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Chaotic behaviour of population on a square lattice 
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Abstract : Coverage of occupied sites on a square lattice is allowed to evolve according to a set of rules 
The rules imply an attractive interaction for growth of new members, the original members 'die', and the new 
population' multiplies and redistributes randomly over the lattice We show that this scenario leads to a steady 
coverage, cycles with a finite number of points and ultimately chaos as model parameters vary. The calculated 
results are verified by computer simulation. An immobile situation, where migration or redistribution over the 
lattice is restricted is also simulated. 
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1. Introduction 

Simple cellular automata algorithms are known to generate a variety of spatio-temporal 
patterns [1-3]. We present here an algorithm for evolution of population on a square lattice, 
which gives rise to chaotic behaviour. The term 'population' represents here, a collection 
of some kind of entity, physical, biological or otherwise, distributed on a square lattice. 
The probabilities for growth or death of these entities are site specific, i.e. dependent on 
the number of occupied nearest neighbours. We call the fractional number of occupied 
sites the 'coverage' and study evolution of the coverage under certain rules. 

Several versions of this model are possible, we study one version in detail, since it 
gives particularly interesting results. On varying model parameters the population distribution 
or coverage evolves to a steady state upto a certain parameter value, then shows repeated 
bifurcations and period doubling leading to chaotic behaviour interspersed with periodic 
windows. The bifurcation diagram looks remarkably like that of the celebrated logistic 
map [4]. 
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Many non-linear equations and iterated maps are known to generate chaos [5, 6], but 
we have not come across such reports for the type of system discussed here. 

2. Model 

Our model is as follows. We consider a square lattice, with unit spacing. The sites may 
be occupied or vacant. To start with - a fraction p0 of sites are randomly occupied. Next 
- the vacant sites can be filled up with a certain probability. We assume this growth 
probability to be dependent on the nearest neighbourhood environment. Then the original 
sites are evacuated and the newly added population multiplies by a certain constant 
factor A. This next generation population with concentration p1 are now randomly 
redistributed over the square lattice. This is the 'migration' process. These steps are 
repeated over and over to see how the population pn at the nth stage evolves. 

The neighbourhood dependent growth probability is B*, where k is the number of vacant 
nearest neighbour (n.n.) sites surrounding a vacant site, and B is a constant such that 0 
< B < 1. The situation is illustrated in Figure 1. 
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Figure 1. Schematic illustration for the growth rule on the square lattice. 

The evolution process can be represented by the following iterative map 

pn+1 = / \ (1-pJ[pn + B(1-pn)]4. (1) 

Here, the term (1 - pn) on the right represents the probability of a site being vacant. 
The fourth power binomial expression, when expanded, gives the probabilites of this vacant 
site having 1 to 4 vacant n.n. with the correct weightage. If all neighbours are occupied, 
the growth probability is 1, and it decreases with the number of vacant n.n. This in effect 
represents an attractive interaction between the entities occupying the sites. The factor 
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A multiplies the new population, the original generation dies out and the right hand side 
becomes the {n + 1)th generation population p ^ r If we now assume these new generation 
members to randomly redistribute themselves over the whole lattice, we are ready to 
repeat the process to get pn+2 and so on. 

The probability parameter B can take values between zero to one The multiplying 
parameter A can take any positive value but obviously, if it becomes so large that the 
product on the right exceeds 1, the situation becomes unphysical As we vary A and B 
within the permitted range, very interesting behaviour for the coverage (or population 
concentration) is observed. For B = 0.5, when we vary A, a steady coverage is observed 
upto A= 4.82 approximately At A = 4.824 (we vary A in steps of 0.001) the steady state 
bifurcates to a 2-point cycle. Here the coverage oscillates continuously between two values 
As A is increased further there are repeated bifurcations and finally 'chaos' where the 
coverage has an infinite period never repeating itself. There are intermittent periods where 
finite cycles return and penod-3 cycles can also be seen. Finally at A = 6 102 the range 
of p covers the whole range of physically meaningful values Further increase in A leads 
to unphysical negative values or values higher than 1. All these results are independent of 
the initial coverage pQ. Figure 2 shows the bifurcation diagram with 6 = 0 . 

Figure 2. The variation of coverage with A shows repeated bifurcations and chaos 

The fine structure of the figure is extremely intricate, as in the bifurcation diagram for 
the logistic map [4]. Figure 3 shows the details under higher magnification Emergence of 
the period three region is clearly visible here. So the occurrence of chaos is to be expected 
[7], according to the well known rule 'period three implies chaos'. A Misiurewicz point [8] 
where chaotic bands cross, is also visible. To quantify the chaotic behaviour, we have 
calculated the Lyapunov exponent according to the prescription in [8] around A - 6.02 
and obtained a positive value of 0.568. 

To verify these remarkable results, we have simulated the model on a computer. A 
square lattice of size 300 x 300 is generated. Sites on it are randomly occupied with an 
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initial concentration pt The vacant sites are then scanned to note k, the number of 
vacant n n and they are filled up with a probability Bk The new sites are counted and 
multiplied by the factor A and old occupied sites are evacuated The existing sites are 
now redistributed over the whole lattice, and the process is repeated, several thousands 
of times. The behaviour of the coverage agrees with the calculated results shown in figure 
(2) It takes typically 60 - 70 steps to reach the characteristic evolution pattern which is 
independent of the initial coverage. For B < 6.102, p takes values from 0 to 1. Obviously 
the unphysical values p > 1 or p < 0 are not possible in the simulation 

Figure 3. Details from a blow-up of Figure 2 show periodic windows with cycles of period 3 within the 
chaotic region 

It is interesting to note that when we remain confined to physically acceptable values 
of p in the range 0 to 1, full blown chaos can be observed only for B close to 0 5 For B 
= 0.2, a small steady state value of p is obtained upto A ~ 11, and after that the value 
oscillates between ±~>. On the other hand for larger S, eg with 6 = 0 8 , steady state 
is obtained for A ~ 2, but no bifurcation is observed with 0 < p < 1. 

3. Applications 

We discuss in brief some possible physical situations where this model may be 
applied 

3.1. Ferro-magnetic particles in magnetic field: 

Consider a 2-dimensional arrangement of spin-half particles, with a ferro-magnetic interaction 
between neighbours. When placed in an external magnetic field H, each particle can be 
in the ground state, the spin aligned in the direction of the field, or in the higher level with 
anti-parallel alignment. The difference in energy between the two levels is 2juH, where V 
is the magnetic moment. At a finite temperature more spins are in lower level. Spins can 
flip, depending on the temperature, keeping the total energy constant. This causes a 
spatial rearrangement, preserving the number of up and down spins. Let us now introduce 
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a radio-frequency field, which acts as a 'pumping' source of energy, similar to that in a 

laser The frequency of the r.f. field is v, where 

hv = 2nH. (2) 

The present model may now be applied to this system as follows. We assign the state 1 
/ e 'occupied' to the spins in the upper energy level and 0 or Vacant' to those in the 
iower. Assuming ferromagnetic interaction between nearest neighbours only, particles in 
the upper level, draw up nearest neighbours according to the rule illustrated in figure (1). 
The number of particles already in the upper level is reduced by a factor C, as they drop 
to the lower level, with emission of a photon. The number pushed up to the upper level 
are multiplied by factor A, due to the pumping. The temperature of the system is such as 
to redistribute or randomise the spatial arrangement of the spins with the total energy 
held constant. This sequence of events is represented by the equation below 

pn^=Cpn + AV-pn)\pn+B0-pn)]\ (3) 

This equation, with suitable choice of parameters A, B, C, leads to cycles with periods 
2, 4, 8 and so on. We found that for C = 0.6 and A = 4, B = 0.4 gives a period-2 cycle, 
B = 0.43 a penod-4 cycle and B = 0.44 a period-8 cycle. Values of p become unphysical 
for higher B. For C = 0.4, we get 2, 4 and 8 period cycles for B having values 0.53, 0.55 
and 0.57 respectively. The full phase behaviour is yet to be explored. The percolation 
behaviour of a magnetic system with 'bootstrapping' was studied in [9]. 

3.2 Condensation and evaporation: 

A somewhat similar model was suggested for condensation and evaporation of particles 
on a plane by Dutta et al [10]. The iterative map for this model can be represented in the 
present scheme as follows 

pm, = pn -Cpn +0-pn)[P-pn) + Dpn? (4) 

Here C represents evaporation probability at an occupied site and Eh is the adsorption 
probability at a vacant site with k occupied n.n. The probability of growth is less for sites 
with more occupied neighbours, so this situation mimics a repulsion between the particles. 
C and D are related to temperature and pressure, and it was found that under certain 
conditions the steady coverage bifurcates to a 2-point cycle. 

For the condensation / evaporation case Dutta et al [10] also studied an immobile 
particle model, through computer simulation, where the lateral movement of the particles 
is not allowed, so there is no randomisation after deposition. We also study an analogous 
version of the present model. 

Dutta et a/[11] previously studied a system with attractive interaction between particles 
condensing on a square lattice. Here the algorithm was different from the algorithm used 
in the present paper, and the results showed a phase transition and hysteresis, rather 
than bifurcation. 
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Equation (1) is not valid unless the pn entities are randomly distributed on the square 
lattice So only computer simulation is applicable to study the immobile case, with no 
migration of the new generation members We start as before, with a random distribution 
of a concentration p of occupied sited, and occupy new sites according to the rule described 
already But, here we forbid lateral motion of the newly deposited members. The additional 
(A - 1) pn daugther members produced by the multiplying factor A are distributed randomly 
over vacant sites 

The results tor the immobile case are almost identical to the mobile case This is 
rather surprising considering that in the 'immobile' case the generation which grows 
according the environment-specific rule have to remain confined to their original sites 
whereas in the 'mobile' case the second generation particles are randomly redistributed 
over the lattice before the next deposition step starts. 

4. Discussion 

Nonlinear systems described by iterative maps are well known [5, 6], they give rise to 
fascinatingly complex diagrams However, these systems are of special interest when 
they can be associated with real situations, - physical, chemical or biological The present 
model though hypothetical, may be applicable to various problems such as adsorption/ 
desorption or reaction-diffusion [12] problems in chemistry, magnetic systems in physics 
[9] or population dynamics [13] studies 

The number of neighbours considered for each site determines the order of the polynomial 
expression occurring in our map One can consider variations such as a linear chain, with 
two neighbours, or include second neighbours, to get a total of eight neighbouring sites 
on a square lattice 

Different modifications are possible, to represent attractive or repulsive interactions 
between the participating entities The growth or evacuation probability can be made site 
specific according to the demands of the problem Allowing the parameters to take 
unphysical values also gives results which may be interesting from the point of view of 
mathematics, though not meaningful in a practical sense. We hope to report some such 
results in future. In conclusion we may say that we have presented an interesting iterative 
map, associated with growth/death or adsorption / desorption on a regular lattice 
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