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Abstract

The balance of normal and radial (lateral) diffusion of oxygen in phospholipid mem-

branes is critical for biological function. Based on the Smoluchowski equation for the

inhomogeneous solubility-diffusion model, Bayesian analysis (BA) can be applied to

molecular dynamics trajectories of oxygen to extract the free energy, and the normal

and radial diffusion profiles. This paper derives a theoretical formalism to convert these

profiles into characteristic times and lengths associated with entering, escaping, or com-

pletely crossing the membrane. The formalism computes mean first passage times and
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holds for any process described by rate equations between discrete states. BA of sim-

ulations of eight model membranes with varying lipid composition and temperature

indicate that oxygen travels 3 to 5 times further in the radial than in the normal di-

rection when crossing the membrane in a time of 15 to 32 ns, thereby confirming the

anisotropy of passive oxygen transport in membranes. Moreover, the preceding times

and distances estimated from the BA are compared to the aggregate of 280 membrane

exits explicitly observed in the trajectories. BA predictions for the distances of oxygen

radial diffusion within the membrane are statistically indistinguishable from the corre-

sponding simulation values, yet BA oxygen exit times from the membrane interior are

approximately 20% shorter than the simulation values, averaged over seven systems.

The comparison supports the BA approach and, therefore, the applicability of the

Smoluchowski equation to membrane diffusion. Given the shorter trajectories required

for the BA, these results validate the BA as a computationally attractive alternative to

direct observation of exits when estimating characteristic times and radial distances.

The effect of collective membrane undulations on the BA is also discussed.

I. Introduction

Diffusion of permeants through membranes has been studied for over 100 years. The effi-

ciency of transport through membranes is expressed by the permeability P , which is the

ratio J/∆c of the flux of molecules over the concentration difference across the membrane in

steady-state regime (Fig. 1a). Overton’s observations established that the permeability of a

solute is proportional to its solubility.1 In more recent work, the permeability is frequently

expressed as follows,2–4

1

P
= e−βFref

∫ h/2

−h/2

1

D⊥(z)e−βF (z)
dz (1)

where β = 1/kBT is the inverse temperature, h is the thickness of the membrane, F (z) is the

free energy profile for the permeant across the membrane, D⊥(z) is the permeant diffusion

profile for diffusion normal (⊥) to the membrane plane, and Fref is the reference free energy
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in the bulk water. This expression for P assumes that molecules diffuse in an inhomoge-

neous medium described by the Smoluchowski equation, also known as the inhomogeneous

solubility diffusion model.3 The permeability in Eq. 1 follows from solving the Smoluchowski

equation in steady-state regime under the boundary condition of constant concentration dif-

ference.2 While the ratio of flux and concentration difference can, in principle, be calculated

directly from non-equilibrium simulations (Fig. 1a), use of Eq. 1 assumes the validity of a

diffusion model.

Figure 1: (a) Definition of permeability P as ratio of flux and concentration difference. P
does not give information on radial transport. (b) Simulation box with 72 DOPC lipids,
10 O2 molecules (red) and 2409 water molecules (blue). DOPC C-atoms are grey, H-atoms
white, O-atoms red, the P-atom green and the N-atom magenta. (c) Membrane of thickness
h with normal diffusion D⊥ and radial diffusion D|| profiles. The membrane center is located
at z = 0. Schematic trajectories (red) are used to illustrate the crossing time τcross, escape
time τesc, and entrance time τentr, during which oxygen travels over radial distances L||.

The radial component of the diffusion tensor, D||, is conspicuously absent from Eq. 1.
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Hence, this equation provides no information on how far a permeant travels in the membrane

before it exits. In recent work (herein referred to as Ref. 5), the authors solved the Smolu-

chowski equation for a layered medium, such as the bilayer membrane, using separation of

variables into radial (r) and normal (z) coordinates, and splitting the equation into radial

and normal equations. This approach allowed the computation of the so-called propagator

p(z, r, t|z0), which is the oxygen concentration at time t at depth z and a radial distance r

from the reference, given that the molecule started at z = z0 at t = 0. The fact that this

propagator p contains both the D⊥ and D|| profiles will be exploited in the present paper.

The propagator will be used to predict not only the permeability for normal transport across

the membrane, but also the radial diffusion within the membrane.

A central question for oxygen transport is the balance between normal and radial trans-

port. For instance, if the normal flux is low and the radial flux is high, the permeant has

ample time to explore the membrane interior, which may be related to biological function.

One indication of the radial/normal balance is the anisotropy ratio, D||/D⊥. Normal diffu-

sion is somewhat faster than radial diffusion in the tail region, where oxygen easily moves in

the direction of the tails. In the center of the membrane, oxygen moves more easily parallel

to the membrane. However, the free energy F (z) is typically a more effective modulator

of transport than the diffusion anisotropy. This was investigated using a 5-compartmental

model, where the free energy barrier in the head group region was shown to have a large

effect.5 The barrier is absent in a simple membrane model consisting of a pure hexadecane

slab immersed in water, making this system an inadequate model for biological membrane

permeation. Likewise, the 1-compartmental model implied by the Overton’s rule lacks the

important features of the free energy and can only provide a semi-quantitative estimate of the

permeability. As a small lipid-soluble membrane permeant, oxygen diffuses relatively rapidly

within and through the membrane, facilitating quantification of free energy and diffusivity

profiles. More complex permeants such as drug molecules may require more extensive and

biased sampling.
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In this paper, we will quantitate the balance between normal and radial transport by

assessing characteristic times and lengths illustrated in Fig. 1c. The escape time τesc is

the time required for an oxygen molecule to leave the center of the membrane and to exit

above or below. The radial distance L||,esc is the distance on average traveled by an oxygen

molecule before exiting the membrane. The comparison of L||,esc with half the membrane

thickness h/2 is therefore another measure of the anisotropy. Other characteristic times are

the entrance time τentr, defined as the average time needed to reach the membrane center

starting from its surface, and the crossing time τcross, defined as the average time needed to

cross the membrane entirely (Fig. 1c). A first important contribution of the paper is the

theoretical derivation of expressions for τ and L|| using the propagator p associated with the

Smoluchowski equation.

Recently, inspired by anomalous diffusion traits encountered in biology, the applicability

of the Smoluchowski equation (and thereby Eq. 1) to membrane diffusion has been ques-

tioned, and the use of more advanced models has been promoted.6,7 For pure diffusion, the

mean square distance (MSD) grows linearly in Brownian processes with a Gaussian step dis-

tribution. Anomalous diffusion can be recognized by a non-linear scaling of the MSD. A large

variety of models exist to model this non-universal behavior,8–10 such as time-fluctuating non-

stationary diffusivities,11 diffusing diffusivities,12,13 accelerating subdiffusion,14 non-gaussian

step distributions,15 Levy flight models,16 fractional Langevin equations,17 fractional Brow-

nian motion,18 or generalized Langevin equation motion.18,19 Chipot and Comer proposed

the time-fractional Smoluchowski equation for diffusion in an inhomogeneous medium,6 and

Hinsen and Kneller implemented a Bayesian analysis of anomalous lateral lipid diffusion

related to fractional Brownian motion (FBM).20

The question arises whether the essentials of oxygen transport can be captured by the

Smoluchowski equation without resorting to such advanced mathematical approaches. The

preceding times and lengths based on the Bayesian analysis (BA) approach are very rele-

vant properties for understanding oxygen transport, and they are natural targets for the
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validation. Here the τ and L|| from BA are compared with those exits explicitly observed

in extended simulated trajectories from molecular dynamics (MD) simulations, thereby pro-

viding a direct test of the BA approach and, on a more fundamental level, the Smoluchowski

equation itself. The statistics of escape times are notoriously bad, and the aggregate of the

seven studied systems giving 280 observed exits was needed to study the accuracy of the

BA approach. Another potentially confounding issue is membrane undulations, which blur

the registration of membrane exits. To explore the effect of undulations, τ and L|| were also

determined in a larger simulation box. The test of the Smoluchowski equation by comparing

escape times and lengths is the second important contribution of this paper. It is based

on MD simulations of oxygen in 4 different lipid bilayers at various temperatures, giving 8

modeled systems.

The Theory and Methods section starts with a review how the position dependent dif-

fusion tensors and free energies are extracted from the trajectories using Bayesian analysis

based on the Smoluchowski equation as developed in Ref. 5. After this review, we present

a new methodology for predicting the averages of characteristic times and distances ana-

lytically from the diffusion and free energy profiles. The derivation of the equations for τ

and L|| with various absorbing boundary conditions is the main theoretical contribution of

the paper. The formulation for mean first passage times for membranes is in fact generally

applicable and holds for any process described by rate equations between discrete states.

The traveled radial distance, which has a more elaborate two-dimensional distribution, has

been treated with the same formalism.

In the Results and Discussion section, the simulation protocol and theoretical formu-

lations are first applied to seven modeled systems, showing the effect of lipid composition

and temperature on P , τ , and L||. The connection between permeabilities, τ and L|| is dis-

cussed, and it is shown that each property gives additional insight in the transport process.

The properties τesc and L||,esc are used to validate the diffusive assumption implied by the

Smoluchowski equation by comparing them with directly observed oxygen escapes. A sta-
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tistical analysis is provided to assess the significance of this comparison. An eighth system

is presented with a four times larger unit cell to investigate the possible effect of membrane

undulations on these properties. The Conclusion section summarizes the work.

II. Theory and methods

A. Review: Smoluchowski equation and Bayesian analysis

1. The propagator in a membrane

This subsection reviews the methodology of Ref. 5. The assumed underlying model is dif-

fusion on a free energy profile F (z) with a position and orientation dependent diffusivity

tensor. The diffusion normal to the membrane is characterized by D⊥(z) and parallel to the

membrane by D||(z); both depend on the location z along the normal of the membrane (see

Fig. 1c). The aim is to construct the propagator p(r, z, t|z0), which describes the probability

of finding the oxygen molecule at location z in the membrane at time t, assuming it started

at location z0 at time 0 and traveled a radial distance r parallel to the plane with respect

to its original xy location. The propagator can be used to compute characteristic times and

lengths. The radial dependence of the propagator on r is a prerequisite for estimating the

mean traveled radial distance.

The evolution of p(r, z, t|z0) is described by the Smoluchowski equation. Ref. 5 showed

that the Smoluchowski equation in a layered system like a membrane, an inhomogeneous

system with translational invariance in the xy-plane, splits into two equations using sepa-

ration of the variables z and r, one for normal diffusion along the z axis and one for radial

diffusion in the plane. The radial diffusion is a textbook example and is described by Bessel

functions Jn of the first kind and nth order. The normal diffusion reduces to one-dimensional

diffusion on F (z)

∂Q

∂t
=

∂

∂z

(
D(z)e−βF (z) ∂

∂z

(
eβF (z)Q

))
. (2)
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Q(z, t) dz is the probability of finding an oxygen molecule in a layer [z, z+dz] of the membrane

at time t. To determine the F , D⊥, and D|| profiles from the simulations later on, the z-axis

is discretized in bins {i}, giving the free energy Fi in bin i, the normal diffusion D⊥,i+1/2

between bins i and i + 1, and the radial diffusion D||,i in layer i. The discretized version of

the normal equation features the rate matrix R, that describes the transition rates between

neighboring bins,

dQ(i, t)

dt
=
∑
j

RijQ(j, t) (3)

where Q(i, t) is now the probability to be in bin i at time t. The rate matrix is constructed

from the discretized Fi and Di+1/2 profiles and is a tridiagonal matrix with adapted corner

elements to account for periodicity.21 By solving this equation under the initial condition of

the oxygen molecule being in a particular bin j at time 0, i.e. Q(i, 0) = δik, the propagator

for normal diffusion is readily found as the matrix exponential of Rt,

Q(i, t|j) = [eRt]ij. (4)

We now return to the original question of the probability p(r, z, t|z0), where normal and

radial diffusion are combined. After discretization of both z (bins i) and the radial distance

r (bins m, width ∆r), the discretized propagator for diffusion in layered system, is given by5

p̃(i,m, t|j) = ∆r
∑
αk

2rm
J0(αkrm)

s2J2
1 (xk)

[
eRt−α

2
kDt
]
ij

(5)

where p̃ is the probability for the oxygen to be in z-bin i and r-bin m at time t, when it

was in z-bin j at the origin at time 0. This propagator describes two-dimensional diffusion

(radial and normal). It features an adapted matrix exponential that accounts for diffusion

parallel into the layers of the membrane. The variable s is a large radial distance, where the

probability can safely be assumed to have died to zero. The summation is over the zeros

xk = s αk of the J0 Bessel function which are tabulated in, e.g., the scipy package of python,
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and the summation is in practice truncated when convergence is reached. The matrix D

is diagonal with the discretized parallel diffusion profile D||,i on its diagonal. As could be

expected, the propagator p̃ in a membrane depends both on R – which is constructed from

the free energy and normal diffusion profile – and the parallel diffusion profile. Once the

profiles are determined, we will use the propagator in Eq. 5 to investigate the characteristic

length and times of oxygen transport in the membrane.

2. Extracting free energy and diffusion profiles

The free energy F (z) and normal diffusion profile D⊥(z) were determined from MD simu-

lations previously by several groups using various techniques, such as measuring force cor-

relations in constrained simulations,2 a Bayesian approach,5,21,22 local mean first passage

times,23 or velocity and position autocorrelation functions.24 In a few cases, D|| profiles were

also published using similar techniques for water and ion transport.2,25–27

In this paper, the extraction of the F , D⊥ and D|| profiles from the MD trajectories is

based on Bayesian analysis. The theoretical propagators in Eqs. 4 and 5 are matched with

the observed propagation of oxygen molecules in the trajectories by randomly varying the

profiles in a Monte Carlo routine. The likelihood of observing the MD trajectories, given the

profiles, is computed at each Monte Carlo step. The result of the routine is a distribution

of profiles around the most likely profiles, and the reported profiles in this work are the

average profiles of these distributions. Note that the unbiased O2 trajectories sample the

energetically favorable membrane interior more effectively than the unfavorable water phase.

To account for the short time scale behavior of oxygen in membranes, the Bayesian

analysis was repeated for several lag times between 20 and 50 ps, and the final profiles were

obtained by a fit towards infinitely long time scales. The example of DOPC/298 is plotted

in Fig. 2; other profiles are reported in Ref. 22 where the effect of disorder in the lipid chains

due to unsaturation on oxygen diffusion is discussed.
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Figure 2: Profiles F , D⊥ and D|| of DOPC/298 obtained from Bayesian analysis of the MD
trajectories.

B. Expressions for characteristic times and lengths

1. Mean first passage time

The computation of characteristic times for a membrane slab falls into two categories from

a methodological point of view. One category covers the characteristic times for leaving the

slab on either side, i.e. the top or the bottom side of the slab. The escape time τesc from the

membrane center to the water phase belongs to this category. The other category covers the

characteristic times for transiting from one side to the other side of a slab. For instance, the

entrance time τentr is the transit through half the membrane, and the crossing time τcross is

the crossing through the entire membrane.
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First, we derive an equation for the time needed to leave a slab on either side. The

starting point is the one-dimensional Smoluchowski equation (Eq. 2) for a membrane with

absorbing boundary conditions on both sides of the slab.28,29 When an oxygen molecule

arrives, it is absorbed in the water phase and never returns to the membrane slab. This

means that the computed escape time τesc is actually a mean first passage time through the

membrane surfaces. Our derivation in the following can be applied to more general problems

of first passage times, where one has non-absorbing bins and absorbing bins. To illustrate

the general applicability of our derivation, the notation is made more general.

Figure 3: (Upper panel) The nA non-absorbing states ∈ A and nB absorbing states ∈ B are
connected by rate matrix elements Rij. (Lower panel) Truncation of rate matrix covering
bins 1 to N , in the general case. For the characteristic times and lengths in this work, R is
truncated to R′ for the full membrane covering bins from bottom (b) to top (t), by removing
the water bins, and to R′′ for the half membrane covering bins from bottom (b) to center (c).

Let A be the set of nA non-absorbing bins, and B the set of nB absorbing bins. The rate

matrix R describes the transitions between all possible bins and has size (nA+nB)×(nA+nB),

as shown in Fig. 3. Assume the matrix R′ describes the transitions between non-absorbing

bins only, here the bins within the membrane slab. Then R′ is a truncated rate matrix, i.e.

the nA×nA submatrix obtained by barring nB rows and columns from R. The elements are

given by R′ij = Rij,∀i, j ∈ A. Assume that the initial position of the particle is a delta peak

at bin k ∈ A, and the propagator is given by [eR
′t]ik as in Eq. 4, featuring the truncated

rate matrix R′. The probability G that the particle is still present in the slab after some
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lag time t is the spatial integral of the propagator over the slab, which can be replaced by a

summation over the bins in the slab,

G(t|k) =
∑
i∈A

(
eR

′t
)
ik
. (6)

The probability distribution ρ(t|k) to exit the slab at some time t relates to the time deriva-

tive of G,

ρ(t|k) = −∂G(t|k)

∂t
= −

∑
i∈A

(
R′eR

′t
)
ik
. (7)

The distribution ρ is used to calculate the mean time τ(k) that a particle remains in the

slab, assuming its initial position was bin k at time 0,

τ(k) =

∫ ∞
0

tρ(t|k)dt. (8)

Since ρ dies to zero at long times because of the absorbing bins, the mean time can be

converted using partial integration to a time integral of G,

τ(k) =

∫ ∞
0

G(t|k)dt. (9)

The adapted rate matrix R′ only has negative eigenvalues because all probability flows out

of the slab as time increases. The time integral in Eq. 6 can therefore be evaluated explicitly

as

τ(k) =
∑
i∈A

∫ ∞
0

(
eR

′t
)
ik
dt = −

∑
i∈A

(
R′−1

)
ik

(10)

where R′−1 is the inverse matrix of R′.

Second, we derive an equation for the time needed to transit from one side to the other

side of the slab. We are interested in particles that start their trajectory on one side of

the slab and have their first exit from the slab at the other side. The above reasoning then

needs an adaptation to take into account the condition of ‘leaving from one particular side’.
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The key relation to achieve the adaptation, is to use the conservation of probability for any

non-absorbing bin l ∈ A. The total flux from bin l to all other bins, be it in A or in B, is

zero, ∑
i∈A

R′il +
∑
j∈B

Rjl = 0, ∀l ∈ A. (11)

The probability distribution ρ(t|k) in Eq. 7 is rewritten using this conservation law,

ρ(t|k) = −
∑
i∈A

∑
l∈A

R′il

(
eR

′t
)
lk

(12)

=
∑
j∈B

∑
l∈A

Rjl

(
eR

′t
)
lk

=
∑
j∈B

ρj(t|k) (13)

which shows that ρ is the sum of fluxes out of the slab into the individual j absorbing states,

where each flux ρj is given by

ρj(t|k) =
∑
l∈A

Rjl

(
eR

′t
)
lk
. (14)

This equation means that the flux to the absorbing bin j is equal to the probability in the

non-absorbing bins (
(
eR

′t
)
lk

), multiplied by the rate to exit from l to that particular bin j

(Rjl). The total probability to exit from A to bin j is obtained by integrating ρj over time,

Pj(k) =

∫ ∞
0

ρj(t|k)dt = −
∑
l∈A

Rjl

(
R′−1

)
lk
. (15)

This allows us to construct the ratio ρj/Pj, which is the normalized probability distribution

to exit through bin j after a lag time t. The mean time to exit through bin j is then obtained

by taking the average,

τ→j(k) =

∫ ∞
0

t
ρj(t|k)

Pj(k)
dt. (16)

After partial integration of Eq. 16, using 14, and using the assumption that ρ dies off to zero

for long times, we find the general expression for the mean time τ→j(k) to leave the slab to
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the absorbing bin j,

τ→j(k) =

∑
l∈ARjl (R

′−2)lk∑
l∈ARjl (R′−1)lk

. (17)

Equations 10 and 17 are the main formulas for the characteristic times in this paper.

The equations for the mean first passage times apply to general rate problems consisting of

non-absorbing and absorbing bins. Let us now work out the special case of a membrane slab

and assuming the Smoluchowski equation. The equations used in this work are summarized

in Table 1, and the bins of the truncated rate matrices R′ and R′′ are shown in Figure 3. (1)

The escape time τesc is obtained by setting the initial bin k at the center of the membrane

k = kcent (bin c) in Eq. 10. The truncated rate matrix R′ contains the bins from the

membrane bottom to the top at z = ±h/2 (bin b to bin t), and the absorbing bins are in

the water phase (bin b− 1, bin t+ 1). (2) For the crossing time τcross, the initial bin k is the

bottom bin at z = −h/2 (bin b) in Eq. 17, and the j bin is the absorbing top bin at z = h/2

(bin t + 1). The matrices R and R′ are tridiagonal. Consequently, the summations l ∈ A

in Eq. 17 are reduced to a single term only, RN+1,N , which nicely drops out. (3) For the

entrance time τentr, only half a membrane slab is considered, and the truncated rate matrix

R′′ covers only the bins between the membrane bottom at z = −h/2 and center at z = 0

(bin b to bin c). The absorbing bins are in the water phase and in the center (bin b− 1 and

c+ 1). The initial bin k is the bottom (bin b).

As a last case, the initial condition is not assumed to be a single peak in bin k, but the

equilibrium distribution over the entire slab. The contributions τ(k) are then weighted by

the equilibrium distribution e−βFk ,

τres =

∑
k∈A τ(k)e−βFk∑
k∈A e

−βFk
. (18)

This time τres can be interpreted as the average residence time of a particle in the slab under

equilibrium conditions before exiting on either side.
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Table 1: Derived equations for characteristic times and lengths. a

Eq. time Eq. length

10 τesc = −
t∑
i=b

(
R′−1

)
ic

28 L2
||,esc =

∑
m

r2m
∑
αk′

Ak′(rm)
(
Rb−1,b

[
(R′ −D′α2

k′)
−1]

bc

+Rt+1,t

[
(R′ −D′α2

k′)
−1]

tc

)
17 τcross =

(R′−2)tb
(R′−1)tb

25 L2
||,cross =

∑
m

r2m
∑
αk′

Ak′(rm)
[(R′ −D′α2

k′)
−1]tb

(R′−1)tb

17 τentr =
(R′′−2)cb
(R′′−1)cb

25 L2
||,entr =

∑
m

r2m
∑
αk′

Ak′(rm)
[(R′′ −D′′α2

k′)
−1]cb

(R′′−1)cb

a Definitions are in Fig. 1c. The bin indices b, c, and t refer to the bottom, center, and top
of the membrane, respectively.

2. Traveled radial distance

During the time spent in the membrane, the permeant will have traveled over some radial

distance. For each characteristic time of the previous subsection, we will derive the associated

mean traveled radial distances L|| (see Fig. 1c). As for the mean times, the average distance

depends on which fluxes (top and/or bottom) are taken into account.

The evaluation of L|| requires the distribution of traveled distances when first passing

the border of the membrane slab. Therefore, the derivation starts with constructing the

flux through a radial bin in the mathematical framework of the previous subsection. The

absorbing bins j ∈ B are the top or the bottom of the slab, which are numbered as j = 0

and j = N + 1 in this subsection for clarity. The slab consists of N bins. The radial bins

are labeled by the index m, and rm is the center of the m’th bin. The initial condition is

a peak distribution in z-bin k at time t = 0 and location r = 0. The rate matrix for the

slab is again the truncated rate matrix R′. All its eigenvalues are negative, and the total

probability in the slab is hence not conserved. The probability to be in radial bin m near the

bottom border (z-bin N), is given by the propagator p̃(N,m, t), where R′ is used in Eq. 5

instead of R. The flux in bin m through the bottom border is obtained by multiplying the
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propagator with the rate outwards of the border, Rj,N = RN+1,N . A similar reasoning holds

for the top border, where the propagator is p̃(1,m, t|k) and the rate outwards is R0,1. The

flux at time t through bin m at the top or bottom border of the slab becomes, respectively,

ρtop(rm, t|k) = R0,1 p̃(1,m, t|k), (19)

ρbot(rm, t|k) = RN+1,N p̃(N,m, t|k). (20)

These equations can also be cast into the formulation of Eq. 14 by rewriting the non-absorbing

set A and absorbing set B to include radial “states”, and realizing that flux between states

is only allowed between neighboring states because of the tridiagonality of R′.

We first consider the flux through the bottom border only. This means that the mean

radial distance will be taken over those particles that exit at the bottom of the slab, excluding

those that exited through the top border before having crossed the bottom. The total flux

through bin m at the bottom border is the time integral of ρtop(rm, t|k). Since the absorbing

bins make the propagator die off to zero at long times, the total flux through m may be

evaluated directly from Eq. 5 and Eq. 19,

ρbot(rm|k) =

∫ ∞
0

ρbot(rm, t|k) dt (21)

= −RN+1,N

∑
αk′

Ak′(rm)
[
(R′ −D′α2

k′)
−1]

Nk
(22)

where the shorthand notation

Ak′(r) = ∆r 2r
J0(αk′r)

s2J2
1 (xk′)

(23)

is introduced, and D′ is the truncated version of the diagonal matrix D, matching the size

of R′.

In the final step, the flux is normalized. Pbot(k) is the probability to exit at the bottom
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border (independent of time and radial bins) and is given by Eq. 15 with j = N + 1,

Pbot(k) = −RN+1,N

(
R′−1

)
Nk
, (24)

or alternatively, Pbot(k) =
∑

m ρbot(rm|k) when the number of Bessel functions is high and s

is large in Eq. 22. The ratio ρbot(rm|k)/Pbot(k) is the normalized probability to exit through

bin m, only considering the bottom border. The normalization means that only trajectories

exiting through the bottom border are considered. This normalized distribution is used to

calculate the mean traveled radial distance L|| by taking the weighted average of r2m

L2
||,bot(k) =

∑
m

r2m
ρbot(rm|k)

Pbot(k)
. (25)

This expression is appropriate when considering trajectories that transit from one side to

the other. A similar reasoning holds for exits through the top border, with similar quantities

ρtop(rm|k), Ptop(k), and L2
||,top.

Next, we consider the flux through bin m including both the top and bottom border,

ρ(rm, t|k) = ρtop(rm, t|k) + ρbot(rm, t|k). (26)

The total flux through bin m is obtained by the time integral and yields,

ρ(rm|k) = ρtop(rm|k) + ρbot(rm|k). (27)

All molecules exit with certainty either through the top or bottom border because of absorb-

ing boundaries, such that Ptop(k) + Pbot(k) = 1, and normalization is not necessary. The

mean traveled radial distance L|| is obtained by taking the weighted average of r2m

L2
||,top/bot(k) =

∑
m

r2m (ρtop(rm|k) + ρbot(rm|k)) . (28)
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This expression is appropriate when considering trajectories that escape from the membrane

on either side.

Equations 25 and 28 are the main theoretical formulas for characteristic lengths in this

paper. A summary of the equations used in this work is given in Table 1. The initial

bin k is chosen at the membrane bottom or center. For L2
||,esc and L2

||,cross, the truncation

covers the membrane bins. For L2
||,entr, only half of the membrane is considered, and D′′

denotes the truncated D matrix with the same size as R′′. In this work, the root of the

mean squared distances, L||, is reported. Error bars on the mean squared distances are also

converted by simply taking the root. The summations over the radial m-bins can also be

evaluated analytically using properties of Bessel functions, as shown in the Supp. Info., but

the numerical effect is negligible.

C. Simulation details

Eight membrane systems with varying composition and temperature are modeled using

the CHARMM36 force field30,31 and the CHARMM program.32 Four membrane composi-

tions are considered: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC),

and a model membrane representing the inner mitochondrial membrane (referred to as

MITO) which was used in Ref. 5. The membranes are simulated at various temperatures.

For instance, MITO is modeled at body temperature, while DPPC is modeled at a higher

temperature where it is in the liquid phase.

The compositions and temperatures of the eight bilayers simulated are listed in Table 2.

Seven of these systems each contained 72 lipids and 10 O2. The same protocol was followed

as in Ref. 5. Four different initial conditions were generated, and to simplify the construction

of the O2 diffusion model, the four replicates were simulated in the NVT ensemble (box sizes

available in Supp. Info.) for 50 ns each, yielding 200 ns of data. The extension to the NPT

ensemble is straightforward.
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The 8th system is four times larger containing 288 DOPC lipids and 40 O2 (DOPC/298/lg

in Table 2). The box is approximately doubled in size in the x and y-direction while main-

taining the same water layer thickness. One replicate was simulated for 50 ns. The F and D

profiles were generated with these MD trajectories using the same BA settings as in Refs. 5-

22, such as the definition of the basis functions, the number of Bessel functions, the number

of z-bins and r-bins, step size, number of equilibration steps and number of production steps

in the Monte Carlo routine. An exception is the computation of L||, where the number of

Bessel functions and r-bins was varied until numerical convergence was achieved.

Table 2: Modeled systems.a

system temp. composition
POPC/310 310 K 72 POPC, 2242 water, 10 O2

POPC/323 323 K 72 POPC, 2242 water, 10 O2

DOPC/298 298 K 72 DOPC, 2409 water, 10 O2

DOPC/310 310 K 72 DOPC, 2409 water, 10 O2

DOPC/323 323 K 72 DOPC, 2409 water, 10 O2

DPPC/323 323 K 72 DPPC, 2189 water, 10 O2

MITO/310 310 K 72 lipids, 2890 water, 32 K+, 8 Cl−, 10 O2

DOPC/298/lg 298 K 288 DOPC, 9636 water, 40 O2
a The lipid composition in system MITO/310 includes cardiolipin and is specified in Ref. 5.

The abbreviation ‘lg’ refers to the larger box size.

In order to compare the characteristic times and lengths based on free energy and diffusion

profiles (BA) with direct observations of oxygen escaping from the membrane center (TRAJ),

the trajectories were extended until all 10 O2 had at least one exit (90% typically exited by

50 ns, though one system required 297 ns). The time difference and the traveled radial

distance are stored between the time an oxygen molecule is first located in the center (here

taken to be |z| < zcent) and when it first crosses the surface of the membrane (|z| > zcut).

We used zcent = 5 Å and zcut = h/2 for an escape from the membrane of thickness h. Next,

the average over all oxygen molecules and replicates (40 observations) is taken to compute

the mean escape time τTRAJ
esc and mean squared traveled distance L2,TRAJ

||,esc as observed in the

trajectories. In addition, the escapes from a series of other slab thicknesses were obtained by

varying zcut, giving the τesc(zcut) and L||,esc(zcut) curves. To reduce the effect of outliers, the
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mean escape time was also estimated based on the observed exits in the first 50 ns of each

trajectory and correcting for those oxygens that had not yet exited by using the maximum-

likelihood estimator for randomly censored data,33,34 but this did not change the statistic

conclusions in the Results and Discussion section. Likewise, the results were not affected by

considering the median of the observed exit times of a system, i.e. the average of the 20th

and 21st exit of 40 exits, nor by dropping the five highest and five lowest outliers.

Finally, the extended trajectories allowed us to repeat the BA methodology several times,

resulting in an estimate of the standard deviation on the BA τ , L|| and P values (see Supp.

Info. for details) for the systems at 298 K.
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III. Results and Discussion

A. Times and lengths from Bayesian analysis

The Bayesian analysis of the MD trajectories provides the free energy (F ) and diffusion

profiles (D⊥, D||) across the membrane. These profiles are used to construct the matrices

R′, R′′, D′, and D′′ in the expressions in Table 1, yielding the characteristic times and

lengths. The chosen membrane thickness is included in Table 3. The characteristic lengths

show that an O2 molecule at the surface of the membrane quickly enters the membrane and

reaches the center of the membrane at z = 0 in 0.7 ns at 298 K and 0.4 ns at 323 K. It takes

considerably longer for O2 to escape from the center of the bilayer and to return to the water

layer, because the hydrophobic region of the bilayer acts as an O2 trap. The crossing time

τcross is 15.5 ns to 32.4 ns. The crossing time is the sum of the entrance time and the escape

time, τcross = τentr + τesc, because τcross is a transition path time and can be broken down

into the transition path time from the membrane surface to the membrane center, τentr, and

the conditional mean first passage time to reach to other side of the membrane. For our

symmetric membranes, the latter is given by the mean first passage time to reach any surface,

τesc. Because here τesc � τentr, we have τesc ≈ τcross. Trapping O2 at the center is thus a fast

process, but releasing O2 is slow. Tracking the MD trajectories of O2 molecules explicitly

confirms this observation: O2 spends considerable time in the tail region, and crossing the

head group region is only possible for O2 after undertaking multiple attempts to exit (see

Supp. Info. of Ref. 5 for selected trajectories).

The residence time τres is shorter than the escape time τesc. The reason is that the

residence time assumes the equilibrium distribution at the starting point with particles spread

over the membrane and mostly located at the tail region, and two absorbing boundary

conditions are assumed. The residence time is the average of how fast each of the particles

can reach the membrane surface, be it at the top or at the bottom. For POPC, the residence

time of 22.1 ns is higher than the 12.4 ns reported by Cordeiro et al.35 Their value was
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estimated as the long-time scale decay time of a correlation function, obtained directly,

without constructing the propagator, from the oxygen trajectories in NPT simulations with

Gromacs using a different force field.

Oxygens move radially in the membrane over a distance L||,esc of 127 to 170 Å before

escaping over a normal distance of about h/2 = 25 Å. The anisotropy is quantified by the

ratio L||,esc/(
√

2h/2), where the factor
√

2 corrects for the 2-dimensionality of the radial

diffusion versus the 1-dimensionality of the normal diffusion. The anisotropies of 3.5 to 4.7

in Table 3 show that membranes have considerably higher O2 transport efficiency in the

radial direction than in the normal direction.

Table 3: Characteristic times (in ns) and lengths (in Å) for oxygen diffusion in lipid bilayers
calculated from two-dimensional diffusion model determined by BA of MD trajectories.a

298 K 310 K 323 K
prop DOPC DOPC POPC MITO DOPC POPC DPPC
τesc 31.7 22.7 30.4 20.6 15.1 15.4 25.0
τcross 32.4 23.2 31.0 21.2 15.5 15.8 25.4
τentr 0.7 0.5 0.6 0.6 0.4 0.4 0.4
τres 30.9 22.1 29.5 19.8 14.6 15.0 24.5
h 50.7 50.2 51.6 52.9 49.6 49.4 51.7
L||,esc 145 137 150 130 127 130 170
L||,cross 147 139 151 132 129 132 172
L||,entr 14.6 15.0 13.9 15.8 15.3 14.7 14.1

anis.
L||,esc√
2h/2

4.1 3.9 4.1 3.5 3.6 3.7 4.7

P 23.1 38.9 25.9 35.8 47.5 39.6 45.5
P|| 32.7 41.2 35.6 39.0 53.8 54.9 55.7
P||/P 1.4 1.1 1.4 1.1 1.1 1.4 1.2

a Membrane thickness h (in Å), permeability P and radial permeability P|| (in cm/s), and
anisotropy ratio (no units). All times τ (in ns) and distances L|| (in Å) are based on the F ,
D⊥ and D|| profiles obtained from BA and the expressions in Table 1. For DOPC/298, the
standard deviations on τesc, L||,esc and P are approximately 1.1 ns, 2.5 Å, and 2.3 cm/s,
respectively (see Supp. Info. for details).

A temperature increase shortens the characteristic times for the DOPC and POPC mem-

branes drastically. Molecules exit the membrane more quickly, and consequently, L|| is
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smaller. However, L|| is less sensitive to temperature than τ . For instance, L||,esc decreases

from 145.5 to 127.0 Å between 298 and 323 K for DOPC, while τesc decreases by a factor

of two in this temperature range. L||,cross follows the same trend, whereas L||,entr slightly

increases with temperature, reflecting the faster diffusion.

As the diffusivities increase with temperature, the permeabilities P in Table 3 also in-

crease significantly. The radial permeability P|| through a slab of thickness h, as defined

in Ref. 5, shows the same behavior, but the anisotropy ratio P/P|| varies somewhat with

temperature.

A number of composition effects are evident in Table 3. O2 moves consistently faster in

the MITO membrane than in, e.g., the POPC membrane at 310 K. This reflects the combined

effects of the slightly higher diffusion constant and slightly lower free energy barrier in the

head group region for MITO (profiles in Ref. 5). The comparison of these two membranes

shows that subtle changes in D or F affect the characteristic times considerably. Despite

the similarities between the membranes, the residence time for POPC is about 50% higher

than for MITO.

Oxygen diffusion is found to be faster at higher temperature (Table 3 and Ref. 22), while

the solubility of oxygen in the membrane with respect to water decreases. The effect of

unsaturation is apparent by comparing DPPC with two saturated chains, DOPC with two

unsaturated chains, and POPC with one saturated and one unsaturated chain. As seen in

earlier work, oxygen solubility in DPPC is higher than in unsaturated lipids.22 Diffusion in

saturated lipids is found to be faster at the membrane center and slower near the head group

region than in unsaturated lipids. Both normal and radial diffusivities cover a larger range

across the membrane at 323 K in DPPC (saturated) than in DOPC (unsaturated), whereas

POPC has intermediate diffusivity (profiles in Supp. Info.).
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B. Connection between P , P||, τ , and L||

This subsection considers the connection between permeability, characteristic times and char-

acteristic lengths. The aim is to highlight the most relevant properties to describe permeant

transport through lipid bilayers. First, let us look at the normal diffusion through the mem-

brane, which is quantified by the permeability P and crossing time τcross. High P or low τcross

are indications of efficient transport across the membrane. However, τcross cannot be used as

a direct predictor of P . This is made clear by the ratio P/τcross which varies strongly among

the different lipid compositions and temperatures. The inverse 1/P also fails to predict τcross,

as shown by the variation in the product P τcross in Table 4.

Table 4: Comparison of properties for normal diffusion and radial diffusion.a

298 K 310 K 323 K
DOPC DOPC POPC MITO DOPC POPC DPPC

P/τcross 0.71 1.68 0.83 1.69 3.07 2.50 1.79
P τcross 75 90 80 76 74 63 116

P||/L||,cross 0.22 0.30 0.23 0.29 0.42 0.42 0.32

Dave
|| 0.169 0.213 0.184 0.201 0.278 0.284 0.288

L||,pred 148 140 151 131 131 134 171

a The properties are ratio P/τcross (in cm/s/ns) and product P τcross (in Å), ratio
P||/L||,cross (in m/s/Å), average radial diffusion coefficient Dave

|| (in Å2/ps), and predicted

traveled distance L||,pred (in Å). All values are based on the F , D⊥ and D|| profiles obtained
from BA.

To understand this non-correlation, consider the case of a high crossing time, i.e. a

membrane where the permeant molecules take on average a long time to reach the other side

of the membrane. This can have three reasons: (1) the diffusion coefficient of the permeant

in the membrane is very low, (2) the permeant is trapped in the bilayer center in a free

energy well, or (3) the permeant has to overcome a high free energy barrier while moving

through the bilayer. The corresponding permeabilities for these three cases will be (1) low,
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(2) high, and (3) low, respectively, because the permeability incorporates the effects of the

free energy profile. The permeability is modulated by the relative permeant concentrations

inside and outside the membrane, while the crossing time is not. Therefore, both P and

τcross are important indicators of oxygen transport through lipid membranes. When τcross

is high, additional insight is given by the entrance versus escape times.36 They can help

distinguish between permeants that face no significant barrier to entry and become trapped

in a deep free energy well within the membrane space (τentr � τesc), and permeants that

need to overcome a high barrier at entry and have low affinity for the membrane interior

(τentr � τesc).

Second, let us look at the radial diffusion inside the membrane, which is quantified by the

radial permeability P|| and radial distance during crossing L||,cross. The radial permeability

correlates well with the radial distance because for radial diffusion, the effective free energy

surface is flat. Note that radial diffusion in the membrane plane, Dave
|| , accelerates with

temperature in DOPC membranes. However, the predicted mean distance traveled during

crossing events, L||,pred, decreases because the crossing times τcross accelerate even more. The

ratio P||/L||,cross in Table 4 lies in a fairly small range, with the ratio increasing consistently

with temperature.

Moreover, the average radial diffusion coefficient Dave
|| is computed (see Ref. 5), and Ta-

ble 4 shows that the radial transport is fairly equally efficient among the different membranes

compositions at a given temperature.

Next, the Dave
|| value is used to predict the average traveled squared distance in the time

that the O2 spends in the membrane,

L2
||,pred = 4Dave

|| τcross. (29)

The resemblance between this prediction in Table 4 and L||,cross in Table 3 is striking. It

means that the diffusion inside the membrane parallel to the surface is indeed well de-

25



scribed by two-dimensional diffusion with diffusivity Dave
|| . The traveled lengths during

escape/crossing/entrance of the permeant are based on the same average diffusivity, and

differences between those three lengths are therefore mostly explained by the different con-

sidered times associated with escape/crossing/entrance.

In conclusion, several properties have been derived from the F , D⊥ and D|| profiles to

quantify the transport. From a list of the properties considered in this work, the most

relevant descriptors are: h, P , τcross (or τesc), τentr, and L||,cross (or Dave
|| ). The combination

of these descriptors provides a picture of permeant diffusion through the membrane. For

instance, MITO has higher transport efficiency in the radial direction than POPC at 310 K,

which translates itself mostly in higher P and shorter τcross. The membranes are similar for

τentr and for radial transport, as can be seen in L||,cross.

Note that other methods can be used to determine permeability. Permeant transport

through the membrane has been determined directly from the flux by counting the rate of

membrane escape events in equilibrium simulations.37 In explicit gas diffusion simulations,

oxygens are placed in the bulk water phase at the beginning of the simulation, and in induced

pressure simulations, oxygen molecules are given a constant force along the normal.38,39 For

permeants with sufficiently high membrane crossing rates, permeation can be obtained by

measuring crossing times with milestoning.40 A rough estimate for permeation of NH3 and

CO2 through pores was obtained by multiplying a constant diffusivity with an Arrhenius

factor containing the free energy barrier.41,42 The important advantage of the present work

is that the BA approach based on the Smoluchowski equation not only provides the perme-

ability but also all of the above mentioned properties in Table 3-4, giving a more complete

picture.

C. Comparison of BA with direct observation in trajectories

The Bayesian approach using the profiles has an additional practical advantage that shorter

trajectories may be used to gather data, in our case 50 ns per replicate. In principle, many
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even shorter trajectories could be collected to perform the Bayesian analysis. This is in stark

contrast to the direct observation of exit times, where long trajectories are required to observe

an exit of all of the oxygens. An important question is thus whether the Bayesian analysis

successfully reproduces the exits observed in the trajectories. To answer this question, the

MD trajectories have been extended until each of the 10 oxygens in each of the 4 replicates

exited the membrane at least once, requiring up to 297 ns for the slowest oxygen.

Figure 4: (Top) Escape time τesc(zcut) and (bottom) traveled radial distance L||,esc(zcut) for
DOPC/310 bilayer as a function of half the thickness zcut of the considered slab. The surface
of the membrane is located at h/2 ≈ 25Å. The Bayesian prediction (dashed line) is compared
to the average of 10 oxygens as observed in the four MD replicates A/B/C/D (colored dots)
and the average of all 40 observed exits (solid line).

Fig. 4 compares Bayesian analysis (BA) and direct observations in trajectories (TRAJ)
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Figure 5: (Top) Scatter plots of the results from MD simulation and the two-dimensional dif-
fusion model for the escape times τesc(zcut) and (bottom) traveled radial distance L||,esc(zcut)
for all seven bilayers. Each dot represents the result obtained for a slab with half thick-
ness zcut ranging from 12 Å to approximately 27 Å (individual curves in Supp. Info.). The
Bayesian prediction (x-axis) is compared to the average of all 40 observed exits (y-axis). The
escape from a slab with membrane thickness h is indicated with a square.

for DOPC/310. It shows the escape time τesc(zcut) and traveled radial distance L||,esc(zcut)

curves for a series of slab thicknesses. The curves are widely spread, indicating that escape

times and lengths have a wide distribution with slowly converging statistics. Fig. 5 combines

all seven investigated systems, again covering a series of slab thicknesses. The membrane
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Figure 6: (Top) Escape time τesc and (bottom) traveled radial distance L||,esc for all seven
bilayers, for membrane thickness h (for zcut = h/2 ≈ 25 Å). The Bayesian prediction (BA,
cross) is compared to the average of 40 observed exits with indication of its 95% confidence
interval (TRAJ, dot).

thickness is indicated with a square at h/2 ≈ 25 Å. A perfect correspondence between BA

and TRAJ would place all curves on the diagonal of Fig. 5. In most of the systems, the

BA overestimates τesc(zcut) inside the membrane (bottom left corner), and underestimates it

when zcut is at the membrane/water interface and beyond (top right corner). The traveled

radial distance L||,esc(zcut) is also overestimated by BA inside the membrane, but agrees with

the TRAJ value (on average) at the membrane/water interface.

Next, we wish to quantify the difference between BA and TRAJ for the escapes from the

membrane (zcut = h/2). However, escape times have notoriously poor statistics. An analogy

can be made to the waiting time of a Poisson process. The standard deviation of the waiting

time distribution, P (t) ∼ e−t/T , is equal to the mean itself, T . Hence a relative standard

error of 10% would require roughly 100 observations, and this would give a fairly wide 95%

confidence interval of ±20% for the mean waiting time. Likewise, the confidence interval

provided by 40 observed exits would be about ±30%, and this shows that the statistics
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provided by the 40 O2 exits are not sufficient to quantify the difference between BA and

TRAJ if it is smaller than ±30%.

In Fig. 6, the value from BA is bracketed by the 95% confidence interval of TRAJ for

each system, indicating that the difference is not statistically significant on a per-system

basis. However, the deviation BA < TRAJ for τesc is systematic over the seven systems

and the underestimation is 7 to 27%. Consequently, BA permeabilities can be expected to

suffer from an overestimation in a similar percentage range. Due to the limited amount

of data for the Monte-Carlo (BA) approach, using a Hotelling’s t2 test43 is not possible to

compare simultaneously all seven systems on differences between τTRAJ
esc and τBA

esc . Therefore

we completed a Hotelling’s t2 test on partial vectors of escape time means. The version for

unequal covariances was used after testing for equality of covariances. A p-value of 0.5412

when comparing the BA and TRAJ escape time for DOPC/323, DPPC/323 and POPC/323

(same temperature, different composition), allows us to conclude that the underestimation

of BA of the TRAJ escape time is not significant. An analogous conclusion is obtained

based on a p-value of 0.4622 for the comparison of DOPC/298, DOPC/310 and DOPC/323

(different temperature, same composition). Nevertheless, the observation that τesc from the

trajectory is larger than from the BA in 7 of 7 cases prompts the application of the lower

power non-parametric Wilcoxon sign-ranked test. In this case, p < 0.05, and the difference

is statistically significant. Whether this inaccuracy associated with the BA is acceptable

or not depends on the application. When very accurate escape times are required, one can

follow the straightforward approach based on registering exits from very long trajectories and

multiple replica systems. Note that four replicates totalling 40 observed exits still give a large

confidence interval in Fig. 6, so more replicates would be needed to estimate a statistically

more precise result than the BA approach. This inaccuracy inherent in the BA approach

is smaller than the 30% error found in experimental permeabilities.44 When experimental

accuracy is sufficient, the BA approach is a valid and computationally attractive alternative

to TRAJ.
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For L||,esc, the Hotelling’s t2 test helped us to conclude that the BA and TRAJ radial

traveled distance do not differ significantly. Lastly, the precision of the BA was determined

for the DOPC membranes at 298 K by repeating the BA several times (see Section V.B in

Supp. Info. for a detailed analysis). The % errors, evaluated as the standard deviation

divided by the mean, for DOPC/298 are 3% for τesc and 2% for L||,esc. These errors on τesc

and L||,esc based on 50 ns trajectories (see Section II.C) are substantially smaller than those of

the TRAJ values (Fig. 6) based on the long extended trajectories. This statistical analysis

shows the added value of constructing the theoretical propagators with Bayesian analysis

and deriving times and lengths, as proposed in this paper: escapes from the membrane take

place on the long time scale, but the distances traveled can nevertheless be predicted without

simulating very long trajectories.

The underlying assumption in the Bayesian analysis is that the kinetics of oxygen trans-

port are described by the Smoluchowski equation. The transport is assumed to be diffusive,

without memory effects of the solvent (here the lipid and water molecules). In contrast to

BA, the TRAJ times and lengths are ‘pure’ observations and do not assume a diffusive model.

The deviations for τesc between BA and TRAJ, while relatively small, are likely rooted in

the Smoluchowski equation failing to describe the oxygen transport kinetics. Several points

can be made about this.

The dynamics of oxygen molecules is indeed not purely diffusive, not even in neat water

or in neat hexadecane, a model for the lipid tails. In realistic systems diffusive behavior

should be regarded as a phenomenological law; at the shortest time scales the behavior is

ballistic, and it is only at slightly larger time scales that diffusive behavior might set in. In

the specific case of O2 in water, hexadecane, or lipids, an additional transient regime was

noticed for lag times up to 20 ps in Ref. 5. The initial slope of the MSD was higher, giving

a higher diffusivity at the short time scale, which can be interpreted as fast rattling motions

within free volume pockets. After a lag time of 20 ps, the diffusive regime was reached with

a constant diffusivity, whose motions can be interpreted as jumps between pockets. The
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BA was repeated using various lag times, and a fit of the slope allowing for an offset was

done to reach this diffusive regime, as specified in the Theory and Methods section. The

characteristic times and lengths are however computed with the propagator p, disregarding

the transient regime altogether. At the time scale of crossing the membrane, which is 16 to

32 ns, this transient regime of 20 ps is negligible for the τ and L|| predictions, and cannot be

the source for the deviations in τesc.

Another route of thought is the role of inhomogeneity. Oxygen crossing over the free

energy barrier in the head group region is a fast process, during which oxygen might receive

insufficient collisions to randomize the forces by the solvent. In this scenario, memory starts

playing a role. The advanced approaches mentioned in the Introduction assume increasingly

more complicated mathematical models at the origin of the dynamics, e.g. by including

memory kernels, to match the observations in MD. It is likely that some of the deviations

between BA and TRAJ can be accounted for in a model that includes memory effects. Non-

diffusive effects could be responsible for the underestimation of τesc by 7-27%, as normal

transport suffers from the inhomogeneities with free energy barriers and wells, where oxygen

rolling off a barrier could imply a memory effect. Meanwhile, L||,esc would not be significantly

affected, as the free energy is constant for radial transport, and the two-dimensional radial

MSD of oxygen indeed grows linearly in time in MITO/310 and POPC/310 (see Ref. 5).

Overall, the diffusive picture implied by the Smoluchowski equation is found here to give

a sufficiently accurate estimation of the O2 dynamics for the modeled membranes, even

without resorting to more advanced mathematical models.

Yet another limitation of the Smoluchowski equation could be the dimensionality. The

diffusive coordinate is the position of oxygen with respect to the membrane center z = 0.

Local fluctuations of the environment are not taken into account, such as membrane undu-

lations or lipid protrusions. Membrane undulations displace the membrane center locally,

while lipid protrusion causes roughness at the bilayer/water interface. As a result, the in-

stantaneous position of any atom in the head group may differ substantially from the average
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position of all of the head groups. Hence, the path taken by a particular oxygen as it crosses

this interface might be not well represented by the free energy and diffusion profiles obtained

from the BA. The next subsection discusses the effect of undulations on the Smoluchowski

equation.

D. Effects of membrane undulations

Membrane undulations are affected by the simulation box size. The bilayers presented so far

are small (72 lipids). While these systems exhibit some local roughness with lipid protrusions

or tilts, they are globally flat on the 5 nm length scale of the simulation cell. As the system

size increases, longer wavelength undulations of the membrane must be considered.45,46 As

an example, Fig. 7 compares F (z) and D(z) for a DOPC bilayer consisting of 288 lipids

(10 nm on a side) and the 72 lipid DOPC bilayer (5 nm side) already discussed. These BA

profiles lead to τBA
esc = 24.2 ns for the 288 lipid system, which is substantially lower than the

value of 31.7 ns for the 72 lipid system (Table 5). The relative standard deviation on these

escape times is estimated to be 3% (see Supp. Info.). Oxygen apparently escapes faster in

the larger simulation box according to the BA values.

The faster escape for the large system can be explained by the increased membrane

roughness. The larger simulation box allows for larger amplitudes of membrane undulations,

which causes the z-coordinate to become a less accurate descriptor. The z-axis is the position

of oxygen with respect to the membrane center of all lipids, without taking into account local

fluctuations in membrane thickness or of the membrane center, assuming that the bilayer

normal is coincident with the z-axis in the lab frame. The membrane undulations play the

role of hidden variables for the free energy and dynamics,47 and F barriers may therefore

be underestimated. This is confirmed in Fig. 7, where the large system’s F profile has less

sharp features. The details are washed out by the fluctuations, giving a less deep free energy

well with respect to the water phase and a lower free energy barrier than for the small

simulation box. Similar effects have been found when comparing electron density profiles
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Figure 7: Comparison of DOPC free energy (top) and diffusion profiles (center, bottom) at
298 K obtained by BA of simulations with boxes of 72 lipids (DOPC/298) and 288 lipids
(DOPC/298/lg).

from simulations of large systems with those extracted from experiment.48–50

The free energy is clearly the average over a dynamic surface with roughness caused by
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Table 5: Comparison of times and lengths for DOPC at 298 K between the small (DOPC/298)
and large (DOPC/298/lg) simulation box.a

BA TRAJ
zcut (Å) DOPC/298 DOPC/298/lg diff. DOPC/298 DOPC/298/lg diff.

τesc(zcut) 25 31.7 24.2 24% 40± 10 35± 9 13%
32 34.9 27.2 22% 45± 11 42± 10 7%

L||,esc(zcut) 25 146 120 18% 146± 57 106± 36 27%
32 153 127 17% 157± 60 146± 65 7%

a Escape times τ (in ns) and lengths (in Å) are evaluated for a slab with half thickness
zcut = h/2, as in Table 3 (25.4 and 25.1 Å for small and large box, respectively). The larger
half thickness zcut ≈ 32 Å puts the dividing surface in the water phase (32.7 and 32.4 Å for
small and large box, respectively). Diff. refers to the difference relative to the small box
value. The standard deviations on the BA values of τesc and L||,esc are approximately 1.1 ns
and 2.5 Å, respectively, for DOPC/298, and they are approximately 0.6 ns and 1.5 Å for
DOPC/298/lg (see Supp. Info. for details). The uncertainty intervals for the TRAJ values
are for the 95% confidence intervals.

undulations and lipid protrusions. This information is absent in the Smoluchowski model for

the membrane, as it treats the membrane as an inhomogeneous yet static medium. The one-

dimensional F (z) convolutes the local free energy with fluctuations in the membrane. The

Smoluchowski model quality suffers under the hidden variables (roughness). The smaller

systems are less sensitive for these undulations, and therefore the BA can be used with

confidence for bilayers on the 5 nm length scale. In larger membranes, a correction should be

applied to remove the effect of undulations, such as the Fourier-based corrections proposed for

electron density calculations.51,52 In essence, the correction determines the local membrane

center and lipid tilt, and updates the oxygen position to a local reference frame.

In the trajectories, the TRAJ value obtained by observing 40 escapes is τTRAJ
esc = 35±9 ns

for the large system and 40±10 ns for the small system, where the errors refer to the 95%

confidence intervals associated with the 40 observations. The TRAJ values follow the same

trend as the BA, with faster oxygen exits in the large than in the small system. However,

τTRAJ
esc for the large box is statistically equivalent to τTRAJ

esc for the smaller box, as determined

by an unpaired t-test with p-value 0.42 (see Supp. Info.).
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The TRAJ escape times are also based on the same single coordinate z to detect the

exits and will hence also be affected by membrane undulations. However, the BA and TRAJ

approaches are different in nature. BA uses the MD data to extract the Smoluchowski model

parameters for the transport kinetics, whereas TRAJ directly measures τ in a model-free

way. This major difference between model versus model-free approach leads us to expect that

TRAJ is less sensitive to membrane roughness than BA. The current data in Table 5 are not

sufficiently precise to confirm this with statistical significance, but nevertheless support the

expected trend with a box size effect of 13% for TRAJ and 24% for BA. Moreover, a larger

slab was considered by increasing zcut to 32 Å, which puts the dividing surface completely

in the water phase. For the TRAJ escape times, the membrane undulations have less effect

further away from the membrane, leading to a reduced box size effect of only 7% (however

not statistically relevant). In contrast, this larger slab fails to reduce the BA box size effect,

because the Smoluchowski model in BA does not change at all by considering a different

dividing surface.

The L||,esc values decrease in the larger system, which is mostly explained by the shorter

time spent in the membrane. The radial transport is thus fairly similar in the 72 and 288

lipids. This can be expected because the O2 spends most of its time trapped in the lipid

region, and its radial dynamics are less affected by undulations. The TRAJ values are again

statistically equivalent for the large and small system (see Supp. Info.) with a p-value of

0.079.

IV. Conclusion

A central question for oxygen transport is the balance between normal and radial transport

in phospholipid membranes because of its importance for biological function. Based on the

Smoluchowski equation for inhomogeneous diffusion, Bayesian analysis (BA) can be applied

to MD trajectories of oxygen to extract the free energy, the normal diffusion and the radial
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diffusion profiles. The propagator is two-dimensional, depending not only on the normal

coordinate z but also on the radial coordinate r. In a two-dimensional treatment, formulas

(Eqs. 10, 17, 28, and 25) can be given for the average times as well as average radial

distances associated with entering, escaping, or crossing the membrane. The formalism is

based on mean first passage times and holds for any process described by rate equations

between discrete states, i.e. of the type in Eq. 3, and therefore it can be expected that our

approach can be used for other geometries, e.g. where the medium is not necessarily a layered

membrane, or where source and sink terms are present for the permeants.

Eight model membranes with varying lipid composition and temperature were simulated.

In the time needed to cross the membrane, which is on average about 16 to 32 ns, the oxygen

molecule travels about 3.5 to 4.7 times further in the radial than in the normal direction.

This finding confirms the proposition that O2 is trapped in the bilayer and has time to diffuse

radially, as it takes a significant time to diffuse out of the bilayer.

The connection between permeabilities, crossing times, and traveled radial lengths is

discussed, and it is shown how each property contributes additional insight in the transport

process. The most relevant properties for developing a model of normal and radial permeant

diffusion in cell membranes are h, P , τcross (or τesc), τentr, and L||,cross (or Dave
|| ). While

simulations of protein-containing bilayers are required to support and refine the model, the

present simulations indicate that oxygen quickly enters the membrane and proceeds to the

interleaflet space. It then has ample time (15-32 ns) to diffuse radially over 127 to 170 Å. The

mismatch of normal and radial diffusive lengths allows oxygen to interact with membrane

proteins containing binding pockets in the center of the membrane, such as cytochrome c

oxidase.53,54

The preceding times and distances based on the Bayesian analysis approach were com-

pared with an aggregate of 280 membrane exits explicitly observed in extended simulated

trajectories. This provides a direct test of the BA approach and the applicability of the

Smoluchowski equation to membrane diffusion. While the statistical error of quantities re-
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lated to first passage times from individual MD simulations is high, the aggregate of 280 exits

(7 systems, 4 replicates, 10 oxygens) is sufficient to provide reasonable level of confidence.

Specifically, the BA underestimates O2 escape times by approximately 20%, corresponding to

a near negligible difference in the effective barrier at the water/membrane interface. There

is no statistically significant difference for the radial distances, as radial transport is not

subject to a free energy barrier.

Longer wavelength undulations emerging with increased system size degrade the perfor-

mance of the BA as it is currently implemented. For a larger box size, a correction should

be applied to determine the O2 position with respect to the local membrane center. Fortu-

nately, membrane undulations have a very small effect for smaller simulation boxes, such as

the 5 nm systems presented here. Consequently, escape times and permeabilities should be

directly comparable to experiment.

In closing, the Bayesian Analysis introduced in Ref. 5 and further developed in this

paper is a computationally attractive method for estimating characteristic times, perme-

ability, and radial distances for permeants from simulations of lipid bilayers. It is precise,

in that trajectories can be much shorter than would be required to obtain the preceding

quantities directly from MD trajectories and with comparable statistical uncertainty. It is

also sufficiently accurate for most applications, in that characteristic times for oxygen are

within approximately 20% of simulation, and radial distances are statistically indistinguish-

able. Though presently only tested for oxygen, the preceding comparisons strongly support

the use of the Smoluchowski equation and the inhomogeneous solubility-diffusion model to

describe passive transport of permeants in membranes. The new methodology supports

both a more detailed characterization of permeant properties and the development of de-

tailed kinetic models of normal and radial diffusion in highly complex, inhomogeneous, and

anisotropic environments. The present theory is for membranes that are homogeneous in

the x− y plane. Complex membranes such as those containing raft domains will require the

already z-dependent free energies and diffusion coefficients to depend also on x and y.
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