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SUMMARY 

Physical maps provide unique information about genome structure and organization. They show the real 

position of DNA sequences in the genome and have been widely applied in comparative genomics, 

genome research and gene isolation. Due to the genome complexity, development of a physical map is 

a challenging task. Physical mapping by Fluorescence In Situ Hybridisation (FISH) analysis allows direct 

visualization of DNA sequences on the chromosomes, but the length of the chromosomal fragment that 

can be routinely visualized by FISH is 5-10 kb, which is higher than the average plant gene length of 2500 

– 4000 bp. To visualize individual genes on plant chromosomes, a very sensitive method is required, 

such as Tyramide-FISH. Tyramide-FISH was originally developed for application on human and animal 

chromosomes (Raap et al., 1995). The first Tyramide-FISH applied for plant cytogenetics was on onion 

chromosomes (Khrustaleva and Kik 2001). Up till now, Tyramide-FISH methods are only well established 

for model plants (e.g. Allium, wheat).  

The aim of this thesis was to optimise Tyramide-FISH for physical mapping of unique short DNA probes 

in non-model plants. Allium, as a model plant, and Rosa, as a non-model plant, were used for the 

technology development followed by application of Tyramide-FISH for physical mapping of single-copy 

genes and physical map construction. Alllium is a herbaceous monocotyledon with a basic chromosome 

number of 8 (x=8), while roses are woody dicotyledons with a basic chromosome number of 7 (x=7). 

Moreover, Allium has very large chromosomes (mean total length - 69.7 µm) (Khrustaleva and Kik 2001), 

while the mean total length and compaction rate of Rosa chromosomes are eight and seven times less 

than in Allium cepa. Because of the small genome, small-sized chromosomes, low mitotic index in shoot 

and root tips, weak root development and thin roots, the application of any cytogenetic technique on 

Rosa chromosomes is very challenging. In contrast to Rosa, Allium is the favorite histological and 

cytological object for chromosome and mitotic cell observation (Patau et al. 1953; Gardner and Mertens 

1975; Johnson 1973). Because of the advantages of Allium as a model plant for cytological studies, the 

development and optimizations of physical mapping in this thesis were first performed on this genus 

and the obtained knowledge was then transferred to rose chromosomes.  

Knowing that the quality of chromosome preparation plays an essential role in the success of short probe 

physical mapping, a new protocol for chromosome preparation, named ‘SteamDrop’, was developed. 

This “SteamDrop” method was successfully applied on 28 plant species with large and small 

chromosomes (Kiseleva et al. 2014; Kriov et al. 2014; Kirov et al., 2015; Laskowska et al. 2015; Romanov 
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et al. 2015; Alexandrov and Karlov, 2016). The obtained chromosome slides are suitable for molecular 

cytogenetic methods and short DNA probe mapping. 

Secondly, the Tyramide-FISH detection technique was optimized. Direct and indirect detection systems 

were tested for Rosa wichurana and Allium chromosomes. The results indicated that the indirect 

detection system was superior to the direct detection system. In the indirect system, the signal 

frequency was between 25% and 40% and background signals were only observed when the direct 

detection system was applied. HRM markers for 3 gene fragments, which were positioned on the 

chromosomes by Tyramide-FISH, were developed and made it possible to include these gene fragments 

into the existing genetic linkage map of Rosa wichurana (Moghaddam et al. 2012). This allowed us to 

anchor three linkage groups to the physical chromosomes. To further improve the Tyramide-FISH 

mapping procedure, multicolor and high-resolution Tyramide-FISH were established for R. wichurana 

which allowed a 10-20 times higher resolution for gene mapping.  

Identification of individual chromosomes is required for effective physical mapping. FISH-based 

chromosome markers were therefore developed for the chromosomes of Rosa and Allium using 

conserved repetitive DNA sequences (45S and 5S rDNA, Arabidopsis-type telomeric repeat) and a 

bioinformatic search for new tandem repeats. By combining our cytogenetic markers with the 

chromosome morphology measurements, all 7 mitotic chromosomes of R. wichurana and all 8 

chromosomes of A. fistulosum could be identified.  

Using our optimised methods seven genes were successfully mapped on pachytene chromosomes 4 and 

7 of Rosa wichurana and a detailed pachytene map was constructed for these chromosomes. The 

developed protocols for multi-colour Tyramide-FISH allowed us to simultaneously visualize three genes 

and revealed the physical order of closely linked genes. An integration of the physical and genetic map 

was performed (Moghaddam et al. 2012).  
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SAMENVATTING 

Fysische kaarten zijn zeer waardevol in de studie naar genoomstructuren en organisatie. Deze fysische 

kaarten tonen de reële positie van DNA sequenties in het genoom. Daarom worden ze veel gebruikt in 

comparatieve genomische studies, genomisch onderzoek en gen isolatie. Echter, door de grote 

complexiteit van het genoom is het maken van fysische kaarten geen eenvoudige taak. Fluorescentie In 

Situ Hybridisatie (FISH) maakt het mogelijk om DNA sequenties direct te visualiseren op de 

chromosomen. De lengte van het chromosomaal fragment dat routinematig kan gevisualiseerd worden 

door FISH is 5-10Kb, wat echter veel groter is dan de gemiddelde lengte van een plantengen, nl. 2500 – 

4000 bp. Om individuele genen te visualiseren op de chromosomen zijn dus zeer gevoelige FISH 

methoden nodig, zoals Tyramide-FISH. Tyraminde-FISH werd oorspronkelijk ontwikkeld voor 

toepassingen in diergeneeskundig en geneeskundig onderzoek (Raap et al. 1995). De eerste Tyramide-

FISH experimenten bij planten dateren van 2001 bij ajuin (Khrustaleva and Kik 2001). Tot op vandaag is 

Tyramide-FISH enkel succesvol gebruikt bij model planten, vb. Allium and tarwe. 

Het doel van deze thesis was om de Tyramide-FISH technologie ook te optimaliseren voor het fysisch 

mappen van unieke korte DNA probes in niet-model planten. Voor deze optimalisatie werd Allium 

gebruikt als model plant en Rosa als niet-model plant. Het op punt gestelde protocol werd dan toegepast 

bij Allium en Rosa voor het mappen van single-copy genen en het opstellen van een fysische kaart. Allium 

is een kruidachtige monocotyl met een basis chromosoomaantal van 8 (x=8), terwijl rozen houtachtige 

dicotylen zijn met een basis chromosoomgetal van 7 (x=7). Verder heeft Allium zeer grote chromosomen 

(gemiddelde totale lengte = 69.7 µm) met een zeer hoge compactheid (249.6 MB/µm) (Khrustaleva and 

Kik 2001). Dit in tegenstelling tot Rosa waar de chromosoomlengte en -compactheid 8 en 7 keer kleiner 

zijn. Het kleine genoom, de kleine chromosomen, de lage mitotische index in de worteltoppen, en de 

zwakke ontwikkeling van de fijne wortels, maken dat het toepassen van cytogenetische technieken bij 

Rosa zeer moeilijk is. Allium daarentegen is een populair histologisch en cytologisch gewas voor 

chromosoomanalyse (Patau et al. 1953; Gardner and Mertens 1975; Johnson 1973). Door de voordelen 

van Allium als model gewas voor cytogenetische studies, zal in deze thesis de ontwikkeling en 

optimalisatie van Tyramide-FISH en fysisch mappen van genen in eerste instantie gebeuren bij dit genus. 

De opgedane kennis zal dan vertaald worden naar een optimaal protocol voor de roos chromosomen.  

De kwaliteit van de chromosoom preparaten speelt een cruciale rol in het succes van fysisch mappen 

van korte probes. Daarom was de eerste focus het ontwikkelen van een nieuw protocol voor het maken 

van chromosoom preparaten. Het “steamdrop” protocol dat op punt werd gesteld, werd met succes 

 11



toegepast op 28 planten genera, waaronder zowel planten met grote chromosomen als planten met 

kleine chromosomen. De verkregen preparaten zijn goed bruikbaar in verdere moleculaire 

cytogenetische experimenten en mappen van korte DNA probes.   

Vervolgens werd de tyramide-FISH detectie op punt gesteld. Zowel directe als indirecte 

detectiemethodes werden getest bij Rosa wichurana en Allium chromosomen. De resultaten toonden 

aan dat het indirecte detectiesysteem te verkiezen was boven het directe detectiesysteem. Bij het 

indirecte systeem, was de signaal frequentie tussen 25% en 40%. Achtergrond signalen werden vooral 

geobserveerd wanneer het directe systeem gebruikt werd. HRM merkers voor 3 gen fragmenten, die via 

Tyramide-FISH op de chromosomen gevisualiseerd werden, werden ontwikkeld en maakten het mogelijk 

om deze gen fragmenten te integreren in de bestaande (Moghaddam et al. 2012)  genetische 

koppelingskaart van Rosa wichurana. Op die manier werden 3 linkage groepen gekoppeld aan de 

overeenkomstige fysische chromosomen. Verdere  optimalisatie van Tyramide-FISH mapping bestond 

erin multikleur-FISH en hoge-resolutie FISH op punt te stellen voor Rosa wichurana. Hierdoor werd de 

resolutie voor gen visualisatie 10 tot 20 keer hoger. 

Om op een efficiënte manier genen fysisch te mappen, is het nodig om de chromosomen individueel te 

kunnen herkennen. Hiervoor werden FISH-gebaseerde chromosoommerkers ontwikkeld voor Rosa en 

Allium gebruik makend van conservatieve repetitieve DNA sequenties (45S, 5S rDNA, Arabidopsis-type 

telomeric repeat) en van via bioinformatica tools opgespoorde tandem repeats. Door een combinatie 

van de ontwikkelde cytogenetische merkers en chromosoom morfologische kenmerken, konden alle 7 

chromosomen van Rosa wichurana en alle 8 chromosomen van Allium fistulosum geïdentificeerd 

worden.   

Door toepassen van de geoptimaliseerde methodes konden in totaal 7 genen gelokaliseerd worden op 

pachyteen chromosomen 4 en 7 van Rosa wichurana en kon een gedetailleerde fysische kaart gemaakt 

worden van deze chromosomen. Verder werden 3 genen gelijktijdig gevisualiseerd door gebruik van 

multi-kleur Tyramide-FISH. Op die manier kon de fysische plaats van dichtbij elkaar gelegen genen toch 

bepaald worden. Als laatste stap hierbij werd een integratie gedaan van de fysische en genetische 

kaarten (Moghaddam et al. 2012).  
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1. PHYSICAL MAPPING OF PLANT GENOMES 

 

1.1 RELEVANCE 

 

The organization and structure of a genome is a central topic in modern molecular biology and genomics.  

Evidence is accumulating that the function of genes and their physical location are strongly linked 

(Talbert and Henikoff, 2006; Mandakova et al. 2015). Changes in the physical order of genes on a 

chromosome have significant consequences for cells and whole organisms. To reveal the physical 

organization of DNA sequences in genomes, a physical map is constructed, showing the real position of 

sequences (e.g. genes, repetitive DNA, regulatory sequences, epigenetic modifications etc.) on the 

chromosomes (cytogenetic maps) or scaffolds (sequenced genomes). Therefore, physical maps are 

indispensable in modern biology and are widely used in comparative genomic and evolutionary studies 

to reveal synteny and collinearity between genomes and to shed light on genome organization and 

structure (O'neill and Bancroft, 2000). Knowledge about genome structure and chromosome 

rearragements has shown importance in many applications from human diseases to gene cloning in 

plants (Miller et al. 2010; Jander et al. 2002; D’Orso et al., 2015; Himi and Taketa, 2015). Development 

and application of physical maps also support molecular plant breeding by allowing a significant 

shortening of time for breeding and selecting new crop varieties (Dohm et al. 2014). Identification of 

plant genes involved in pathways of economic important traits, such as disease resistance and tolerance 

to abiotic stresses, is enhancing efficient plant breeding towards continuously changing climate 

conditions. Thereby physical maps provide a platform for the efficient cloning of genes (Philippe et al. 

2013).  

However, despite the great importance and need of physical maps, their construction is very challenging 

especially in plants. The genome complexity (allo- and autopolyploidy) and high number of repetitive 

DNA sequences significantly slow down the efficiency of physical mapping. Development of new 

advanced methods for physical mapping that deal with these challenges is an important task in this 

(post)genomic era. 
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1.2.  PHYSICAL MAPS VERSUS GENETIC MAPS 

 

An important milestone in genome mapping was the publication of the first genetic map in 1913 

(Sturtevant, 1913). A genetic map shows the relative position of genetic markers along the 

chromosomes based on recombination frequency (Collard et al. 2005). The distance between markers 

is expressed in centi-Morgans (cM) and 1cM is equal to 1% of recombination. Since then, genetic maps 

have been published for many plant genera. In plant breeding programs, genetic maps can be used for 

marker-assisted selection (Ibitoye and Akin-Idowu, 2015), genetic study of qualitative and quantitative 

traits (Xiao et al. 1996; Mohan et al. 1997; Doerge , 2002; Yim et al. 2002), introgressive breeding (Dufey 

et al. 2015; Yohannes T. et al. 2015), map-based cloning of genes (Mohan et al. 1997; Mickelson-Young 

et al. 1995; Shimizu et al. 2015) and genome assembly (Ariyadasa et al. 2014; Deokar A. A. et al. 2014; 

Dohm J. C. et al. 2014; Argyris et al. 2015; Wu P. et al. 2015). However, while genetic maps are important 

in biology, they do not show the real physical distance between genes/markers due to unequal 

distribution of recombination frequencies along the chromosomes. One cM on a genetic map can be 

equivalent to a few kilobases as well as to millions of base pairs of physical distance (Kunzel et al. 2000; 

Blenda A. et al. 2012; Sun et al. 2013; Ariyadasa et al. 2014; Si et al. 2015).  

The development of the next generation sequencing techniques (NGS) exponentially increased the 

sequencing capacity and made whole-genome sequencing fast and robust (Varshney et al. 2009). Using 

NGS technologies, tens of plant genomes have been sequenced and genomes were assembled into 

pseudochromosomes or scaffolds, providing valuable information about the physical organization of 

genomes. But the genome complexity (allo- and autopolyploidy) and high number of repetitive DNA 

sequences make genome assembly and scaffold order arrangement very difficult. In spite of the huge 

progress in obtaining sequencing data, at present there are no good tools to solve the puzzle putting all  

short DNA reads obtained after genome sequencing together. The way from single base pair level to 

chromosome level is nowadays the main challenge. Using a genetic map as an intermediate between 

scaffolds and chromosomes, scaffolds can be accurately mapped in the regions with high (“hot spot”) 

recombination rates (Shearer et al. 2014). In contrast, genome assembly in centromeric, 

heterochromatic and other genomic regions with low recombination rates (“cold spot” of 

recombination) is problematic. Since recombination poor regions, such as centromeres and 

heterochromatin, occupy a significant portion of the genome (Kunzel et al. 2000; Mayer et al. 2011), it 

is impossible to unravel the organisation of the genome only by genetic mapping. Recent publications 
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suggest massive discrepancies between the in silico assembled version of the genome and nuclear 

genome. Most of these misassemblies occurred in the ‘cold’ spot recombination regions (Yang et al. 

2012; Karafiátová et al. 2014; Shearer et al. 2014). Therefore, to achieve high-quality assembly of 

genome sequences, an integrated approach is needed including different sequencing strategies such as 

long-size insert libraries, long-read sequencing (e.g. PacBio sequencing), Hi-C data based scaffolding as 

well as instruments not relying on recombination frequency such as cytogenetic mapping and optical 

mapping (Korbel and Lee, 2013; Cao et al. 2016; Chaney et al. 2016).  

Integration of cytogenetic and genetic maps have been carried out for many plant species and genera 

including Brassica rapa (Xiong et al. 2000), Allium cepa (Masamura et al. 2012; Romanov et al. 2015); 

Cucumis sativus (Han et al. 2011; Lou et al. 2013), Zea mays (Figueroa and Bass, 2012), Solanum species 

(De Jong et al. 1999; Szinay et al. 2008; Tang et al. 2009), Gossypium (Wang et al. 2010; Cui et al. 2015), 

Phaseolus vulgaris (Fonsêca et al. 2010), Vicia faba (Ruiz-Rodriguez et al. 2014), Beta vulgaris (Paesold 

S. et al. 2012), Brachypodium distachyon (Febrer et al.  2010), Lotus japonicus (Ohmido et al. 2010), 

Carica papaya (Zhang et al. 2010; Wai et al. 2012). Map integration in these studies significantly 

extended the understanding of plant genome organization, recombination frequency and epigenetic 

signature distribution along the chromosomes.  Filling the gaps between genome sequencing data and 

the (sub)chromosomal level is one of the current goals in modern genome biology.  

 

1.3 PHYSICAL MAPPING USING FLUORESCENCE IN SITU HYBRIDIZATION  

 

(Molecular) cytogenetic methods allow to directly assign the position of DNA sequences to the physical 

chromosomes. This makes fluorescence in situ hybridization (FISH) a favorable tool for physical mapping 

of a wide range of plant genomes even without any prior knowledge about the genome sequence. 

 The principle of FISH is illustrated in Figure 1. 
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Figure 1. FISH workflow. Labeled DNA (probe) is added to the chromosome slide followed by hybridization (37°C, 2 – 28h). 

Detection of the hybridization sites (red dots on the chromosomes) is performed by fluorochrome-labeled antibodies.  

 

The DNA of a probe is labeled by incorporation of a hapten (e.g. biotin, digoxigenin) or fluorochrome  

labeled nucleotides. This probe is hybridised to the chromosomes on the slide followed by fluorescent 

detection. Several layers of antibodies can be used to increase signal intensity but this often results in 

the simultaneous increase of background signals.  

The signals from the hybridization sites are collected and the relative position (RP) on the chromosomes 

is determined by the formula:  

𝑅𝑃 =  
Distance from the centromere to the signal ∗ 100 

Length of the chromosome arm
 

Maps constructed using FISH techniques are called cytogenetic maps.  

The FISH-based cytogenetic maps have a number of advantages:  

1. the real position of sequences on the chromosome is shown, 

2. the sequences are located in the context of major chromosomal landmarks (e.g. 

centromeres, telomeres, heterochromatin),  

3. a mapping population is not required (Jiang and Gill, 2006), 
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4. a plant collection with different chromosomal rearrangements (e.g. deletions) is not 

needed,  

5. all genome parts can be mapped regardless of their genome location (genome position 

independent mapping), 

6. they can be integrated with genetic and physical maps  

 

However, cytogenetic mapping is a laborious, time-consuming and low-throughput method. A high 

quality of the chromosome slides is crucial. The plant cell has a rigid cell wall making the chromosome 

preparation procedure quite time consuming. In addition, a high number of chromosomes and the 

difficulty to find a good source of dividing cells (e.g. pollen mother cells) further detain the chromosome 

preparation procedure. Between plant genera many differences in chromosome number and size as well 

as in mitotic index exist. Therefore, there is no standard chromosome preparation protocol directly 

suitable for all plant genera. Additional obstacles for cytogenetic mapping are the complexity of a plant 

genome containing high numbers of repetitive DNA and the frequent occurence of allo-/autopolyploidy.  

BAC-FISH is the main tool used for cytogenetic mapping of plant genomes. The large genomic inserts of 

BAC clones make them suitable probes for FISH both on mitotic as well as on pachytene chromosomes 

(De Jong et al. 1999; Szinay et al. 2008). BAC-FISH has been recently applied for high-density cytogenetic 

mapping of tomato (Shearer et al. 2014) and Spirodela polyrhiza (Cao et al. 2016) to verify and guide 

genome assembly, respectively. BAC-FISH results provided anchors for scaffold arrangement. The 

repetitive DNA in BAC clones may significantly hamper the process of BAC-FISH physical mapping 

because the FISH signals from the repeats are scattered over many loci on the chromosomes as a result 

of extensive cross-hybridization of repetitive DNA (Szinay et al. 2008). The problem can be circumvented 

by the application of repetitive fractions of genomic DNA (e.g. Cot fraction) as blocking DNA (Szinay et 

al. 2008; Chang et al. 2007). BAC-FISH was mostly used for species with a small genome (Arabidopsis, 

tomato etc.) while its application for species with large genomes (grasses, onion etc.) is challenging. For 

species with a large genome and a high number of repeats, FISH with single copy genes is applied. 
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2. PHYSICAL MAPPING OF INDIVIDUAL GENES BY FISH  

 

Single-copy FISH has been used to map genes and to create a cytogenetic map for maize, wheat, barley 

and oat (Wang et al. 2006; Lamb et al. 2007; Maron et al. 2013; Danilova et al. 2012, 2014; Poursarebani 

et al. 2014; Karafiátová et al. 2013). These species have large chromosomes and optimized protocols for 

chromosome preparation and FISH are widely described. The progress in application of FISH with single 

copy sequences in non-model species is slow. In addition, recent studies suggested that the FISH 

sensitivity is about 5 – 10 Kb (Jiang and Gill, 2006; Lamb et al. 2007; Danilova and Birchler, 2008; 

Karafiátová et al. 2013; Danilova et al. 2014). The average length of plant genes as is known from genome 

sequencing projects is about 2.5Kb (The Arabidopsis Information Resource website; Ming et al. 2008) 

which is lower than the sensitivity of FISH. To overcome this limitation, different approaches have been 

applied, including Tyramide-FISH (Raap et al. 1995; Khrustaleva and Kik, 2001), PRINS (primed in situ 

labeling) (Koch et al. 1989; Kubaláková et al. 2001) and modified probe labeling (Kato et al. 2006). PRINS 

has been used for single copy genes (Abbo et al. 1993; Zhu et al. 1995; Kaczmarek et al. 2007) as well as 

for repetitive DNA mapping (Kubalakova et al. 1997; Menke et al. 1998). However, the application of 

this method for physical mapping of short unique probes is limited due to high levels of background 

signals. To reduce background and increase signal-to-noise ratio (the number and intensity of the non-

specific and background signals compared to intensity of the real signal), Kato et al. (2006) proposed a 

modified procedure for probe labeling. Using fluorochrome labeled nucleotides and higher 

concentration of DNA polymerase I, authors showed that the effectiveness of labeled nucleotide 

incorporation into DNA molecules is increased, resulting in a more sensitive FISH procedure. This 

method has been applied for mapping of genes with a length as small as 2.6Kb (Danilova and Birchler, 

2008; Acevedo-Garcia et al. 2013; Danilova et al. 2012, 2014). To further increase the sensitivity of FISH 

mapping, Tyramide-FISH (Section 3 of this chapter) was proposed. Besides sensitivity, also the resolution 

of FISH, indicating the minimum distance at which two neighboring FISH signals can be distinguished, is 

important. In general, the resolution of FISH mapping is correlated to the resolution of the fluorescence 

microscopy, which is 200-250 nm, and the degree of chromatin compaction. The resolution of FISH on 

highly compact mitotic chromosomes is near 10 Mb, while on streched fiber DNA the resolution is 1 Kb 

(De Jong et al. 1999). However, the disadvantage of high-resolution fiber FISH is that the orientation of 

extended DNA fibers with respect to the centromere or telomere is undetermined. To increase the 

resolution of FISH but keep the chromosome structure, pachytene chromosomes can be used as they 
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have a compaction 7 – 100 times lower than mitotic chromosomes. Using pachytene chromosomes the 

resolution is increased to a few hundreds Kb (De Jong et al. 1999; Shearer et al. 2014). However, for 

many plant species pachytene chromosome preparation is very challenging (De Jong et al. 1999; 

Kulikova et al. 2001; Lacia and Pinto-Maglio, 2013; De Capdevill et al. 2009). 

Also other cellular and experimental factors influence the effectiveness of FISH (Figure 2).   

 

Figure 2. Experimental (gray) and cellular (green) factors that significantly influence the short DNA probe visualization. Orange 

arrows indicate cellular factors which can be compensated by experimental factors. 

 

Low chromatin accessibility results in weak or no FISH signals. The chromatin accessibility itself depends 

on several parameters:  

1. compaction of chromosomes 

2. degree of chromatin damage after chromosome slide preparation  

3. quality of chromosome slides  
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All these parameters cause changes in signal intensity and have an impact on the signal-to-noise ratio. 

To increase the chromatin accessibility, pachytene chromosomes (De Jong et al. 1999), DNA fibers (Jiang 

and Gill, 2006) or interphase nuclei (Jiang et al. 1995) can be used. Fiber-FISH and FISH on interphase 

nuclei provide superior FISH resolution but do not allow to assign the signals to specific chromosomal 

positions.  

Experimental procedures can compensate for the influence of all these cellular factors. For example, by 

enzyme digestion the cell wall is removed and cannot influence the FISH results. If chromosome 

identification by morphology is difficult, molecular cytogenetic markers can solve the problem. Thus, 

optimization of the experimental procedures plays a key role in successful visualization of short DNA 

sequences on a physical chromosome circumventing cellular factors influencing FISH efficiency. 

 

2.1 CHROMOSOME PREPARATION 

 

The chromosome preparation procedure has a very strong impact on chromatin accessibility and 

short probe detection (Ambros et al. 1983). Chromosome slides are considered to be suitable for FISH 

application if:  

1. they are free of cytoplasm and cell wall debris  

2. they have nicely spread chromosomes  

3. the chromosome structure is well preserved (Ambros et al. 1986; Schwarzacher et al. 1989).  

 

There are currently three methods for plant chromosome preparation: the squash (Belling, 1921; 

Schwarzacher et al. 1980; Schwarzacher and Leitch, 1994), spread (Pijnacker and Ferwerda, 1984; Fukui 

and Ilijima, 1991) and drop (Mouras et al. 1978; Murata, 1983; Ambros et al. 1983; Andras et al. 1999; 

Anamthawat-Jonsson, 2003; Kato et al. 2004) method. Squash and spread methods have been 

commonly used during decades while the drop method was originally developed for human cells and is 

less common in plant science. In contrast to animal cells, plant cells have a rigid cell wall making the 

application of the drop technique challenging. The first drop method was applied to protoplasts having 

no or a weak cell wall (Murata, 1983). However, the described protocol had several disadvantages:  
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1. a low mitotic index due to cell loss during protoplast isolation and protoplast damage under 

hypotonic treatment  

2. polyploidy caused by spontaneous fusion of protoplasts  

3. a labor-intensive protocol 

4. protoplast isolation from intact plant tissue is more difficult than from cultured cells.  

 

Kato et al. (2004) modified the drop method and proposed a new air dry drop method. According to that 

protocol, the cell suspension was consecutively washed in water, 100% ethanol and acetic acid/ethanol 

(9:1), dropped onto a glass slide in a humid box and dried slowly. Kato et al. (2004) proposed two main 

modifications for improvement: application of a high concentration of acetic acid or even pure acetic 

acid for a better chromosome spreading and use of ‘laughing gas’ (nitrous oxide) as an anti-tubulin 

agent. The method of Kato et al. (2004) was intensively used for chromosome preparation of maize (Kato 

et al.2006; Danilova and Birchler, 2008), soybean (Gill et al. 2009) and wheat (Komuro et al. 2013; Yuan 

et al. 2015). However, the application of this method for species with large sized chromosomes 

remained problematic (Komuro et al. 2013). Studies carried out on animal cells demonstrated that the 

chromosome spreading during chromosome preparation is a complex and highly dynamic process that 

depends on many factors (Spurbeck J. L. et al. 1996; Hliscs et al. 1997; Henegariu et al. 1999; Claussen 

U. et al. 2002; Deng et al. 2003; Ami et al. 2014). In contrast to animals, the study of the dynamics of 

chromosome spreading and the influencing factors is not yet undertaken for plants. Filling this gap can 

improve the current protocols for plant chromosome preparation.  

  

2.2 DETECTION SYSTEM 

 

There are two types of detection systems: direct and indirect detection systems (Leitch et al. 

1994). In the direct detection system, the probe is directly labeled by fluorochromes and sites of 

hybridization are visualised under the fluorescence microscope without making use of any further 

detection layers. During the last decade, application of FISH with fluorochrome labeled probes and direct 

detection has been frequently used on plant chromosomes. New protocols for probe labeling by 

fluorochromes (Kato et al. 2004, 2006) together with the modern digital imaging systems using CCD 
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(charge coupled device) cameras enable chromosome mapping by direct FISH detection much faster 

and efficient. This system is especially useful for repetitive DNA mapping (Kato et al. 2011; Komuro et 

al. 2013; Danilova et al. 2014) but also unique and short DNA probes can be detected with this system 

(Maron et al. 2013; Danilova et al. 2014; Tiwari et al. 2015). However, by direct detection the signal 

intensity for single copy sequences is relatively low compared to the indirect detection system, in which 

the probe is labeled by a hapten (e.g. biotin, digoxigenin) and the sites of hybridization are visualised 

after additional detection with antibodies conjugated with a fluorochrome or with enzymes (enzymatic 

detection). Indirect detection can also be performed without antibodies but with a ‘click-chemistry’ 

reaction (Hesse et al. 2016) to couple the fluorochromes to the alkyne-modified target DNA after probe 

hybridization. This approach was successfully used for repetitive DNA detection (Hesse et al. 2016). 

Antibody based indirect detection systems can be performed with different numbers and types of 

antibodies. Generally, indirect detection systems allow to amplify signal intensity by increasing the 

number of fluorochromes per labeled nucleotide. This can be achieved via sequential application of 

fluorochrome labeled antibodies or/and via an enzymatic reaction bringing the multiple fluorochrome 

molecules to the site of probe hybridization. However, each amplification step in the indirect detection 

procedure also increases the background signals. Therefore, optimization is required to increase the 

signal to noise ratio and to reach maximum sensitivity. 

 

2.3 CHROMOSOME MARKERS 

 

To assign the FISH signals to a specific chromosome or chromosome pair the chromosomes have 

to be distinguishable in the karyotype. A robust method for chromosome discrimination is important for 

successive cytogenetic mapping (Jiang and Gill, 2006). The morphology of chromosomes (centromere 

index (CI = length of short arm * 100 / length of entire chromosome) and relative chromosome length 

provides limited information for chromosome identification. Especially when small or/and high number 

of chromosomes are present in a karyotype, chromosome identification is very challenging. The 

application of cytogenetic banding techniques and molecular-cytogenetic (FISH-based) markers 

accelerate the process of chromosome identification (Fuchs et al. 1996; Kato et al. 2004; Koo et al. 2005; 

Divashuk et al. 2014; Lombello and Pinto-Maglio, 2004; Pedrosa et al. 2000; Muravenko et al. 2010). 

FISH-based markers are a versatile tool for plant chromosomes (Jiang and Gill, 2006). The sources of the 

DNA probes which can be used as cytogenetic markers include BAC and YAC clones, genes and tandemly 
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organized repeats. The latter source is more frequently used for chromosome identification because the 

location of tandem repeats on the chromosomes can be easily detected by FISH. Plant genomes are 

enriched by various types of repetitive DNA e.g. tandem repeats and FISH with tandem repeats often 

results in chromosome specific patterns (Snowdon et al. 2000; Hasterok and Maluszynska, 2000; 

Navratilova et al. 2003; Koo et al. 2005; Muravenko  et al. 2009; She et al. 2015; Badaeva et la., 2016; 

Tran et al. 2016). Tandem repeats can be either conserved among different plant species (e.g. 45S, 5S 

rDNA, telomeric repeat) or highly variable (e.g. satellite DNA). The rDNA repeats, 45S and 5S, are often 

used for plant chromosome discrimination as they usually occupy distinct regions of a certain 

chromosome and they are easy to visualize. In addition, the probes can be generated even from clones 

belonging to distantly related species, enabling probe design without preliminary knowledge about the 

DNA sequence of the studied species. Compared to the rDNA sequences, satellite DNA sequences are 

highly variable in terms of chromosome location as well as DNA sequence similarity. But patterns of 

chromosomal location of the satellite DNA sequences can be unique for specific chromosomes, allowing 

them to be identified as was demonstrated for Vicia faba (Macas et al. 2003), V. sativa (Navratilova et 

al. 2003) and Triticum species (Cuadrado and Schwarzacher, 1998; Komuro et al. 2013; Badaeva et al. 

2016). In order to isolate satellite DNA sequences from plant genomes without knowledge about their 

genomic sequence, several molecular methods were developed (reviewed by Hemleben et al. 2007). 

The breakthrough in satellite DNA isolation and characterization was the introduction of high-

throughput next generation sequencing (NGS) and specific bioinformatic algorithms for identification of 

satellite DNA sequences. One of this algorithm is the RepeatExplorer (Novak et al. 2010, 2013). 

RepeatExplorer uses NGS data from low genome coverage sequencing and performs all-to-all read 

comparison followed by a graphical reconstruction (Novak et al. 2013). The RepeatExplorer output 

provides information about the repeatome composition and allows identification of tandemly organized 

repeats based on their cluster shape and contig sequences. This tool was successfully used for isolation 

of tandemly organized repeats from a number of plant species (http://www.repeatexplorer.org/). 
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3. TYRAMIDE-FISH – A HIGHLY SENSITIVE TECHNIQUE FOR CYTOGENETIC MAPPING OF SHORT DNA 

PROBES ON PLANT CHROMOSOMES 

 

One of the methods used for the visualization of short DNA probes is Tyramide-FISH (also called TSA 

(tyramide signal amplification)-FISH, CARD (Catalised reported deposition)-FISH or Tyr-FISH). This 

method was first introduced by Raap et al. (1995) and applied in animal cells. In 2001, Tyramide-FISH 

was used on plant chromosomes for the first time to map a T-DNA insertion (710bp) in shallot 

(Khrustaleva and Kik, 2001). Tyramide-FISH uses an enzymatic detection of hapten-labeled probes. The 

principle of Tyramide-FISH is based on the capacity of horseradish peroxidase (HRP) to oxidise phenolic 

molecules (e.g. phenols, tyramine, tyrosine etc.) in the presence of hydrogen peroxide and to catalyse 

their polymerization (Figure 3). 

 

 

Figure 3. Polymerization of phenol derivatives by horseradish peroxidase (Gross et al. 2001). 

 

In an aqueous solution, a single molecule of HRP can catalyse the oxidation of 107 substrate molecules 

per minute (Zhang et al. 2013). The oxidized substrate molecules can then bind to identical substrate 

molecules causing di-, tri- or polymerization or can couple to other phenolic molecules. To prevent 

polymerization, exogenic electron-rich molecules are used. Electron-rich molecules play a role as carrier 

to which the HRP oxidized substrate molecules can bind (Watabe et al. 2011; Bhattacharya et al. 1999). 

Proteins can be used for this, at least if they contain electron-rich amino acids such as tyrosine, 

tryptophan or phenylalanine (Figure 4). 
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Figure 4. Binding between oxidized tyramides labeled with tetramethyl rhodamine (TMR) and proteins by HRP and H2O2 

(Watabe et al. 2011). 

 

To manipulate the HRP reaction, Bhattacharya et al. (1999) created an artificial electron-rich protein 

(based on Bovine Serum Albumin (BSA)) and applied it in Dot-ELISA. To increase the sensitivity of the 

Dot-ELISA method, electron-rich proteins were used instead of normal blocking proteins (conventional 

BSA) to cover the Dot-ELISA membrane before the HRP reaction with tyramide-HRP starts. Authors 

hypothesized that by increasing the number of “landing places” for HRP, oxidized tyramides will allow 

more tyramides to be left on the membrane after washing and, as a consequence, a higher sensitivity 

can be achieved up to approximately 10000 times (Bhattacharya et al. (1999)). The same principal was 

also used in some other studies (Pal and Dhar, 2004; Zhang et al. 2011; Huang et al. 2013). 

To use this HRP reaction in a FISH protocol, the following modifications were made:  

1. the HRP enzyme was conjugated with an antibody or streptavidin molecule  

2. the tyramide molecules as substrate for HRP were conjugated with fluorochromes (tyramide-FLU, 

direct Tyramide-FISH) or haptens (tyramide-HAP, indirect Tyramide-FISH) (Figure 4).  

 26



 

Figure 4. The principal of Tyramide-FISH (direct Tyramide-FISH is shown). Sites of hybridization are detected by antibodies 

conjugated with horseradish peroxidase (HRP). Adding tyramide-fluorochromes (or tyramide-haptens) molecules in the 

presence of hydrogen peroxide results in tyramide oxidation by HRP and a covalent coupling of the tyramide-fluorochromes to 

electron-rich molecules such as tyrosine, tryptophan and phenylalanine amino acids of histones.   

 

Both direct and indirect Tyramide-FISH detection systems can be used for physical mapping of repetitive 

and unique DNA sequences on plant and animal chromosomes. Comparison of the effectiviness of these 

two systems for short DNA probe mapping was performed for human (Schriml et al. 1999). In the indirect 

detection system (Figure 5) tyramide-biotin/streptavidin-fluorochrome reagents mostly showed 

superior results.  
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Figure 5. Indirect Tyramide-FISH detection system. Tyramides used for indirect detection system are conjugated with haptens 
(e.g. biotin). By reacting with HRP the tyramide-hapten molecules are detected by hapten-specific antibodies or streptavidin (if 
tyramide-biotin conjugates are used) conjugated with fluorochromes (e.g. TexRed). 

 

 

4. APPLICATIONS OF FISH BASED PHYSICAL MAPS 

 

4.1 ASSISTANCE IN GENOME ASSEMBLY 

 

Cytogenetic mapping may be successfully implemented in the final steps of genome assembly to validate 

and establish the position of long genomic sequences (e.g. scaffolds and pseudochromosomes) (Cao et 

al. 2016). The number of examples of successful application of cytogenetic mapping in plant genome 

sequencing is growing. FISH verified genome assembly for example in Amborella (Chamala et al. 2013). 

In total, authors were able to cytogenetically locate 176 Mb, or 25% of the genome of this genus. Shearer 

et al. (2014) applied BAC-FISH in combination with optical mapping to verify the tomato genome 

sequence. Unexpectedly, they found that 45 of the 91 scaffolds of the tomato genome did not 

correspond to the order as established by linkage maps. The length of all inappropriately arranged 

scaffolds was equivalent to 34% of the genome consisting of thousands of genes. In addition, authors 

showed that nearly 5% of the tomato genome was not incorporated in the genome sequence, but was 

represented as gaps. Most of the discrepancies were located in the heterochromatic regions (Shearer 
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et al. 2014). Recently, 91% of the genome of duckweed (Spirodela polyrhiza) was assembled using FISH 

(Coa et al. 2016). After assembly of the genome based on NGS data, contigs were obtained. To anchor 

these contigs to the chromosomes, authors identified BAC clones corresponding to the contigs and used 

these in FISH experiments. A total of 110 BAC clones representing 6.4% of the Spirodela genome were 

localised on the chromosomes providing anchors for whole genome assembly.  

FISH-based physical maps can be integrated with genetic maps and used for scaffold arrangement. As 

the genetic map resolution is very low in pericentromeric regions in which genetic recombination is 

suppressed and recombination events are not equally distributed along the chromosomes (Blenda A. et 

al. 2012; Sun et al. 2013; Ariyadasa et al. 2014), integrated maps are more useful for genome assembly 

verification as it was demonstrated, for example, in cucumber and tomato (Szinay et al. 2008; Sun et al. 

2013). All these studies show that FISH based maps are indispensable tools for genome assembly to 

confirm the physical locations of markers on linkage groups, to identify mis-assembled clones and to 

evaluate the size of the remaining gaps in the assembly (Sun et al. 2013). 

 

4.2 COMPARATIVE GENOMICS 

 

A comparative analysis of the genome organization between different species allows shedding light on 

genome evolution and speciation events. Cytogenetic maps are valuable tools for a comparative 

genomic analysis as they allow comparing the location of DNA sequences on chromosomes of different 

species and by this reveal macrosynteny and collinearity between their genomes. A change in gene order 

and chromosomal location in different species may influence gene functionality by disrupting the link 

between gene and its regulatory elements or by placing the gene inclose proximity to the 

heterochromatin (Mandakova et al., 2015; Talbert and Henikoff, 2006). Therefore, understanding of 

interspecific chromosomal differences can help to unravel mechanisms of gene regulation and 

adaptation. Cytogenetic maps were used for comparative genome analysis in many plant genera 

including cotton (Cui et al. 2015), Solanaceae (Szinay et al. 2008; Iovene et al. 2008; Tang et al. 2008), 

Cucumis (Li et al. 2011; Yang et al. 2014), Brassicaceae (Fransz et al. 2000, Lysak et al. 2005 ), Graminae 

(Ma et al. 2010; Aliyeva-Schnorr et al. 2016; Danilova et al. 2014) among others. Iovene et al. (2008) 

reported FISH mapping of 30 genetic marker-anchored BACs on the pachytene chromosome 6 of potato. 

Using these markers for FISH on tomato pachytene chromosomes the authors demonstrated that short 
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arms of chromosome 6 of tomato and potato differ by inversion (Figure 6). Because many R genes have 

been found in the short arm of chromosome 6, Tang et al. (2008) speculated that this inversion may 

influence the trend of R gene evolution in this region of tomato and potato. 

 

 

Figure 6. Comparative FISH analysis of pachytene chromosome 6 of tomato and potato (Iovene et al. 2008). BAC-FISH revealed 

an inversion differentiating the short arms of chromosome 6 of tomato and potato. Bars are 5 µm. 

To reveal genomic differences between Cucumis sativus, C. hystrix and C. melo, Yang et al. (2014) 

performed large-scale comparative pachytene FISH mapping using more than 100 fosmid clones and 

demonstrated a number of structural chromosomal differences between species.  

 

4.3 GENETIC AND PHYSICAL MAP INTEGRATION 

 

Integration of genetic and physical maps can be useful for:  

1) studying recombination event distribution along chromosomes (Aliyeva‐Schnorr et al. 2015; 

Lou et al. 2013);  

2) calculation of the physical distance between genetically mapped markers (Khrustaleva et al. 

2013);  

 30



3) revealing the order of genes in the regions with low recombination frequency (Aliyeva‐Schnorr 

et al. 2015; Karafiatova et al. 2013);  

4) anchoring linkage groups to physical chromosomes (Ruiz-Rodriguez et al. 2014) and  

5) assisting in genome assembly (Sun et al. 2013; Shearer et. al. 2014).  

 

Understanding the relations between genetic and physical distance is important for map based gene 

cloning (Tanksley et al. 1992). To perform map integration the same DNA sequences are usually used 

for genetic and cytogenetic mapping. Map integration using this approach is efficient and cost-effective 

and has been conducted for a number of plant genera (Xiong et al. 2000; Masamura et al. 2012; 

Romanov et al. 2015; Han et al. 2011; Lou et al. 2013; Figueroa and Bass, 2012; Wang et al. 2010; Cui et 

al. 2015; Fonsêca et al. 2010; Ruiz-Rodriguez et al. 2014; Paesold S. et al. 2012; Febrer et al.  2010; 

Ohmido et al. 2010; Zhang et al. 2010). 
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5. CYTOGENETICS IN ROSA AND ALLIUM  

 

5.1 ROSA  

 

The genus Rosa belongs to the Rosaceae family which contains a number of economically 

important species such as cherry, apple, apricot, pear etc. Cytogenetic studies in the Rosaceae family 

are scarce. Until recently only 45S and 5S rDNA have been used in cytogenetic research on Rosa species. 

The main focus of these studies was to perform FISH mapping of these rDNA probes and evaluate the 

obtained results in the context of phylogenetic relationships between species (Ma and Chen, 1991, 

1992; Ma et al. 1997a, b; Fernandez-Romero et al. 2001; Akasaka et al. 2002, 2003; Liu et al. 2008, Jian 

et al. 2013a, 2013b). In all these studies, it was shown that almost all diploid Rosa genomes have one 

chromosome pair that possesses 45S rDNA signals on the Nucleolus Organizing Region (NOR). However, 

exceptions were also found as in R. foliolosa which has 3 chromosome pairs with 45S rDNA loci (Akasaka 

et al. 2003). Fernandez-Romero et al. (2001) used FISH with 45S rDNA to elucidate the origin and 

chromosome complements in diploid, triploid and tetraploid ancestor species of the subgenus Rosa. By 

this, the authors proved the autotriploid and allotetraploid nature of R. chinensis and R. gallica, 

respectively (Fernandez-Romera et al. 2001). In contrast to 45S rDNA loci, 5S rDNA loci are located on 

two chromosome pairs of Rosa species belonging to “subset A” (Akasaka et al., 2002). One of the 5S 

rDNA loci is usually collocalized with 45S rDNA genes on the NOR bearing chromosome (Akasaka et al., 

2002; Lim et al. 2005). Two color FISH with 45S and 5S rDNA probes was successfully used to study 

chromosome pairing in R. canina (2n=5x=35). FISH revealed that two chromosome sets of R. canina are 

involved in bivalent formation and no recombination occurred between the other three chromosome 

sets (Lim et al. 2005).  

 

Application of molecular cytogenetic techniques on Rosa chromosomes is hampered by:  

1) the small size of the genome (the diploid genome size is 0.83 to 1.30 pg/2C; Roberts et al. 

2009) and chromosomes (basic chromosome number x=7) which are difficult to distinguish;  

2) polyploidy in the genus (Vamosi and Dickinson, 2006), ranging from 2n=2x=14 to 2n=10x=70 

(Jian et al. 2010);  
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3) the low mitotic index in roots and shoots and weak and tiny roots which are difficult to handle 

(Ma et al. 1996).  

To overcome these challenges, optimization of the chromosome preparation method will be required 

as a first step towards advanced molecular cytogenetic techniques including physical mapping of short 

DNA probes. Cytogenetic markers for rose chromosomes are now limited to 45S and 5S rDNA Akasaka 

et al. 2003). So also, better cytogenetic markers will accelerate the process of physical mapping of rose 

genomes.  

 

5.2 ALLIUM  

 

Allium belongs to the subfamily Allioideae of the Alliaceae family (Asparagales) and consists of nearly 

780 species (Friesen et al. 2006). Most of the Allium species are diploids and have a basic chromosome 

number of x=8 while some Allium species have a basic chromosome number of x=7 and x=9. Due to the 

large chromosomes and high mitotic index, some Allium species (A. cepa and A. fistulosum) have been 

used as model species for cytogenetic research. Moreover, A. cepa and A. fistulosum are important crops 

growing world-wide. Extensive breeding programs stimulate the use of molecular cytogenetic methods 

(FISH, GISH and Tyramide-FISH) for Allium. FISH was used to reveal the chromosomal location of major 

repetitive elements including 45S rDNA, 5S rDNA (Hizume 1994; Lee and Seo 1997; Shibata and Hizume, 

2002), and the subtelomeric repeat (Fesenko et al. 2002). These studies suggested that 45S and 5S rDNA 

are useful cytogenetic markers for 2 (A. fistulosum) or 3 (A. cepa) chromosome pairs. Recent research 

performed on A. fistulosum shed light on its centromeric DNA (Nagaki et a., 2012). Fajkus et al. (2015) 

conducted a broad search on Allium telomere repeats and showed that the Allium telomere contains an 

unusual repeat, (CTCGGTTATGGG)n. This study also provides a new marker for Allium chromosomes 

assisting in chromosome end identification. Allium species have huge genomes varying from 7 pg/1C (A. 

altyncolicum) to 31.5 pg/1C (A. ursinum) with a high fraction of repeat sequences (Ricroch et al. 2005). 

Physical mapping of such a large genome is challenging because of various types of repetitive DNA. 

Application of BAC-FISH to A. cepa chromosomes resulted in signals distributed on all chromosomes for 

most of the BAC clones (Suzuki et al. 2001). Using Cot-100 fraction for blocking of non-specific 

hybridization signals allowed to perform BAC-FISH for physical mapping of LFS genes (Masamure et al. 

2012). To overcome problems with non-specific hybridization of repetitive DNA, Khrustaleva and Kik 
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(2001) optimized the Tyramide-FISH technique and showed that DNA sequences as small as 710 bp can 

be visualized on onion chromosomes by this method. Recently, Tyramide-FISH was used for physical 

mapping of markers linked to the onion Male Sterility (Ms) locus (Khrustaleva et al. 2016). The Ms 

markers are physically located near the centromere of onion chromosome 2 providing evidence that the 

Ms controlling gene is located far away from the genetic markers. The pericentromeric location of the 

Ms locus suggested that map-based cloning of Ms controlling genes can be challenging (Khrustaleva et 

al. 2016). To extend the physical map of the onion genome, Romanov et al. (2015) used Tyramide-FISH 

to locate EST clones on chromosome 5. This onion chromosome is known to carry loci controlling a 

number of desirable traits including dry matter content, pungency, storability of bulbs, amounts and 

types of epicuticular waxes, and resistances to abiotic stresses (Romanov et al. 2015). Five unique probes 

were positioned on A. cepa chromosomes and an integration of the physical and genetic map for this 

chromosome was achieved.  

Although members of the Allium genus have been widely used for cytological studies (e.g. Allium test) 

the physical map construction by FISH is significantly hampered by repetitive DNA and the huge genome. 

Ongoing sequencing of Allium cepa and extensive breeding programs require knowledge about the 

physical location of genes. Development of robust cytogenetic markers for chromosome identification 

is also an important step towards the understanding of the genome organization and evolution in Allium.  
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RESEARCH OBJECTIVES 

 

Since the first application of Tyramide-FISH, no significant optimization of the method was carried out. 

Questions considering the HRP reaction with tyramide on the slide remain to be answered to achieve 

higher reproducibility of the results and improved signal-to-noise ratio. For example: How do the 

chromosome preparation and the pretreatment of slides influence Tyramide-FISH results? With what 

kind of molecules do tyramides oxidized by HRP bind in the site of HRP localization? Can Tyramide-FISH 

be applied to pachytene chromosomes to further increase spatial resolution of the method? Unraveling 

of the influencing factors and optimization of the technology would help to improve this method and 

would make physical mapping of short DNA probe by Tyramide-FISH more effective and provide higher 

throughput.  

Chromosome preparation, FISH detection systems and cytogenetic markers play a key role in successfull 

physical mapping of short DNA probes by Tyramide-FISH. These factors are only optimized for a limited 

number of plant genera including the cytogenetic model plants maize (Wang et al. 2006), wheat 

(Danilova et al. 2014) and barley (Aliyeva-Schnorr et al. 2016). Development and optimization of new, 

easy-to-use, cytogenetic tools for other plant species is a challenge. Especially for plants of which 

genome sequencing is ongoing, it will be interesting to be able to integrate the genome sequence data 

and the cytogenetic data to accelerate genome assembly. 

The general focus of this thesis is to improve short and unique DNA probe physical mapping for Allium 

and Rosa species. To achieve this aim, we choose plant species from the genera Allium and Rosa. Allium 

species are model plants for cytological studies having high mitotic index in root meristems and large 

chromosomes while Rosa species were rarely used for molecular cytogenetic studies because of their 

small chromosomes, tiny roots and challenging chromosome preparation and FISH application.  

In addition, R. wichurana is one of the species involved in the origin of most of the modern rose cultivars 

and is a valuable source of resistance genes (Dugo et al. 2005; Moghaddam et al. 2012; Leus et al. 2009). 

It is diploid and has shoot meristems that are very suitable for chromosome preparation. Genome 

sequencing for R. wichurana is ongoing and good cytogenetic methods to verify the physical order of 

contigs and the genetic map will be of great importance for full genome assembly. 
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More detailed objectives of this thesis are: 

1. to develop a highly efficient chromosome preparation method suitable for species with large 

and small chromosomes;  

2. to optimize and evaluate direct and indirect Tyramide-FISH detection systems.  

3. to develop a chromosome marker system for Allium and Rosa chromosomes; 

4. to optimize high resolution and multicolor Tyramide-FISH using R. wichurana pachytene 

chromosomes; 

5. to perform physical mapping of target genes (1.1 – 3.5 Kb) on chromosomes of Allium and 

Rosa species;  

6. to carry out anchoring of linkage groups of R. wichurana to the physical chromosomes; 
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RESEARCH OUTLINE 

 

Results in this thesis (Part II) are divided into four chapters addressing specific research questions and 

objectives. The first three chapters describe different technology optimisation processes and focus on 

the development of a chromosome preparation method (chapter 1), the set-up of the Tyramide-FISH 

detection system (chapter 2), and the use of a cytogenetic marker system (chapter 3). We aimed to 

answer different research and technical questions including: How can the chromosome preparation 

procedure be improved to be applicable for a wide range of plant species? (chapter 1); Will the 

chromosome preparation procedure influence the results of Tyramide-FISH? (chapters 2 and 4); Which 

detection system, direct or indirect, is optimal for the visualization of unique genes on R. wichurana 

chromosomes (chapter 2)? What DNA sequences are useful for chromosome identification in R. 

wichurana and A. fistulosum (chapter 3)? Can high resolution and multi-color Tyramide-FISH be applied 

for physical mapping on R. wichurana pachytene chromosomes (chapter 4)?  

In chapter 4 the application of the optimized techniques for physical mapping of target genes (1.1 – 3.5 

Kb) is described on chromosomes of Rosa wichurana and Allium. Based on the physical mapping results 

we looked for an answer on biological questions: What are the differences in gene distribution between 

A. cepa and A. fistulosum chromosomes? To what extent is the macro synteny level between R. 

wichurana and other Rosaceae genomes?  

Chapter 1: Development of a highly efficient chromosome preparation method suitable for species with 

small and large chromosomes 

The study of the dynamics of chromosome spreading occurring on the slide during chromosome 

preparation and the influencing factors is not yet undertaken for plants. Filling this gap can improve the 

current protocols for plant chromosome preparation. In Chapter 1 the study of the dynamics of plant 

chromosome spreading and the development of a chromosome preparation method named 

“SteamDrop” is described. It is shown that steam stimulates rapid chromosome spreading and 

chromosome stretching. Based on these observations, the “SteamDrop” protocol was designed for the 

preparation of well-spread mitotic and pachytene chromosomes and successfully applied to 28 plant 

species with large and small chromosomes. Both mitotic and meiotic chromosomes prepared by 

“SteamDrop” are suitable for FISH experiments with repetitive and short DNA probes.  
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Chapter 2: Evaluation of direct and indirect detection systems for efficient physical mapping of genes 

Tyramide-FISH has previously been used for Allium (Khrustaleva and Kik, 2001) but never for Rosa. 

Because the effectiveness of the standard direct detection protocol was very low for R. wichurana 

chromosomes, we had to set up an alternative detection system. In this chapter, we describe the results 

of optimizing the indirect detection system and its successful application for physical mapping of 3 gene 

fragments on Rosa wichurana mitotic chromosomes.  

 

Chapter 3: Development of cytogenetic markers for Rosa and Allium chromosome identification 

Chapter 3 presents the results of the development of cytogenetic markers for Rosa wichurana and A. 

fistulosum. By the application of FISH with conservative DNA probes, it was shown that 45S rDNA and 

5S rDNA can be used for distinguishing 5 out of 7 R.wichurana chromosome pairs. Another strategy for 

identification of FISH-based cytogenetic markers is to perform a bioinformatic search for tandemly 

organized repeats. This resulted in the isolation of 2 new tandem repeats in Allium fistulosum, CAT36 

and HAT58, which were validated as useful cytogenetic markers.  

 

Chapter 4: Physical mapping of target genes on chromosomes of Allium and Rosa species 

In this chapter we demonstrate that the developed protocols are useful for individual gene mapping for 

plant chromosomes. By application of the newly developed “SteamDrop” protocol, the optimized 

indirect detection system and the cytogenetic markers, we were able to physically map 7 genes (1.7 – 3 

kb) on pachytene chromosomes 4 and 7 of Rosa wichurana. Using multicolor Tyramide-FISH 3 closely 

located genes were simultaneously visualized on chromosome 7. In this chapter, we also present the 

results of Tyramide-FISH mapping of ESTs clones and of the alliinase gene on chromosomes of A. cepa. 

Part III represents a general discussion on the results and gives some future perspectives for further 

research based on our findings. 
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CHAPTER 1 

Development of a highly efficient chromosome preparation 

method suitable for species with small and large 

chromosomes  

 

Chromosome preparation is the key step in all cytogenetic techniques including Tyramide-FISH physical 

mapping. Depending on the quality of the chromosome slides, the results of FISH and Tyramide-FISH 

can vary dramatically. Obtaining high quality chromosome slides is challenging for many plant genera 

including Rosa and other ornamental plants. Therefore, the aim of this part of the thesis was to develop 

a novel chromosome preparation protocol suitable for a wide range of plant genera with small as well 

as large chromosomes. The new chromosome preparation protocol, named “SteamDrop”, allows 

efficient chromosome spreading with reduced cell loss. Chromosome slides prepared by the 

“SteamDrop” method are suitable for FISH and Tyramide-FISH.   

 

 

 

 

RESULTS ARE DESCRIBED IN PAPER 1: 

KIROV, I.,  DIVASHUK, M., VAN LAERE, K.,  SOLOVIEV, A., & KHRUSTALEVA, L.  (2014). AN EASY 

“STEAMDROP” METHOD FOR HIGH QUALITY PLANT CHROMOSOME PREPARATION. MOLECULAR 

CYTOGENETICS ,  7(1), 1-10.  
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METHODOLOGY Open Access

An easy “SteamDrop” method for high quality
plant chromosome preparation
Ilya Kirov1,2,3, Mikhail Divashuk1,2, Katrijn Van Laere3, Alexander Soloviev1 and Ludmila Khrustaleva1,2*

Abstract

Background: The chromosome preparation is a crucial step for obtaining satisfactory results in molecular
cytogenetic researches. The preparation of plant chromosomes for molecular cytogenetic purposes remains a
challenge for some species. In contrast to human chromosome preparation, the processes occurring during plant
chromosome preparation and causing chromosome spreading are still poorly understood.

Results: We studied the dynamics of plant chromosome spreading after dropping cell suspension on slides. We
showed that steam stimulates cytoplasm hydrolysis and rapid chromosome spreading and that chromosomes
stretch during this chromosome spreading. Based on these observations, we developed a novel method, named
“SteamDrop”, for the preparation of well-spread mitotic and pachytene chromosomes and successfully used it for
28 plant species with large and small chromosomes. We applied cell suspensions in ethanol instead of the
commonly used ethanol/acetic acid fixative. Mitotic and meiotic chromosomes prepared via “SteamDrop” were
used in fluorescent in situ hybridization (FISH) experiments with repetitive and unique DNA probes. Long storage of
cell suspensions in ethanol did not impair the quality of chromosome preparations.

Conclusion: The SteamDrop procedure provides a robust and routine method for high quality plant chromosome
preparations. The method can be applied for metaphase as well as pachytene chromosome preparation in wide
range of species. The chromosomes prepared by SteamDrop are well suitable for repetitive and unique DNA
visualization.

Keywords: Plant chromosome preparation, Fluorescence in situ hybridization, Steam application, New method

Background
Chromosome preparation is a key step in all cytogenetic
techniques. Most of the modern molecular cytogenetic
techniques such as FISH, GISH and Tyramide-FISH re-
quire well-spread and morphologically intact chromo-
somes. Several reports were dedicated to elucidating the
chromosome spreading dynamic for improving human
chromosome preparations [1-8], while equivalent studies
are largely lacking for plants. Difficulties in obtaining
well-spread plant chromosome preparation are due to
the presence of a cell wall. Moreover, because the high
diversity of species possessing small or large chromo-
somes, low or high chromosome number and different

compounds in their cytoplasm, many researches on a
modification of a good chromosome preparation method
are conducted. There are three main methods of plant
chromosome preparation: squashing [9-11], spreading
[12,13] and dropping [14-22]. A squashing method has
been the common procedure for chromosome counting
in plant cytogenetics during decades. Another air dry/
spreading method [12] involves a cell suspension prepar-
ation which is generated directly on a slide by macer-
ation with the tip of a needle and scattered along a slide.
This method is more suitable for plants with small chro-
mosomes. A modification of the method of Pijnacker
and Ferwerda [12] was made by Fukui and Ilijima [13]
for rice chromosome preparation. The air dry/spreading
method was developed also for studying maize somatic
chromosomes [23,24]. The drop technique was devel-
oped for human cells more than a half century ago [25].
Since then, numerous improvements of the technique
and comprehensive studies of all parameters influencing
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the human chromosome spreading dynamics have been
done [3,5,7]. The first drop method on plant chromo-
somes was applied to isolate protoplasts [16]. That
method had several disadvantages, however: (i) a low mi-
totic index due to cell loss during protoplast isolation and
metaphase protoplast damage under hypotonic treatment;
(ii) polyploidy caused by spontaneous fusion of isolated
protoplasts; (iii) labor-intensive protocol; and (iv) proto-
plast generation from intact plant tissue is more difficult
than from cultured cells. Kato et al. [20] developed a novel
air dry drop method that was based on enzymatically
digested root meristems and preparation of cell suspen-
sion in a tube. The cell suspension was consecutively
washed in water, 100% ethanol and acetic acid/ethanol
(9:1), dropped onto glass slides in a box lined with wet
paper towels and dried slowly. The method was success-
fully used for FISH on mitotic metaphase and pachytene
chromosomes of maize [20,21,26] and on mitotic meta-
phase chromosomes of soybean [27,28]. However, ap-
plication of this method for species with large sized
chromosomes remains problematic because of a low
number of non-overlapped metaphases [29].
In spite of the many protocols available for plant

chromosome preparation, no robust and generally applic-
able method has been developed. Therefore, by studying
all steps of plant chromosome preparation in detail, we
developed a simple protocol “SteamDrop” for reliable
chromosome preparation of mitotic and meiotic plant
chromosomes. A key step in the preparation of well-
spread chromosomes is the application of steam at the
moment of meniscus formation over cells during fixative
evaporation. The applicability of “SteamDrop”-prepared
chromosomes for FISH mapping of repetitive DNA as well
as individual genes has been demonstrated. The chromo-
some preparation allowed physical mapping of small DNA
fragments of onion genes using Tyramide-FISH. The
“SteamDrop” method was applied for 28 species with dif-
ferent chromosome size and number, belonging to 13
monocot (20 species) and 7 dicot (8 species) genera.

Methods
Plant material
Root meristematic cells were obtained from seedlings:
Allium cepa (2n = 2 × =16; chromosome size), A. fistu-
losum (2n = 2 × =16), A. schoenoprasum (2n = 2 × =16),
A. altaicum (2n = 2 × =16), Linum usitatissimum (2n =
2 × =16), Triticum aestivum (2n = 6 × =42), Cannabis
sativa (2n = 2 × =20).
Root meristematic cells were obtained from intensively

grown plants in greenhouse: Allium roylei (2n = 2 × =16),
A. wakegi (2n = 2 × =16), Humulus japonicus (2n = 2 × =17
for male or 2n = 2 × =16 for female plants), H. lupulus
(2n = 2 × =20), Rosa wichurana (2n = 2 × =14), Populus
nigra (2n = 2 × =38), Brassica oleracea (2n = 4 × =36),

Ricinus communis (2n = 2 × =20), Anthurium andreanum
(2n = 2 × =30), Monstera deliciosa (2n = 4 × =60), Philo-
dendron scandens (2n = 2 × =32), Spathiphyllum wallisii
(2n = 2 × =30), Syngonium auritum (2n = 2 × =24), Zante-
deschia elliotiana (2n = 2 × =32), Aloe vera (2n = 2 × =14),
Hippophae rhamnoides (2n = 2 × =24), Festuca arundina-
cea (2n = 6 × =42) and Lolium perenne (2n = 2 × =14),
Thinopyrum ponticum (2n = 10 × =70), Th. elongatum
(2n = 2 × =14).
Shoot meristems collected from seedlings for Triticum

aestivum and Triticale (2n = 6 × =42) or from plants in
the greenhouse for R. wichurana were also used as a
source of divided cells for chromosome preparation.

Metaphase arresting, fixation and enzyme treatment
For pretreatment and metaphase arresting, see Table 1.
After pretreatment, the roots, shoots or anthers with
pollen mother cells (PMC) were fixed in 3:1 (ethanol:
acetic acid) for 30–50 min at room temperature. Cell
suspension were prepared strait away or cell sources
were stored overnight in the freezer at −20°C preceeding
enzyme treatment.
The stock enzyme mixture, containing (w/v) 6% Pec-

tolyase Y-23 (Kikkoman, Tokyo, Japan), 6% Cellulase
Onozuka R-10 (Yakult Co. Ltd., Tokyo, Japan) and 6%
Cytohelicase (Sigma-Aldish Co.LLC, France), was pre-
pared in 0.1 M citric buffer (pH4.8). Concentrations of
the work enzyme mixture and incubation time for dif-
ferent species are listed in Table 1.

Protocol of chromosome preparation using the
“SteamDrop” method
Enzyme treatment

1. Wash roots (anthers or shoots) in water for
10–30 min

2. Dissect meristems and transfer them into 0.1M
citric buffer, pH 4.8

3. Transfer 1–5 meristems to 0.5 ml tubes with
20–30 μl of enzyme mixture (Table 1)

4. Incubate at 37°C for 1–2.5 h depending on species
(Table 1)

Cell suspension preparation

1. Vortex the tubes with digested meristems to get cell
suspension

2. Add 600 μl of distilled water and mix
3. Centrifuge at 10,000 rpm for 45 sec
4. Remove supernatant using a Pasteur pipette
5. Add 600 μl of 96% ethanol and mix (cell suspension

can be stored at −20°C for at least 6 months)
6. Centrifuge at 11,000 rpm for 30 sec
7. Discard supernatant by inverting the tube
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8. Resuspend the pellet in 20–100 μl of 96% ethanol,
depending on cell concentration.

Chromosome preparation

1. Drop 10 μl of cell suspension onto a slide* and wait
till the surface becomes granule-like, i.e. ethanol me-
niscus occurred on the top of the cells, (10–15 sec)

2. Drop 18–22 μl of fixative (1:1, 2:1, 3:1 or 5:1
ethanol:acetic acid)** and wait till the surface
becomes granule-like and the layer of fixative
becomes thin (25–35 sec)

3. Put the slides upside down under the steam from a
water bath at 55°C (10–15 cm from water surface of
the water bath) for 3–5 sec

4. For double “SteamDrop”, repeat step 2 but with less
volume (3–6 μl) of fixative and higher concentration
of acetic acid. Perform Step 3 for 1 sec only.

5. Immediately dry slides with air flow (e.g. a tabletop fan).

Note

*-for preparation of large size chromosomes it is
useful to coat slides with APES (3-aminopropyl-
triethoxy-silane) to prevent a chromosome partial
detachment. APES coating of slides: 1.5% APES in
100% acetone for 30 sec, twice wash in distilled water
and dry for 1 h at 37°C.
**– the protocol allows an easy correction of enzyme
treatment results - check the level of tissue enzymatic
digestion in the first chromosome preparation slide

under microscope, if tissue is underdigested use a
high proportion of acetic acid in fixative (1:1 or 2:1); if
tissue is overdigested use a low proportion of acetic
acid in fixative (5:1 or 10:1).

Probe preparation
LFS and bulb alliinase gene fragment
The LFS and bulb alliinase gene fragment probes were
obtained using specific primers (for LFS: LFSbeF:
5′-AAATGGAGCTAAATCCTGGTG-3′, LFSbeR: 5′-
CATAATGCATCACAGCACTGAA-3′; for alliinase: All-
be1F: 5′-GGTCATCTCCCTTTCACCAA-3′, Allbe1R:
5′-TGATCAAACTCAAACGCAC-3′) designed by Pri-
mer 3.0 software (http://frodo.wi.mit.edu/) using LFS
[GenBank: AB094593.1] and alliinase [GenBank: L48614]
sequences from GenBank at the NCBI (http://www.ncbi.
nlm.nih.gov/genbank/). The PCR conditions were 94°C –
1 min, 35 cycles; 94°C – 1 min; 58°C – 1 min; 72°C –
1 min; final elongation: 72°C – 3 min. The PCR products
were cloned by pPCR-TOPO kit (Invitrogen, Carlsbad,
California, USA) according to the manufacturer’s de-
scriptions. Plasmid DNA was isolated from white col-
onies, sequenced and sequences were analyzed by
BLASTN. Plasmids with high similarity to LFS gene or to
bulb alliinase gene fragment were selected for labeling
with the Biotin Nick Translation Mix (Roche Diagnostics
Gmbh, Mannheim, Germany).

5S rDNA
A plasmid carrying the 5S rRNA gene of rye (pScT7,
[31] was labeled by Biotin-16-dUTP using Biotin- Nick

Table 1 Condition of metaphase arresting and enzyme treatment

Species Reagents and
conditions

Enzyme
concentration

Incubation time
in enzyme

Allium cepa, Allium fistulosum,
Allium schoenoprasum, Allium altaicum

0.75 mM hydroxyurea for 20 h (RT),
0.05% colchicine for 3.5-4 h (RT)

0.6% 90–100 min

Humulus japonicus, Humulus lupulus, Linum usitatissimum,
Cannabis sativa, Ricinus communis

2 mM 8-hydroxyquinoline, 4 h 0.6% 100–120 min

Triticale, Triticum aestivum, Thinopyrum ponticum,
Thinopyrum elongatum

0.2% colchicine, 2 h1 1.2% 100–120 min

Brassica nigra, Brassica oleracea, 1-bromnaphtalene
(1:1000 water solution)
overnight 4°C

0.6% 90–100 min

Aloe vera, 1.2% 100–120 min

Rosa wichurana 0.3% 90–120 min

Anthurium andreanum, Monstera deliciosa, Philodendron
scandens, Spathiphyllum wallisii, Syngonium auritum, Zantedeschia
elliotiana, Hippophae rhamnoides, Festuca arundinacea
and Lolium perenne

0.1% 60–90 min

Rosa wichurana2 Mix of 0.1% colchicine and
2 mM 8-hydroxyquinoline (4 h, RT)3

1.2% 120–150 min

Allium wakegi, Allium roylei Nitrous oxide gas (1.0 MPa), 3 h 0.6% 90–100 min

Allium cepa PMC - 1.5% 180–200 min
1the same treatment was used for shoot meristems of Triticale and Triticum aestivum.
2applied to shoot meristems.
3this procedure was carried out according to Ma et al., 1996 [30].
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Translation Mix according to the manufacturer’s proto-
col (Roche Diagnostics Gmbh, Mannheim, Germany).

HJSR KpnI
A plasmid carrying a HJSR KpnI repeat of Humulus
japonicus [32] was labeled by Digoxigenin-11-dUTP
using Digoxigenin - Nick Translation Mix according to
the manufacturer’s protocol (Roche Diagnostics Gmbh,
Mannheim, Germany).

(AAC)5 oligonucleotide
(AAC)5 oligonucleotide labeled with biotin in the 3′- and
5′ -ends was synthesized in ZAO ‘Syntol’ (Moscow, Russia).

DNA isolation
Genomic DNA was isolated according to Rogers and
Bendich [33].

Tyramide-FISH
Probe hybridization and signal detection was performed ac-
cording to Khrustaleva and Kik [34] with minor modifica-
tions. Before the RNAse treatment and denaturation step,
slides were fixed in 4% paraformaldehyde buffered in 1 ×
PBS (10 × PBS: 1.3 M NaCl, 70 mM Na2HPO4, 30 mM
NaH2PO4, pH 7.5) for 8 min and 10 min, respectively. The
step of endogenous peroxidases inactivation was carried out
by exposing the slides to 0.01 M HCl for 8 min. The
hybridization mixture consisted of 50% (v/v) deionized form-
amide, 10% (w/v) dextran sulphate, 2 × SSC, 0.25% sodium
dodecyl sulphate, 2.75 ± 1.00 ng/μl probe DNA. The mixture
was denatured at 75°C for 5 min and subsequently placed on
ice for 5 min. Sixty microliters of the mixture was added to
the chromosome preparations, covered with a coverslip
(22 × 32 mm), and denaturated for 5 min at 80°C. An 82%
stringency washing was applied: slides were washed in 2 ×
SSC twice for 5 min at 37°C, in 25% (v/v) formamide in
0.4 × SSC twice for 10 min at 42°C, then in 2 × SSC for
3 min at 37°C. The tyramide detection solution was prepared
by thoroughly mixing a 1:50 tyramide-Fluorescein stock so-
lution in amplification diluent (Perkin Elmer, Inc., Waltham,
Massachusetts, USA) with 10% (w/v) dextran sulfate.

FISH
FISH procedure with 5S rDNA and biotinylated (AAC)5
as probes was carried out according to the protocol of
Heslop-Harrison et al. [35] and Schmidt et al. [36] with
slight modification of the slide preatreatment before
adding the hybridization mix. Additional treatment with
4% buffered paraformaldehyde solution (BPS), pH 8.0,
for 9 min before RNAse treatment was used and pepsin
treatment was excluded.

Microscopy and image analysis
Slides were examined under a Zeiss Axio Imager microscope
(Carl Zeiss MicroImaging, Jena, Germany). Selected images

were captured using an Axio Cam MRm digital camera.
Image processing and thresholding were performed using
AxioVision ver.4.6 software (Carl Zeiss MicroImaging, Jena,
Germany). Final image optimization was performed using
Photoshop (Adobe Inc., San Jose, California, USA).

Results
Dynamics of chromosome spreading under steam
The experiment has been done using Allium cepa, a spe-
cies with large chromosomes, and Humulus japonicus, a
species with small chromosomes. Morphological changes
of metaphase chromosomes during slide preparation
under 50% relative humidity (RH) and room temperature
(25°C) were observed. Phase-contrast microscopy was
used to visualize chromosome structure with high reso-
lution and to check the amount of remaining cytoplasm.
We analyzed the dynamics of chromosome spreading in
both the standard procedure and the proposed steam ap-
plication procedure (“SteamDrop”).
Using the standard protocol, a drop of cell suspension in

ethanol:acetic acid fixative (3:1) was placed on the slide. Dur-
ing fixative evaporation (15–25 seconds) the meniscus for-
mation (Figure 1A-B), cytoplasm hydrolysis (Figure 1C-D)
and a slight cell swelling (Figure 1D-F) occurred. In most
metaphases the chromosomes remained close together.
Using the “SteamDrop” method a drop of cell suspension

in 96% ethanol was placed on the slide. When the surface
became granule-like, a drop of fixative (3:1 ethanol:acetic
acid) was added. During the next 25–35 seconds, the fixative
evaporated and the granule-like surface again appeared (Fig-
ure 2A-B, 2A’-C’). The moment of granule-like surface ap-
pearance after fixative addition was the crucial stage for
steam application and obtaining good chromosome spread-
ing. The stage under influence of steam was the shortest
stage, lasting only few (3–5) seconds. During this stage, cell
swelling, fast chromosome spreading and hydrolysis of the
cytoplasm occurred (Figure 2C–H, 2D’-H’).

Slide drying conditions
The next step after steam exposure was slide drying. To
check the influence of the slide drying condition on the
chromosome spreading, we compared drying (1) at natural
condition (50% RH, 22–25°C) and (2) with additional air
flow using a fan. In the first experiment the drying process
was slow (20–30 sec), resulting in a high number of ‘over-
spread’ metaphase plates with chromosome loss. Under
air flow conditions, the slides dried faster, causing reduced
overspreading and as consequence the preservation of
complete chromosome sets in metaphases. Also micro-
scopic observations of chromosome behavior during the
drying process without intensified air-flow showed that
chromosomes and whole cells floated away with fixative
currents. The phenomenon became weaker when air-flow
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drying hastened the evaporation of fixative from the slide.
Thus, cells kept their positions on the slide.

Effect of relative humidity on chromosome spreading and
chromosome length
To estimate the effect of the relative humidity on chromo-
some spreading, different RH (25–30%, 50–55% and 65–70%)
at room temperature (22–25°C) were applied. Allium cepa
was used for this experiment. Adjustment of RH in an iso-
lated room-box was done manually. The RH was measured
by hygrometer Testo 625 (Testo AG, Lenzkirch, Germany).
Microscopic observation showed that under moderate

RH (50–55%), the chromosome spreading was going on
during the whole period of steam exposure, resulting in up
to 60% of well spread chromosomes without cytoplasm.
Under high RH (65–70%) in most cases the chromosomes
were clumped, did not spread well after steam exposure
and cytoplasm hydrolysis was often incomplete. Preparation
under low RH (25–30%) resulted in early cytoplasm hy-
drolysis that prevented chromosome spreading.
The total chromosome length has been measured on

slides prepared under moderate or high RH using a single
cell suspension sample. The chromosomes prepared under
high humidity were significantly smaller (163 ± 14 μm) than
chromosomes prepared under moderate humidity (232 ±
1.0 μm, P ≤ 0.0001). Under high RH the total chromosome
length had a wide range, while under moderate RH it was al-
most uniform. The chromosomes prepared under high RH

appeared as bright light structures of high optical density
under a phase contrast microscope, while the chromosomes
prepared under moderate RH were less condensed and ap-
peared as grey structures (Figure 3).

Chromosome spreading using “SteamDrop”
In species with small chromosomes, most of the meta-
phase cells (85–97%) prepared with the “SteamDrop”
method showed good chromosome spreading (<2 over-
lapped chromosomes, Figure 4 Cannabis sativa, Humu-
lus japonicus, Brassica oleracea, Rosa wichurana). In
species with large chromosomes only 15–20% of meta-
phases appeared well spread. Therefore, for these species
a second drop of fixative with higher acetic acid concen-
tration (e.g. 1:1 or glacial acetic acid) after the first drop
of 5:1 or 3:1 ethanol:acetic acid were used (Figure 4 Al-
lium cepa, Allium fistulosum, Triticale, Triticum aesti-
vum). The second drop, containing a higher portion of
acetic acid, completed the cytoplasm digestion and pro-
vided additional chromosome spreading before chromo-
some immobilization on the slide surface. Steam was
applied after each drop of fixative. Microscopic analysis
of chromosome spreading revealed that the use of two
drops of fixative extended the time of chromosome
spreading. Using a second fixative drop in onion in-
creased the number of well spread metaphases two-fold
as compared to a single drop treatment. It should be
mentioned that the application of nitrous oxide gas as

Figure 1 Dynamics of morphological changes of A. cepa metaphase chromosomes in the standard protocol. The meniscus formation
(A-B) and a slight cell swelling (C-F) during fixative evaporation from the slide surface. Bar = 10 μm.
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Figure 3 Metaphase chromosomes of Allium cepa prepared under moderate (50%) RH (left) and high (70%) RH (right). Bar = 10 μm.

Figure 2 Dynamics of Allium cepa (A–H) and Humulus japonicus (A’-H’) chromosome spreading understeam. Meniscus formation (A-B,
A’- C’), cell swelling (C-D, D’-E’) and chromosome spreading (E–H, F’-H’). C–H and D’-H’ - steam application to the slides. Arrows indicate
stretching of an Humulus japonicus chromosome. Bar = 10 μm.

Kirov et al. Molecular Cytogenetics 2014, 7:21 Page 6 of 10
http://www.molecularcytogenetics.org/content/7/1/21

 46



metaphase arresting agent in combination with the sec-
ond fixative drop increased the number of well spread
metaphases up to 60% in Allium species. Application of
a second drop in species with small chromosomes (Can-
nabis sativa, Humulus japonicus, Humulus lupulus,
Linum. usitatissimum, Populus nigra, Brassica oleracea,
Ricinus communis) resulted in a higher percentage of
overspread metaphases and chromosome loss as com-
pared to the single drop use. However, this was not true
for Rosa wichurana, Spathiphyllum wallisii, Syngonium
auritum, Zantedeschia elliotiana. These species have
also small chromosomes but a rigid cell wall and the ap-
plication of the second drop resulted in well spread
metaphases with completely digested cytoplasm.
The application of the second drop was also successful

for meiotic chromosome preparation using a higher con-
centration of enzymes (1.5% cellulase, 1.5% pectolyase,
1.5% cytohelicase) for 3 h and a higher concentration of
acetic acid in fixative (1:1) for first drop and 100% acetic
acid for second drop (Figure 4. Allium cepa).

Cell suspension storage
Our experiments showed that cell suspension of PMCs
and root meristems in 96% ethanol can be used for

chromosome preparation even after 6 months of storage
in freezer (−20°C). The storage did not influence the
chromosome preparation quality. Whereas, commonly
used storage of anthers for several months in ethanol:
acetic acid fixative or in 70% ethanol resulted in poor
chromosome spreading of PMCs impaired by a high
amount of cytoplasm. The “SteamDrop” method makes
it possible to prepare mitotic and meiotic chromosomes
independent of the season.

“SteamDrop” chromosome preparations are excellent for
FISH
Chromosomes prepared by the “SteamDrop” method were
evaluated for their applicability in FISH experiments. It
was found that chromosome preparations are highly sensi-
tive to denaturation in the hybridization mixture. Immedi-
ately after denaturation, DAPI stained chromosomes
sometimes showed chromatin protrusion that often ham-
pers signal detection and karyotyping. Application of an
additional treatment with 4% buffered paraformaldehyde
solution (BPS), pH 8, for 9 minutes before RNAse treat-
ment helped to overcome this problem. Furthermore,
chromosome preparation according to the “SteamDrop”
protocol does not require pepsin pretreatment. The

Figure 4 Mitotic metaphase plates of species with large (Allium cepa, Allium fistulosum, Triticale, Triticum aestivum) and small
(Cannabis sativa, Humulus japonicus, Brassica oleracea, Rosa wichurana) chromosomes. The last figure is pachytene chromosomes of A.
cepa. All photos were made using the same magnification. Bar = 10 μm.
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“SteamDrop” preparations were largely free of cytoplasm
and yielded a high signal to noise ratio. In our experience,
pepsin pretreatment did not increase signal to noise ratio,
but might damage chromatin structure.
FISH experiments on mitotic chromosomes with a 5S

rDNA probe in Allium fistulosum (Figure 5B) or HJSR
KpnI probe in Humulus japonicus (Figure 5A) or the
(AAC)5 oligonucleotide probe in Triticum aestivum
(Figure 5D) were analyzed. The chromosomal positions
of the corresponding FISH signals coincided with results
described earlier [37,32].
FISH on the pachytene chromosome of Allium cepa

with the 5S rDNA revealed two hybridization sites
(Figure 5C), in accordance with previously obtained data
on mitotic chromosome of Allium cepa [37].
Detection of genes on plant chromosomes strongly de-

pends on the quality of chromosome preparations. The
applicability of the “SteamDrop” chromosome prepara-
tions for gene localization was evaluated in Tyramide-
FISH experiments. Two genes of Allium cepa, the LFS
(lachrymatory factor synthase) and the bulb alliinase,
which are involved in the same biochemical pathway,
were used for visualization on mitotic metaphase chro-
mosomes. The LFS gene (550 bp) was detected in a

proximal position on chromosome 5 (Figure 5E); the
bulb alliinase gene fragment (1.1 Kb) was found in a
distal position on chromosome 4 (Figure 5F), as re-
ported previously [38,39].

Discussion
Steam stimulates chromosome spreading
Steam application at the moment of meniscus formation
causes effective chromosome spreading. Steam hastens
cell wall hydrolysis by heating the slide surface. This
stimulates ethanol evaporation and increases the acetic
acid concentration for cellulose hydrolysis [40]. More-
over, steam delivers water to the slide surface [5], pro-
viding rapid cell rehydration. Claussen et al. [6] showed
the essential role of water in mammalian cell swelling.
Kato et al. [20] also emphasized the importance of a
high humidity treatment in order to spread plant chro-
mosomes and thus proposed the use of a humidity
chamber during slide preparation. We propose to use
steam for efficient chromosome spreading. We suppose
that during steam application three coinciding processes
occur: (1) cytoplasm rehydration and swelling; (2) rapid
cell wall hydrolysis, which aids cell burst due to cyto-
plasm swelling; (3) chromosome movement. It is very

Figure 5 The “SteamDrop” chromosome preparations used in different cytogenetic techniques. (A) FISH - Humulus japonicus probing with
the HJSR KpnI repeat; (B) FISH - Allium fistulosum probing with 5S rDNA (pSCT7); (C) FISH - Allium cepa pachytene chromosomes probing with 5S
rDNA (pSCT7); (D) FISH - Triticum aestivum probing with the (AAC)5 oligonucleotide; (E) Tyramide-FISH - A. cepa probing with the LFS gene clone
(550 bp); (F) Tyramide-FISH - A. cepa probing with bulb alliinase gene fragment (1.1 Kb).
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important that the steam is applied at the moment a
granule-like surface appears, when meniscus formation
is occurring. Meniscus pressure and steam cause rapid
plant cell swelling and, as a consequence, efficient
chromosome spreading.

Effect of relative humidity
Mammalian chromosome spreading depends on relative
humidity of the environment [3-7]. We found that RH
influences on plant chromosome preparation as well.
The optimal RH for plant chromosome preparation
using our “SteamDrop” method was 50–55%, similar to
that described for mammalian chromosome preparation
[3]. We suppose that the impact of RH on chromosome
spreading is mainly determined by slide drying time and
water-induced cytoplasm swelling. Under low RH, quick
ethanol evaporation with increasing acetic acid concen-
tration occurs (fixative is not an azeotropic mixture, [6])
resulting in prompt cytoplasm digesting before steam
application. Cytoplasm swelling does not take place and
chromosomes remain close together. Under high RH,
ethanol evaporates slowly while the process of fixative
rehydration goes fast. This results in a low concentration
of acetic acid. Therefore, undigested thick cytoplasm
hampers steam-induced chromosome spreading. Under
mid-level RH, the processes of the fixative rehydration
and the ethanol evaporation are balanced. At the mo-
ment of steam application, cytoplasm density is suffi-
cient for steam-induced chromosome spreading.

“SteamDrop” may cause chromosome stretching
Plant chromosome stretching was observed under steam
action. It was found that the degree of chromosome
stretching depends on RH of ambient condition. Thus
chromosomes prepared under moderate humidity were
1.42 times longer that those prepared under high RH.
Claussen et al. [6] showed chromosome preparation-
induced changes in the lengths of human lymphocyte
chromosomes. Authors proved that chromosomes have
their own potential to swell and they suggested that
some modifications of chromosome proteins promote
chromosome stretching. Moreover, it was shown by real-
time scan force microscopy that DNA molecules may
decondense and lengthen under specific micro-
environmental condition [41]. Thus, chromosome
stretching could be caused by DNA relaxation itself or
rehydration of chromatin proteins or combination of
both processes. Claussen et al. [6] proposed the concept
of chromosomal region–specific protein swelling. They
showed that “G-banded chromosomal regions” are in-
volved in chromosome stretching. Unstretched human
chromosomes do not show any visible GTG-banding
patterns [4,6]. Reproducible G-banding patterns on plant
chromosomes are difficult to obtain [42]. Hliscs et al. [4]

supposed that the absence of plant chromosome stretch-
ing is what causes a lack of G-bands. Probably, plant
chromosome stretching produced by the “SteamDrop”
protocol will help to obtain reproducible G-banding pat-
terns on plant chromosomes. Further experiments will
be done to check this assumption.

Conclusion
The results reported here demonstrate the effectiveness
of “SteamDrop” method for high quality chromosome
preparation of plant species with small and large chro-
mosomes. The applicability of the chromosome prepar-
ation for FISH and Tyramide-FISH experiments was
shown. The advantages and distinctions of our “Steam-
Drop” method from previously developed methods are
(1) the steam application caused efficient chromosome
spreading; (2) the minimization of washing steps reduce
chromosome damage and cell loss; (3) instead of com-
monly used dropping onto the slide of cell suspension in
ethanol-acetic acid fixative we propose to use cell sus-
pension in 96% ethanol that allowed to regulate the
chromosome spreading and amount of cytoplasm
around chromosomes by adding ethanol-acetic acid fixa-
tive in proper ratio; (4) moreover, long-term storage of
cell suspension in 96% ethanol does not impair the qual-
ity of chromosome preparation; (5) several slides can be
prepared from a single root; (6) a simple protocol: the
preparation of cell suspension excluding of metaphase
arresting and enzyme treatment steps takes only 2–3 mi-
nutes; the chromosome slide preparation – 1 minute.
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Erratum: “An easy “SteamDrop” method for high quality plant chromosome preparation” [Molecular 

cytogenetics, 7(1), 1-10] 

1. Page 42. The sentence “In the first experiment the drying process was slow (20–30 sec), resulting in 

a high number of ‘overspread’metaphase plates with chromosome loss.” should be replaced by the 

following sentence: “In the first experiment the drying process was slow (20–30 sec), resulting in 30 

– 40 % metaphase plates were ‘overspread’ (1 or more chromosomes lost).” 

 

2. Fig. 4. The scale bar is the same for all pictures. 
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CHAPTER 2 

EVALUATION OF DIRECT AND INDIRECT DETECTION SYSTEMS 

FOR EFFICIENT PHYSICAL MAPPING OF GENES 

 

 

The Tyramide-FISH technique has previously been applied on model species for cytogenetic studies 

(onion, maize, wheat, oat) having large chromosomes but has never been used for species with small 

chromosomes to perform physical mapping of the genes. In our preliminary experiments, the 

effectiveness of the Tyramide-FISH physical mapping on R. wichurana chromosomes using the described 

detection system (direct detection) was very low. Therefore, the optimization of an alternative indirect 

detection system was required and was the goal for this chapter.  

 

 

 

RESULTS ARE DESCRIBED IN PAPER 2:  

KIROV, I .,  VAN LAERE, K., DE RIEK, J.,  DE KEYSER, E.,  VAN ROY, N., & KHRUSTALEVA, L. (2014). ANCHORING 

LINKAGE GROUPS OF THE ROSA GENETIC MAP TO PHYSICAL CHROMOSOMES WITH TYRAMIDE-FISH AND 

EST-SNP MARKERS. PLOS ONE ,  9(4), E95793.  
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Abstract

In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the
modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-
FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with
small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared
different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most
suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine
Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on
chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of
these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As
a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for
synteny between the Rosa chromosomes and Fragaria.
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Introduction

Genome structure and function may be studied when compar-

ing the genetic positions of genes with their physical locations on

chromosomes. In former times, to assign linkage groups to physical

chromosomes it was needed to create monosomic addition lines,

nullisomic lines, chromosome substitution lines or translocation

lines [1–3]. This is a very time consuming task. Nowadays, a more

efficient approach exists by direct visualization of genetically

mapped markers on chromosomes using fluorescent in situ

hybridization (FISH) to locate large genomic clones (BAC, YAC,

cosmids etc.) containing the markers. However, FISH with large

genomic DNA fragments often results in many non-specific

hybridization due to the presence of huge amounts of repetitive

DNA in plant genomes [4,5]. To overcome this problem, FISH

using direct labeled individual genes can be applied [6–8]. This

approach however still is very challenging for most ornamental

species and in particular for woody species, such as Rosa.

The genus Rosa, a member of the Rosaceae, consists of

approximately 200 species and 20000 cultivars, most of complex

hybrid origin. The genus has a wide phenotypic variability and a

high level of genetic heterozygosity [9]. Despite the crop’s long

domestication history, intensive breeding and economic impor-

tance, relatively little is known about the genetics and cytogenetics

of roses [10,11]. Nevertheless, several characteristics of rose make

it a worthy candidate for a model system for genomic research in

woody species [11].

Performing cytogenetic analyses for roses is difficult because of

their genome size (the diploid genome size is 0.83 to 1.30 pg/2C;

[12]) and very small chromosomes. The mitotic index is generally

low in shoot and root tips, root development is weak and roots are

thin in mature individuals for several Rosa species [13]. The basic

chromosome number of roses is 7 [14,15] and ploidy levels range

from diploid (2n = 2x = 14) to octoploid (2n = 8x = 56) [16]. A

number of basic cytogenetic studies, including chromosome counts

and karyotyping, have been done on roses [14–31]. A karyotype

with indication of 45 S and 5 S rDNA sites was constructed for

some wild species [24–27]. Repetitive sequences, such as 45 S and

5 S rDNA, are rather easy to map, compared to low-copy genes.

Reports of physical mapping of low copy genes are found in

several genera, such as tomato [32], rice [33], barley [34], wheat

[35], sugar beet [36], Sorghum [37], maize [7], Populus trichocarpa

[38] and safflower [39], among others. However, physical

mapping of low-copy genes remains a problem in lots of other

species and genera and also in Rosa. Moreover, in most reports

showing conventional FISH results, the target DNA sequences

were over 10 kb. Since EST-markers are good candidates to

anchor linkage groups to physical chromosomes, lowering the
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probe-size detection limit should be obtained. Significant im-

provements in detection limits have been reported, such as the use

of a cooled-charge-coupled device (CCD) camera and primed in

situ DNA labeling (reviewed by Figueroa and Bass [40]). An

alternative FISH method used to detect very small probes is

tyramide signal amplification (TSA)-FISH, or Tyramide-FISH, a

multi-step procedure involving (1) in situ hybridization with a

labeled probe, (2) signal amplification by streptavidin-horseradish

peroxidase (SA-HRP) and tyramides and (3) detection and

imaging of the amplified signal [41]. This method was originally

introduced by Bobrow et al. [42] for microplate immunoassays.

Raap et al. [43] introduced the use of fluorescent tyramide

conjugates as substrates for Horse Radish Peroxidase (HRP) into

FISH technology. With Tyramide-FISH, the detection sensitivity

can be increased up to 100 times compared to the conventional

FISH procedures [44]. Tyramide-FISH has been successfully used

in human genetics for single-copy gene detection [41,45–52]. In

plants, however, Tyramide-FISH has only been used in a few

studies [53–56].

Molecular markers have been developed in roses to enhance

breeding efficiency through the identification and characterization

of genes controlling important traits [9,57,58]. Major efforts for

the construction of genetic linkage maps in the Rosa genus have

been concentrated at the diploid level [57,59–63,]. Four mapping

populations allowed the construction of an integrated consensus

map consisting of about 600 markers distributed across 7 linkage

groups, with an overall length of 530 cM [58]. Recently, interest in

mapping at the tetraploid level has been renewed [64,65]. Some

major rose traits have been located on the rose genetic maps, such

as flower color and double corolla [59] and resistance to powdery

mildew [61,62,63]. To date, no genome sequence is available for

the Rosa genus that allows validation of the positions of markers

located to linkage maps. But Rosa is well-supported by the closest

sister taxon, which contains the genus Fragaria, and also shows

sequence homology with Malus and Prunus [65–68]. Developing

markers in EST fragments of genes can be based on this sequence

homology with other Rosaceae. Although SSRs are widespread in

the plant genome, the number of ESTs containing an SSR motif

can be quite limited [69]. EST-SNPs have more potential as a

functional marker. Due to the conserved nature of the coding

sequence, these markers are also appropriate for the comparison of

genetic maps between species [70,71]. High Resolution Melting

(HRM) analysis is the method of choice for EST-SNP genotyping,

because SNP sequence information is not a prerequisite [72].

HRM was originally introduced as a method for mutation

scanning in human genetics [73] and has the ability to

simultaneously detect and genotype DNA polymorphisms [74].

The use of HRM for EST-SNP marker development and consecutive

mapping in plants has already been reported in several crops such as

barley [72], alfalfa [75] and apple [76] but not yet in rose.

The combination of the opportunities of Tyramide-FISH and

the HRM molecular marker system may result in an effective

integration of physical and genetic maps. The present study had

two main aims: 1) to optimize the Tyramide-FISH technology for

roses in order to cytogenetically map single-copy genes and 2) to

connect their physical position with their genetic position on the

linkage groups of Rosa wichurana (Moghaddam et al. 2012) using

HRM technology.

Materials and Methods

Plant Material
The plant material used in this study was Rosa wichurana, Rosa

‘Yesterday’ and 90 F1 hybrids of Rosa ‘Yesterday’ x Rosa wichurana.

Both parent plants and the hybrid progeny are diploid

(2n = 2x = 14). The plants were own-rooted and grown in the

field. For chromosome slide preparations, cuttings of Rosa

wichurana were made. Rooted cuttings were transferred to

terracotta stone pots and grown in the greenhouse without

artificial light or temperature regulation. The conditions inside the

greenhouse were thus dependent on the moderate climatic

conditions typical for the East Flanders region of Belgium.

Chromosome preparation
Somatic metaphase chromosome spreads were prepared from

shoot meristems collected and pretreated according to [13].

Briefly, young shoot meristems (2–3 mm) from which upper green

leaves were removed, were collected in ice-cold 1 mM 8-

hydroxyquinoline and 0.1% colchicine solution and incubated

for 3.5 hours at room temperature in the dark. Afterwards,

meristems were fixated in 3:1 ethanol:glacial acetic acid for 45–60

minutes and stored in 70% ethanol at 220uC. Chromosome slide

preparation was carried out according to the spreading protocol of

Pijnacker and Ferwerda [77] or to the ‘‘SteamDrop’’ method of

Kirov et al. [78].

Primer and probe design
DNA of Rosa wichurana, Rosa ‘Yesterday’ and their hybrids was

extracted from young leaves using the Qiagen DNeasy Plant Mini

Kit (Chatsworth, CA). The genes PAL, P5CS and OOMT were

isolated according to Razavi et al. [79] starting from ESTs

available in the Genome Database of Rosaceae [80]. These genes

are known to be involved in abiotic stress response (Phenylalanine

Ammonia Lyase (PAL) and Pyrroline-5-Carboxylate Synthase (P5CS),

[81,82]) and rose scent production (Orcinol O-Methyl Transferase

(OOMT), [83]), which are important traits for roses.

To have good probes to use in Tyramide-FISH, we designed

primers in order to obtain PCR fragments of about 1500 bp (see

Table 1). Plasmid DNA of the cloned gene fragments was labeled

using the Biotin Nick Translation Mix (Roche) according to the

manufacturer’s instructions. As a control, the pTA71 plasmid

(containing a 9 kb fragment of 45 S rDNA, [84]) was labeled with

biotin.

To generate EST-SNPs for HRM, we searched for SNPs

between Rosa wichurana and Rosa ‘Yesterday’ in the sequences of

the cloned genes PAL, P5CS and OOMT. Primers flanking a single

SNP were developed for amplification of the EST-SNPs (Table 2).

Primers were tested on the parents and 5 siblings of the mapping

population Rosa ‘Yesterday’ x Rosa wichurana. Good primers were

then applied to the entire mapping population.

Tyramide-FISH optimization
Probe hybridization was performed according to Khrustaleva

and Kik [53] with minor modifications. Slides were fixed in 4%

buffered paraformaldehyde in 1xPBS (10xPBS: 1.3 M NaCl,

70 mM Na2HPO4, 30 mM NaH2PO4, pH 7.5) for 8 min before

the RNAse treatment and 10 min before denaturation. Inactiva-

tion of endogenous peroxidases was done by incubating the slides

in 0.01 M HCl for 8 min. Pepsin treatment was performed during

30 sec at room temperature. The hybridization mixture contained

50% (v/v) deionized formamide, 10% (w/v) dextran sulphate,

2xSSC, 0.25% sodium dodecyl sulphate and 2.00 ng/ml probe

DNA. The hybridization mix was denatured at 80uC for 5 min,

subsequently placed on ice for 5 min, and added to the

chromosome slides. Slides were then denatured for 5 min at

80uC and hybridization was carried out at 37uC overnight. A 82%

stringency washing was attained by washing the slides twice in

2xSSC for 5 min at 37uC, twice in 25% (v/v) formamide in
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0.4xSSC for 10 min at 42uC, and finally in 2xSSC for 3 min at

37uC.

For probe detection, three tyramide amplification systems were

used: direct detection (modified from Schriml et al. [47] and

Khrustaleva and Kik [53]), indirect detection (modified from

Schriml et al. [47] and Perez et al. [32]) and indirect detection

with two rounds of amplification. The incubation time with the

tyramide solution vary from 5 to 10 min. In the direct detection

system, tyramide-FITC (Tyr-FITC) or tyramide-Cy3 (Tyr-Cy3)

was used in dilutions 1:50. In the indirect detection system,

biotinylated tyramides (Tyr-Bio, PerkinElmer, Belgium) were used

in the dilutions 1:25 and 1:50 and the antibodies (Strepatavidin-

Cy3, or Streptavidin-Cy3) were 1:100 and 1:300 diluted. The

concentration of Tyr-Bio and Streptavidin-HRP (SA-HRP)

antibodies used in the first round of the indirect detection with

two rounds of amplification system were the same as in the indirect

detection system. In the second round of amplification SA-HRP

was diluted 1:300 or 1:200 and Tyr-Cy3 was used in dilutions

1:100, 1:300, 1:500 or 1:1000.

Images were taken using a fluorescence microscope Zeiss

AxioImager M2 (400x and 1000x magnification) equipped with an

AxioCam MRm camera and using Zen software (Zeiss, Zaventem,

Belgium). Calculation of chromosome size, centromere index and

signal positions was performed using the freeware computer

application Micromeasure software, version 3.3 [85].

Karyotype Analysis
A karyotype was constructed after measurement of five well-

spread metaphases using Micromeasure version 3.3 (http://

rydberg.biology.colostate.edu/Micromeasure) [85]. Measure-

ments were performed on DAPI stained images and chromosomes

were characterized on the basis of chromosome length and

centromeric index [86]. Chromosomes were then arranged in

order of decreasing length. The condensation index [(genome size

1C (Mbp)/mean length of total chromosome complement (mm)]

was also calculated. The FISH signal position (RD) was calculated

according to the formula: RD = distance from signal to

centromere 6100%/length of the chromosome arm.

Genotyping and linkage mapping of EST-SNP markers
HRM was performed as described in [87] but using only the

0.86 LightCycler 480 High Resolution Melting Master Mix

(Roche). LightCycler 480 Gene Scanning software was used for

genotyping. Three EST-SNPs for the candidate genes PAL,

OOMT and P5CS were amplified in the mapping population. A

scoring matrix was calculated in Microsoft Excel. Segregation

patterns of the new marker sets based on the HRM profiles for the

offspring plants of the mapping population were added to the

already existing mapping data described in Moghaddam et al.

[63]. Estimation of the linkage groups and regression mapping was

performed as described in De Keyser et al. [88] using JoinMap 4.0

[89]. Calculation settings for the mapping were: using linkages

with a recombination frequency smaller than 0.49 and LOD

higher than 1; goodness-of-fit jump threshold for removal of loci 5

and performing a ripple after adding 1 locus. Markers with severe

segregation distortion (Chi-square test significance higher than

0.005) and markers creating ‘‘tension’’ in the maps (according to

the Nearest Neighbours Fit) were removed from the final maps.

Determination of the position of OOMT, PAL and P5CS
genes on Fragaria vesca pseudo-chromosomes

Positions of the PAL and P5CS genes on the pseudochromo-

somes of Fragaria vesca (FraVesHawaii_1.0) were determined in the

gene database at NCBI. Localization of the OOMT gene was

identified by an alignment of a Rosa chinensis OOMT1 partial gene

sequence (AJ786302) with each of the F. vesca pseudochromosome

(CM001053.1-CM001059.1) using the BLASTN tool [90]. The E-

value threshold was fixed at e-15. To identify the closest

strawberry orthologous to the Rosa wichurana genes used in our

Tyramide-FISH experiments, a BLASTN search against distinct

copies of the strawberry genes was performed. As a query, the

parts of the Rosa wichurana sequences of the OOMT, PAL and P5CS

genes corresponding to the gene fragments used in the Tyramide-

FISH were used.

Results

Tyramide-FISH optimization
Using the direct detection system to detect the single-copy gene

PAL, many nonspecific signals were observed, although for the

control probe pTa71, 45 S rDNA sites could be detected (Fig. 1D).

Therefore, the indirect detection and indirect detection with two

rounds of amplification systems were optimized for single-copy

gene detection. In the indirect detection system, PAL (1700 bp)

could be observed when using a 1:25 dilution rate for Tyr-Bio, 8–

10 minutes tyramide incubation time and a 1:100 dilution rate for

SA-Cy3. These conditions gave the best signal-to-noise ratio as

determined by visual inspection. In the indirect detection with two

rounds of amplification system, signals for PAL became visible

under the following conditions: a first round using SA-HRP

(1:100), Tyr-Bio (1:25), 5 min tyramide incubation time and a

second round using SA-HRP (1:300), Tyr-Cy3 (1:500), 6 min

tyramide incubation time. Changing the concentration of SA-

HRP (1:200, 1:300) and Tyr-Cy3 (1:100, 1:300, 1:500 or 1:1000)

in the second round of amplification in the indirect detection with

two rounds of amplification system, resulted in slight differences in

the signal-to-noise ratio. The optimized indirect detection and

indirect detection with two rounds of amplification systems both

allowed visualization of the PAL signals in 30–40% of the observed

metaphases. Because indirect detection is more time consuming

than indirect detection, we used indirect detection for the

subsequent physical mapping of the genes.

Table 1. Overview of the primers used to isolate the genes PAL (Phenylalanine Ammonia Lyase), OOMT (Orcinol O-Methyl
Transferase) and P5CS (Pyrroline-5-Carboxylate Synthase).

Gene Primers (59-39) Tm (6C) Source sequence Amplicon (bp)

PAL ACCACTGGKTTTGGTGCWAC CCYTTGAASCCATAATCCAA 59.9 Prunus persica 1700

OOMT TGCACTACCAATCCATCCAA TGCCAAGTAACATTTGGCTTT 59.9 Rosa chinensis ‘Old Blush’ 1100

P5CS GCTGGCATCCCTGTTGTTAT CTTCGGATCGCTAATGAAGC 59.9 Prunus persica 1700

The length of the obtained amplicons is indicated as well as the Tm and source sequence.
doi:10.1371/journal.pone.0095793.t001
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Physical mapping of genes using ID
To be able to link the Tyramide-FISH signals to a certain

chromosome and to identify the NOR-bearing chromosome, the

karyotype of Rosa wichurana was constructed for the first time

(Table 3; Fig. 2). The karyotype contains 7 pairs of chromosomes

with the chromosome formula 5M+1SM+1ST. The length of the

chromosomes ranges between 2.2 mm and 3.7 mm (Table 3). The

smallest chromosome bears a NOR-satellite, as confirmed by

Tyramide-FISH with 45 S rDNA (Fig. 1 D). Chromosomes 1 and

7 can be easily distinguished based on their size and centromeric

indexes. In addition, it is also possible to discern the only

submetacentric chromosome 4. The condensation index of Rosa

wichurana is 28.162 Mbp mm21, based on the genome size of Rosa

wichurana (1C = 562 Mbp; [91]) and the mean total length of the

metaphase chromosomes (1n = 2061 mm).

The three genes used in this study were mapped on different

chromosomes (Fig. 1; Fig. 2). Signals from hybridization of the

PAL gene were visualized in the distal part of the long arm of the

smallest Rosa wichurana chromosome 7 (Fig. 1C, Fig. 2)

(RD = 77.062.1%). The signals were detected in 25–30% of the

analyzed metaphases. The OOMT gene was visualized in the

proximal position of the long arm of chromosome 1 (Fig. 1A,

Fig. 2) (RD = 22.663.2%). The signals were observed in 30–35%

of the analyzed metaphase cells. Tyramide-FISH for the P5CS

gene resulted in signals on chromosome 4 in 30–40% of the

analyzed chromosome spreads. The signals were localized in the

distal position (RD = 72.763.8%) on the long arm of this

chromosome (Fig. 1B, Fig. 2).

Positioning of EST-SNP on the genetic linkage map
HRM profiles of OOMT and PAL yielded different melting

curves between the parents; melting curves of the offspring were

identical to either one of both parental curves. Both markers were

scored as ,lmxll. according to JoinMap 4.0 [89]. The

segregation for PAL was slightly distorted (p = 0.005); 64% of the

offspring plants were scored as ,lm.. For OOMT, no segregation

distortion was detected. The HRM profiles of P5CS also differed

between the parents and segregated as 4 profiles in the offspring

plants (2 of them were identical to the parental profiles; Fig. 3).

Hence, this marker was scored co-dominantly as ,efxeg.

according to JoinMap 4.0 [89] in a ratio of 23:19:19:29 for

ee:ef:eg:fg, respectively. No segregation distortion was present for

P5CS. Segregation pattern-derived EST-SNP markers for PAL,

OOMT and P5CS were integrated in the existing genetic linkage

maps of Moghaddam et al. [63] (Fig. 4). P5CS was inserted into

consensus linkage group RwLG-B1; OOMT in group RwLG-B2

and PAL into group RwLG-B3 (Fig. 4). The OOMT gene was

previously mapped on linkage group 2 [58,105] that correspond to

our RwLG-B2. Two morphological traits, ‘‘flower size’’ (Rosa

‘Yesterday’ has double flowers, Rosa wichurana has simple flowers)

and ‘‘flower color’’ (Rosa ‘Yesterday’ has pink flowers, Rosa

wichurana has white flowers), were recorded as qualitative traits in

the mapping population [63]. ‘‘Flower size’’ and ‘‘flower color’’

are very old and well-known loci in rose linkage maps. The traits

were scored in the mapping population Rosa ‘Yesterday’ x Rosa

wichurana during 3 years in a qualitative manner [63]. A close

linkage between PAL and ‘‘Flower size’’ (3 cM) was observed.

OOMT and ‘‘Flower color’’ are on the same linkage group but with

a larger linkage distance (36 cM). Genetic mapping and

Tyramide-FISH results are in concordance as the three genes

were mapped on three different chromosomes and linkage groups.

The position of the PAL and P5CS genes near the end of the

linkage groups correspond with their positions on the chromo-

somes, which is also relative to the telomeric ends (Fig. 4). The

relative position of OOMT is central on RwLG-B1 and has a

proximal position on chromosome 1 (Fig. 4).

Anchoring of linkage groups to Rosa wichurana
chromosomes and Fragaria vesca pseudochromosomes

Searching for orthologous genes for OOMT, P5CS and PAL

genes in strawberry genome revealed that they are represented in

3, 4 and 2 genes paralogous, respectively (Table 4). Sequence

alignment showed that sequence diversity between the paralogous

ranges from 66% (for OOMT) to 91% (for P5CS) (Table 4). Two

paralogous OOMT genes are located on strawberry pseudochro-

mosome 6 (FvChr6) and one on FvChr3. Two paralogous P5CS

genes are located close to each other on FvChr7 and two on

FvChr6. Paralogous for the PAL genes were found on FvChr6 and

FvChr7. BLASTN comparison between the sequences of OOMT,

P5CS and PAL from Rosa wichurana and all found paralogous in

strawberry, revealed that three strawberry paralogues (highlighted

in Table 4) show a high similarity and/or sequence coverage to the

rose genes. These paralogues are used for making a comparison

between the physical locations of OOMT, P5CS and PAL genes on

the strawberry pseudochromosomes and the Rosa wichurana

chromosomes (Fig. 4). OOMT is located in the centre of FvChr6

(Fig 4) and, as revealed in our Tyramide-FISH, in the centromeric

region on chromosome 1 of Rosa wichurana (RwChr1; Fig 4). PAL is

located distally on FvChr6 (Fig 4) and distally on chromosome 7 of

Rosa wichurana (RwChr7; Fig 4)). P5CS is located distally on

pseudochromosome FvChr7 (Fig 4) and on the distal part of Rosa

wichurana chromosome 4 (RwChr4; Fig 4).

Discussion

Short DNA fragments could be visualized on physical
chromosomes using Tyramide-FISH

To the best of our knowledge this study reports the first

successful use of Tyramide-FISH in a plant genus with small

chromosomes. Previously, Tyramide-FISH has been applied to

Table 2. Overview of HRM primers for PAL (Phenylalanine Ammonia Lyase), OOMT (Orcinol O-Methyl Transferase) and P5CS
(Pyrroline-5-Carboxylate Synthase).

Gene Primers (59-39) Amplicon (bp) N6 of introns N6 of SNP’s

PAL TTGGAGGTTCAAGGAATTTACC CCAAGAAGCGAAAAAGCTCA 227 1 /z

OOMT GTTTGAGGCAGTTCCTCCTG GGTCTTGGTCCAGATCGAGT 223 1 1

P5CS GTGCTTGCAAACATGGAAGA TGGTGCTCTAGTTGGCAAAA 204 1 1

Amplicon length, amount of introns present in the amplicon and the number of SNPs in the amplicon are indicated.
zno sequence information is available for Rosa wichurana.
doi:10.1371/journal.pone.0095793.t002
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visualize short DNA fragments for large chromosomes of several

monocots including onion [53,92], barley [54], wheat [55] and oat

[56]. Despite the difficulty of using rose as a cytogenetic object, we

successfully visualized short DNA fragments (1.1–1.7 Kb) of genes

using Tyramide-FISH. Although rose chromosomes are very

small, the degree of chromosome condensation is rather low

(28.162 Mbp mm21). This value is comparable with tomato

(40.6 Mbp mm21, [93]) and humans (26.6 Mbp mm21, [94]), but is

more than seven times lower than in onion (249.6 Mbp mm21,

[95]). The nature of chromosome structure and chromatin

compaction influences the accessibility of target DNA. Low

chromatin compaction may positively influence the Tyramide-

FISH sensitivity by improving the probe penetration into the

chromosomes. On the other hand, less compact chromatin

theoretically can have a negative impact on Tyramide-FISH

because it contains smaller amounts of proteins (e.g., histones) and

electron rich amino acids (e.g., tyrosine, tryptophan) around the

site of hybridization. Tyramides, used for signal amplification, are

phenolic compounds that react and bind with these electron rich

moieties in the presence of HRP and hydrogen peroxide.

Therefore, a smaller amount of electron rich amino acids can

hamper a successful tyramide-conjugate coupling reaction after

oxidation by HRP [42].

We found that the commonly-used direct detection system with

fluorescent labeled tyramides (Tyr-FITC, Tyr-Cy3) was not

suitable for rose chromosomes. In that system, many nonspecific

signals hampered the identification of signals from the PAL gene.

Optimization using the indirect detection and indirect detection

with two rounds of amplification overcame this problem. The

indirect detection system has previously been applied to detect the

Rad51 gene on wheat chromosomes [55] and several EST clones

on human chromosomes [47]. In the study of Schriml et al. [47],

the indirect detection system using avidin-FITC provided the best

results, i.e., clear, distinct signals on one or both of the

homologues; whereas both the Tyr-Cy3 and Tyr-FITC (direct

detection) resulted in high background [47]. The frequency of

signal detections was about 30–40% in our study. This is

comparable with previous studies. In the study of Perez et al.

[55], the Tyramide-FISH procedure using Tyr-Bio was able to

detect target DNA sequences as small as 2 kb with a frequency of

37.5%. These frequencies are high enough to unequivocally locate

small sequences (,2 kb) using a few metaphase cells and shows the

effectiveness of our Tyramide-FISH detection system. In most

cases, we observed the Tyramide-FISH signals only on one

homologous. The same results were obtained on wheat [55] and

Allium (Kirov et al. unpublished data) where short DNA probes

were used. Since chromatin structure significantly influences FISH

results, the unequal distribution of the signals among the

homologous and the low frequency of the signals may be the

results of variation in chromatin accessibility and/or chromatin

disorder between chromosomes and metaphase plates, caused by

chromosome preparation procedure.

The HRM technology for EST-SNP marker generation has
several advantages

We successfully visualized the position of the OOMT, P5CS and

PAL genes on the Rosa wichurana chromosomes 1, 4 and 7,

respectively. Using EST-SNP markers for these genes, we could

anchor three linkage groups of Rosa wichurana to their physical

chromosomes for the first time. EST-SNP markers made it

possible to connect the physical position of the OOMT, P5CS and

PAL genes with their position on the genetic map. The HRM

technology allowed detecting SNPs in a fast and efficient way.

Unlike other technologies for gene mapping, HRM can be applied

immediately after PCR without further handling [73]. During a

single two-hour assay we amplified all 3 genes in a single-step

procedure on a 384-well plate. This dramatically increases the

genotyping throughput in a mapping population. Curve shapes

cannot always be assigned to specific alleles [96], but this was not

the case here. EST-SNP markers are situated in functional genes,

therefore these markers are a valuable tool for the integration of

the physical and genetic position of genes.

Fig. 1. Tyramide-FISH with indirect detection (A, B and C) and
direct detection (D) systems on metaphase chromosomes of
Rosa wichurana. Chromosomes were hybridized with OOMT (A), P5CS
(B), PAL (C) and pTA71 plasmid (D). (Bar - 10 mm).
doi:10.1371/journal.pone.0095793.g001

Fig. 2. Ideogram of Rosa wichurana chromosomes with an
indication of the physical position of the candidate genes for
OOMT (red), PAL (blue) and P5CS (green).
doi:10.1371/journal.pone.0095793.g002
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Tyramide-FISH showed single loci for members of
multigene families

Surprisingly, by using Tyramide-FISH we only observed single

loci for each gene even though they were described as members of

multigene families [97,98]. To estimate the copy number of genes

in a plant genome, a collection of EST sequences can be used [99].

For roses, more than 20000 rose EST sequences were uploaded in

NCBI [83,100–102] of which only 1936 EST sequences [101]

belong to Rosa wichurana. This number of EST sequences is not

enough for the estimation of the copy number of the three genes

that we studied in Rosa wichurana even not if EST sequences from

another Rosa species would be used in our analysis. Variations in

EST sequences can be explained by the copy numbers of a gene

but also by allelic variations. Some Rosa species may have up to 16

allelic variants (for ploidy level 2n = 8x) per gene. Therefore, for a

correct estimation of the copy number of the genes in Rosa

wichurana using a database of EST sequences, it should contain

more sequences (e.g. 120892 ESTs were used for tomato [99]) of

cDNA clones isolated from different tissues. Moreover, an EST

library represents only expressed genes and does not include

pseudogenes that can be visualized by Tyramide-FISH.

To clarify our result we performed BLASTN searches of all

PAL, OOMT and P5CS genes known in Fragaria, the closest relative

of Rosa [65,103]. It has a completely sequenced genome [104]. We

found 2, 4 and 3 hits for the PAL, P5CS and OOMT genes,

respectively, distributed along 3 Fragaria pseudochromosomes 3, 6

and 7. However, the similarity between the Fragaria orthologous

genes (66–76%) for OOMT and PAL genes is low. The 4 Fragaria

orthologous genes for P5CS genes showed a higher level of

intragenic similarity, but a pairwise alignment with the rose gene

fragment for P5CS used in our Tyramide-FISH indicated only one

strawberry orthologous gene with a high similarity (82%) and

query coverage (99%). Therefore, if the rose genome contains a

similar copy number of PAL, OOMT and P5CS and with similar

intragenic differences as in the Fragaria vesca genome, with the

hybridization and washing stringency we used in our study, we can

specifically detect the particular orthologues PAL, OOMT and

P5CS genes with high homology to the probe DNA sequence.

Thus, for each orthologue we can get a clear locus on the

chromosomes, which is a very important feature for anchoring

linkage groups to physical chromosomes.

Comparative analysis of physical gene positions between
Rosa wichurana and Fragaria vesca

A comparison of the physical position of the three genes

between the Rosa wichurana chromosomes and the Fragaria vesca

pseudochromosomes revealed that FwChr6 contains both ortho-

logous PAL and OOMT genes, although they are located on

different chromosomes of Rosa wichurana. Previously, Gar et al.

[65] genetically mapped a set of orthologous EST markers on Rosa

and compared this with their position on the Fragaria vesca

chromosomes. They showed 10 rearrangements including 4

translocations and 6 inversions changing the gene order between

Rosa and Fragaria vesca chromosomes. One of these rearrangements

involved FwChr6, which was shared by markers from 2 Rosa

linkage groups. Our results are thus in accordance with Gar et al.

[65]. Physical mapping on the rose chromosomes of additional

genes present on FwChr6 will shed light on the nature and the

scale of this rearrangement.

In conclusion, our results demonstrate that Tyramide-FISH is a

useful tool for physical mapping of short DNA fragments of genes

on Rosa chromosomes. We could physically map 3 genes on the

Table 3. Size and centromere index of the Rosa wichurana chromosomes.

Chromosome number Chromosome Length (mm) Relative Length (%) Centromere Index (%)

1 3.7060.30 17.8060.20 46.0061.20

2 3.20 0.60 17.0060.20 40.3061.30

3 3.0060.50 15.2060.20 44.3061.00

4 2.8060.40 14.0060.10 36.9060.70

5 2.6060.40 13.6060.10 41.4060.70

6 2.5060.40 12.4060.20 41.8061.10

7 2.2060.50 10.0060.10 23.4060.90

doi:10.1371/journal.pone.0095793.t003

Fig. 3. HRM melting profiles for P5CS. The melting curve for Rosa wichurana is part of the green cluster; Rosa ‘Yesterday’ is part of the red cluster.
Both clusters also contain curves of the siblings. Blue and pink clusters contain only the melting curves of siblings.
doi:10.1371/journal.pone.0095793.g003
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chromosomes of Rosa wichurana. Using the opportunities of the

Tyramide-FISH and the HRM technology, 3 linkage groups could

be anchored to 3 physical chromosomes of Rosa wichurana. An

integration of a cytogenetic and genetic map of rose is an

indispensable tool for assistance in map based cloning. Moreover,

the information obtained from the physical mapping of individual

rose genes can be applied for contig and pseudochromosome

Fig. 4. Integration of the gene position on the genetic map (RwLG) (partially) obtained by regression mapping in Joinmap 4.0
showing the consensus linkage groups with indication of the map position of P5CS (green), OOMT (red), PAL (blue) and the physical
chromosomes of Rosa wichurana (RwChr) and the pseudochromosomes of Fragaria vesca (FvChr). Framework of the genetic linkage map
follows Moghaddam et al. (2012).
doi:10.1371/journal.pone.0095793.g004

Table 4. Divergence among members of PAL, P5CS, OOMT orthologous genes of Fragaria and their similarity to Rosa wichurana
gene fragments used in this study.

Gene
Number of orthologous
genes found in Fragaria Fragaria orthologous gene localizations

Similarity between
Fragaria orthologous
genes

% similarity to Rosa wichurana
gene fragments (E-value; %
coverage)

PAL 2 FvChr7:15014006–15017322 FvChr6:34874086–
34877587

76% 75% (3e-35; 20%) 83% (0.0; 65%)

P5CS 4 FvChr7: 17624431–17630820 16924786–16929803
FvChr6: 8598452–8605103 33424492–33427031

78%–91% 82% (0.0;99%) 88% (2e-52;37%)
79% (2e-15; 21%) Not significantz

OOMT 3 FvChr3: 7085125–7086298 FvChr6: 15275992–
15277245 15267146–15267850

66–67% 70% (8e-37; 87%) 91% (0.0; 88%)
44% (8e-47; 62%)

Genes that were selected for the comparative analysis are highlighted.
z: Not significant: according to BLAST search.
doi:10.1371/journal.pone.0095793.t004
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anchoring to physical chromosomes which will assist future

genome sequencing in Rosa.
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Erratum: “Anchoring linkage groups of the Rosa genetic map to physical chromosomes with 

Tyramide-FISH and EST-SNP markers” [PloS one, 9(4), e95793]. 

1. Page 54. The sentence “In most cases, we observed the Tyramide-FISH signals only on one 

homologous.” should be replaced by the following sentence: “In most cases (70-80% of the cells), 

we observed the Tyramide-FISH signals only on one homologous.” 
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CHAPTER 3 

DEVELOPMENT OF CYTOGENETIC MARKERS FOR ROSA AND 

ALLIUM CHROMOSOME IDENTIFICATION 

 

 

For efficient physical mapping, the chromosomes need to be unambiguously distinguishable to be able 

to assign FISH signals to certain chromosomes. In this chapter, we aimed to identify DNA sequences for 

R. wichurana and A. fistulosum which can be used as cytogenetic markers. For R. wichurana the 

conservative repetitive DNA sequences such as 45 rDNA, 5S rDNA and an Arabidopsis-type telomeric 

repeat were used (Paper 3). To develop cytogenetic markers for A. fistulosum next generation 

sequencing data and a bioinformatic search for tandem repeats were applied (Paper 4).  

 

 

 

 

PAPER 3:  

ILYA V. KIROV, KATRI JN VAN LAERE, NADINE VAN ROY AND LUDMILA I.  KHRUSTALEVA (2016) TOWARDS A 

FISH-BASED KARYOTYPE OF ROSA L. COMPARATIVE CYTOGENETICS ,  10,  543. 

 

PAPER 4:  

ILYA V. KIROV, ANNA V. KISELEVA, KATRIJN VAN LAERE, NADINE VAN ROY, LUDMILA I. KHRUSTALEVA 

(2016) TANDEM REPEATS OF ALLIUM FISTULOSUM ASSOCIATED WITH MAJOR CHROMOSOMAL 

LANDMARKS (ACCEPTED IN MOLECULAR GENETICS AND GENOMICS)  
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Abstract
The genus Rosa Linnaeus, 1753 has important economic value in ornamental sector and many breeding 
activities are going on supported by molecular studies. However, the cytogenetic studies of rose species are 
scarce and mainly focused on chromosome counting and chromosome morphology-based karyotyping. 
Due to the small size of the chromosomes and a high frequency of polyploidy in the genus, karyotyping 
is very challenging for rose species and requires FISH-based cytogenetic markers to be applied. Therefore, 
in this work the aim is to establish a FISH-based karyotype for Rosa wichurana (Crépin, 1888), a rose spe-
cies with several benefits for advanced molecular cytogenetic studies of genus Rosa (Kirov et al. 2015a). It 
is shown that FISH signals from 5S, 45S and an Arabidopsis-type telomeric repeat are distributed on five 
(1, 2, 4, 5 and 7) of seven chromosome pairs. In addition, it is demonstrated that the interstitial telom-
eric repeat sequences (ITR) are located in the centromeric regions of four chromosome pairs. Using low 
hybridization stringency for ITR visualization, we showed that the number of ITR signals increases four 
times (1–4 signals). This study is the first to propose a FISH-based R. wichurana karyotype for the reliable 
identification of chromosomes. The possible origin of R. wichurana ITR loci is discussed.
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Cytogenetic markers, fluorescence in situ hybridization, interstitial telomeric repeat (ITR), 5S rDNA, 45S 
rDNA, Rosa wichurana
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Introduction

Rosa Linnaeus, 1753 is an economically important ornamental genus belonging to 
the Rosaceae. Of the approximately 200 described Rosa species (Wissemann and Ritz 
2005), only 8 to 15 species contributed to the original germplasm of the modern 
rose cultivars. Rosa is one of the most widely cultivated ornamental plants worldwide, 
but few basic molecular cytogenetic studies in Rosa have been performed, including 
chromosome counts and karyotyping (Wylie 1954, Price et al. 1981, Liu and Li 1985, 
Subramanian 1987, Ma et al. 1997, Fernandez-Romero et al. 2001, Akasaka et al. 
2002, 2003, Jian et al. 2013a, 2013b). Performing molecular cytogenetics in roses is 
a big challenge due to their very small genome size (the diploid genome size is 0.83 to 
1.30 pg/2C, Roberts et al. 2009), small chromosomes (Kirov et al. 2014a), low mitotic 
index in roots and shoots, and weak root development (Ma et al. 1996). Moreover, 
most wild roses are polyploids (Vamosi and Dickinson 2006), ranging from diploid 
(2n = 2x = 14) to decaploid (2n = 10x = 70) (Roberts et al. 2009, Jian et al. 2010).

Rosa wichurana (Crépin, 1888) is a valuable model species for molecular cytoge-
netic studies in Rosa genus (Kirov et al. 2015b). It is a diploid species (2n = 2x = 14) 
with suitable apical and root meristems that can be used for chromosome prepara-
tions. Rosa wichurana is involved in the origin of modern rose cultivars and is one of 
the parental species used for the construction of several rose genetic maps (Crespel et 
al. 2002, Dugo et al. 2005, Shupert et al. 2007, Spiller et al. 2011, Moghaddam et 
al. 2012). To increase the efficiency of FISH experiments, we recently developed the 
“SteamDrop” protocol for the preparation of high quality chromosome slides (Kirov 
et al. 2014b). Using this “SteamDrop” protocol and Tyramide-FISH it was possible to 
physically map several single-copy genes on the mitotic and meiotic chromosomes of R. 
wichurana (Kirov et al. 2014a, Kirov et al. 2015a) and to anchor three linkage groups 
of the genetic map (Moghaddam et al. 2012) to three R. wichurana chromosomes.

Because the chromosomes are difficult to distinguish, further progress in cytogenetic 
mapping depends on the development of cytogenetic markers useful for chromosome iden-
tification. The conservative tandemly organized repetitive sequences 5S and 45S rRNA 
genes are valuable sources of cytogenetic markers, and have been used for chromosome iden-
tification in many plant species including Rosa species (Ma et al. 1997, Fernandez-Romero 
et al. 2001, Akasaka et al. 2002, 2003, Lim et al. 2005, Jian et al. 2012, Kirov et al. 2014a). 
Other conservative repeats, such as the Arabidopsis-type telomeric repeat (Fuchs et al. 1995, 
He et al. 2013) might be used for chromosome identification. Typically, telomeric repeats 
(TRs) occupy the end (telomere) of the chromosomes (Fuchs et al. 1995). However, the lo-
cation of TRs on plant chromosomes is not restricted to the telomere ends and telomere-like 
sequences have been found in centromeric, subtelomeric and interstitial regions in several 
genera (Fuchs et al. 1995, Uchida et al. 2002, Tek and Jiang 2004, Mlinarec et al. 2009, 
Mandakova et al. 2010, Gong et al. 2012, He et al. 2013, Sousa et al. 2014). The unique 
position of these interstitial telomeric repeats (ITRs) on some chromosomes and their high 
copy number make them valuable cytogenetic markers. The position of ITR on chromo-
somes can also reflect ancient chromosomal rearrangement as telomeric sequences and 
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their remnants are involved in chromosomal rearrangements via illegitimate recombination 
between centromeric/telomeric repeats (Murat et al. 2010) and can be associated with fragile 
sites of chromosomes (Grabowska-Joachimiak et al. 2015). In addition, the chromosomal 
location of ITR can be used to detect descending dysploidy (Sousa and Renner 2015).

Development of an effective cytogenetic marker system is an important step in 
answering many biological questions (Jiang and Gill 2006). FISH-based markers have 
shown their effectiveness and ease-to-use. The modern methods of probe labeling and 
the application of directly labeled oligonucleotides make FISH-based chromosome iden-
tification a robust and fast procedure (Kato et al. 2004, Fu et al. 2015, Tang et al. 2014, 
Cuadrado et al. 2009). Up-to-date FISH based karyotyping was established for many 
plant species including wheat, maize, rice, soybean, common bean and others (Cheng et 
al. 2001, Kato et al. 2004, Findley et al. 2010, Iwata-Otsubo et al. 2015). Cytogenetic 
markers are widely used to trace individual chromosomes in hybrids accelerating transfer-
ring of desirable traits from wild relatives (Szinay et al. 2010). FISH-based karyotyping is 
used to shed light on speciation and allopolyploid formation (Badaeva et al. 2016). And 
a relatively new application came with the development of a FISH-based chromosome 
sorting procedure, allowing individual chromosome identification, sorting and further 
sequencing (Giorgi et al. 2013). These and other applications clearly demonstrate the im-
portance of having a system of cytogenetic markers enabling chromosome identification.

This study aims to explore the opportunities of ITRs, 5S and 45S rDNA as cy-
togenetic markers allowing to distinguish individual chromosomes of Rosa. FISH with 
5S rDNA, 45S rDNA and the Arabidopsis-type telomeric repeat was performed. These 
FISH results were combined with chromosome morphology measurements (Kirov et 
al. 2014a), in order to identify all seven mitotic chromosomes of R. wichurana. In 
addition, we also attempted to identify pachytene bivalents by FISH using the 45S 
rDNA and Arabidopsis-type telomeric repeat probes.

Materials and methods

Plant material

Rosa wichurana plants were grown in the field. For chromosome slide preparations, cut-
tings were made. Rooted cuttings were transferred to terracotta stone pots and grown 
in the greenhouse (moderate climatic conditions, East Flanders, Belgium). To prepare 
mitotic chromosome slides, young meristems were harvested. For meiotic (pachytene) 
chromosome slides, flowers buds with a hypanthium size of 3 mm were harvested.

Probe labeling

Plasmids containing 5S rRNA genes of rye (pSCT7, Lawrence and Appels 1986) and 45S 
rRNA genes of wheat (pTA71, Gerlach and Bedbrook 1979) were labeled by Digoxigenin- 
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and Biotin- Nick Translation Mix (Roche, Germany), respectively, according to the manu-
facturer’s protocol. The Arabidopsis-type telomere repeat (CCCTAAA)3, labeled by TAMRA 
at the 5’ end (Syntol, Russia) was used.

Chromosome preparation and fluorescence in situ hybridisation

Pachytene and mitotic chromosomes were prepared according to the “SteamDrop” 
protocol (Kirov et al. 2014b).

For FISH we used the protocol described in Heslop-Harrison et al. (1991) with 
some modifications. Briefly, slides were incubated overnight at 37°C. Chromosomes 
were pretreated with 4% paraformaldehyde in 2xSSC (pH 8.3–8.5) for 6 min and 
dehydrated in ethanol (70%, 90% and 100%). Hybridization mixture consisted of 
50% (v/v) deionized formamide, 10% (w/v) dextran sulphate, 2xSSC, 0.25% sodium 
dodecyl sulphate, 2.00 ±1.00 ng/µl probe DNA. The mixture was denatured at 75°C 
for 5 min, placed on ice for 5 min and 60 µl was applied on each slide. Slides were 
denaturated at 75°C for 5 min and incubated in a humid chamber for 15–16 hours 
at 37°C (the common hybridization condition) or at 23–25°C (the low stringency 
hybridization condition). For stringency washing 0.1xSSC solution was used at 48°C 
(2 times 7 minutes). Biotin and digoxigenin labeled probes were detected by Strepta-
vidin-Cy3 (Sigma-Aldrich, USA), diluted 1:200 in TNB buffer, and anti-digoxigenin-
FITC (Roche, Germany), diluted 1:200 in TNB buffer, respectively.

For sequential FISH experiments, the slides were washed in the series of ethanol 
(70%, 90% and 100%) after the first round of FISH and then the above-mentioned 
FISH procedure was applied.

Microscopy and image analysis

Images were acquired using a Zeiss AxioImager M2 fluorescence microscope (400× 
and 1000× magnification) equipped with an AxioCam MRm camera and Zen software 
(Zeiss, Belgium). Final image adjustments were performed using Photoshop (Adobe 
Inc., USA). Measurements of chromosome lengths and karyotyping was done in Mi-
croMeasure version 3.2 (Reeves and Tear 2000) for at least 10 well-spread metaphases.

Results

FISH using Arabidopsis-type telomere repeat, 5S rDNA and 45S rDNA allows 
unambiguous identification of 3 Rosa wichurana mitotic chromosomes

FISH using the common hybridisation temperature of 37°C with 45S rDNA revealed 
a signal on chromosome 7, while the Arabidopsis type telomere-based probe hybridized 
on chromosome 5 (Fig. 1A).
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Figure 1. FISH on the chromosomes of R. wichurana. A FISH with Arabidopsis-type telomere probe 
(red) and 45S (green) under hybridization at 37°C B FISH with Arabidopsis-type telomere probe under 
the low hybridization stringency condition (23-25°C). Arrows indicate the major ITRs on chromosome 
5 and arrowheads show the ITRs which are visible under the low hybridization stringency condition 
C The same metaphase as in 1B rehybridized with 5S rDNA under the common hybridization stringency 
(37°C). Arrows indicate the 5S rDNA signals. Sacale bar: 5 µm.

To further evaluate the value of the telomeric repeat (TR) as a cytogenetic marker, 
FISH was carried out at room temperature (the low hybridization temperature). We 
observed the Arabidopsis-type TR signals on all chromosome ends (Fig. 1B). Besides the 
telomeric signals, a bright fluorescent signal in the centromeric region on chromosome 
5 and weak signals in the centromeric region on three other chromosomes 1, 2 and 7 
were observed. Remarkably, the weak centromeric signals on chromosomes 1, 2 and 7 
were not observed when performing a hybridization at 37°C (Fig. 1A). No ITRs were 
present on chromosomes 3, 4 and 6. FISH with 5S rDNA using the common hybridiza-
tion temperature of 37°C showed fluorescent signals on the long arm of chromosomes 
4 and 7 (Fig. 1C) but the signal frequency across the metaphases was low (20–40%).

Sequential FISH at the low hybridization temperature with the Arabidopsis-type 
telomere-based probe and 5S rDNA showed co-localization of these signals on chro-
mosome 7. We also performed double-color FISH with the Arabidopsis-type telomere 
repeat-based probe and the 45S rDNA probe under the low temperature of hybridiza-
tion (Fig. 2) which confirmed the identification of four (1, 2, 5 and 7) out of seven 
chromosomes.

A summary of the karyotypic features and distribution of FISH probes is given 
in Fig. 3. Taken together, three chromosomes (4, 5 and 7) of R. wichurana could be 
unambiguoulsy identified by 5S rDNA, 45S rDNA and the Arabidopsis-type TR using 
common FISH hybridisation conditions (Fig. 3).

All the other chromosomes can only be distinguished at this time based on their 
morphological parameters. Differentiation between chromosome 1 and 2 is possible 
by their centromeric indices which are 46.00 ±1.2% and 40.30 ±1.3%, respectively 
(Kirov et al. 2014a) and by the presence of an ITR when using FISH at low tempera-
ture hybridization conditions. Chromosomes 3 and 6 have centromeric indices on the 
level of 44.3 ±1.0% and 41.8 ±1.1%, respectively (Kirov et al. 2014a). However, these 
chromosomes still remain very difficult to distinguish from each other.
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Figure 2. Double-color FISH under the low hybridization conditions using the Arabidopsis-type telomere 
repeat-based (red) and 45S rDNA (green) probes to R. wichurana mitotic chromosomes. Scales bar: 10 µm.

ITRs are located on the centromere of chromosome 5

FISH experiments with 5S rDNA, 45S rDNA, and the Arabidopsis-type TR on rose 
pachytene chromosomes provide a much higher resolution of the mapped sequences. 
5S rDNA-FISH on pachytene chromosomes did not reveal any reliable signals, while 
FISH with the 45S rDNA probe resulted in a clear signal at the subtelomeric region 
of the NOR-bearing chromosome (Fig. 4). FISH with the Arabidopsis-type TR probe 
resulted in signals on all ends of pachytene chromosomes and one bright signal on the 
centromeric region of chromosome 5 (Fig. 4). Since centromeres of rose pachytene 
bivalents are clearly visible after DAPI staining as being the weakest part of the chro-
mosomes (Kirov et al. 2015a), comparison between the DAPI stained chromosomes 
(Fig. 4B’) and the ITR signal positions (Fig. 4A’) revealed that the ITRs are located 
exactly on the centromere of chromosome 5.
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Figure 3. Distribution of the repetitive sequences on the mitotic R. wichurana chromosomes. 
1 – ITR1: signals that are visible under hybridization at 37°C as well as at low temperature (23–25°C). 
2 – ITR2: signals that are visible only under hybridization at low temperature (23–25°C).

Figure 4. High resolution physical mapping of ITR on R. wichurana pachytene chromosomes. FISH 
with the Arabidopsis-type telomere repeat probe (red) and 45S (green). Merged (A) and the DAPI gray 
scale (B) pictures are shown. FISH was performed under the low hybridization stringency condition. 
Dotted lines show the regions that were digitally enlarged (A’ and B’). Scales bar: 5 µm.
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Discussion

Rosa mitotic and meiotic chromosomes are difficult to distinguish by common karyo-
type analysis (Kirov et al. 2014, Kirov et al. 2015a). The development of cytogenetic 
markers is necessary for individual chromosome identification and further cytogenetic 
studies in Rosa. In our study, we positively evaluated the use of the conservative tan-
dem repeats, Arabidopsis-type telomere, 45S and 5S probes, as FISH-based cytoge-
netic chromosome markers for R. wichurana. However, the 5S rDNA probe cannot 
be considered as a good cytogenetic marker for R. wichurana chromosomes due to the 
low reliability of the FISH-signals. Application of FISH with the 5S rDNA probe to 
chromosome slides prepared by an alternative method (spread protocol of Pijnacker 
and Ferwerda (1984)) and using FAM labeled 5S oligos or a R. wichurana 5S clone as 
probes, did not improve FISH results (data not shown). Thus the reason for weak 5S 
rDNA FISH signals on R. wichurana chromosomes remains unclear. FISH with the 
Arabidopsis-type TR under low hybridization conditions (hybridization at 23-25°C in-
stead of 37°C) provided us an additional tool for identification of Rosa chromosomes.

In this study, FISH with the 45S rDNA and the Arabidopsis-type telomere probe, 
reliably identified 2 (chromosome 5 and 7) of the 7 pachytene bivalents of R. wichura-
na. These markers will accelerate the ongoing physical mapping of pachytene chromo-
somes of R. wichurana as their identification by morphological parameters or specific 
heterochromatin patterns is impossible (Kirov et al. 2015a).

ITRs can be used to trace ancient chromosomes rearrangements such as chromosome 
fusions, Robertsonian translocations and duplications resulting in dysploidy (Mandakova 
et al. 2010, Sousa et al. 2014). However, Rosa species have a basic chromosome number n 
= 7, suggesting that no descending dysploidy, which usually results in basic chromosome 
number changes, has occurred. Therefore, it seems unlikely that the observed ITRs are the 
indications of such chromosome fusions or translocations. ITRs might also be the traces 
of intrachromosomal rearragements implicating telomeres (e.g., inversions and duplica-
tions) (Murat et al. 2010). In our study, the Arabidopsis telomere-like motif was found in 
centromeric repeats of Rosa wichurana, as is also observed in several other genera (Tek and 
Jiang 2004, He et al. 2013, Emadzade et al. 2014). The FISH signal from ITRs on chro-
mosome 5 is significantly stronger than those observed in the telomeres of R. wichurana 
chromosomes. Thus, we hypothesize that the occurrence of ITRs in the centromeric re-
gions of R. wichurana chromosomes is the result of insertion of Arabidopsis telomere-like 
sequence into centromeric sequence followed by massive amplification of centromeric 
tandem repeat(s) containing an Arabidopsis telomere-like motif. To check this hypothesis 
identification of centromeric repeats of R. wichurana should be done (Tek and Jiang 
2004). The events leading to insertion of ITR sequences into centromere are unknown.

Interestingly, FISH under the low hybridization temperature – and thus low strin-
gency – revealed more chromosomes possessing the telomeric repeat compared to FISH 
performed under the common hybridization temperature. This result suggest that these 
chromosomes (1, 2 and 7) may contain truncated or diverged telomere motifs. As a 
consequence for our experiments, the telomeric probe may be much more informative 
as cytogenetic marker when hybridized at a lower temperature than at 37°C (Fuchs et al. 
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1995, Tek and Jiang 2004, Sousa et al. 2014, Sousa and Renner 2015). However, the 
application of ITR markers under the low-hybridization stringency and simultaneous 
mapping of other probes (e.g. genes) can be challenging as non-specific hybridization 
signals may occur due to low stringency. In this case sequential FISH can be applied.

High-resolution FISH on pachytene chromosomes with the telomere probe re-
sulted in a signal in the centromere of chromosome 5, indicating that the telomere-like 
motifs may be the components of the R. wichurana functional centromere as it has 
been shown for potato (Tek and Jiang 2004).

This is the first report describing valuable cytogenetic markers for four mitotic chro-
mosomes and two pachytene bivalents of R. wichurana. Moreover, by combining our 
FISH results with the chromosome morphology measurements (Kirov et al. 2014a), 
all 7 mitotic chromosomes of R. wichurana could be identified. Because R. wichurana 
has many advantages as a model species for cytogenetic studies of the Rosa genus, the 
development of a complete set of cytogenetic markers should facilitate the physical 
mapping of its genome. Designing new DNA probes based on NGS data covering all 
chromosomes of R. wichurana is a scope for our future research. These markers will be 
indispensable for high-resolution physical mapping experiments (Kirov et al. 2015a) 
that are currently ongoing for this species.
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Erratum: Towards a FISH-based karyotype of Rosa L.(Rosaceae). Comparative Cytogenetics, 10, 543. 

[Kirov, I. V., Van Laere, K., Van Roy, N., & Khrustaleva, L. I. (2016)]  

1. Order of the picture on Figure 1 is wrong therefore this Figure should be replaced by following 

one: 
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Abstract 

Tandem repeats are often associated with important chromosomal landmarks such as centromeres, 

telomeres, subtelomeric and other heterochromatic regions and can be good candidates for molecular 

cytogenetic markers. Tandem repeats present in many plant species, demonstrate dramatic differences 

in unit length, proportion in the genome and chromosomal organization. Members of genus Allium with 

their large genomes represent a challenging task for current genetics. Using the next generation 

sequencing data, molecular and cytogenetic methods, we discovered two tandemly organized repeats 

in the Allium fistulosum genome (2n=2C=16), HAT58 and CAT36. Together these repeats comprise 0.25% 

of the bunching onion genome with 160,000 copies/1C of HAT58 and 93,000 copies/1C of CAT36. 

Fluorescent in situ hybridization (FISH) and C-banding showed that HAT58 and CAT36 associated with 

the interstitial and pericentromeric heterochromatin of the A. fistulosum chromosomes 5, 6, 7 and 8.   
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FISH with HAT58 and CAT36 performed on A. cepa (2n=2C=16) and A. wakegi (2n=2C=16), a natural 

allodiploid hybrid between A. fistulosum and A. cepa, revealed that these repeats are species specific 

and produced specific hybridization patterns only on A. fistulosum chromosomes. Thus, the markers can 

be used in interspecific breeding programs for monitoring of alien genetic material. We applied non-

denaturation-FISH that allowed detection of the repeat bearing chromosomes within three hours. A 

polymorphism of the HAT58 chromosome location was observed. This finding suggests that the rapid 

evolution of the HAT58 repeat is still ongoing. 

 

Keywords 

Allium fistulosum, Allium wakegi, FISH, heterochromatin, pachytene, pericentromeric region, satellite 

DNA 

 

Abbreviations 

FISH  Fluorescence in situ hybridization 

ND-FISH Non-denaturing Fluorescence in situ hybridization 

TRs  Tandem repeats 

TAMRA 6-carboxytetramethylrhodamine 

DAPI               4,6-Diamidino-2-phenylindole 

PMCs              Pollen mother cells 

 

 

 

Introduction 

Tandem repeats (TRs) have been widely discovered in plant genomes (Schmidt and Heslop-

Harrison1998; Hemleben et al.2007; Mehrotra and Goyal 2014). A huge variation in unit length, genome 
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proportion, chromosomal organization and epigenetic modifications of TRs has also been shown 

(Fesenko et al. 2002; Sharma and Raina 2005; Mehrotra and Goyal 2014; Zhang et al. 2014), suggesting 

a rapid evolution mode in the plant genome. Usually, TRs are associated with important chromosomal 

landmarks such as centromeres, telomeres, subtelomeric and other heterochromatic regions and have 

been widely studied during the last few decades (Henikoff et al. 2001; Jiang et al. 2003; Koo et al. 2011). 

TRs are a valuable source of cytogenetic markers for distinguishing individual chromosomes (Albert et 

al. 2010).  FISH with tandem repeats have been successfully used for chromosome identification and for 

studying plant  chromosome evolution  in wheat  (Komuro et al.2013), maize  (Albert et al. 2010), radish 

(He et al. 2015), bulb onion (Do et al. 2001) etc. Although the function of many TR families is not fully 

understood, it was demonstrated that some TRs play an important role in the function of centromeres 

(Jiang et al. 2003), regulation of gene expression (Verstrepen et al. 2005) and maintenance of telomeric 

ends (Blackburn 2001). It is also well known that many TRs form heterochromatin (McClintock 1951; 

Ananiev et al. 1998; Wallrath 1998; Alkhimova et al. 2004), and it was proposed that TRs are involved in 

heterochromatin formation via an RNA-mediated pathway (Reinhart and Bartel 2002, Cohen and Jia 

2014; Holoch and Moazed 2015). Since heterochromatin is involved in regulation of gene expression 

(Grewal and Moazed 2003), 3D genome organization (Fransz et al. 2002; Wang et al. 2014), sister 

chromatid cohesions (Oliveira et al. 2014), and speciation (Ferree and Barbash 2009), a possible role of 

TRs in these processes might be hypothesized. Next generation sequencing, together with use of a 

bioinformatic tool, such as RepeatExplorer (Novak et al. 2010, 2013), enables to identify TRs in species 

in which genomes have been sequenced with low coverage.  

The genus Allium consists of many economically important plant species, including bulb onion (Allium 

cepa, 2n=2x=16), Japanese onion (A. fistulosum, 2n=2x=16), leek (A. porrum, 2n=4x=32), and garlic (A. 

sativum, 2n=2x=16). Allium species have huge genomes and large mitotic chromosomes, making them 

good cytological plant models. Alliums have a basic chromosome number x=7, 8 (observed in most 

species) or 9 (Ricroch et al. 2005). Genome sizes can display 4.5-fold differences among Allium species 

from7 pg/1C in A. altyncolicum (Ricroch et al. 2005) to 31.49 pg/1C in A. ursinum (Ohri et al. 1998). 

Multiple genome duplication events and amplification of repetitive DNA have a major influence on the 

Allium genome sizes (King et al. 1998). Several repetitive DNA families were discovered in Allium species 

including retrotransposons (Pearce et al. 1996, Vitte et al. 2013; Kim et al. 2014; Kiseleva et al. 2014), 

tandem repeats (Barnes et al. 1985; Irifune et al. 1995; Seo et al. 1999; Fesenko et al. 2002; Fajkus et al. 

2015) and non-tandem repeats (Shibata and Hizume, 2002; Nagaki et al. 2012).  
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A. fistulosum (bunching onion) has a genome of 11.5 Gb/C (Ricroch et al. 2005). A significant portion of 

the genome consists of repetitive elements. Our knowledge about qualitative and quantitative content 

of the A. fistulosum repeatome (ensemble of all repetitive DNA families of a genome) is limited. It was 

shown that 4.5% of its genome is occupied by a 380-bp tandem repeat located in the major 

heterochromatic blocks of all subtelomeric regions (Irifune et al. 1995). Several centromeric repeat 

sequences (Afi) were identified for A. fistulosum by the chromatin immunoprecipitation (ChIP) method 

using antibodies against CENH3 histone (Nagaki et al. 2012). However, the sequences did not show any 

characteristics similar to TRs or centromeric retrotransposons, which are typical elements of plant 

centromeres.  

 

The aim of this study was to analyze repeatome content of A. fistulosum genome and to identify novel 

TRs in A. fistulosum genome that can be used as a cytogenetic marker. Using next generation sequencing 

data, we were able to determine two novel TRs: HAT58 and CAT36, which together occupy 0.25% of the 

A. fistulosum genome. FISH analysis showed that CAT36 is located in the pericentromeric regions of 

chromosomes 5 and 6 of A. fistulosum. HAT58 occupied intercalary heterochromatin of chromosome 6, 

7 and 8 associated with C-banding patterns. HAT58 and CAT36 are species specific tandem repeats that 

were shown by FISH on chromosomes of A. wakegi (2n=2C=16), a natural allodiploid hybrid between A. 

fistulosum and A. cepa.  

 

Material and methods 

Plant material, chromosome preparation and DNA isolation 

Seeds of A. fistulosum L. ‘Russkiy Zimniy’(2n=2x=16) and A. cepa L. ‘Haltsedon’ (2n=2x=16) were 

purchased from Gavrish seed company (Moscow, Russian Federation). Bulbs of A. x wakegi, a natural 

hybrid between A. cepa and A. fistulosum (2n=2x=16), were kindly provided by prof. M. Shigyo 

(Yamaguchi University, Japan). Genomic DNA was isolated from 5-day-old seedlings and young leaves of 

A. cepa and A. fistulosum according to the protocol of Rogers and Bendich (1985). Mitotic and pachytene 

chromosomes were prepared according to the SteamDrop protocol (Kirov et al. 2014). 
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Tandem repeat identification and repeatome characterization 

RepeatExplorer (Novak et al. 2013) was used to explore tandem repeats based on the Illumina reads of 

A. fistulosum from NCBI (SRX268217). Totally 5,101,906 Illumina reads (80bp) of A. fistulosum were used 

for RepeatExplorer analysis. RepeatExplorer performs all-to-all similarity comparison of the NGS reads 

and represents the results as graph-based clusters of similar reads. The shape of the cluster is used for 

target isolation of different repeat families. Contigs are assembled from reads belonging to the clusters. 

A minimum overlapping length of 55 bp and 40 bp was used for clustering and assembly. All contigs from 

clusters with a globula-like structure (corresponding to tandemly organized repeats) were compared 

with known sequences from NCBI by BLASTN. For repeatome characterization, the html output file after 

RepeatExplorer clustering, only the clusters with a genome portion value of more than 0.005%, were 

used. This file was analyzed by a home-made script written in python (v3.4) programming language. The 

script allowed us to generate a summary report containing information about a type of repeat based on 

RepeatExplorer annotation and the genome portion occupied by the repeat.  

 

PCR amplification, cloning and sequencing of CAT36 and HAT58 

Tandem repeat units of HAT58 and CAT36 were identified by Tandem Repeat Finder Software (Benson, 

1999). Amplification of the determined tandem repeats (named as HAT58 and CAT36) and of Afi11, a 

previously identified centromeric repeat of A. fistulosum (Nagaki et al. 2012), were performed using 

specific primers (Table 1) designed by Primer 3.0 plus software (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi/). The PCR conditions were 94°C – 1 min, 35 cycles : 94°C – 1 min; 58°C 

– 1 min; 72°C – 1 min; final elongation: 72°C – 3 min.  

The sequences of the repeats were verified by cloning of the repeat monomer obtained by PCR product 

into pGEM-T Easy vector (Promega, Madison, WI, USA) in E. COLI strain DH10B according to the 

manufacturers’ instruction. The individual clones were sequenced using ABI 3130xl Genetic Analyzer 

(Applied Biosystems, Foster City, CA, USA) according to the manufacturers’ instruction. The sequences 

of the oligomeric units were submitted to NCBI GenBank, accession number for CAT36 is KX137122.1 

and for HAT58 is KX137121.1. 
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Table 1 Primers used for the repeat amplification and the expected length of the PCR product. 

Tandem 

repeats 

Primers, 5’-3’ Accession 

number in 

NCBI 

Size of 

repeat 

unit 

 

Expected 

length of PCR 

product (bp)  

HAT58 F:AAAAACATCTTCCAACAGCATAAA  

R:TGCATGAAAAGACAGCGTTT 

 

KX137121 65 50 

CAT36 F:TCCCACCTAAATTACGGACA 

R:AAATAGCGGCTTCTGCACTA 

KX137122 197 154 

Afi11 F: AAAGGTTCATGCCTGCTTTC  

R: TTTTACGGCATGCGATACCT  

AB735740 

 

158 139 

 

 

 

Probe labelling 

Probes for HAT58, CAT36 and Afi11 were obtained by PCR labeling using Biotin-16-dUTP (Roche, 

Mannheim, Germany) or Digoxigenin--dUTP (Roche, Mannheim, Germany). pSCT7, containing 5S rRNA 

genes of rye (Lawrence and Appels 1986), was  labeled with  Biotin -Nick Translation Mix according to 

the manufacturers’ protocol (Roche, Mannheim, Germany).   

Genomic DNA of A. fistulosum was labeled with Biotin-Nick Translation Mix according to the 

manufacturers’ protocol (Roche, Mannheim, Germany).   

HAT58 (5’-TGCATGAAAAGACAGCGTTTAGAGTTTTTATGC-3’) oligonucleotide was designed and labeled  

at the 5’-end  using TAMRA (6-Carboxytetramethylrhodamine) manufactured by Syntol company 

(Moscow, Russian Federation).  
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FISH, GISH and Non-denaturing (ND)-FISH 

The chromosome slides were dried overnight at 37°C and pretreated with 4% buffered 

paraformaldehyde in 2xSSC (pH 8.0 – 8.5), followed by dehydration in 70%, 90% and 100% ethanol. The 

hybridization mixture consisted of 50% (v/v) deionized formamide, 10% (w/v) dextran sulphate, 2xSSC, 

0.25% sodium dodecyl sulphate, 2.75±1.00 ng/µl probe DNA (in GISH experiment: 1.25 ng/µl probe - 

labeled genomic DNA of A. fistulosum and 37.5 ng/µl block – non-labeled genomic DNA of A. cepa).  The 

mixture was denatured at 75°C for 5 min and subsequently placed on ice for 5 min. 60 µl of the mixture 

was added to the chromosome preparations, covered with a coverslip (22x32 mm), and denatured for 

5 min at 80°C. Posthybridization washing included: 2xSSC twice for 5 min at 37°C, 0.1xSSC twice for 10 

min at 48°C; then washing in 2xSSC for 3 min at 37°C. The Biotin-labeled probe was detected with 

streptavidin-Cy3 and signal amplification using anti-streptavidin-biotin, and subsequent incubation with 

streptavidin-Cy3 (Sigma-Aldrich, St. Louis, MO, USA). The Digoxigenin-labeled DNA was detected with 

anti-digoxigenin-fluorescein raised in sheep (Roche, Mannheim, Germany) and amplified with 

fluorescein anti sheep raised in rabbit (Vector Laboratories, USA). Chromosomes were counterstained 

in 5 µg/ml DAPI in Vectashield anti-fade (Vector Laboratories,USA). 

 

A non-denaturing FISH (ND-FISH) procedure was carried out according to Cuadrado and Jouve (2010). 

ND-FISH allows for detection of tandem repeats without denaturation of the chromosome DNA, and 

shortens the FISH procedure dramatically.  

  

C-banding/DAPI 

The C-banding procedure was based on protocols described earlier (Barros and Guerra 2010, 

Grabowska-Joachimiak et al. 2011). The chromosome slides were incubated for 2 min in 0.2 M HCl in a 

water bath at 60°C, rinsed under tap water and in distilled water, then incubated in a saturated  solution 

of Ba(OH)2 at 50° C for 1 min, then rinsed under tap water until completely clear. The next step was 

incubation in 2xSSC buffer for 2 h at 60 ° C, then rinsing under tap water and in distilled water, and 

storage of air-dried slides for at least 1 day at RT and overnight  at 37° C before staining with 4’,6-

diamidino-2- phenylindole (DAPI) in Vectashield-mounting medium (Vector Laboratories, 

http://www.vectorlabs.com). 
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Fluorescent microscopy and image analysis 

Slides were checked using a Zeiss Axio Imager microscope (Carl Zeiss MicroImaging, Jena, Germany). 5-

10 metaphases per slide were used for the analysis. Images were captured using an Axio Cam MRm 

digital camera. Image processing was performed using AxioVision version 4.6 software (Carl Zeiss 

MicroImaging, Jena, Germany). Final image adjustments were made using Photoshop (Adobe Inc., San 

Jose, CA, USA). The captured images of the chromosomes and position of FISH signals and C-bands were 

measured using the program MicroMeasure version 3.2 (Reeves and Tear 2000).  

 

Results 

A. fistulosum repeatome characterization and identification of tandem repeats  

To identify clusters corresponding to tandem repeats, we carried out a search for a globula-like (CL2, 

CL5, CL6, CL7 and CL58) or ring-like (CL36) structure, both of which are typical for tandemly-organized 

repetitive sequences (Novák et al. 2010, Macas et al. 2011; Renny-Byfield et al. 2012). Contigs from CL2, 

CL5, CL6 and CL7 showed similarity to the known subtelomeric repeat of A. fistulosum (Irifune et al. 

1995). These four clusters together comprise 7.12% of the genome. The other two clusters, CL58 (Fig. 

1A) and CL36 (Fig.1B), comprise respectively 0.09% and 0.16% of the total reads used. Analysis in 

TandemRepeat finder (Benson, 1999) showed that the length of the monomers for CL36 and CL58 were 

197 bp and 65 bp, respectively. After FISH analysis of the repeat chromosomal location we named these 

repeats as HAT58 (Heterochromatin-associated Allium tandem repeat from CL58) and CAT36 

(periCentromeric Allium tandem repeat from CL36). The PCR products of CAT36 and HAT58 were cloned 

and sequenced: accession numbers at the GenBank for CAT36 is KX137122.1 and for HAT58 is 

KX137121.1. The DNA sequence of HAT58 did not show similarity to annotated genomic sequences in 

NCBI databases. In contrast, 6 genomic sequences (in GSS database of NCBI) of A. cepa were found by 

BLASTN to be similar to the CAT36 sequence.  

 

PCR with HAT58 primers (Table 1) and genomic DNA of A. fistulosum and A. wakegi, a natural diploid 

hybrid between A. fistulosum and A. cepa (Hizume, 1994), resulted in ladder-like PCR products but no 
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PCR products were found for A. cepa (Fig. 1). PCR with CAT36 primer pairs resulted in ladder-like PCR 

products for A. fistulosum, A. wakegi and A. cepa (Fig. 1). Thus, both the BLASTN search and PCR results 

confirmed the tandem organization of these repeats in A. fistulosum and A. cepa genomes.  

 

Fig. 1 Results of PCR amplification with primers for HAT58 and CAT36 repeats. AF – A. fistulosum, AC - A. 

cepa. AW –A. wakegi, control – negative control with water instead of DNA, M1 – 100bp ladder, M2 

100bp Plus ladder A. The shape of the HAT58 (CL58) cluster; B. The shape of the CAT36 (CL36) cluster. 

 

Chromosome localization of HAT58 and CAT36 

FISH with HAT58 on A. fistulosum mitotic chromosomes showed fluorescent signals on three pairs of 

homologs which were identified by karyotype analysis: NOR bearing chromosome 6 (relative length,RL 

– 11.9±0.3; centromeric index, CI - 18.2±2.6), the smallest metacentric chromosome 7 (RL- 10.3±0.5; CI- 

47.1±0.7) and the smallest submetacentric chromosome 8 (RL- 10.3±0.3; CI – 38.2±3.0 (de Vries and 

Jongerius 1988). On NOR-bearing chromosome 6, the FISH signal was located in the pericentromeric 

region of the long arm (Fig. 2A-C). On chromosome 8, FISH signals were revealed  on the short arm (2-3 

loci) and one locus in a proximal position on the long arm of chromosome 8 (Fig. 2A-C). The locus of 

HAT58, located on chromosome 7, demonstrated polymorphisms between plants, and three types of 

 85



FISH patterns on chromosome 7 were identified (Fig. 3A-C): 1) absence of the signals on both homologs 

(Fig.2A); 2) presence of the signal on one homolog (Fig. 3B); 3) presence of the signals on both homologs 

(Fig. 2C). Chromosome 7 is a metacentric chromosome and possesses 5S rRNA genes on the short arm 

(Hizume 1994). To determine whether 5S rRNA genes and HAT58 are located on the same chromosome 

arm, we employed two-color FISH with HAT58 (digoxigenin labeled) and 5S rRNA genes (biotin labeled), 

which revealed that the HAT58 locus and 5S rRNA genes are located on different arms of chromosome 

7 (Fig. 2D).  Therefore, we could conclude that HAT58 is located on the long arm of chromosome 7. 

 

FISH with CAT36 probes on A. fistulosum revealed signals in the pericentromeric regions of chromosome 

5 (RL- 11±1.5; CI - 47.9±1.9) and chromosome 6 (Fig. 4E). Because CAT36 and HAT58 repeats are both 

located in the pericentromeric region of chromosome 6, we checked whether they are co-localized or 

not. Two-color FISH with HAT58 and CAT36 on metaphase (Fig. 2E) and prophase (Fig. 2F) chromosomes 

of A. fistulosum demonstrated that CAT36 is located closer to the centromere than HAT58.  

 

FISH analysis of HAT58 and CAT36 locations on  A. cepa was performed in order to compare their location 

in two closely related species. According to recent phylogenetic and biogeographic analysis A. cepa and 

A. fistulosum are classified in the same section Cepa, subgenus Cepa (Friesen et al. 2006, Li et al.2010). 

The PCR products obtained with the CAT36 and HAT58 primers (Table 1) and genomic DNA of A. cepa 

and A. fistulosum, respectively, were used as a probe in the FISH experiment on A. cepa chromosomes. 

No FISH signals were observed with HAT58, while CAT36 produced only weak dispersed signals on the 

A. cepa chromosomes (Fig. 3D). Thus, FISH analysis of two closely related species showed that these 

repeats are species specific and produced specific hybridization patterns only on A. fistulosum 

chromosomes. An analysis of the chromosomal location of these polymorphic sites was performed in A. 

x wakegi (2n=2x=16), a natural allodiploid hybrid between A. cepa and A. fistulosum that possesses eight 

chromosomes of A. cepa and eight chromosomes of A. fistulosum (Tashiro 1980, 1984, Hizume 1994, 

Shibata and Hizume 2002).  Simultaneous GISH and FISH showed hybridization patterns of HAT58 and 

CAT36 only on chromosomes belonging to A. fistulosum and no signals were detected on chromosomes 

belonging to A. cepa. The chromosomal locations of both tandem repeats were the same as in A. 

fistulosum: HAT58 – on the long arm of chromosome 6, on the long arm of chromosome 7, on the short 
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arm and the long arm of chromosome 8 (Fig. 2H); CAT36 - in the pericentromeric region of chromosomes 

5 and 6 (Fig. 2I). 

 

 

Fig. 2 A-C FISH with HAT58 tandem repeat on A. fistulosum chromosomes. Metaphase with no signals 

on chromosome 7 (A), with a signal on one homolog (B) and signals on both homologous chromosomes 

7 (C). D Two-color FISH with HAT58 and 5S rRNA genes on A. fistulosum metaphase chromosomes; E-F 

Two-color FISH with HAT58 and CAT36 on A. fistulosum metaphase chromosomes (E) and A. fistulosum 

prophase chromosomes (F). Red and green arrows indicate CAT36 and HAT58 signals on chromosome 

6, respectively. G. FISH with CAT36 and Afi11 repeats on pachytene chromosomes of A. fistulosum. Insert 
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shows co-localization of CAT36 and Afi11 on the A. fistulosum mitotic metaphase chromosomes  5 (left) 

and 6 (right). H. Simultaneous GISH and FISH with HAT58 on mitotic chromosomes of A. x wakegi. I. 

Simultaneous GISH and FISH with CAT36 on mitotic chromosomes of A. x wakegi. Bar - 10µm 

 

Two-color FISH with HAT58 and CAT36 probes on A. fistulosum meiotic chromosomes at diakinesis 

allowed reliable detection of bivalents formed by homologous chromosomes 5, 6, 7 and 8 (Fig. 3A).  

 

In an attempt to simplify the identification of individual chromosomes of A. fistulosum, ND-FISH with 

TAMRA-labeled oligonucleotides designed on HAT58 was performed. ND-FISH allows detection of 

tandem repeats without denaturation of the chromosome DNA and makes the FISH procedure much 

more rapid (Cuadrado and Jouve 2010). ND-FISH with HAT58 showed pronounced chromosome-specific 

patterns (Fig. 3B) that fully corresponded to FISH results (Fig 2A-C). 

 

 

Fig. 3 A 8 cross bivalents of A. fistulosum at diakinesis after FISH with HAT58 (green) and CAT36 (red). B 

ND-FISH with TAMRA-labeled oligonucleotide probe designed for HAT58 on A. fistulosum mitotic 

metaphase chromosomes; C C-banding/DAPI on A. fistulosum mitotic metaphase chromosomes; D FISH 

with HAT58 (red) on A. cepa mitotic metaphase chromosomes.  Bar – 10µm 

 

HAT58 is associated with C-banding/DAPI patterns   

In Allium the C-banding treatments usually reveal pronounced telomeric bands, different intensity 

centromeric bands, and rare and less often clearly seen intercalary bands. Analysis of five cultivars of A. 

fistulosum revealed the presence of intercalary C-bands on chromosome 6, 7 and 8 (Inada and Endo 
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1994). In order to clarify the association of these C-bands with HAT58 hybridization sites, C-

banding/DAPI was applied (Fig.3C). We found the correspondence of HAT58 location with C-bands 

location on the arms of chromosome 6, 7 and 8 (Fig. 4). We measured the distance from telomeric end 

to the HAT58 hybridization sites and C-bands, and calculated the relative position of these signals on the 

chromosome arm. Statistical analysis confirmed the co-localization of the HAT58 fluorescent signals and 

the corresponding C-bands (Table 2).  

 

Table 2. The relative position of HAT58 FISH-signals and C-bands on the mitotic metaphase  chromosomes of A. fistulosum 

Chromosome/arm 

 

      FISH     C-banding         t-test** 

Medium ± SD Medium ±SD t-stat t-critical 

Chr6       long arm     0.9*± 0.03     0.9 ± 0.01 0.97 2.78 

Chr7       long arm     0.8  ± 0.01     0,8 ± 0.04 -2.47 2.78 

Chr8       short arm 

               short arm         

               long arm 

    0.8  ± 0.03 

    0.7  ± 0.07 

    0.4  ± 0.06 

    0.8 ± 0.07 

    0.7 ± 0.10 

    0.4 ± 0.05 

1.21 

-0.66 

1.91 

2.14 

2.20 

2.36 

*- The relative position of FISH signals/ C-bands on chromosomes was calculated as the ratio of the distance between the 

site of hybridization/C-band and the telomeric end to the length of the chromosome arm. 

**- Statistical analysis was performed using t-Test: Two-Sample Assuming Unequal Variances 

 

 

Previously, it was reported that C-banding/DAPI patterns are similar to the Giemsa-stained C-bands, and 

it was proven that fluorescent bands observed with DAPI after C-banding are not necessarily AT-rich 

regions but also heterochromatin regions with another composition of nucleotides (Barros and Guerra 

2010). Our result indicates, at least, that HAT58 is a constituent portion of the intercalary 

heterochromatin of chromosome 6, 7 and 8 of A. fistulosum. 
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Fig. 4 Extracted chromosomes 6, 7 and 8 from mitotic metaphases of A. fistulosum after FISH probing 

with HAT58 tandem repeats and C-banding/DAPI. Bar -5µm 

 

The functional centromeric repeat loci (Afi) of chromosomes 5 and 6 are flanked by CAT36  

Recently, Nagaki et al (2012) discovered a functional centromeric sequence of A. fistulosum (Afi) and the 

authors proved with FISH that Afi is present in the centromeric region of all chromosomes. We found 

that CAT36 was located in the pericentromeric region of chromosomes 5 and 6 of A. fistulosum. To order 

the locations of Afi and CAT36, two-color FISH was performed on mitotic metaphase chromosomes of 

A. fistulosum. Primers were designed using Afi sequence (Nagaki et al 2012; Table 2) and Afi11 PCR 

product, obtained with the genomic DNA of A. fistulosum, was used as a probe in the FISH experiment. 

Two-color FISH with Afi11 and CAT36 revealed that signals from Afi11 (red) and CAT36 (green) overlap 

on chromosomes 5 and 6 (Fig. 2G insert). The level of metaphase chromosome condensation in Allium 

is on average 10 times higher than that in human and 5 times that in tomato (Khrustaleva and Kik 2001). 

To increase the resolution limit of FISH, high resolution FISH on an early pachytene chromosome of A. 

fistulosum was performed. The high resolution FISH showed that CAT36 is located in the pericentromeric 

part of the chromosomes flanking the Afi11 clusters (Fig. 2G).  

 

 

 90



The location of identified (HAT58 and CAT36) and previously known (45S rDNA, 5S rDNA; Hizume 1994) 

TRs, as well as the location of a 380 bp subtelomeric repeat  (Irifune et al. 1995) and the centromeric 

repeat (Nagaki et al. 2012) on A. fistulosum chromosomes, are summarized in Fig. 5.  

 

 

Fig. 5 Idiograms of A. fistulosum chromosomes (top) and A. wakegi  chromosomes (bottom) with 

marked localization of HAT58 and CAT36. For A. fistulosum, localization of 45S and 5S rDNA genes 

(Hizume 1994), Afi centromeric repeat (Nagaki et al. 2012) and a 380bp subtelomeric tandem repeat 

(Irifune et al. 1995) are shown. Polymorphic site of HAT58 on chromosome 7 is marked by a cross. 

 

Discussion 

We used the combination of sequencing, bioinformatic tools and molecular cytogenetic methods for 

rapid development of cytogenetic markers for identification of individual chromosomes in A. fistulosum.  

We isolated two tandem repeats, HAT58 and CAT36, in the A. fistulosum genome that: 1) allowed the 

identification of half of the chromosome complement, specifically chromosomes 5, 6, 7 and 8; 2) are 

specific for A. fistulosum relative to A. cepa and showed species specific hybridization patterns in A. 

 91



wakegi, a natural allodiploid hybrid between A. fistulosum and A. cepa; 3) are associated with 

heterochromatin and/or pericentromeric regions; 4) CAT36 flanks the functional centromeric sequence 

Afi11 (Nagaki et al. 2012) on chromosome 5 and 6;  and 5) can be easily detected by FISH and ND-FISH.  

We revealed polymorphisms for chromosome locations of HAT58 in A. fistulosum. This finding suggests 

that the HAT58 repeat is still undergoing rapid evolution. 

 

Tandem repeats are an important source of cytogenetic markers  

Tandem repearts (TRs) have been used in numerous studies for developing FISH markers (Do et al. 2001, 

Albert et al.2010, Komuro et al.2013, He et al. 2015). The A. fistulosum chromosomes are large and can 

be distinguished by their length and centromere position with exception of chromosomes 3 and 4. 

However, morphological characteristics cannot be used for identification of aberrant chromosomes or 

recombinant chromosomes in interspecific hybrids because the length of chromosome arms could be 

changed. Species-specific FISH markers are useful for determining the location of alien genetic material 

in the recipient genome because they reveal both genetic origin and chromosomal location 

simultaneously. HAT58 and CAT36 reveal species specific patterns of hybridization that was 

demonstrated using FISH for two closely related species A. cepa and A. fistulosum.  It is significant that 

until now only two FISH markers, 45S rDNA and 5S rDNA have been used for identification of individual 

chromosomes in A. fistulosum. However these rDNA markers exist in all plants and may not be useful 

for monitoring of alien introgressions in interspecific hybrids. Allium species of subgenus Cepa share a 

very similar tandem repeat in subtelomeric region of all 8 chromosomes (Pich et al. 1996). These authors 

conclude that this tandem repeat existed in progenitor forms and remained unusually well conserved 

during speciation. In contrast, HAT58 and CAT36 are species specific cytogenetic markers. HAT58 is 

present only in the A. fistulosum genome (Fig.1) and exists as one polymorphic site on chromosome 7: 

plants with three type location patterns of this repeat were observed (Fig.2A-C). Tandem repeats 

undergo rapid evolution and burst-like evolutionary modes (Garrido-Ramos et al. 2015). Therefore TRs 

can quickly spread to new genomic regions resulting in polymorphic sites (Emadzade et al. 2014). In this 

respect, FISH visualization of HAT58 and CAT36 on chromosomes of A. wakegi, a natural allodiploid 

hybrid between A. fistulosum and A. cepa, was of interest. The parental origin of A. wakegi was proven 

by genomic study, karyotype analysis (Tashiro 1980, 1984) and GISH probing with genomic DNA of A. 

cepa and A. fistulosum (Hizume 1994, Shibata and Hizume 2002). Simultaneous GISH and FISH in A. 
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wakegi showed that a chromosomal location of these TRs has been preserved in the same position as in 

the parental species. A FISH study on A. wakegi probing with 5S rDNA, which differ in number of loci 

between the parental species, did not show differences for the chromosomal locations of FISH patterns 

(Hizume 1994). In contrary, extensive chromosomal reorganization was documented for homoploid 

hybrids of the desert sunflowers Helianthus  anomalus, Helianthus deserticola and Heliantus pradoxus 

(Lai et al.2005).  These hybrids were maintained through sexual reproduction and their speciation 

occurred through rapid karyotypic evolution (the recombinational speciation model) and spatial 

separation from their parental species. A. wakegi is sterile and propagated vegetatively. It has been 

grown in western Japan, China, and countries of southeastern Asia since ancient times (Inden & Asahira, 

1990). A. wakegi originated by interspecific hybridization of two closely related species A. cepa and A. 

fistulosum, presumably thousands years ago, and survived due to the adaptive advantage over parental 

species and sterility of allodiploid form. Hybrid sterility caused the reproductive isolation of A. wakegi 

from its parental species. The A. cepa genome has 27% more DNA than A. fistulosum genome (Jones 

and Rees, 1968) and the A. cepa chromosomes are on average 12% longer than A. fistulosum 

chromosomes (Albini and Jones 1990). The chiasma distribution is different between these two species: 

in A. cepa chiasmata occur mainly in interstitial and distal chromosome regions and in A. fistulosum they 

are localized adjacent to centromeres (Albini and Jones 1990). These cytogenetic differences between 

parental species contributed to hybrid sterility and prevented subgenome homogenization via 

recombination. A question arises: would we expect any homogenization of chromosomes in an asexually 

propagated plant that has not undergone meiosis and generations of reproduction via seed ? However, 

A. wakegi may flower in some rare cases and allowed Iwasa (1960) to study meiosis in PMCs. This author 

reported bivalent, univalent and multivalent formations and young pollen-grains degradation. Synthetic 

hybrid between A. cepa and A. fistulosum are also sterile. Although, recombination among 

chromosomes of A. cepa and A. fistulosum was demonstrated in a GISH study of  the second generation 

bridge cross [A. cepa x (A. fistulosum x  A. roylei)] (Khrustaleva and Kik 2000). Therefore, it remains to be 

determined using more cytogenetic markers whether these two genomes in an allodiploid hybrid 

undergo homogenization or they cohabit a single nucleus without any change. 

In attempt to simplify the procedure of signal detection we applied ND-FISH with TAMRA-labeled 

oligonucleotides designed on HAT58. Previously, it was shown that tandem repeats can be detected by 

FISH without chromosome denaturation (Cuadrado and Jouve 2010). When using ND-FISH, two hours 

of hybridization are sufficient for probe penetration and hybridization with chromosomal DNA. 
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Moreover, the time for detection can be further reduced by application of probes directly labeled with 

fluorochromes. Here we demonstrated that ND-FISH, with a fluorochrome labeled oligonucleotide 

probe, allows the detection of the repeat bearing chromosomes within three hours. 

 

Rapid evolution of the identified tandem repeats 

In our study, we used Illumina reads (80bp) of A. fistulosum covering an equivalent of 3.6% of the 

genome (1C=11.5 Gb, Ricroch et al. 2005) to characterize the repeatome of bunching onion  tandem 

repeats. The results of the annotation of 482 clusters, representing 42.03% of the genome, showed that 

a huge part of the A. fistulosum genome (26.93%) is shaped by unknown repeats which are not similar 

to any known repeats present in the databases. Based on the cluster shapes corresponding to these 

repeats, it can be suggested that most of them are dispersed repeats. Previously, many dispersed 

repeats were discovered in the A. cepa genome (Shibata and Hizume, 2002). Based on the globula-like 

shape of clusters CL58 and CL36, we discovered two tandem repeats, named HAT58 and CAT36. The 

tandem nature of the repeats was confirmed by PCR and FISH analyses. HAT58 and CAT36 together 

comprise 0.25% of the A. fistulosum genome. The calculated copy number of HAT58 and CAT36 in the 

genome of bunching onion is about 160,000 copies/1C and 93,000 copies/1C, respectively. FISH 

mapping of the HAT58 and CAT36 repeats to A. cepa revealed no signal and weak dispersed FISH signals, 

respectively. The result suggests that the A. cepa genome does not contain HAT58 and may contain a 

much lower proportion of CAT36 repeats that are dispersed along the entire chromosome in contrast 

to the localized position in pericentromeric region of the A. fistulosum chromosomes 5 and 6. These 

results are in accordance with the rapid evolution mode of TRs previously observed in Beta (Schmidt 

and Heslop-Harrison 1993), Nicotiana (Renny-Byfield et al. 2012), Solanum (Zhang et al. 2014) and Zea 

(Albert et al. 2010). Unequal crossing over, illegitimate recombination, conversion-like events, 

replication slippage and extrachromosomal circular DNA are thought to be responsible for the fast 

satellite DNA turnover in the genome (Charlesworth et al. 1994; Cohen et al. 2008). Earlier on, we 

demonstrated that the centromeric regions of A. fistulosum contained Ty3/gypsy retrotransposons 

(Kiseleva et al. 2014), which belong to a number of lineages of the chromovirus family of Ty3/gypsy LTR 

(long terminal repeat) retrotransposones (Neumann et al. 2011). It can be hypothesized that the 

insertion of CAT36 into the pericentromere-specific retrotransposon sequence, and its subsequent 

amplification in the genome of A. fistulosum, may cause the accumulation of CAT36 in the 
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pericentromeric region of A. fistulosum chromosomes. Based on our results, two hypotheses could be 

put forward: (1)   HAT58 is younger than CAT36 because HAT58 is a species-specific tandem repeat, and 

therefore was formed after the divergence of A. cepa and A. fistulosum from a common ancestor, 

whereas CAT36 was present in the ancestor genome; (2) HAT58 was present in the ancestor genome 

and was subsequently eliminated from the A. cepa genome. The observed polymorphism of HAT58 

suggests that the rapid evolution of this repeat is still ongoing, which may support the first hypothesis.  

 

The TRs markers presented in our study are species specific and associated with constitutive 

heterochromatin.  Further analysis of the tandem repeats will clarify their role in speciation, 

heterochromatin formation and function of a high packaged Allium chromosome. Knowledge of the 

chromosome organization of TRs may help to fill in sequence gaps that can arise during plant genome 

assembly, as TR arrays are difficult to sequence and assemble (Treangen and Salzberg 2011). FISH 

markers can accelerate the ongoing genome sequencing project of A. fistulosum. These chromosomal 

markers can be used as a reference resource in onion breeding as well as in chromosomal evolution 

studies in general. 
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CHAPTER 4 

PHYSICAL MAPPING OF TARGET GENES ON CHROMOSOMES 

OF ALLIUM AND ROSA SPECIES  

 

 

 

 

 

Our developed and optimized protocols can be used to physically map genes on R. wichurana and Allium. 

Since R. wichurana mitotic chromosomes are small and provide limited resolution for physical mapping, 

we performed physical Tyramide-FISH on pachytene chromosomes, allowing to increase the resolution 

up to 20 times (Paper 5). We also describe the results of physical mapping of EST clones and two 

important genes, alliinase and LFS, on Allium chromosomes (Paper 6). 

 

PAPER 5: KIROV, I . V., VAN LAERE, K., & KHRUSTALEVA, L. I . (2015). HIGH RESOLUTION PHYSICAL MAPPING OF 

SINGLE GENE FRAGMENTS ON PACHYTENE CHROMOSOME 4 AND 7 OF ROSA. BMC GENETICS, 16(1), 1 - 10.  

 

 

PAPER 6:  KHRUSTALEVA, L.,  KIROV, I.,  ROMANOV, D.,  BUDYLIN, M.,  LAPITSKAYA, I.,  KISELEVA, A., & 

KARLOV, G. (2012). THE CHROMOSOME ORGANIZATION OF GENES AND SOME TYPES OF EXTRAGENIC DNA 

IN ALLIUM. ACTA HORT,  969 ,  43-51.  
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Abstract

Background: Rosaceae is a family containing many economically important fruit and ornamental species. Although
fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based
cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have
been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb
is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to
further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes.

Results: Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7–3 kb) were successfully mapped
on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely
located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine
patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of
the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect
collinearity for chromosome 4.

Conclusions: High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was
successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping
resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH
and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the
integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.

Keywords: Fluorescence In Situ Hybridization, Pachytene, Tyramide-FISH, Rosa, Physical map

Background
Rosa is a genus of the Rosaceae family consisting of
approximately 90 genera and approximately 3000
species. Many of these are economically important such
as Malus, Prunus, Pyrus, Fragaria, Rubus, Sorbus,
Cotoneaster and Crataegus [1–5]. Approximately 150
species and more than 20.000 cultivars of Rosa are de-
scribed [6]. Most species have a complex origin [7].
Interestingly, only 7 to 15 species have contributed to
the original germplasm of the modern rose cultivars [8].
Rosa species have small genomes and a high level of het-
erozygosity. Basic chromosome number is x = 7 [1], but

ploidy levels range from diploid (2n = 2x = 14) to deca-
ploid (2n = 8x = 56). Genomes of Pyrus [9], Prunus [10],
Fragaria [4] and Malus [11] recently have been se-
quenced, providing valuable information for comparative
genomics, gene cloning, marker development, QTL
mapping and marker-assisted selection. Comparative
analysis of these sequenced genomes has shed more light
on the mode of evolution of some Rosaceae genera and
species. In contrast, the organization of the Rosa genome
has only been poorly investigated and the knowledge
about the macro-synteny and collinearity of the Rose
genome with other sequenced genomes Rosaceae family
is poor.
Genetic maps have been widely used for comparative

genomic and genome organization studies [12, 13]. The
distance between markers in genetic maps expressed in
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recombination frequencies, or centimorgans (cM) is
known to be unequally distributed along the chromo-
somes [14–17]. Gene order in genome regions with ex-
tremely low recombination frequency (e.g. centromeres,
heterochromatin) cannot be revealed because of the low
resolution of genetic mapping in these regions [18]. In
addition, lack of collinearity between parental genomes
used for development of the mapping population can
cause inaccuracy in genetic maps [19]. In contrast to
genetic maps, physical maps show real positions of DNA
sequences on the chromosomes. Physical mapping using
fluorescence in situ hybridization (FISH) does not de-
pend on recombination frequency, therefore it can be
used for gene mapping in “cold spot recombination” re-
gions [18]. But FISH mapping has a lower efficiency than
genetic mapping. The integration of physical and genetic
maps provides a unique tool combining advantages of
both types of maps. FISH-based physical maps have been
developed and successfully integrated with genetic maps
for many plant species (see review [20]). Direct
visualization of DNA sequences on chromosomes by
FISH is also a valuable for genome sequencing. FISH
mapping improves the quality of genome assembly as
demonstrated in tomato [21], cucumber [22] and
Amborella [23].
Until now most of the cytogenetic studies in Rosa have

been dedicated to karyotyping, chromosome number evalu-
ation and rRNA (5S and 45S) gene mapping [24–28]. Fur-
ther progress in FISH using individual genes or DNA
clones (e.g. ESTs, BACs) is required for efficient cytogenetic
map construction. Physical mapping of individual genes as
small as 1.1 kb has proven to be possible on mitotic meta-
phase chromosomes of Rosa wichurana using Tyramide-
FISH [29]. However, the resolution of Tyramide-FISH on
the small mitotic Rosa chromosomes is very low which sig-
nificantly hampers the construction of a physical map and
the determination of the order of DNA sequences. The use
of pachytene chromosomes would be an improvement for
physical mapping [30]. Pachytene chromosomes are 7–40
times longer than mitotic metaphase chromosomes and
therefore provide a higher resolution [21, 30]. Moreover,
heterochromatic and euchromatic regions are distinguish-
able at the pachytene stage [31, 32]. Pachytene bivalents
consist of 8 DNA strands instead of 4 in mitotic chromo-
somes, which also increases the sensitivity of FISH. Also
important is that meiotic cells (pollen mother cells, or
PMC) synchronously divide providing many cells in the
same stage. High resolution FISH mapping on pachytene
chromosomes has been used successfully in tomato [14, 21,
33–35] and Arabidopsis [31, 36–39]. However, for many
plant species, pachytene preparation is still very challenging
[30, 32, 40, 41].
Rosa wichurana is a diploid species (2n = 2x = 14) that

was involved in the origin of modern rose cultivars. This

species is a valuable source for resistance to powdery
mildew [42, 43] and has been used for construction of
several genetic maps [42–46]. Moreover, R.wichurana is
attractive object for molecular cytogenetic studies be-
cause it has intensively growing apical meristems and
simple corolla, providing many anthers to be used for
pollen mother cells (PMC) isolation and pachytene
chromosome preparation. Therefore Rosa wichurana is a
good model for the Rosa genus,
In this paper, we improved the SteamDrop protocol

[47] for preparation of high quality pachytene chromo-
somes of Rosa wichurana. We performed physical map-
ping of 7 genes on pachytene chromosomes 4 and 7 of
Rosa wichurana using a high resolution Tyramide-FISH
and multicolour Tyramide-FISH. For the first time,
multicolor Tyramide-FISH was applied to plant chromo-
somes. The protocol for multicolor-FISH allowed simul-
taneous visualization of the physical positions of three
genes closely located on chromosome 7 of Rosa
wichurana.

Methods
An orthology-based approach for probe design resulted
in FISH probes with a length between 1.7 kb and 3 kb
To isolate gene sequences on specific chromosomes of
R. wichurana we used orthologous sequences of
Fragaria vesca as a reference. The Rosa wichurana chro-
mosomes 4 and 7 correspond to Fragaria vesca pseudo-
chromosomes 7 (FvChr7) and 6 (FvChr6), respectively
[29, 48]. Several genes from Fragaria vesca pseudochro-
mosomes 6 and 7 (FvChr 6 and FvChr 7) were randomly
selected using the NCBI Map Viewer tool. These candi-
date genes were then used for BLASTN analysis against
the genome of F. vesca (FraVesHawaii_1.0) in order to
estimate their copy number in the Fragaria genome and
to select only the single-copy genes. Seven genes [MLO-
like proteins (MLO2 and MLO3), ATPase (AAA-2), Ubi-
quitin protein ligase (RIN-2), monodehydroascorbate re-
ductase (MDAR), Villin-2-like, mannosylglycoprotein
endo-beta-mannosidase (MGM)] which showed signifi-
cant similarity only to the original sequences of Fragaria
vesca were chosen for further analysis. The selected
genes were used for BLASTN against nucleotide and
EST databases of Rosa at NCBI. Full mRNA sequences
of Rosa (Rosa multiflora) MLO genes (JX847132.1,
JX847133) were used for primer design to isolate MLO-
like genes from R.wichurana. Pairwise alignment of rose
MLO mRNA sequences with orthologous Fragaria full
length MLO sequences was performed to prevent primer
annealing at the intron/exon border.
The other 5 Fragaria full-length gene sequences

were used for BLASTN against transcriptome reads of
R. x hybrid (NCBI accession number: SRX097578) or
R. chinensis transcriptome reads or/and clusters
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(https://iant.toulouse.inra.fr/). In this way, rose reads
with significant similarity to different parts of the
Fragaria genes were found and used for primer
design.

Amplification and labeling of gene fragments
Primers were designed using CLCbio Genomics Work-
bench version 7.0 to amplify gene fragments with a
length more than 2 kb based on known Fragaria gene
sequences and their location on the pseudochromo-
somes (Table 1). PCR products were generated using de-
signed primers and genomic DNA of R.wichurana. PCR
products were obtained with all 7 primer combinations.
PCR with primers for villin resulted in a short PCR
product of 900 bp, which is too short to be used in
Tyramide-FISH experiments on Rosa. The other PCR
products which ranged between 1.7 kb and 3 kb were
cloned (Table 1) by pGEM-T easy (Promega, Madison,
WI, USA) or by pPCR-TOPO kit (Invitrogen, Carlsbad,
CA, USA). At least two clones were sequenced for each

primer combination. The partial sequences of the clones
used in this study are available as Additional file 1.
For physical mapping of PAL and P5CS genes, previ-

ously cloned gene fragments [29], were used.
Plasmid DNA was isolated by the PureLink Quick

Plasmid Miniprep Kit (Invitrogen, CA, USA) and labeled
by Biotin-Nick translation mix (Roche, Mannheim,
Germany), Digoxigenin-Nick Translation mix (Roche)
or by a “home-made” Biotin-Nick translation Mix using
a “home-labeled” dUTP nucleotide. “Home labeled” nu-
cleotides were prepared according to the previously
described protocol [49] using aminoallyl-dUTP
(Thermo Scientific) and Biotinamidohexanoic acid N-
hydroxysuccinimide ester (Sigma-Aldish Co., LLC,
France). Our “home-made” Nick translation mix (30 μl)
consists of 500 ng DNA, 83 μM dATP, dGTP, dCTP,
10.6 μM dTTP, 69 μM biotin-dUTP, 300 mU rDNAse I
(Ambion) and 5U DNA Polymerase I (Invitrogen) in
NT buffer (50 mM Tris–HCl, pH 7.8, 5 mM MgCl2)
containing 10 mM beta-mercaptoethanol. The reaction

Table 1 Sequences of primers for gene fragment isolation and PCR results

Gene Abbreviation Primers, 5′-3′ Location on Fragaria
pseudo-chromosomes

Expected length PCR
product (bp)

Length obtained PCR
products (bp)

MLO-like protein MLO3 F:
AAAACACCAACATGGGCAGT

FvChr 7:
15397809..15393519

1675 1700

R:
TTCCGAAAATCAAAGGTCGT

MLO-like protein MLO2 F:
AGGATTTCAAGGTCGTGGTG

FvChr6:
34503533..34507423

1852 1800

R:
TGGTCGGCTAGCATTTTTCT

ATPase AAA-2 F: GTTCCCTTTGTCATTGCAG FvChr7: 21485846..
21481090

2718 3400

R: ACGGCCTCTTCATCAATT

Ubiquitin protein ligase RIN-2 F:
TCCTTCAGCTACACCATTGAC

FvChr7:
19866961..19871497

2228 2500

R: AAATTGCGCGTTCCTACT

Monodehydroascorbate
reductase

MDAR F: GAGGCGGTATGGTTAATTT FvChr6:
12864594..12867898

2417 2800

R: AAACTTGGGCTTTGGTGA

Villin-2-like Villin F:
CTCGCTTCTTCACAACATACT

FvChr6:
33309900..33321407

3851 900

R:TTCACTGCCATTTTCATCCT

Mannosylglycoprotein endo-
beta-mannosidase

MGM F:
CGGCATGGAAAATGAGTCAA

FvChr6: 5180627..5186123 3017 3000

R: GAACAAAGGGATCTGCCA

Phenylalanine ammonia
lyasea

PAL F:
ACCACTGGKTTTGGTGCWAC

FvChr6:34874086–
34877587

- 1700

R:
CCYTTGAASCCATAATCCAA

Pyrroline-5-Carboxylate
Synthasea

P5CS F:
GCTGGCATCCCTGTTGTTAT

FvChr7: 17624431–
17630820

- 1700

R:
CTTCGGATCGCTAATGAAGC

aData from [29]
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was done at 15 °C for 2 h and stopped by heating at
80 °C for 5 min.
Clone pTa71 containing a 9-kb EcoRI fragment of the

45S rDNA from wheat [50], was labeled using the
Digoxigenin-Nick Translation Mix (Roche).

Pachytene chromosome preparation
Rosa wichurana plants were grown in a glass greenhouse
under natural conditions in the temperate climate of
East Flanders, Belgium. Five to ten anthers from each
flower bud were placed on the slide and a drop of 60 %
acetic acid was added. Anthers were then disrupted by
a needle, heated at 55 °C for 1 min and squashed with
a coverslip. The meiotic stages were observed under
phase contrast (Zeiss AxioImager M2, Zeiss Company,
Germany). Flower buds with most of the anthers con-
taining PMCs in pachytene stage were fixed in Carnoy’s
solution (3:1, ethanol:acetic acid) for at least 3 h and
transferred into 70 % ethanol for storage at −20 °C.
Flower buds were washed in water for 30–40 min and

transferred into 10 mM citric buffer (citric acid, sodium
citrate dehydrate, pH 4.7–4.8) for 15–30 min. Anthers
were then separated using a pincet and transferred into
50 μl enzyme mixture. One-third to one-fourth of all an-
thers from a single flower bud were used for the prepar-
ation of one tube of cell suspension. The enzyme
mixture contained 0.6 % Pectolyase Y-23 (Kikkoman,
Tokyo, Japan), 0.6 % Cellulase Onozuka R-10 (Yakult
Co. Ltd., Tokyo, Japan) and 0.2 % Cytohelicase (Sigma-
Aldish Co. LLC, France). A modified SteamDrop proto-
col [47] was used for cell suspension and chromosome
preparation. Briefly, 10 μl of cell suspension were added
on the slide; after 8–10 s, a drop of 22–28 μl of 1:1 etha-
nol:acetic acid was applied. When the slide surface be-
came granule-like (50–80 s) steam (3–5 s) was applied
to the slides and a second drop of 15–18 μl of 1:2 etha-
nol:acetic was added. When the granule-like surface ap-
peared again on the slide, steam was applied and 300 μl
of 45 % or 60 % acetic acid was added. Then slides were
incubated on a heating plate (42 °C) for 15–30 s. A nee-
dle was used to spread the drop of acetic acid over the
ring of cells on the slide. Acetic acid was removed by po-
sitioning the slide vertically on filter paper.

Tyramide-FISH
We used the Tyramide-FISH protocol with an indirect
detection system previously optimized for R. wichurana
mitotic chromosomes [29]. Prehybridization procedures
for single color and two color Tyramide-FISH included
overnight incubation at 37 °C, 4 % paraformaldehyde
treatment (6–7 min) and dehydration in an ethanol
series (70 %, 90 % and 100 %). Probe hybridization and
detection for single color Tyramide-FISH were carried
out as described [29]. For two color Tyramide-FISH

probe hybridization was conducted according to Kirov
et al. [29] with a hybridization mixture containing two
labeled probes: digoxigenin labeled MLO2 gene and biotin
labeled PAL gene. The two probes were detected
sequentially. First, the PAL gene was detected by
Streptavidin-HRP (1:100, PerkinElmer, Belgium) followed
by application of tyramide-biotin (1:25 in plus amplifica-
tion buffer (PerkinElmer)) application. Then HRP (Horse
Radish Peroxidase) was inactivated using 3 % hydrogen
peroxide (20 min). After this slides were simultaneously
incubated with streptavidin-Cy3 (1:100, Sigma-Aldrich))
and anti-digoxigenin-HRP (1:100, Roche) diluted in block-
ing buffer (Roche) followed by tyramide-biotin amplifica-
tion. Biotin from the second layer was detected by
Streptavidin-FITC (Vector Laboratories, Burlingame, CA).
Zeiss AxioImager M2 (400× and 1000× magnification)

equipped with an AxioCam MRm camera and Zen soft-
ware (Zeiss, Zaventem, Belgium) were used to analyse
the hybridisation signal and to capture all images. Rela-
tive distance to the signal was calculated by the follow-
ing formula:
Distance from telomere of the long arm to the signal ×

100 % / length of whole arm.
Images were analyzed using ImageJ software. Signal pos-

ition was measured using the Micromeasure software [51],
version 3.3 (http://sites.biology.colostate.edu/MicroMeasure/).
Pachytene chromosomes with a similar length were chosen
for calculation of centromere index and percentage of
heterochromatin. At least 9 pachytene chromosomes were
used to determine the location of the Tyramide-FISH
signals (Table 2).

Results
High quality pachytene chromosome preparations
suitable for Tyramide-FISH were obtained for Rosa
wichurana
Flower buds with a hypanthium size of 3–5 mm had the
most PMCs in pachytene stage although also PMC in
metaphase I and tetrad stages could be observed in the
same flower bud (Fig. 1).
DAPI staining of R wichurana pachytene chromo-

somes did not reveal strong heterochromatin blocks that
can be used as cytogenetic markers. All centromeres are
the weakest stained parts of the chromosomes flanked
by pericentromeric heterochromatin. Only chromosomes
4 and 7 are distinguishable by their clear presence of
heterochromatin patterns on the short arms (Fig. 2,
Table 2). In addition chromosome 7 possesses NOR
(nucleolar organizing regions) on the short arm.
To prepare pachytene chromosomes, the SteamDrop

protocol was modified by adding a drop of 60 % acetic
acid after the second steam application and before
drying the cells. This modification improved the
chromosome spreading and resulted in a clear 45S
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rDNA signal on chromosome 7 of Rosa wichurana
(Fig. 3a). Moreover, application of Tyramide-FISH on
pachytene chromosomes revealed differences in signal
frequency between the slides prepared by 15, 30 and
60 s of acetic acid treatment on the heating plate (the
final step in modified SteamDrop procedure). The max-
imum signal-to-noise ratio (visual observation) and sig-
nal frequency (60–70 %) were obtained on the slides
prepared by 30 s of acetic acid treatment. Both 15 s and
60 s of acetic acid treatment resulted in low signal fre-
quency (10–15 %). In addition the level of background
was higher for 15 s and very low for 60 s.

Pachytene chromosomes of Rosa wichurana provide up
to 20 times higher resolution compared to mitotic
chromosomes
The total pachytene chromosome length varied between
235 μm and 411 μm, which is 10–20 times longer than
the mitotic chromosomes (20 μm± 1 μm; [29]). The
chromatin compactization of pachytene chromosomes of
R. wichurana is 2.4 - 1.4 Mbp μm−1, calculated based on
the genome size of 562 Mbp [52]. Taken into account
the 0.2 μm - resolution limit for fluorescence micros-
copy, it can be concluded that the spatial resolution of
FISH on R. wichurana pachytene chromosomes is be-
tween 300–500 kb.

High resolution physical mapping of gene fragments
using Tyramide-FISH
Seven gene fragments resulted in clear Tyramide-FISH
twin signals on one pachytene bivalent (Fig. 3, Table 3).
Only Tyramide-FISH for the gene RIN-2 resulted in
multiple signals distributed over all the chromosomes.

Three genes were mapped on the long arm of pachy-
tene chromosome 4. The AAA-2 gene was mapped in
the distal part (relative distance of 8.0 ± 1.0 %) of
chromosome 4 (Fig. 3c). The MLO3 and P5CS genes
were mapped on more proximal positions, with a rela-
tive distance of 44.0 ± 1.5 % and 30.0 ± 2.0 %, respect-
ively (Fig. 3b).
Four genes (MLO2, MDAR, MGM and PAL) were

mapped on chromosome 7. MGM was located in the dis-
tal part of the chromosome (relative distance of 18.0 ±
1.5 %) (Fig. 3d). PAL, MDAR (Fig. 3e) and MLO2 genes
were physically mapped in the middle of the long arm of
the the pachytene chromosome 7 with relative positions
of 46.6 ± 1.0 %, 52.0 ± 1.5 % and 44.8 ± 0.5 %, respectively.
Tyramide-FISH with pairs of the genes (MGM+MLO2,
MLO2 + PAL and PAL +MDAR) confirmed the order and
location of all genes on the same chromosome.

Tightly linked genes can be distinguished using high
resolution multicolor Tyramide-FISH
Because PAL and MLO2 are very closely located on
chromosome 7, Tyramide-FISH with PAL and MLO2 re-
sulted in one large signal. Therefore, to determine the
order of PAL and MLO2 genes on chromosome 7,
multicolor Tyramide-FISH was applied (Fig. 3f ). Two-
color Tyramide-FISH revealed the order of MLO2, PAL
and MGM genes on the same chromosome. In 58 % of
the observed pachytene cells (n = 17) closely located red
(PAL) and green (MLO2) signals were observed, while
the red and green signals in the other 42 % of pachytene
cells partially overlapped. These results suggest that the
distance between MLO2 and PAL genes is on the border
of the spatial resolution of Tyramide-FISH on pachytene

Table 2 Characteristics of pachytene chromosome 4 and 7 of R. wichurana

Chr.
Nr.

Chromosome
length (μm)

Short arm
(μm)

Long arm
(μm)

Short arm
heterochromatin (%)a

Long arm
heterochromatin (%)b

Total
heterochromatin (%)c

Centromere
index

NOR nd

4 45.6 ± 5.4 11.4 ± 1.4 34.0 ± 4.0 62.0 ± 6.0 21.0 ± 4.5 31.0 ± 4.0 25.0 ± 0.5 7

7 38.4 ± 4.2 4.0 ± 0.6 33.3 ± 3.5 88.0 ± 6.7 16.8 ± 4.4 24.3 ± 2.3 10.3 ± 0.8 + 9
a– calculated by the formula: length of heterochromatin of the short arm × 100%/total length of the short arm
b– calculated by the formula: length of heterochromatin of the long arm × 100%/total length of the long arm
c– calculated by the formula: (length of heterochromatin of the short arm + length of heterochromatin of the long arm) × 100 %/total length of the chromosome
d– Number of pachytenes used in the measurements of chromosome lengths and calculation of % heterochromatin

Fig. 1 Pachytene (a), Metaphase I (b) and Tetrad (c) stages found in a R. wichurana flower bud. Bars = 10 μm
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Fig. 2 Inverted DAPI pictures and ideogram of chromosome 4 (a) and 7 (b). Red signals showed the location of AAA-2 (a) and MGM (b) genes
after Tyramide-FISH to verify the correct chromosome number. Stars indicate the centromere position on the chromosomes

Fig. 3 In situ physical mapping of genes on pachytene chromosomes of Rosa wichurana. FISH with Dig-labeled 45S rDNA (pTA71 plasmid) (a);
Tyramide-FISH with MLO3 and P5CS genes, both labeled with biotin (b) and with AAA-2 gene, labeled with biotin (c); Tyramide-FISH with MGM
gene labeled with biotin (d) and MDAR gene labeled with biotin (e); Sequential multicolor Tyramide-FISH with digoxigenin labeled MLO2 gene
and biotin labeled PAL and MGM genes (f). Centromere of the chromosome that contains the physically mapped gene(s) is indicated by an
arrowhead. Bar = 10 μm
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chromosome of R. wichurana. Based on the length of
the pachytene bivalents carrying non-overlapped signals
(41 ± 1.5 μm), the relative length of the mitotic chromo-
some 7 (10.0 ± 0.1 %; Kirov et al. [47]), the genome size
for R. wichurana (562 Mb/1C, [52]) and 0.2 μm -

resolution limit for light microscope, we may calculate
the physical distance between the MLO2 and PAL genes
which is about 270 kb. An overview of the genes located
on chromosome 4 and chromosome 7 and their order is
shown in Fig. 4.

Discussion
Chromosome preparation is a key factor for Tyramide-
FISH success
To our knowledge, this is the first report on the applica-
tion of FISH on pachytene chromosomes of a member of
Rosaceae family. Pachytene chromosome preparation
using the SteamDrop procedure has number of advan-
tages [47]: 1) After cell suspensions are prepared they can
be stored for months; 2) The chromosome preparation
takes only 3–5 min from made cell suspensions; and 3) up
to 20 slides can be prepared from one flower bud. Here
we modified the SteamDrop protocol [47] for easy pachy-
tene chromosome preparation of Rosa wichurana. One of
the modifications is a final treatment of cells by acetic
acid providing better chromosome spreading and

Table 3 Physical location of the target genes on R. wichurana
pachytene chromosomes

Gene name Chromosome number/ arm Location on chromosome
arm (%)a

MLO3 4/L 44.0 ± 1.5

AAA-2 4/L 8.0 ± 1.0

P5CS 4/L 30.0 ± 2.0

MLO2 7/L 44.8 ± 0.5

MDAR 7/L 52.0 ± 1.5

MGM 7/L 18.0 ± 1.5

PAL 7/L 46.6 ± 1.0

RIN-2 Multiple signals -
a- Distance from telomere of the long arm to the signal × 100 % / length of
whole arm

Fig. 4 Physical location of 7 target genes on R. wichurana chromosome 7 (RwChr7, left) and 4 (RwChr4, right) versus Fragaria vesca
pseudochromosomes 6 (FvChr6) and 7 (FvChr6), correspondently. Signals are shown on digitally straightened pachytene chromosomes and on
an ideogram of R. wichurana and compared with pseudochromosome 6 (FvChr6) and 7 (FvChr7) of the F. vesca genome sequence

Kirov et al. BMC Genetics  (2015) 16:74 Page 7 of 10

 110



Tyramide-FISH results. The time of treatment with
acetic acid significantly influences the Tyramide-FISH
results. Over-treatment as well as insufficient treatment
resulted in a manifold reduction of signal frequency.
PMCs require an optimal time of acetic acid treatment
for reducing the amount of cytoplasm and the thickness
of the organic layer covering the chromosomes [53].
Overtreatment of chromosomes by acetic acid results
in histone elimination [54] and chromosome becomes
flatten which reduces the chromatin accessibility [55]
and the amount of electron-rich amino acids (e.g., tyro-
sine, tryptophan, phenylalanine) required for tyramide
anchoring after HRP activation [56]. Therefore the
chromosome preparation procedure is the most im-
portant step in high resolution physical mapping using
Tyramide-FISH and should be optimized first to obtain
satisfactory results.

Resolution of FISH on pachytene chromosomes of R.
wichurana
Mitotic chromosomes of Rosa wichurana are very small,
ranging from 2.2 to 3.7 μm in length [29]. Their small size
leads to a lower resolution (5–5.5 Mb) when using FISH,
which hampers the use of FISH for physical mapping in R.
wichurana. In contrast, pachytene chromosomes of R.
wichurana are up to 20 times longer than mitotic chro-
mosomes, which is comparable with data obtained on ba-
nana [41], Arabidopsis [39], tomato [57], Medicago
truncatula [32] and rice [58]. Based on the genome size
for R. wichurana (562 Mb/1C, [52]), 0.2 μm - resolution
limit for light microscope and total length of pachytene
chromosomes (235–411 μm) we can conclude that the
spatial resolution of FISH mapping on R. wichurana
pachytene chromosomes is 270–500 kb. Pachytene stage
and location of probe in euchromatin or heterochromatin
region influence on FISH resolution [14]. Resolution of
FISH is much higher for zygotene, leptotene and early
pachytene. For example the order of partially overlapped
BAC clones can be determined on early pachytene chro-
mosomes [35]. DNA condensation varies significantly
along a pachytene chromosome – it is highly condensed
in heterochromatin regions and less condensed in eu-
chromatin regions [30, 59]. For example, the FISH reso-
lution in the euchromatic regions of tomato pachytene is
10 times higher than in heterochromatin regions [30]. For
Rosa wichurana, clear pericentromeric heterochromatin
was observed on all pachytene chromosomes but also a
number of weak stained heterochromatin bands were
identified in euchromatic parts. Therefore, further study is
necessary in order to estimate the precise resolution of
FISH in heterochromatin and euchromatin of pachytene
chromosomes of R. wichurana to convert microscopic dis-
tance into base pairs.

Advantages and limitations of Tyramide-FISH for high-
resolution physical mapping
Tyramide-FISH on pachytene chromosomes resulted in
a higher signal frequency compared to mitotic chromo-
somes. We were able to visualize the signals on 70 % of
the pachytene spreads. This is much higher than re-
ported for Tyramide-FISH on mitotic chromosomes
[29, 60]. Moreover, Tyramide-FISH allows physical
mapping of short DNA fragments. Gene fragments with
a length as small as 1.7Kb were successfully visualized
on pachytene chromosomes of R. wichurana. Because
most of the genes are free of repetitive DNA it is not
necessary to use blocking DNA (e.g. Cot fraction) for
physical mapping as is the case for physical mapping by
BAC-FISH [61]. The efficiency of physical mapping
using Tyramide-FISH is high. In this study 7 out of the
8 (87.5 %) isolated genes were successfully mapped on
the pachytene chromosomes.
However, Tyramide-FISH have some disadvantages for

physical mapping. Tyramide-FISH is highly dependent
on the quality of the slide preparation. And another
drawback of Tyramide-FISH is that sometimes gene
fragments give multiple signals which cannot be reliably
physically mapped, e.g., the RIN-2 probe in this study
and [62]. In addition, multicolor Tyramide-FISH is a
quite time-consuming process because each probe is de-
tected sequentially.

Advantages of an orthology-based probe design
Different strategies can be used for single gene probe design
for FISH mapping. One approach is the use of EST [29] or
genomic sequences [59, 62] of genes for primer design and
further cloning of PCR products. Another strategy is to iso-
late orthologous gene fragments of one genus based on the
whole genome sequence of another closely related genus.
This approach is useful for the isolation of genes of which
no full-length sequences or mRNA sequences are available
in databases. This latter approach allowed for Rosa wichur-
ana the design of specific primers and amplification of gene
fragments with the predicted size based on the genome of
Fragaria vesca. Moreover, it allowed the development of
probes containing exon-intron fragments of the genes. On
the contrary, EST clones often are too short as FISH probes
and can contain highly conserved exon sequences which
cross hybridize with other members of the same gene fam-
ily, resulting in multiple signals ditributed along all chromo-
somes [62].

Macro-synteny between R. wichurana chromosome 4 and
7 and Fragaria vesca pseudochromosomes
In our study, three genes, physically mapped on R.
wichurana chromosome 4 (RwChr4), showed a perfect
collinearity with F. vesca pseudochromosome 7 (FvChr7).
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The collinearity between R. wichurana chromosome 7
and FvChr6, however, is not well established yet.
Tyramide-FISH results on mitotic chromosomes showed
that OOMT and PAL genes, belonging to the same pseu-
dochromosome FvChr6 of F.vesca, were located on two
different chromosomes (chromosome 1 and 7) in R.
wichurana [29]. Previously Gar et al. [48] also found that
genes located on FvChr6 are located on two different link-
age groups of R. wichurana, suggesting an ancient trans-
location event. Here we physically mapped 3 additional
genes located terminal (MLO2 and MGM) and proximal
(MDAR) on FvChr6. Our Tyramide-FISH results show
that these 3 genes are all located on chromosome 7 of R.
wichurana. Gathering all results from physical mapping
on mitotic [29] and pachytene chromosomes and genetic
mapping [48], it can be hypothesized that FvChr6 has a
complex evolutionary history since Fragaria and Rosa
were diverged from a common ancestor.

Conclusion
Tyramide-FISH mapping of single-copy genes on pachy-
tene chromosomes opens possibilities for the develop-
ment of detailed physical maps of R. wichurana
chromosomes. This approach will assist the integration
of physical and genetic maps and will accelerate com-
parative genomic studies of genera in the Rosaceae
family. For further experiments, cytogenetic marker de-
velopment would be valuable for the identification of all
pachytene chromosomes of R. wichurana. The applica-
tion of larger numbers of single-copy gene probes cover-
ing all chromosomes of the karyotype of Rosa and the
construction of the integrated genetic and physical maps
for all chromosomes of R. wichurana is the scope of our
future research.
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Abstract 

We have studied the physical organization of genes and non-coding DNA in 
two Allium species, A. cepa and A. fistulosum. Expressed sequence tags (ESTs) clones 
and polymerase chain reaction (PCR) products of gene fragments obtained with 
primers designed for the gene sequences available in the public GenBank were 
physically mapped onto chromosomes using a Tyr-FISH technique. The allinase and 
lacrymatory factor synthase (LFS) genes that encoded enzymes operating in one 
metabolic way were cloned sequences and physically mapped onto A. cepa and 
A. fistulosum chromosomes. The alliinase gene probe (1100 bp) hybridized to the 
distal region of the long arm of chromosome 4 of A. cepa. The LFS gene probe 
(550 bp) hybridized to the proximal region of the long arm of chromosome 5 in both 
species. Inter-simple sequence repeats (ISSRs) that are located between SSR loci 
were used for chromosomal location of microsatellites in A. fistulosum using 
common FISH. The chromosomal organization of the Tyl-copia group 
retrotransposons were investigated in A. fistulosum. Dispersed hybridization of the 
probe along the chromosome arms apart from telomeric ends was detected. 
Chromosomal distribution of DNA methylation pattern in A. fistulosum L. was studied 
using a specific antibodies against 5-methylcytosine (anti-5mC). Highly methylated 
distal regions in all chromosomes were found. Differences in the methylation level 
between corresponding regions of homologue chromosomes were shown. We 
describe recent progress in exploiting the ultrasensitive Tyr-FISH technique for 
development of visual gene maps for chromosomes of A. cepa and A. fistulosum. The 
results on the chromosomal location of individual genetic loci aided in assembling 
physical and genetic maps. We related the physical organization of expressed genes 
to the contrasting patterns of chiasma distribution and to the organization of 
repetitive DNA family and highly methylated DNA in these two Allium species.  

 
INTRODUCTION 

A half century ago we learned that higher eukaryotic organisms possess much 
more DNA in their genome than they likely need for genetic information (MacLean, 
1973). In onion, the difference between gene fraction (3-5% of the genome) and 
extragenic DNA fraction (93-97%) is extremely high (Flavell et al., 1974; Stack and 
Comings, 1979). Onion has one of the largest genomes among monocots (16 415 Mbp per 
1C nucleus). The extraordinary huge genome of onion delays the construction of genomic 
resources for this economically important crop. Onion is used in every home, daily. 
Onion is the second most valued vegetable crop (FAO, 2010). In Russia in 2010, onion 
was cultivated on 88,000 ha with total onion production mounted 1,536,300 tons (FAO, 
2010). 

The best way to get a comprehensive insight into chromosome organization of 
genes and extragenic DNA is the genome sequencing of species. With the development of 
second generation sequencing techniques that are capable of sequencing thousands of 
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millions of nucleotide bases in each run and the introduction of third generation single-
molecule sequencing methods, it is possible to sequence large and complex genome of 
crop plants. However, a BAC library of onion would require an enormous number of 
clones for sequencing. To overcome this problem some approaches were proposed: (i) 
sequencing of methyl-filtered genomic clones to enrich for genic regions in onion or (ii) 
sequencing of close relative species with smaller genome (Harvey et al., 2008). Japanese 
bunching onion (A. fistulosum) is the best candidate for sequencing because it has a 28% 
smaller genome (Ori et al., 1998) and may contain gene-rich euchromatic regions 
proximal to the centromeres (Khrustaleva et al., 2005). In other plant crops (Arabidopsis, 
rice, tomato) sequencing was successful by using the BAC-by-BAC approach. This was 
based on exploitation of the existing genetic maps (Arabidopsis Genome Initiative, 2000; 
International Rice Genome Sequencing Project, 2005; Muller et al., 2005). However, 
BAC contig building by using a genetic map cannot always be determined unequivocally, 
especially in genomic regions, in which, recombination is suppressed (Szinay et al., 
2008). Knowledge of the chromosomal organization of genes and non-coding DNA may 
dramatically increase the speed and cost-effectiveness of genome sequencing for crop 
improvement.  

Fluorescence in situ hybridization (FISH) is a powerful tool for structural, 
comparative and functional genomics that places plant cytogenetics in a unique position 
to complement, accelerate, or guide plant-genome research (Figueroa and Bass, 2010). 
FISH offers an effective method for sequence localization on physical chromosomes 
(Suzuki et al., 1991; Lamb et al., 2007) characterization of complicated regions such as 
centromeres (Nagaki et al., 2004; Jin et al., 2005) and integration of physical and 
recombination maps (Khrustaleva et al., 2005; Danilova and Birchler, 2008; Szinay et al., 
2008). 

In order to characterize the chromosome organization of genes and some types of 
extragenic DNA in Allium we mapped EST clones, PCR-products of gene fragments from 
the public GenBank, microsatellites, Ty1-copia group retrotransposable elements and 
methylated DNA onto physical chromosomes using molecular cytogenetic methods 
including FISH, Tyramide-FISH and immunochemical detection with a specific antibody 
against 5-methylcytosine. 

 
RESULTS AND DISCUSSION 
 
Feature of Onion Genome 

The onion genome contains 32% GC nucleotides, which is the lowest amount 
among known angiosperms (Kirk et al., 1970), whereas Allium possess GC-rich unique 
telomeric repeats (Adams et al., 2001; Fajkus et al., 2005). However the content of GC 
nucleotides in onion ESTs (Expressed sequence tag) is considerably lower than the GC-
content in coding regions of other monocots belonging to the Poales (Kuhl et al., 2004).  

 
Gene Chromosomal Mapping 

We physically mapped onto chromosomes A. cepa and A. fistulosum expressed 
sequence tags (ESTs) clones and PCR products of gene fragments obtained with primers 
designed on gene sequences available in the GenBank. To visualize a short DNA 
sequence on the physical plant chromosome we used the ultrasensitive Tyr-FISH method 
(Khrustaleva and Kik, 2001). The Tyr-FISH technique combines the advantage of an 
enzymatic procedure that provides signal amplification due to the deposition of many 
substrate molecules, and that of fluorescence-based detection, which is higher than 
absorbency used in enzymatic detection. 

EST clones from the A. cepa bulb cDNA library were kindly provided by Prof. 
M. Havey (the University of Wisconsin-Madison, USA) and by Dr. A. Bovy (Plant 
Research International, Wageningen University and Research Centre, The Netherlands). 
The EST library was subdivided into 25 hybridization mixtures, consisting of 25 random 
EST clones and hybridized to A. cepa and A. fistulosum chromosomes. A total of 
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620 clones obtained from the onion bulb cDNA library were analyzed. 80.1% of EST 
hybridization sites in A. cepa were detected in distal and interstitial regions. In 
A. fistulosum 80.9% of ESTs were located in proximal and interstitial regions. Recent 
research on the organization and evolution of wheat genomes definitely proved that gene 
density and recombination rate correlate (Akhunov et al., 2003). In A. cepa 
recombinations occurred predominantly in interstitial and distal locations whereas in 
A. fistulosum they were tightly clustered around the centromere (Albini and Jones, 1988). 
The chromosomal location of ESTs coincided with our results on integration of 
recombination and chromosome maps (Khrustaleva et al., 2005). The integrated maps 
showed that in Allium 57.9% of Pst I/MseI markers were located in close proximity to the 
centromeric region, suggesting the presence of genes in this region. It was experimentally 
confirmed that PstI/MseI markers were predominantly located in gene-rich regions (Burr 
et al., 1988; Michalek et al., 1999). However, on the basis of the number of EST clones 
analyzed (620 clones) we can only draw partial conclusions concerning the organization 
of expressed DNA in the Allium genome. Also we can only refer to in situ hybridization 
sites, because all of the fluorescent signals we found on metaphase chromosomes 
represented expressed genes. Some may be pseudogenes or other silent copies of 
expressed genes. A fluorescent probe does not distinguish between expressed or non-
expressed sequences.  

We obtained multiple-valued results with Tyr-FISH mapping of individual EST 
clones. Some clones produced one twin-signal on both homologous chromosomes while 
other clones did not reveal an expected unique hybridization site on the chromosome. 
EST clone API66 was mapped previously into linkage group assigned to chromosome 5 
(Martin et al., 2005). Tyr-FISH mapping of API66 (Fig. 1A) showed 1-3 hybridization 
signals on each chromosome of onion complement. This points to the DNA sequence 
presence comprising an 80% homology to the probe (stringency of hybridization – 78% 
and stringency of washing – 80%) that are scattered through the onion genome. BLASTX 
analysis of API66 showed 66% identity to genes encoding sucrose transporter, 5’-partial 
[Oryza sativa Japonica Group]. The sucrose transporter belongs to a large enzyme family. 
Searching in the NCBI database showed that sucrose transportase genes were located in a 
number of loci almost on each chromosome of Arabidopsis thaliana and Oriza sativa – 
species with fully sequenced genomes (http://www.ncbi.nlm.nih.gov/mapview). API81 
EST clone mapped on chromosome 6 of the genetic map (Martin et al., 2005) also 
revealed multi-signals in Tyr-FISH experiment (Fig. 1B). API81 possesses a transcript 
with high similarity to peroxidase 12 precursor. Analysis of the A. thaliana database 
(http://www.ncbi.nlm.nih.gov/mapview) showed a comparable pattern of peroxidase gene 
distribution on the chromosomes. The EST clone API59 hybridized to onion metaphase 
chromosomes (Fig. 1C) showed a strong twin-fluorescent signal on two homologues of 
chromosome 5. This corresponded to the position of API59 on the genetic map (Martin et 
al., 2005). 

We used another strategy for chromosomal gene mapping. We cloned, sequenced 
and mapped the genomic DNA sequences of both allinase and lacrymatory factor 
synthase (LFS) genes. These encode enzymes operating in one metabolic way produced 
compounds responsible for onion’s characteristic flavour.  

The allinase gene primer set was designed on a region including two exons (3 and 
4) and three introns (2, 3 and 4) of the genomic DNA clone (L48614.1 GenBank) and 
PCR was carried out with genomic DNA of both A. cepa and A. fistulosum (Kirov et al., 
2011). The PCR product with expected size (1100 bp) was cloned and sequenced. 
BLASTN sequence analysis of clones possessing 1100 bp alliinase gene fragments from 
A. cepa showed identity to the nucleotide sequence of the bulb alliinase gene of A. cepa 
from GenBank (L48614. 1, Gilpin et al., 1995). BLASTN analysis of the All3(a,b,c) 
clones that possessed PCR products of A. fistulosum revealed 91% identity to the 
sequence of bulb alliinase of A. cepa (L48614. 1) and 73% identity to the cDNA clone of 
the allinase gene of A. fistulosum (AF409954. 1) that expressed in roots. Phylogenetic tree 
based on the multiple alignments of the conservative exon 3 sequences of alliinase gene 
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was constructed using neighbor-joining method. It was found that All3 was in the same 
cluster with the bulb alliinase of A. cepa (Fig. 2). Our knowledge about alliinase and gene 
encoded alliinase in A. fistulosum is scant. Until now in the GeneBank only one sequence 
of the A. fistulosum alliinase mRNA was present. Thus, our finding indicated that most 
probably we isolated the exon-intron fragment of a novel bulb alliinase gene in 
A. fistulosum.  

Tyr-FISH mapping the 1100 bp allinase gene fragment of A. cepa showed strong 
hybridization signals in the distal region of chromosome 4 of the A. cepa mitotic 
metaphase (Fig. 1D). Previously a bulb alliinase gene was mapped in the linkage group A 
of a low-density genetic map (King et al., 1998). The authors revealed two loci of the 
alliinase markers located in a distance of 6.9 cM using a cDNA clone of the enzyme 
alliinase (cysteine sulphoxide lyase;EC 4.4.1.4) constructed by van Damme et al. (1992). 
Because van Damme et al. (1992) detected only one alliinase transcript in onion shoots 
the presence of two loci was explained by expression of an identical transcript in other 
tissues, or by existence of pseudogenes. Van Heusden et al. (2000) using a linkage map of 
A. cepa based on the AFLP linkage data from an interspecific cross between A. cepa and 
A. roylei mapped an alliinase gene in the AFLP linkage group assigned to the 
chromosome 4 of A. cepa via monosomic addition lines. Later Martin et al. (2005) 
reported construction of the onion intraspecific cDNA map where its linkage groups were 
assigned to chromosomes using alien addition lines of A. fistulosum L. carrying single 
onion chromosome. In the map two alliinase gene loci were located in an unassigned 
group. Analysis of the two genetic maps produced by King et al. (1998) and Martin et al. 
(2005) showed the presence of common markers (AOB77-E5-8.0, API61-E1-3.0, D03-
0.7 and API55-E5-9.0/15.0) for linkage group A and chromosome 4. Thus, taking in 
account the result of the Tyr-FISH mapping of the alliinase clone we may assume that the 
unassigned linkage group possessing the alliinase loci belongs to chromosome 4. Future 
experiments on the Tyr-FISH mapping of other markers located on chromosome 4 may 
help to clarify the discussion.  

The LFS gene primer set was designed on cDNA sequence (GenBank accession 
AB089203). Two specific primer sets were constructed: one primer set (LFS1) allowed to 
amplified LFS gene only in A. cepa and another one (LFS2) gave a PCR product in both 
species (Kirov et al., 2011). The PCR products were cloned and sequenced. A multiple 
alignment of LFS amplicons showed 15 single nucleotide substitutions within the A. cepa 
genome. This may be because DNA has been isolated from the mix of seedlings. 
18 single nucleotide substitutions between A. cepa and A. fistulosum were found but some 
of them may represent PCR errors because the LFS sequence variants were supported by 
a single read. The LFS gene probe (570 bp) obtained with the LFS2 primer set was used 
in Tyramide-FISH experiments. A fluorescent signal arisen from the LFS hybridization 
site was revealed on the proximal region of the long arm of chromosome 5 in both 
A. cepa and A. fistulosum. The same results were obtained previously with the BAC probe 
bearing LFS genes using conventional FISH (Masamura et al., 2012). 

 
Extragenic DNA Mapping 

The importance of extragenic DNA is becoming increasingly apparent – 
chromosome folding, gene regulation and protein evolvability. Extragenic DNA plays an 
important role in the generation of the new patterns of variability and in speciation. A 
high level of polymorphism makes extragenic DNA a rich source for marker assisted 
selection.  

Simple sequence repeats (SSRs) are major components of many plant genomes 
and could be good cytogenetic markers for individual chromosome identification. Six 
ISSR-PCR primers were used for amplification of inter simple sequence repeats in 
A. fistulosum. The most abundant PCR product was obtained with К10 [AC]8YG. We 
examined its chromosomal distribution patterns by fluorescent in situ hybridization 
(FISH). The probe produced a scattering hybridization signal of different intensity along 
all chromosomes. In chromosome 2, a rich pattern in the proximal region of the short arm 
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was observed (Fig. 3). This strong fluorescent signal was found in almost all metaphases 
of both homologous chromosomes 2. The distinctive hybridization pattern showing 
characteristics specific to both homologous chromosomes might be applicable as markers 
for chromosome identification. 

Retrotransposons of the Ty1-copia group are ubiquitous in plants (Flavell, 1992; 
Kumar, 1996; Heslop-Harrison et al., 1997). In the A. cepa genome there are 100,000-
200,000 copies of Tyl-copia group retrotransposons (Pearce et al., 1996). Here data are 
presented from in situ hybridization of Ty1-copia group retrotransposable elements to 
A. fistulosum chromosomes. The probe DNA for the FISH experiment was obtained by 
PCR using primers for the Ty1-copia reverse transcriptase gene. Dispersed hybridization 
of the probe along the chromosome arms apart from the telomeric ends was detected 
(Fig. 3). This agrees with data obtained for Vicia faba whose chromosomes contain no 
Ty1-copia elements in telomeric heterochromatin (Fuchs et al., 1994). Pich and Schubert 
(1998) also reported that a cloned sequence of the highly conserved reverse transcriptase 
region of Ty1-copia elements hybridized rarely to the chromosome telomeric end of 
A. cepa. This research showed that cloned En/Spm-transposable element-like sequence 
frequently hybridized to telomeric ends of A. cepa. In contrast, in situ hybridization of 
Tyl-copia retrotransposon sequences isolated from A. cepa by PCR using degenerate 
primers corresponding to two conserved domains of the reverse transcriptase gene to 
A. cepa metaphase chromosomes revealed that Tyl-copia retrotransposons were 
distributed throughout the euchromatin of all chromosomes and were enriched in the 
terminal heterochromatic regions (Pearce et al., 1996). In our previous work we amplified 
a 100-bp fragment with PCR using the satellite primer and primer of the reverse 
transcriptase fragment of retrotransposon Ty1-copia (Fesenko et al., 2002). This fragment 
was dispersed throughout the chromosome, with predominant location in the terminal 
heterochromatin. It was shown depletion of Ty1-copia group retrotransposable elements 
in regions with frequently large blocks of tandem repeats, for instance, at the centromeres 
and major rRNA gene loci in barley (Heslop-Harrison et al., 1997) or in sub-telomeric 
regions as in rye (Pearce et al., 1997). In contrast, in Arabidopsis the retroelements tend to 
be clustered in the centromeric DNA (Heslop-Harrison et al., 1997). All things taken 
together, it should be possible to learn more about the evolution and distribution 
mechanisms of Ty1-copia group retrotransponsons in A. cepa and A. fistulosum, both 
agronomically important close relative species. 

 
DNA Methylation 

Despite DNA methylation being an epigenetic process, and reflecting the structure 
and functional activity of chromosomes, analysis of the methylation site distribution in 
human and animal genomes showed the presence of stable methylation sites (Miller et al., 
1974; Schnedl et al., 1976). It is known that plant DNA is highly methylated (Law and 
Jacobson, 2010). The level of DNA methylation in plants is 10 times higher than found in 
vertebrates (Doerfler, 1981; Erlich and Wang, 1981). The origin and function of such a 
high levels of methylation in plants are not clear. Plant genes may be methylated at both 
adenine and cytosine residues; specific adenine DNA-methyltransferase was described 
(Vanyushin, 2006). Chromosomal distribution of DNA methylation patterns in A. fistulosum 
L. was studied using a specific antibody against 5-methylcytosine (anti-5mC) and 
immunochemical detection with the FITC fluorochrome. Analysis of the frequencies and 
intensity of the fluorescent signal in distal, interstitial and proximal regions of each 
chromosome arms revealed highly methylated distal regions in all chromosomes (Fig. 4). 
A lower percentage of methylation was observed at the proximal and interstitial regions. 
Our results also revealed differences in the methylation level between corresponding 
regions of homologue chromosomes. Such regional differences between homologues 
regarding anti-5mC binding may reflect different transcriptional activities. In A. cepa 
metaphase chromosomes a preferential binding of anti-5mC was found on telomeric 
regions but was also evident in the proximal regions of almost all chromosome arms and 
in some intercalary bands (Castiglione et al., 1995). Recently Suzuki et al. (2010) using 
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immunodetection of 5mC and in situ nick-translation analysis showed that A. cepa 
chromosomes were highly methylated and the methylated CG dinucleotides were 
distributed on all chromosomes. It is worth noting that the information about the 
distribution of the methylated sites may be useful for understanding better of the 
relationships between these close Allium taxa. Moreover, the importance of DNA 
methylation in the intergeneric distant hybrids stabilization was recently reported by Li et 
al. (2010).  

 
CONCLUSION 

This study shows the successful mapping of genes on physical chromosome, 
including the alliinase and LFS genes that operating one metabolic pathway. Our major 
focus is now on the development of a high sensitive in situ hybridization method (HsTyr-
FISH) for a reliable visualization of a small DNA sequence on plant chromosomes to map 
a number of genes and molecular markers and integration of chromosomal and genetic 
maps. We are also constructing a BAC library of A. fistulosum to aid in creation of 
cytogenetic markers. Study will continue of the distribution of repetitive DNAs along 
chromosomes, which are crucial elements for understanding the organization and 
evolution of plant chromosomes and Allium crop improvement.  
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Figures 
 
 
 

 
 
Fig. 1. Tyramide-FISH with ESTs and ALL3 clone on mitotic metaphase chromosomes 

of A. cepa: A. API66; B. API81; C. API59; D. ALL3 (probes were labelled with 
Biotin-16-dUTP or Dig-11-dUTP and detected with Tyramide-Cy3 (red) or 
Tyramide-FITC (green), respectively and contrastain with DAPI). Bar is 10 μm. 
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Fig. 2. Phylogenetic tree of the alliinase – multigene family constructed by multiple 

alignment of the exon 3 nucleotide sequences using CLUSTAL W program 
(http://www.genome.jp). 

 
 
 
 

 
 
Fig. 3. FISH with the inter simple sequence repeat (primer [AC]8YG; left) and Ty1-copia 

retotransposons (right) on mitotic metaphase chromosomes of A. fistulosum. Green 
fluorescence – sites of the probes hybridization. 

 
 
 
 
 

 
 
Fig. 4. Chromosomal distribution of the DNA methylation pattern in A. fistulosum (left) 

and A. cepa (right). Green fluorescence – 5mC rich region. Bar is 10 µm. 
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PART III: GENERAL DISCUSSION AND FUTURE 

PERSPECTIVES 
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1. CHROMOSOME PREPARATION QUALITY AS THE KEY FACTOR IN TYRAMIDE-FISH 

REPRODUCIBILITY  

 

Our experiments on rose pachytene chromosomes showed that chromosome preparation in general 

and the acetic acid treatment (concentration and duration) more specifically, significantly influences the 

results of Tyramide-FISH (paper 5). There are two reasons that can explain these results. First, 

chromosomes that are prepared using a low concentration of acetic acid (15 – 25%) or/and a shorter 

time of final acetic acid treatment (pachytene chromosomes) have less damaged chromosome 

structures. As shown by atomic force microscopy, the chromosome structure is significantly affected by 

acetic acid treatment (Sugiyama et al., 2004). In that study, the diameter of chromosomes was larger 

and the 3D structure of chromosomes was better preserved when a low concentration of acetic acid 

was used. Based on this, it can be assumed that the application of lower concentrations of acetic acid 

for chromosome preparation results in a better chromatin accessibility and, as a consequence, in higher 

Tyramide-FISH signal frequencies. Especially when short DNA sequences are used for FISH, chromatin 

accessibility is crucial (Jiang and Gill, 2006). Second, the nature of the tyramide-HRP reaction has an 

influence on the signal frequency across the chromosomes on the slide. After oxidation by HRP, the 

tyramide molecules bind with electron-rich molecules such as tyrosine, phenylalanine or tryptophan 

(Bobrow et al. 1991). The source of these molecules on the slides is not known. Our hypothesis is that 

the chromosomal associated proteins such as histones that contains these amino acids (Table 1) are the 

main source of electron-rich amino acids required for tyramide deposition after their reaction with HRP. 

Table 1. The number of electron-rich amino acids (tyrosine (Tyr), tryptophan (Trp) and phenylalanine 

(Phe)) in H2A, H2B, H3 and H4 histones. 

 H2A H2B H3 H4 

Tyr 2 3 3 4 

Trp - - - - 

Phe 1 4 4 2 

 

It is  shown that the acetic acid treatment reduces the amount of histones in the chromosomes (Dick 

and Johns, 1968; Sugiyama S. et al. 2004). If our hypothesis is correct, a prolongation of acetic acid 

treatment of the chromosomes or increasing the concentration of acetic acid during chromosome 
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preparation will result in a reduced Tyramide-FISH signal frequency. Indeed, the long (60 sec) treatment 

of R. wichurana pachytene chromosomes with acetic acid resulted in a reduction of the Tyramide-FISH 

signal frequency across chromosomes (Paper 5) by 4 times compared with the shorter duration of acetic 

acid treatment (30 sec). We also observed a significant decrease in the signal frequency value when 

chromosomes were prepared using high concentration of acetic acid in the spreading solution compared 

to a low concentration of acetic acid (15% vs 100% acetic acid in ethanol, data not shown). Thus these 

results are in concordance with our hypothesis. Surprisingly, too short treatment of the chromosomes 

by acetic acid (15 sec) also resulted in decreasing value of signal frequency (Paper 5). Probably, lowering 

the duration of acetic acid treatment results in an inappropriate digestion of cell wall debris and organic 

layer, which can cover the slide surface after the chromosome preparation procedure (Martin et al., 

1994) and negatively influences the FISH results via increasing background signals and decreasing the 

chromatin accessibility (Martin et al., 1994). Based on our experiments carried out on Rosa wichurana 

and Allium chromosomes we propose a model in which all the observed effects of the acetic acid 

treatment on the Tyramide-FISH signal frequency are explained (Figure 2).  

 

Figure 2. Theoretical model explaining the effect of acetic acid (AA) treatment on Tyramide-FISH results. Green bars show 

average signal frequencies in experiments with different AA treatments. In the top of the figure the observed (chromosome 

morphology) and hypothetical (amount of histones, chromatin accessibility) characteristics are specified under different acetic 

acid treatments. 
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According to this model, results of Tyramide-FISH (in terms of signal frequency) rely on the balance 

between chromatin accessibility and amount of histones as a source of electron-rich molecules. Finding 

the optimal concentration and duration of acetic acid treatment for chromosome preparation is a key 

factor in achieving the optimal balance. The “SteamDrop” protocol that we have developed, allows easy 

adjustment of acetic acid concentration  and duration of acetic acid treatment during slide preparation.  

In future research enrichment of the chromosome surface by an artificial coupling of the electron-rich 

molecules (e.g. by  reactions of chromosomal proteins with 3-p-Hydroxyphenyl propionic acid N-

hydroxysuccinimide ester) can be used to improve Tyramide-FISH sensitivity. Such reaction was already 

successfully applied for tyramide-HRP reaction to increase the sensitivity of Dot-ELISA (Bhattaharia et al. 

1999)). 

 

2. INCREASING SIGNAL FREQUENCY IS STILL THE BIGGEST CHALLENGE FOR TYRAMIDE-

FISH  

 

One of the serious limitations of Tyramide-FISH is the low signal frequency ((the number of 

chromosomes with signals x 100)/total number of chromosomes) across chromosomes. This value 

strongly depends on chromosome preparation and the probe length and decreases dramatically when 

the probe length is less than 1Kb (Table 2). According to Khrustaleva et al. (2016) signal frequency for 

probes of 5.5 Kb, 2.3 Kb and 800bp was 85%, 43% and 15%, respectively. In our research on rose mitotic 

chromosomes, a minimum signal frequency of 30% was obtained for a probe length of 1100bp (OOMT 

gene) (Paper 2). On average, the obtained Tyramide-FISH signal frequencies for Allium, rose and other 

species are comparable (Table 2). 
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Table 2. Comparison of signal frequencies after Tyramide-FISH with different types of probes on different plant 

genera 

Species Detection 
system 

Tyramides used The shortest 
probe length, 

bp 

Signal 
frequency 

Reference 

Allium 
cepa 

Direct Tyramide-FITC 710  36.5%1 Khrustaleva 
and Kik, 2001;  

Allium cepa Direct Tyramide-FITC 800 15% Khrustaleva 
et al., 2016 

Triticum 
aestivum 

Indirect Tyramide-biotin 2000  37.5% Perez et al. 
2009 

Avena sativa Direct Тyramide-Cy3  2000  >37.5% Sanz et al., 
2011 

Rosa 
wichurana 

(mitotic 
chromosomes) 

Indirect Tyramide-biotin  1100 >30% Kirov et al. 
2014 

(paper 2) 

Rosa 
wichurana 

(pachytene 
chromosomes) 

Indirect Tyramide-biotin 1100 60-70% Kirov et al. 
2015 

(paper 5) 

1 – CCD camera was used to increase sensitivity (Khrustaleva and Kik, 2001) 

 

Probes with a length around 1-2 Kb have an average signal frequency of 30-40%. Although these values 

are not high, they are sufficient for routine mapping of short probes using Tyramide-FISH. Our 

experiments performed on rose pachytene chromosomes demonstrated that a signal frequency of up 

to 60% can be obtained for probes of 1-2Kb on high quality pachytene chromosomes.  

 

3. EFFICIENT PROBE DESIGN AND DETECTION SYSTEM ENHANCE TYRAMIDE-FISH 

EFFICIENCY 

 

Our experiments on Allium and Rose chromosomes (Paper 5) demonstrate that not all gene-derived 

probes are suitable for Tyramide-FISH. On average, 70-80% of the probes that we used can be 

cytogenetically mapped by Tyramide-FISH. Other probes resulted in multiple signals spread over all the 
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chromosomes. Similar results were obtained when EST clones were used for mapping on Allium cepa 

chromosomes (Khrustaleva et al., 2012). Gene-derived probes may also contain repetitive DNA and/or 

conserved motifs for multiple genes resulting in cross-hybridization. As Tyramide-FISH is a very sensitive 

technique, the probe design has to be carried out using bioinformatic filters to avoid all potential sources 

for cross-hybridization. If the genome sequence is available a BLAST search  with the target sequence 

can be used to identify multiple copy and repetitive sequences. If no genome sequence is availvable, a 

BLAST search for similarity across different databases (e.g. NCBI (www.ncbi.nlm.nih.gov), phytozome 

(phytozome.jgi.doe.gov/pz/portal.html) and repbase (www.girinst.org/repbase/index.html)) can be 

helpful to identify probe regions that may cause multiple Tyramide-FISH signals. Another filter that can 

be used are the k-mer based tools (e.g. Kmasker (Schmutzer et al., 2013)) for the identification of regions 

with a high probability of being repetitive. The results obtained on Allium chromosomes (Paper 5; 

Romanov et al., 2015) suggested that using gene fragments containing both exons and introns as a probe 

for Tyramide-FISH results in less cross-hybridization compared to using EST clones containing only exons 

of the target gene as probe. Efficient probe design strategy can make Tyramide-FISH more efficient for 

physical mapping. 

To detect the probe hybridization both direct and indirect Tyramide-FISH detection systems have been 

used in plants (Table 2). We found that for Allium chromosomes both detection systems are applicable 

for gene mapping but the protocol for direct detection is shorter and requires less reagents. However, 

no clear signals have been obtained when the direct detection system was applied for Rosa 

chromosomes (Paper 2). Only the indirect detection system with increased concentration of 

streptavidin-Cy3 allowed to detect hybridization of unique single-copy probes on R. wichurana 

chromosomes. These results demonstrate that optimization of the detection system is required when 

Tyramide-FISH is applied for chromosomes of other species. The protocols for Tyramide-FISH detection 

designed in this thesis can be a valuable starting point for Tyramide-FISH application in other species.  

 

4. INCREASED SPATIAL RESOLUTION (SR) OF PHYSICAL MAPPING BY TYRAMIDE-FISH 

 

Previously Tyramide-FISH was only applied for mitotic chromosomes. Although mitotic chromosomes 

are easy to obtain they provide low spatial resolution (SR) due to high chromatin compaction resulting 

in 20 times less resolution (around 5–5.5 Mb (Paper 5)). Using pachytene chromosomes for Tyramide-
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FISH increases spatial resolution (SR) of physical mapping (around 270Kb). Application of multicolor 

Tyramide-FISH on pachytene chromosomes further increases SR because even overlapping signals from 

two neighbour genes located closer than 270Kb from each other can still be distinguished using different 

colors. To achieve higher SR, less compact chromosomes can be used such as stretched pachytene 

chromosomes (Koo and Jiang, 2009). Recently this approach has been used to map the Ms (onion male 

sterility) locus on onion chromosomes (Khrustaleva et al., 2016).  Extended DNA fibers allow further 

increase of SR up to a few Kb (de Jong et al., 1999; Jiang and Gill, 2006). However, Tyramide-FISH 

optimization and application on extended DNA fibers is probably useless because the sensitivity of fiber-

FISH is already high enough (0.7Kb, de Jong et al., 1999). Combination of Tyramide-FISH and fiber-FISH 

can be a powerful approach to resolve the order of closely located signals and map them to the 

chromosomes. 

 

5. GUIDELINES FOR TYRAMIDE-FISH OPTIMIZATION AND APPLICATION IN OTHER PLANT 

SPECIES 

 

Our study shows that for efficient visualization of single-copy genes by Tyramide-FISH three key steps 

need optimization when starting an experiment in a new plant species or plant genus: chromosome 

preparation, detection system and probe design. Of them preparation of high quality chromosome slides 

has the most significant influence on the Tyramide-FISH signal frequency.  

We propose following guidelines for different optimization steps in the Tyramide-FISH protocol, based 

on the observations during this PhD study: 

(1) Chromosome preparation. Optimization of the concentration of acetic acid in the solutions (first drop 

and second drop) used for chromosome spreading (e.g. 6:1/3:1, 3:1/1:1) as well as duration of the last 

acetic acid treatment step (30 - 45 sec) is needed. For the first time, it is recommended to prepare 

several slides (e.g. 5 slides, Figure 3B) under different conditions and compare signal frequencies after 

Tyramide-FISH. In the first experiments, the 45S or 5S rDNA probe can be used as a positive control. The 

best slide preparation conditions are those resulting in the best  signal-to-noise ratio.  

(2) Detection system. As we have shown in this study, direct detection may result in high background 

signals making it very difficult to identify signals for some species. Therefore both direct and indirect 
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detection systems should be evaluated in the first experiments. For the next experiments, the detection 

system resulting in the best signal-to-noise ratio is chosen (Figure 3B).  

(3) Probe design. Cloned DNA fragments (EST, genes) should be used as a probe for Tyramide-FISH. The 

length of the probe influences the signal frequency (Section 2). In this study, probes with a length 

between 1Kb and 2Kb were used and successfully mapped. Long probes (>3Kb) have higher chances to 

contain repetitive sequences and, as a consequence, can generate multiple signals. All possible filters 

should be applied to avoid repeats in the probe, multi-copy gene probes (e.g. R-genes) and probes with 

conserved domains that can hybridize over multiple loci on chromosomes. If no genome sequences are 

available for the species the following approaches can be used to identify the repetitive sequences:  

a) BLAST nucleotide database of NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi);  

b) RepeatMasking by Censor (http://www.girinst.org/censor/index.php); 

c) BLAST against genomes of closely related species 

(https://phytozome.jgi.doe.gov/pz/portal.html); 

In Paper 5 we used an orthology-based approach for probe design. In this approach a target sequence 

of closely related species is identified and used as a query in BLAST versus any known short sequence of 

the studied species (short transcriptomic reads, ESTs etc.). Then the distance between mapped short 

sequences is determined and primers are designed on those short sequences which have a distance 

longer than 1Kb. PCR with designed primers is performed and optimized to obtain one major band. PCR 

products are then cloned, verified by sequencing and used for FISH (Figure 3A). 
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Figure 3. (A) A workflow for orthology-based approaches of probe design that can be used if long enough (>1Kb) sequences are 

not available for the studied species (species A, green lines). Available sequences of closely related species (species B, blue line) 

is used to identify the short sequences of species A which are located > 1Kb from each other according to BLAST with a reference 

sequence. (B) An example of a first Tyramide-FISH experiment for a new species. 10 slides are prepared: 5 slides for each 

detection system. Slides are prepared with different concentrations of acetic acid in the first and second drop of the spreading 

solution (ethanol:acetic acid) as well as with different times of final treatment of the chromosomes by 45% acetic acid (right). 

 

 

 

 

 

6. LIMITATIONS OF TYRAMIDE-FISH 
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Although, improving the chromosome preparation method, revealing the main factors influencing the 

Tyramide-FISH mapping, optimization of detection system and increasing the spatial resolution, there 

are still some limitations of Tyramide-FISH for high throughput physical mapping of plant chromosomes.  

Firstly+, the ability to visualize several target sequences on chromosomes at once is important for 

increasing the accuracy of physical mapping. Determing the location of target sequences on 

chromosomes regarding each other is becoming trivial if they can be visualized simultaneously. Current 

multicolor Tyramide-FISH protocols enable target-by-target detection sequentially. This strategy leads 

to increasing non-specific signals because each detection layer increases background signals on the slide. 

In addition, sequential detection is time-consuming because one target detection requires more than 

1.5 hours.  

Secondly, spatial resolution of Tyramide-FISH is now limited by the degree of compactization of 

pachytene chromosomes that were currently used for physical mapping (Paper 5, Khrustaleva et al., 

2016). To further increase the spatial resolution of Tyramide-FISH more advanced technique should be 

applied such as Tyramide-FISH on fiber and extended DNA. Another strategy is to use super resolution 

microscopy (e.g. STED, SIM). 

Finally, as it was mentioned above the signal frequency across chromosomes for Tyramide-FISH is 30-

60%. It would be of benefit for physical mapping to increase this value. However, this is mainly 

unfluenced by chromosome preparation procedure. In this thesis, it was demonstrated that the 

chromosome preparation procedure has a strong impact on the results of Tyramide-FISH experiments. 

In our experience, it is difficult to prepare each slide with a similar quality. Therefore the results of 

Tyramide-FISH vary between slides, limiting the reproducibility of physical mapping by Tyramide-FISH. 

 

7. TYRAMIDE-FISH IN THE POST-GENOMIC ERA 

Phenotypic diversity between and within plant taxa  can not always be explained by the existence of 

taxon-specific genes or gene families but rather by genome structural differences. Revealing 

chromosomal differences may shed light on the evolutionary processes leading to plant speciation. The 

most effective way to unravel such differences is to perform whole-genome assembly (WGA) of 

genomes of distantly related species, variaties, strains or ecotypes, followed by genome wide association 
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studies. High-quality assembly of Arabidopsis genomes triggered the number of comparative genomic 

studies in the Brassicaceae family allowing a better understanding of the crucifer evolution (Gan et al., 

2016; ). However, in contrast to NGS sequencing of DNA, de novo genome assembly from reads for larger 

plant genomes such as Rosa and Allium genomes (~4 times and > 100 bigger than Arabidopsis thaliana 

genome, respectively) is almost impossible only by NGS sequencing.  

Although, the resolution of Tyramide-FISH is not comparable with de novo WGA approach, it can be 

applied to closely related species without prior knowledge of their genome sequences. Such studies 

have been applied on the Solanaceae and Brassicaceae family using a high resolution BAC-FISH approach 

(Gaiero el al., 2016; Fransz et al., 2016), showing many chromosomal differences between even closely 

related species (Solanaceae) and ecotypes (Ler and Col ecotypes of A.thaliana). Also for the Rosaceae 

family a set of conserved single-copy genes can be established using available genome sequences. These 

genes can further be used for probe design for Tyramide-FISH on pachytene chromosomes of modern 

rose cultivars and species involved in rose breeding and can shed more light on genomic rearrangements 

that occurred during rose domestication. The same set of probes can be used to better understand the 

genome constitution of R. canina showing a special type of meiosis. The chromosome level resolution 

established in Tyramide-FISH experiments with such set of conserved probes will provide unique 

information to estimate structural variation which can not be achieved by short-read-based genome-

wide studies. 

 

 

7.1. PHYSICAL MAPPING IN ALLIUM 

 

Allium was the first plant for which Tyramide-FISH was applied to physically map short unique T-DNA 

sequences (Khrustaleva and Kik, 2001). Because of a huge genome and a high portion of dispersed 

repeats, physical mapping of the Allium genome is challenging by conventional FISH such as BAC-FISH 

(Suzuki et al., 2001). Therefore optimization and application of Tyramide-FISH for physical mapping of 

genes on Allium chromosomes is a very important task. In this thesis, we performed evaluation of 

indirect and direct Tyramide-FISH detection systems for gene mapping. In contrast to Rosa, both 

detection systems can be successfully used for physical mapping of Allium chromosomes. As Allium 

chromosomes are large, obtaining an optimal chromosome spreading and good chromosome slides 
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suitable for Tyramide-FISH is problematic. We tested “SteamDrop” protocol for few Allium species  

(Paper 1) and showed that even large Allium chromosomes can be efficiently spread under steam action. 

An other result of this PhD thesis for the physical mapping in Allium is the identification of new tandem 

repeats, HAT58 and CAT36, which we applied for cytogenetic mapping of A. fistulosum chromosomes 

(Paper 4). Using a direct detection system, we mapped (Paper 6) two important Allium genes, LFS and 

alliinase, involved in generation of Sulphur-organic molecules in Allium tissues (Imai et al., 2002). Two 

enzymes encoded by these genes are the main players in the metabolic pathway resulting in release of 

specific onion flavor when onion tissue is disrupted. We also used a mixture of EST clones for Tyramide-

FISH to check the hypothesis about the differences in gene distribution between two Allium species, A. 

cepa and A. fistulosum. The protocols optimized during this PhD are useful tools for further physical 

mapping of Allium chromosomes that are currently ongoing (Romanov et al., 2015; Khrustaleva et al., 

2016) . 

7.1.1 NEW CYTOGENETIC MARKERS FOR ALLIUM  CHROMOSOMES 

Cytogenetic markers can significantly accelerate physical mapping of the Allium genome by simplifying 

chromosomal identification. Not all mitotic chromosomes of Allium can be distinguished by 

morphological parameters such as centromeric index and relative chromosome length. Therefore 

cytogenetic markers are required. In this thesis we discovered two new cytogenetic markers for A. 

fistulosum, HAT58 and CAT36 (Paper 4). These markers are tandemly organized repeats and allow 

identification of 4 of 8 A. fistulosum chromosomes. Of these, chromosome 5 contains a number of genes 

affecting desirable traits such as bulb dry matter content, pungency and storability, leaf waxiness, and 

resistance to abiotic factors (Romanov et al. 2015). The development of these cytogenetic markers is a 

very important milestone for detailed physical mapping of Allium pachytene chromosomes since they 

do not have enough chromosomal patterns to be distinguished (de Jong et al., 1999; Khrustaleva et al. 

2016). For future research, more cytogenetic markers for Allium chromosomes are needed. Application 

of NGS data for other Allium species followed by RepeatExplorer clustering will help to isolate new 

repeats that are valuable as cytogenetic markers. Also centromeric tandem repeats, which can be 

chromosome or chromosome subset specific, are valuable sources for cytogenetic marker development 

(Gong et al., 2012). The Allium centromere has not been fully sequenced yet and detailed information 

about its full-length sequence is lacking (Nagaki et al., 2012; Kiseleva et al., 2014). By RepeatExplorer we 

could not identify the cluster corresponding to the A. fistulosum centromeric repeat.  Increasing genome 

coverage will probably help to isolate centromeric repeats for Allium. These repeats can be used as 
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cytogenetic markers. Interestingly, our RepeatExplorer analysis showed several clusters for a 

subtelomeric repeat of A. fistulosum. These results indicate significant polymorphisms in subtelomeric 

tandem repeat sequences. If the variants of this subtelomeric repeat are located on different 

chromosomes their sequences can be used to design labeled oligo probes which can be further used as 

cytogenetic markers. Cytogenetic marker development and probe design will be easier when ongoing 

genome sequencing of A.cepa will be finished. It will allow to identify closely located single-copy genes. 

Pooling these genes in one hybridization mixture will facilitate their visualization by conventional FISH 

making them useful cytogenetic markers.  

 

7.1.2 ALLIUM  COMPARATIVE GENOMICS BASED ON SINGLE-COPY GENE PHYSICAL MAPPING 

Comparative physical mapping of genes on chromosomes of Allium species can shed light on the synteny 

and collinearity between the Allium genomes. This information can be useful for effective interspecific 

breeding because genome collinearity is a strong prerequisite for homologous recombination and 

transfering desirable traits from donor species (Gaiero et al., 2016).  The huge size of most of the Allium 

genomes and the absence of any reference genome sequence make comparative genomic studies in 

Allium difficult. In this study, we performed Tyramide-FISH with a pool of EST clones to gather knowledge 

about the genome organization differences between A. cepa and A. fistulosum (Paper 6). The results 

showed that these species may have different trends in gene distribution along chromosomes with 

higher gene density in proximal regions of A. fistulosum genome. These data support the early study 

demonstrating the differences in distribution of recombination nodes  between chromosomes of A. cepa 

and A. fistulosum (Albini and Jones, 1988). However, hybridization with a mixture of EST clones may 

result in misinterpretation because observed signals can result from hybridization of only limited 

number of  EST clones with few copies per genome while other EST hybridization sites are not detected. 

Therefore more efforts are required to check the differences in gene distribution between these 

important Allium species. Huge amounts of transcriptomic data has been accumulating for A. cepa and 

A. fistulosum the last few years. These data include raw reads and assembled transcripts (Baldwin et al., 

2012; Duangjit et al., 2013; Kim et al., 2014; Khosa et a., 2016) providing information for efficient FISH 

probe design. Cloning of gene fragments by primer design on the existing assembled transcripts followed 

by sequence verification, labeling and Tyramide-FISH mapping on chromosomes of different species will 

facilitate Allium comparative genomics. Recently single-copy FISH maps have been established for two 
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plant species, wheat (Danilova et al., 2014) and barley (Aliyeva-Schnorr et al., 2016), with FISH being an 

indispensable tool  for comparative cytogenetic studies between these species and other grasses. 

Using repetitive DNA as FISH probes can be valuable for comparative genomic studies. 45S and 5S rDNA 

tandemly organized genes have been used for FISH mapping in different Allium species (Shibata and 

Hizume, 2002; Guetat et al., 2015). However, the information provided by these studies is limited 

because only few loci are occupied by rDNA. Therefore more efforts are needed to isolate other tandem 

repetitive DNA sequences and to perform cytogenetic mapping. As a first step in this, we used NGS data 

to isolate the A. fistulosum tandem repeat CAT36 and HAT58. This approach can be used in the future 

for other Allium species.  

 

7.1.3 ALLIUM  BREEDING CAN BENEFIT FROM PHYSICAL MAPPING 

Marker assisted selection and plant breeding approaches have been widely used to improve onion yield, 

quality, and resistance against biotic and abiotic stresses (Khosa et al., 2016). However, to meet the 

growing demand of the world human population, onion breeding requires new tools to shorten the 

breeding process and to increase the breeding efficiency. Onion has a number of traits including its 

biennial life cycle, cross-pollinated nature, high inbreeding depression and large genome size, which 

make utilization and development of new molecular tools challenging (McCallum, 2007). The 

development of a physical map  is one of the tools that can be applied in onion breeding. Physical maps 

can assist in marker development through the isolation of genes of interest or tightly linked markers. 

Application of Tyramide-FISH allowed to physically map Ms-linked (male sterility) markers and to show 

their pericentromeric location (Khrustaleva et al., 2016). Based on results of Tyramide-FISH mapping it 

was concluded that map-based cloning of the Ms-gene will be time- and cost-consuming. In addition, 

this work shows that current markers can be located far from the Ms-gene (Khrustaleva et al., 2016). 

Fungal diseases are the most widely distributed type of pathogens for onion causing significant damage. 

Downy mildew (Peronospora destructor Casp. (Berk.)) is a severe threat for Allium crops both during 

vegetation as well as during storage period. Brown spot disease is often accompanied by downy mildew. 

Both brown spot disease and downy mildew decreased onion seed production by 85% (Scholten et al. 

2007). Allium fistulosum and A. roylei are valuable sources of resistance genes to brown spot disease 

and downy mildew. However, obtaining late generation interspecific hybrids between A.cepa and 

A.roylei being a homozygous genotype of resistance is complicated. In this case, cytogenetic mapping of 
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the homologous recombination points will help to obtain late generation hybrids between A. cepa and 

A. roylei and create a new onion variety (Scholten et al. 2007). 

 

7.2 ROSA  WICHURANA  CAN BE A MODEL SPECIES FOR MOLECULAR CYTOGENETICS WITHIN THE ROSA  

GENUS 

 

Parts of this chapter are published in: 

Kirov, I. V., Khrustaleva, L. I., Van Laere, K., & Van Roy, N. (2015). Molecular Cytogenetics in the Genus Rosa: Current Status 

and Future Perspectives. Acta Horticulturae 1087, pp. 41-48. 

 

Before this PhD work, only few molecular cytogenetic studies in Rosa were performed. This is mainly 

because  Rosa is a very difficult cytogenetic object due to the presence of a very small genome size (the 

diploid genome size is 0.83 to 1.30 pg/2C; Roberts et al., 2009) and small chromosomes (Paper 2). Also 

the occurrence of polyploidy in the Rosa genus (Vamosi and Dickinson, 2006) hampers cytogenetic 

studies. The ploidy of wild species range between 2n=2x=14 and 2n=8x=56 (Roberts et al., 2009), and 

recently even decaploidy was observed in the genus (Jian et al., 2010). Finally, also the low mitotic index 

in roots and shoots and the development of very weak and tiny to handle roots (Ma et al., 1996) are 

obstacles for cytogenetic research in roses. To accelerate the progress in molecular cytogenetic studies 

in the genus Rosa, we optimized the chromosome preparation protocol and developed the “SteamDrop” 

protocol (Paper 1) which we successfully used for the preparation of high quality mitotic and pachytene 

chromosome slides for Rosa wichurana (Paper 1, Paper 2, Paper 5). By this method many possibilities 

are open for cytogenetic studies in Rosa species.  

Optimization of Tyramide-FISH for R. wichurana resulted in successful mapping of several gene 

fragments as small as 1.1kb on mitotic chromosomes (Paper 2). Moreover, we were able to anchor three 

linkage groups to the physical chromosomes of Rosa wichurana. However, the resolution of Tyramide-

FISH on mitotic rose chromosomes is rather low: the physical location of two genes on R. wichurana 

mitotic chromosomes can only be distinguished if the distance between these genes is more than 5.6Mb 

(Paper 5). To overcome this problem, we used the less condensed pachytene chromosomes in Tyramide-

FISH mapping in Rosa (Paper 5). This study demonstrated that Tyramide-FISH is a valuable tool for 

physical mapping of the Rosa genome. Our paper was the first to describe the application of Tyramide-

FISH on plant pachytene chromosomes. By our established Tyramide-FISH protocol more (single-copy) 
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genes can now be mapped and their order can be determined with a high resolution (see further). As 

genes are very conserved between species, comparative cytogenetic mapping of genes on 

chromosomes from different Rosa species is feasible. Our pilot Tyramide-FISH experiments performed 

with a R. wichurana probe on R. chinensis pachytene chromosomes confirmed this possibility (data not 

shown). The development of a set of 14 conserved single copy gene based probes which can be mapped 

to all 14 chromosome arms of R. wichurana, and use them in Tyramide-FISH mapping on chromosomes 

of other Rosa species, would allow to trace large genomic rearrangements such as translocations and 

inversions. By this, more knowledge could be gathered about the importance of chromosome 

rearrangements in the speciation of the Rosa genus.  

R. wichurana (subgenus Rosa, sect. Synstylae) turned out to be a good model species for molecular 

cytogenetic studies in the Rosa genus because of several reasons. R. wichurana is a diploid species 

(2n=2x=14; Figure 4B)) and has intensively growing apical meristems (Figure 4A) containing many 

dividing cells suitable for chromosome preparation.  

 

 

Figure 4. Features of R. wichurana valuable for cytogenetic studies: intensively growing apical meristems (A), 

diploid species (2n=2x=14) (B) and flowers containing tens of anthers (C). 

 

Also the flowering period is long enough and the flowers have many anthers (flower with simple corolla; 

Figure 3C), providing sufficient start material for pollen mother cell (PMC) isolation and pachytene 

chromosome preparation. R. wichurana is one of the species involved in the origin of modern rose 

cultivars and is a source of resistance to powdery mildew (Dugo et al. 2005; Moghaddam et al. 2012; 

Leus et al. 2009). Obtained knowledge for R. wichurana can be transferrable to modern rose cultivars. 

In addition, R. wichurana is one of the parental species used in the construction of genetic maps for 

roses (Crespel et al. 2002; Dugo et al. 2005; Shupert et al. 2007; Spiller et al. 2011; Moghaddam et al. 
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2012). This will simplify the integration of physical and genetic maps. Also important to accelerate 

progress in cytogenetics for Rosa is our development of cytogenetic markers for 5 chromosome pairs of 

R. wichurana including 5S, 45S and Arabidopsis-telomeric repeats have been found (Paper 3).  

Since rose chromosomes are so difficult to distinguish, cytogenetic markers are the only way for (FISH-

based) chromosome identification. Tandemly organized repeats (TR) are a suitable source for the 

development of cytogenetic markers. TRs can be efficiently isolated using next generation sequencing 

(NGS) data obtained from genomic DNA (Novak et al. 2013). It was demonstrated that even low-

coverage NGS data is sufficient for TR isolation (Novak et al. 2014). The development of cytogenetic 

markers and their application for FISH on rose chromosomes will be useful for (1) chromosome 

identification, (2) study of phylogenetic relationships in Rosa, and (3) exploration of the genomic 

relationships between modern rose cultivars and their ancestors.  

 

 

7.3 AN INTEGRATED APPROACH FOR GENOME ASSEMBLY AND ITS APPLICATION FOR R. WICHURANA  

GENOME SEQUENCING 

 

Current next generation sequencing technologies allow performing shotgun genome sequencing with 

high genome coverage and low price of sequencing. Up to now, more than 100 plant genomes have 

been sequenced. However, most of the plant genome sequencing projects result in a ‘‘draft’’ genome 

version presenting sets of contigs or scaffolds (Claros et al., 2012; Xie et al., 2015). Only a small number 

of the sequenced genomes is assembled into pseudochromosomes, thus providing an indispensable tool 

for biological and evolutionary studies using comparative genomics (Spannaglet al., 2016; Bauer et al., 

2016; Zapata et al., 2016). The level of genome assembly (contigs, scaffolds, superscaffolds, 

pseudochromosomes) is mostly determined by the complexity of a genome (large genome size, 

repetitive elements, genome-wide genome duplications, (allo)polyploidy). In addition the objectives of 

the genome sequencing determines the level of genome assembly (Figure 5).  For example, gene family 

study (e.g. He et al., 2013; Nystedt et al., 2013), orthologous gene analysis (e.g. Nystedt et al., 2013), 

SNP calling (e.g. Poecke et al., 2013) and genome-based transcriptome assembly and gene model 

prediction (e.g. Chang et al., 2014) are common objectives for plant genome sequencing projects and 
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require high genome completeness while knowledge about linear order of scaffolds is less important. 

For the latter case, high quality assembly of contigs and scaffolds is sufficient (Figure 5). 

 

Figure 5. Main tools and objectives in plant genome sequencing projects. 

In contrast, some biological questions can only be answered when contigs and scaffolds are arranged 

according to their physical location in the genome. Genes are not isolated units in a genome and their 

regulation depends on other genomic loci that can be located on the same (cis regulation) or different 

(trans regulation) chromosomes. Distinct genomic elements (protein-encoded genes, regulatory 

elements, genomic repeats) communicate with each other via direct (DNA:DNA interaction) or indirect 

(by RNA or protein molecules intermediates) interactions (Dekker and Mirny, 2016). In this 

communication process, the distance between the genomic loci and the genomic context where the loci 

are located (e.g. heterochromatin, euchromatin, A-compartment, B-compartment (Lieberman-Aiden et 

al., 2009)), play an essential role. To unravel this 3D genome organization and to better understand the 

gene regulation network, chromosome level assembly of the genome is required. In addition, a rapidly 

growing number of studies carried out on different plant species and humans demonstrated that 

microscopic structural variants (SV, variants longer than 3Mb) and submicroscopic structural variants 

(1Kb - 3Mb) have significant impact on biological diversity of organisms (Feuk et al. 2006; Chaney et al. 

2016). SV break genome synteny and collinearity between organisms play a key role in plant speciation 

(Yeaman, 2013; Mandakova et al., 2015; Fransz et al., 2016; Zapata et al., 2016; Hou et al., 2016). SVs 
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are also important for plant breeding as they create variability among plant material for future selection. 

However, they may also negatively influence gene transfer between parental plants by recombination 

suppression leading to gene hitchhiking (Döring et al., 2011). Genome-wide identification of the 

structural variants also demands knowledge about the linear order of sequences in the genome. Many 

of the genome sequencing projects aim to build a physical map of the genome using high-density genetic 

maps to establish scaffold order and orientation. However, a significant part of the genome is located in 

recombination-poor regions such as pericentromeric heterochromatin leading to errors in the final 

genome assembly. Genetic map resolution in these regions is very low (few Mb per 1cM) resulting in 

long-range linkage disequilibrium (Fransz et al., 2016). Errors during pseudochromosome assembly are 

also caused by repetitive sequences and duplicated chromosomal regions. DNA repeat sequences may 

be collapsed by genome assemblers resulting in a high number of short contigs and genome sequence 

incompleteness (Veeckman et al., 2016). Indeed, FISH and optical mapping validation of tomato genome 

sequencing suggested that most of the incorrectly placed scaffolds are located in the heterochromatin 

and repeat-rich regions (Shearer et al. 2014; Pietrella and Giuliano, 2016).  

Ordering of the sequences into pseudochromosomes requires an efficient assembly and validation 

strategy implicating recombination-independent tools. Tools for scaffolding, including optical mapping, 

mate-paired library with long insert size and long-read sequences obtained by PacBio or NanoPore 

sequencing (Van Bakel et al., 2011; English et al., 2012; Jia et al., 2013; Shearer et al., 2014; Zapata et 

al., 2016) allow generating long scaffolds and ordering them with a very high resolution (the minimum 

physical distance between two distinct sequences at which their order can be revealed) ranging from a 

few Kb (mate-paired library (Boetzer and  Pirovano, 2012)) up to 1Mb (optical mapping (Levy-Sakin and 

Ebenstein, 2013)). Therefore, combining long and short read data is becoming a powerful approach for 

de novo genome assembly although it does not allow entire plant chromosome assembly and the length 

of the obtained sequences is much shorter than the length of the entire chromosome (Zapata et al., 

2016). However, additional methods for efficient ordering of contigs/scaffolds into 

pseudochromosomes are required. A new approach called chromatin interaction-based de novo 

assembly (CIBDA), was proposed to fill in this gap (Burton et al., 2013; Dekker et al., 2013; Kaplan and 

Dekker, 2013). CIBDA is a recombination-independent method and relies on the probabilistic model of 

DNA interactions in 3D nuclear space. This model links the physical distance between two DNA 

sequences with the probability for them to be in contact in the nucleus. DNA:DNA contacts are retrieved 

from in vivo cross-linking (formaldehyde fixed tissue, Burton et al., 2013) or reestablished in vitro by 
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specific proteins (Putnam et al., 2016). CIBDA has been tested for human, mouse, Drosophila, alligator, 

fungus (Trichoderma reesi) and yeast genomes (Kaplan and Dekker, 2013; Burton et al., 2013; Marie-

Nelly et al., 2014; Putnam et al., 2016) and was recently evaluated for de novo assembly of the small 

Arabidopsis genome (Xie et al., 2015). The authors showed that a CIBDA-based genome assembly is in 

concordance with the last version of the Arabidopsis genome. Moreover it was even possible to include 

short scaffolds (10Kb) in the obtained chromosome level genome sequence (Xie et al., 2015). Therefore 

CIBDA can be used to group and order DNA sequences into chromosomes. The minimum length of the 

sequence for CIBDA assembly depends on the number of interactions which can be detected by Hi-C 

data (sensitivity). Genome coverage by Hi-C reads, number of restriction sites and type of restriction 

enzyme used for Hi-C library preparation are limiting factors for sensitivity of a Hi-C map (Jin et al. 2013; 

Chang et al., 2016). The accuracy of both genetic maps and CIBDA based genome assembly is affected 

by highly repetitive regions (Xie et al., 2015). To overcome this problem, FISH guided genome assembly 

has recently been introduced for plants (Albert et al., 2013; Shearer et al., 2014; Cao et al., 2016; 

Pietrella and Giuliano, 2016). These studies demonstrated that FISH is indispensable to verify and correct 

genome assembly. However, FISH is not a high-throughput method and the resolution is rather low 

(>200Kb on pachytene chromosomes) to be able to order short contigs (10 - 50Kb). Therefore FISH is 

used in the final steps of genome assembly to further validate ((Tyramide-) FISH with single-copy probes) 

genome assembly, to map repetitive regions (FISH with repetitive DNA sequences) and to integrate 

genome assembly with chromosomal landmarks such as heterochromatin and (peri)centromeric regions 

(Figure 6). The latter step is important to understand evolution and function of the centromere, 

heterochromatin and repetitive elements (Zhao et al., 2016).  
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Figure 6. Integration of data from a CIBDA map, a genetic map and a FISH-based physical map to achieve high quality genome 

assembly into pseudochromosomes and their integration with chromosome structure. 

Centromere length may range from 9 Mb (chromosome 1 of Arabidopsis, Hosouchi et al., 2002) to 124 

kb (rice chromosome 4, Zhang et al., 2004). Centromeres consist of repetitive elements, such as 

centromeric retrotransposon and tandem repeats, and some genes (Zhao et al., 2016). Because of the 

repetitive nature and low recombination frequency of centromeric regions, only few plant centromeres 

have been fully assembled. These include rice chromosome 4 (Zhang et al., 2004) and maize 

chromosome 2, 5 and 10 (Wolfgruber et al., 2009, 2016). Hence only limited information about the 

centromere organization is available. The centromere is established epigenetically (Fukagawa and 

Earnshaw, 2014; reviewed by Ohzeki et al., 2015) and the role of centromeric DNA in this process is not 

clear. It was shown that centromeric RNA contains centromeric repeats which play an essential role in 

kinetochore assembly (Quénet and Dalal, 2014). Centromeric DNA sequencing and assembly can help 

to identify the functional motifs (such as CENP box) and to understand the evolutionary mode of 

centromeric DNA, neocentromere formation and high turnover of centromeric repeats. In addition, 

because centromeres occupy distinct, mostly silenced compartments of nuclear space, the regulation 

of transcription of the genes located in the centromere is an intriguing question. Sequencing of 

centromeres from other plant species will shed more light on centromere organization and evolution.  
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The application of genetic map, CIBDA and FISH-based physical map to complete genome sequencing 

and pseudochromosome assembly will provide a more robust and complete genome sequence. All three 

methods have different principals of sequence order reconstruction and resolution and therefore they 

complement each other.  

In the future, this strategy can be used for R. wichurana genome sequencing. In this thesis, we 

established a Tyramide-FISH protocol for R. wichurana and showed that it can be used to physically map 

unique sequences with few hundred thousand bp resolution (200-300Kb) on pachytene chromosomes. 

To anchor assembled pseudochromosomes to each arm of the physical chromosomes and to determine 

their north-south orientation at least 14 probes should be used, 2 probes per pseudochromosome. 

During this PhD, we designed probes for 2 chromosomes (4 and 7) and these were already physically 

mapped (Paper 5; Figure 7). For 4 other chromosome pairs the design of at least 2 probes per 

chromosome and their physical mapping is still required. In addition, at least one more probe for 

chromosome 1 is needed since already one probe (OOMT) has been designed and mapped (Paper 2).  
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Figure 7. Cytogenetic map of repetitive (5S, 45S rDNA genes, Arabidopsis-type telomeric repeat) and unique (genes) sequences 

on R. wichurana chromosomes. The map was build based on data from paper 2 and paper 5. ITR and ITR-ls – Interstitial 

Telomeric Repeat signals that are visible under 37°C and room temperature (23 - 25°C), respectively.  

 

However, to be able to use FISH for genome assembly validation and correction, the number of 

Tyramide-FISH anchor points has to be significantly increased. To anchor a scaffold to the chromosome 

a minimum of 2 probes are needed per scaffold. In addition, only those scaffolds that have a length 

exceeding the resolution (> 200 – 300Kb) of FISH can be used because only then their north-south 

orientation can be determined by high-resolution FISH. Therefore, the number of probes for Tyramide-

FISH would depend on the number and length of the contigs/scaffolds/superscaffolds that is obtained 

after scaffolding and CIBDA. To verify CIBDA genome assembly, the FISH probes need to be distributed 

over the pseudochromosome length. For this probably 10 – 20 probes per chromosome need to be 

designed which would result in 4-8Mb of genome coverage by each FISH probe. It would also help to 

estimate the presence of large-scale errors in the CIBDA genome assembly and to perform corrections.  

To determine the centromere location on pseudochromosomes and integration of pseudochromosome 

sequences with the chromosome structure, the isolation of centromeric and other heterochromatin-

associated tandem repeat sequence(s) will be needed. These sequences can then be used for FISH probe 

design and mapping on physical chromosomes as well as for determining their locations on 
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pseudochromosomes by BLAST. In that way, data from chromosomal and pseudochromosomal locations 

of the repeats can be integrated and the length of the repeat arrays in the genome can be estimated. 

Identification and FISH mapping of these sequences on R. wichurana chromosomes will also be 

important for further cytogenetic marker development in Rosa wichurana and other Rosa species.  

At the end, integration of data from CIBDA assembly, genetic mapping and FISH mapping with 

chromosome structure data will allow to perform R. wichurana genome assembly with high accuracy. 
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