompressible, laminar, 
micropolar fluid past an infinite vertical plate. Numerical results are presented to 
illustrate the details of the flow and heat transfer characteristics and their dependence 
on the material properties of the micropolar fluid. In a radiation dominated problem, 
thermal and momentum boundary layers increase in size, thereby leading to enhanced 
buoyancy-induced transport but decreased rate of heat transfer at the wall. We also 
found that there is an optimal value of radiation parameter that results in a minimum 
friction at the surface of the wall. From the physical point of view, Gr > 0 
corresponds to the cooling of the plate by free convection currents and Gr < 0 
corresponds to the heating of the plate by free convection, which agrees with the 
obtained results. The velocity distributions for micropolar fluids near the porous plate 
are less than that of Newtonian fluid, which will result in decreasing the wall shear 
stress. It is also noted that there exists optimal conditions for reducing skin friction on 
the moving porous plate. The heat transfer rate of a micropolar fluid is smaller than 
a Newtonian fluid, but the skin friction of a micropolar fluid is larger than a Newtonian 
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fluid under all circumstances As the magnetic parameter increases both the velocity 
and microrotation decrease. The micropolar effects behave as a coolant and are thus 
effective in reducing cooling rate and help in producing the desired temperature The 
magnetic field can be used effectively for controlling the rate of heat transfer as 
required in magnetohydrodynamic applications like MHD generators, nuclear reactors, 
where it is used to control enormous temperatures 

Acknowledgments 

Appreciation is extended to the referees for their constructive and helpful comments 
and suggestions These led to improvements in the revised paper 

References 

[1] A C Enngen Int J Eng Sci 2203 (1964) 

[2] A C Enngen Math Mech 16 1 (1966) 

[3] A C Enngen Math Anal Appl 38 480 (1972) 

[4] I A Hassanien Int Comm Heat Mass Transfer 25 571 (1998) 

[5] R S R Gorla Int J Engg Set 18 611 (1980) 

[6] F S Lien and C K Chen Int J Engg Sci 24 991 (1986) 

[7] J Peddieson and R P MCNitt Recent Adv Engg Sci 5 405 (1970) 

[8] G Ahmadi Int J Engg Sci 14 639 (1976) 

[9| G Nath Rheol Acta 14 850 (1975) 

110] G Nath Rheol Acta 15 209 (1976) 

[11] R S R Gorla, R Pender and J Eppich Int J Engg Set 21 791 (1983) 

[12] R K Rajagopal, T Y Na and A S Gupta J Math Phys Sci 21 189 (1987) 

[13J F M Hady Int J Num Meth Heat Fluid Flow 6 6 (1997) 

[14] T Y Na and I Pop Arch Appl Mech 67 229 (1997) 

[15] I Hassanien R S R Gorla and A A Abdulah Appl Mech Engg 3 3 (1998) 

[16] A Desseaux and N A Kelson Anziam J 42 536 (2000) 

117] I A Hassanien and R S R Gorla Acta Mech 84 1910 (1990) 

[18] M A Mansour and R S R Gorla Can J Phys 77 1 (1999) 

[19] E M Abo-Eldahab and A F Ghonaim Appl Math Comp 137 323 (2003) 

[20] Pradeep G Siddheswar and S Pranech Int J Engg Sci 36 1173 (1998) 

[21] C I Tien and K Vafai Adv Appl Mech 27 225 (1990) 

[22] C Chen and C Lin Int J Engg Sci 33 1233 (1993) 

[23] A Bejan Convective Heat Transfer (1st edn) (New York Wiley) Chap. 11 (1984) 

[24] H S Takhar and I Pop Mech Res Commun 14 81 (1987) 

[25] A Nakayama and H Koyama Appl Sci Res 46 309 (1987) 

[26] P Singh and K Tewan Int J Engg Sci 31 1233 (1993) 

[27] A C L Cogley, W G Vincenti and E S Gilles Am Inst Aeronaut Astronaut J 6 551 (1968) 

[28] C Israel-Cookey, A Ogulu and V B Omubo-Pepple Int J Heat Mass Transfer 46 2305 (2003) 



430 MohamedMAbdelkhalek 

Appendix 

a1=0.5(P r4VP f
2+4f?2), a 2 = - ^ ^ - ^ i , 

to Z^r b -2gfi 
' " ( 3 , ( 1 + 0 3 , -1) - (M 2 + A

2 ) ' 2 ,,((I + 0 ' ? - 1 ) - ( M 2 + X2) ' 

^ = -(1 + ^ + ^) , b3 = — _ M f L — p fM
2— 

V 2 ; 2a2(2a2-Pr)-P2 2»/(2// - P,)- P2 

= r _ _ P £ a 2 ^ _ _ _ = 2Pra,b,d,a2 
5 2a1 (2a1 -P, ) -P2 ' 6 ((a, + * * ) ( ( * + 32)- P,)- fl2)' 

h 2Pra,b,r1bz 2Pfa2d,77^ 
°7'- T, : — —; — r ? v ° s -( (a ,+^ ( (8 ,+^ ) - Pr)-R

2y ((a2 + r/)((a2 f 7,)- Pf)~ P2)' 
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_H^/ l + 4(l+0(/W2+x2) _ G ' § " ' 
*2 = 2TTT0 • ^ ( a i ( ( 1 + o a i ^ - ( w 2 n 2 ) ) ' 

b, = ~ G A b _ -Grb4 

^° ( 2 a 2 ( ( l - K ) a 2 - l ) - K + A2))' " (2r?(2(l + 0 ' 7 - l ) - ( ' W 2 + x2)) 
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—2£C 16 

^ 6 = ( , ( ( i + , h - i ) - V + * 2 ) ) ' d 2 = _ I > " ^ 9 

a3 = 0.5 (Pr + ^»? + 4(fl2+.25/u/P,))1 

b,7 = PTAay (a, (a, - Pr) - (ft2 + .25/u;Pr)J~ , a4 = 0.5 (v + Jv* + 4iuv )• 
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