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Gaussian process tomography (GPT) is a recently developed tomography method based on Bayesian probability 

theory.1, 2 By modeling the SXR emissivity field in a poloidal cross-section as a Gaussian process, Bayesian SXR 

tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, 

GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast MHD 

control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, 

the GPT technique is validated using a synthetic data set expected from the WEST tokamak and results are shown of its 

application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the 

standard algorithm based on minimization of the Fisher information.  

 

 

 

I.  Introduction 

 

Nuclear fusion research, aiming at the development of 

a sustainable and safe energy source, is presently largely 

concentrated around the construction and operation of the 

ITER magnetic confinement device. One of the primary 

issues threatening safe and efficient operation of this type of 

machines, called tokamaks, is the accumulation of 

impurities in the plasma core, causing fuel dilution and 

radiative power loss, potentially leading to a complete loss 

of plasma confinement in a disruption. An important source 

of impurity originates from the interaction of the hot 

hydrogenic plasma with the wall components. In ITER, 

tungsten ions (W) may pose a risk because highly charged 

impurities radiate energy very efficiently. In reactor-

relevant plasmas, thermonuclear burn will only tolerate 

tungsten concentrations less than 10−4 , in order to avoid 

plasma disruptions.3  Therefore, a detailed understanding of 

core impurity transport in tokamaks, including the interplay 

with magnetohydrodynamic (MHD) activity, is crucial. 

This requires reliable information about impurity 

distributions, at a time resolution that is adapted to MHD 

time scales.  

Soft X-ray (SXR) spectroscopy is a diagnostic technique 

that has the potential to deliver valuable information in this 

respect.4,5 This diagnostic can provide very good temporal 

resolution (up to 1 MHz), which is sufficient for MHD 

activity and impurity transport studies. Particularly, the 

plasma is optically thin for soft X-ray radiation in the range 

from 1 keV to 15 keV, which makes SXR tomography a 

powerful tool for studying core plasma physics.6 The 

technique was pioneered by groups in several laboratories 

using a single camera by means of plasma rotation.7,8,9,10 

Full tomography with at least two cameras was realized 

soon afterwards,11,12 followed by systems with even more 

cameras.13,14,15,16 

In the past, various tomographic reconstruction techniques 

have been applied to SXR, such as the Cormack method,17 

the maximum entropy method,18 the minimum Fisher 

information method,19 etc. Particularly the minimum Fisher 

information technique has been widely adopted in the fusion 

community. This reconstruction method involves 𝜒² 

optimization, regularized by the Fisher information. 

Intuitively, the goal is to find the least complex solution that 

is compatible with the data. The method is often 

implemented, e.g. on Tore Supra and WEST,20 using 

additional information concerning the location of the 

equilibrium magnetic flux surfaces, obtained from magnetic 

measurements. It provides a good trade-off between the 

initial magnetic flux surface information and the SXR data. 
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However, the assumption about the equilibrium magnetic 

flux surfaces may be too restrictive. For instance, in the 

presence of poloidally asymmetric impurity distributions, it 

would be better to rely solely on the SXR measurements for 

a faithful reconstruction of impurity concentration profiles. 

Furthermore, the equilibrium information might be 

inaccurate during various events that can partially break the 

equilibrium condition, especially in the plasma core area, 

where uncertainty levels are relatively large. On the other 

hand, the equilibrium information can be useful as it acts as 

a soft constraint (prior information in the Bayesian sense), 

providing further regularization of the inherently ill-posed 

tomographic problem on top of other regularization 

schemes. 

In this paper we introduce a recently developed algorithm 

using Bayesian inference1. Earlier, this method was applied 

successfully to a soft X-ray (SXR) diagnostic in the 

stellarator Wendelstein 7-AS,2 and it has also been applied 

to current tomography, bolometry and interferometry at JET 

and W7-X.  The main novelty and attraction lies in the 

effective regularization technique by a Gaussian process 

prior, enabling SXR tomographic reconstructions without 

any additional information on the magnetic equilibrium. A 

further important advantage is its computational efficiency, 

rendering the method sufficiently fast for real-time 

applications. In Section II,  first a newly developed SXR 

diagnostic system using gas electron multipliers (GEM) is 

presented. The mathematical formalism of Bayesian 

inference and Gaussian process tomography is treated in 

Section III. Next, validation of the method using a synthetic 

phantom is discussed in Section IV, and a comparison is 

shown of the present Bayesian tomography method with the 

minimum Fisher information method. The conclusion is 

presented in Section V. 

 

II. WEST soft X-ray diagnostic 

 

  

 
Fig. 1. Schematic of the triple GEM. 

 
WEST – Tungsten (W) Environment in Steady-State 

Tokamak – is a recently upgraded medium-size tokamak 

equipped with an actively cooled tungsten divertor. The 

unique features of WEST lie in its long-pulse capabilities 

and operation with actively cooled components and 

superconducting magnets inherited from Tore Supra, 

combined with a high level of auxiliary power. The WEST 

tungsten divertor elements, which are the key components 

facing the largest part of the heat and particle fluxes coming 

from the plasma during experiments, have the same design 

and manufacturers as the equivalent ITER components. 

The WEST SXR diagnostic system is presently being 

commissioned with two triple-gas electron multiplier 

(GEM) cameras, located in the same poloidal cross-section 

to allow tomographic reconstruction.21 The triple-GEM 

detector is based on photoionization in a flowing gas 

mixture subjected to an electric field and enclosed in Mylar 

foil. As depicted in Fig. 1, photoelectrons are produced in 

the first conversion layer and drift towards a perforated 

copper-clad Kapton foil. A voltage is applied to the foil, 

causing electron avalanching, hence amplifying the detector 

signal. The process is repeated in two successive GEM foils, 

followed by charge collection on the anode strips (pixels). 

The GEM detectors work in photon counting mode with 

energy discrimination. Compared to photodiode detectors, 

the GEM concept separates the regions where 

photoionization, amplification and detection takes place. An 

additional advantage is that electrons travel fast to the anode 

in about 50 ns, while the GEM holes are ion-free after ca. 1 

µs. Therefore, the system has high-rate capabilities of ca. 

106-107 ph.s-1.mm-2. Further advantages of GEM detectors 

are their compactness, good spatial and temporal resolution 

and good neutron-resistance. As such, the GEM detection 

system is a good candidate for SXR measurement in ITER 

and future reactors. As shown in Fig. 2, one of the cameras 

of the WEST SXR diagnostic views along the horizontal 

direction through 128 lines-of-sight (LOS) from the low-

field-side to the high-field-side. The other camera is located 

at the top of the device, viewing downwards along 75 lines-

of-sight. Hence, the majority of the core plasma region is 

covered with a good spatial resolution (~ 1 cm in the 

equatorial plane). The GEM system can provide a temporal 

resolution for real-time analysis of 1 kHz (five energy 

windows within an energy range of 2-15 keV), while the full 

spectrum will be stored off-line at a rate of up to 10 kHz, 

with a view to more detailed analysis and study of fast 

plasma phenomena. This setup provides good capabilities 

for studying fast MHD activity and impurity transport, in 

particular for tungsten transport.

 
Fig. 2. Tomographic capabilities of the WEST SXR system based on GEM 
detectors. The horizontal camera views along 128 lines-of-sight. The 

vertical camera is inside the vertical port and is coupled to 75 sight lines. 

 
The purpose of SXR tomography in magnetic fusion 

devices is to reveal the spatial distribution of SXR 

emissivity in a poloidal cross-section, by inversion of a 

number of noisy line-integrated emissivity measurements. 

For a Maxwellian plasma and with a spectrum dominated 



by hydrogenic bremsstrahlung, the SXR radiation power 

density 𝑑𝜀 per photon energy interval 𝑑𝐸 is given by 

𝑑𝜀

𝑑𝐸𝑓𝑓
∝ 𝑍𝑒𝑓𝑓 𝑛𝑒

2 𝑇𝑒

1

2 𝑒
−
𝐸

𝑇𝑒 𝑔𝑓𝑓(𝑇𝑒 , 𝐸)  .    (1) 

Here, 𝑇𝑒  is the electron temperature, 𝑛𝑒  is the electron 

density, 𝑍𝑒𝑓𝑓  is the effective charge number and 𝑔𝑓𝑓 is the 

Gaunt factor which is a function of  𝑇𝑒 and 𝐸. A common 

and simple approach to discretize the emissivity field in a 

poloidal cross-section uses a square grid. We here impose a 

100 × 100 grid comprised of square cells with a dimension 

of 16 mm × 16 mm. The SXR emissivity within each pixel 

can reasonably be assumed to be constant, so the SXR line-

integrated emissivities 𝑑̅𝑚 along 𝑚 viewing chords can be 

written in the following matrix form:    

𝑑̅𝑚 = 𝑅̿𝑚×𝑛 ∙ 𝐸̅𝑛 + 𝜀.̅                          (2) 

Here, 𝐸̅𝑛  is the unknown vector of local emissivities in 𝑛 =

104 cells, while 𝑅̿ is the geometry matrix, whose elements 

𝑅𝑖𝑗 represent the physical length of chord 𝑖 through cell 𝑗. 𝜀  ̅

denotes an error term to account for measurement 

uncertainty, which is usually limited to statistical errors 

only.  

 

III. Probabilistic model and parameter 
estimation 

The tomography problem essentially involves the prediction 

of high-dimensional physics parameters by inversion of a 

limited number of measurements. This is an ill-posed 

problem, as the number of measurements (SXR line 

integrals) is always lower than the number of unknowns 

(emissivity value in each cell). There exists a variety of 

reconstruction algorithms to solve the inversion problem, 

some of which have already been mentioned in the 

introduction. They can be divided in two main categories: 

optimization methods and probabilistic methods. Given a 

forward model like the one in Eq. (2), the optimization 

criterion minimizes the difference between the measured 

line integrals and the prediction by the model. Because of 

the ill-posedness, the optimization has to be combined with 

some regularization technique, e.g. assuming a spline model 

for the local emissivity field, or by optimizing at the same 

time some information measure like the Shannon entropy or 

the Fisher information.  

 

a. Bayesian inference 

In this paper we choose the probabilistic methodology, 

which provides a probability distribution 𝑝(𝐸̅𝑛)  of the 

emissivity in all cells rather than a single solution. In 

Bayesian inference, one starts from the prior probability 

distribution of the emissivity field, which can be used to 

encode the regularization (see Section III.b). This is then 

updated through Bayes’ theorem as data become available: 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚) =
𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛)

𝑝(𝑑𝑚)
 ~ 𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛),                (3) 

𝑝(𝑑̅𝑚) = ∫𝑝(𝑑̅𝑚, 𝐸̅𝑛)𝑑𝐸̅𝑛 = ∫𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛) 𝑑𝐸̅𝑛         (4) 

 

 

𝐸̅𝑛 Vector of emissivity values in all 𝑛 pixels at a 

particular time 𝑡 

𝑑̅𝑚 Vector of 𝑚 line-integrated GEM array 

measurements at time 𝑡 

 

In Eq. (3), the likelihood term 𝑝(𝑑̅𝑚|𝐸̅𝑛)  measures the 

mismatch between the measured line integrals 𝑑̅𝑚 and their 

predictions (2) by the forward model, under the assumption 

of some emissivity field 𝐸̅𝑛 . The evidence (marginal 

likelihood) 𝑝(𝑑̅𝑚)  depends on the particular forward 

measurement model, which we will assume to be fixed. 

Therefore it can be considered as a normalization factor, 

independent of the emissivity. The posterior probability 

distribution 𝑝(𝐸̅𝑛|𝑑̅𝑚)  quantifies our uncertainty on the 

estimated emissivity field, given our model, prior 

knowledge and the measured data. Thus, Bayesian inference 

yields probabilities for all possible results consistent with 

our model. In principle, systematic uncertainties can also be 

estimated, provided some knowledge is available about 

them from other sources of information, such as other 

experiments. Another important advantage is the ease with 

which heterogeneous sources of information can be 

integrated into a single coherent model. This is particularly 

relevant in deriving local plasma quantities from line-

integrated data, as in SXR spectroscopy, since the raw 

information on the plasma equilibrium, which itself is 

uncertain, can be combined with the raw spectroscopic data. 

Although outside the scope of the present work, such an 

approach enables self-consistent estimation of the local 

impurity concentrations together with the magnetic 

equilibrium. 

 

b. Gaussian Process Tomography 

Gaussian process tomography (GPT) is a new technique that 

makes use of the Bayesian framework, specifically in the 

choice of prior distribution 𝑝(𝐸̅𝑛). In GPT, the prior is a 

Gaussian process, which imposes a level of smoothness on 

the emissivity field, dictated by the correlation between 

pixels. The choice of prior distribution is the main 

difference with regularization techniques based on the 

Fisher information.22 Briefly, a Gaussian process (GP) is a 

generalization of the multivariate normal (Gaussian) 

distribution to a function space. It is described by a mean 

function 𝜇̅  and a covariance function  Σ̿ , 

where 𝐺𝑃~𝒩(𝜇̅, Σ̿). The distribution of a Gaussian process 

is the joint distribution of infinitely many normally 

distributed random variables and, as such, it is a distribution 

over functions over a continuous domain, e.g. time or space. 

GPT is related to Gaussian process regression (or 

“kriging”), a nonparametric regression technique widely 

used in machine learning. Being nonparametric, Gaussian 



process regression does not assume any functional form for 

the regression function, hence leaving a lot of flexibility. 

Instead, the regression surface is regularized through the 

covariance matrix of the Gaussian process. Likewise, GPT 

assumes that the prior joint distribution of the emissivity in 

the 𝑛 cells with coordinates 𝑟𝑗 is multivariate Gaussian (Fig. 

3) with covariance matrix 𝛴𝐸 given by: 

 

𝛴̿𝐸 = (
𝑘(𝑟̅1, 𝑟̅1) ⋯ 𝑘(𝑟̅1, 𝑟̅𝑛)

⋮ ⋱ ⋮
𝑘(𝑟̅𝑛, 𝑟̅1) ⋯ 𝑘(𝑟̅𝑛, 𝑟̅𝑛)

) .     (5) 

 

Here, 𝑘(𝑟̅𝑗, 𝑟̅𝑘) = 𝑐𝑜𝑣[ 𝐸(𝑟̅𝑗), 𝐸(𝑟̅𝑘)] , with 𝐸(𝑟̅𝑗) = 𝐸𝑗  the 

emissivity in pixel 𝑗, is the covariance kernel function, for 

which we choose the common squared-exponential form: 

 

𝑘𝑆𝐸 = 𝜎𝑓
2 exp (−

𝑑2

2𝜎𝑙
2) ,     𝑑 = ‖ 𝑟̅𝑗 − 𝑟̅𝑘  ‖.            (6) 

 

 
Fig. 3.  In the Gaussian process framework, the emissivity in each cell 

follows a Gaussian distribution, while the joint distribution of every subset 
of pixels is multivariate normal. This imposes structure on the emissivity 

field, avoiding wildly fluctuating emissivity in neighboring cells. The small 

red square indicated in the figure represents one of the reconstruction 
pixels.  

 
In turn, the kernel function depends on two parameters 𝜎𝑓 

and 𝜎𝑙 , referred to as the signal standard deviation and 

characteristic length scale. In Bayesian terminology, the 

parameters of the prior distribution are called 

hyperparameters and in this case they determine the 

smoothness of the emissivity field. A similar role is played 

by the parameter governing the competition between data 

misfit and smoothness of the solution in minimum Fisher 

estimation.19 The optimal value for that parameter is 

traditionally found using the L-curve method. Summarizing 

𝜎𝑓 and 𝜎𝑙 by a vector 𝜃̅, the total inference problem can be 

written as 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅) = 

 

𝑝(𝑑̅𝑚|𝐸̅𝑛, 𝜃̅) ∙ 𝑝(𝐸̅𝑛|𝜃̅)

 𝑝(𝑑̅𝑚|𝜃̅)
 ~ 𝑝(𝑑̅𝑚|𝐸̅𝑛, 𝜃̅)  ∙ 𝑝(𝐸̅𝑛|𝜃̅),       (7) 

where the prior is given by 

 

𝑝(𝐸̅𝑛|𝜃̅) =
1

(2𝜋)
𝑛
2|𝛴̿𝐸|

1
2

 𝑒𝑥𝑝 [−
1

2
(𝐸̅𝑛 − 𝜇̅𝐸)

𝑇 𝛴̿𝐸
 −1 (𝐸̅𝑛 − 𝜇̅𝐸)].   (8) 

 

Here, 𝜇̅𝐸 is the prior mean, which will be fixed at 0, or it 

may be chosen on the basis of earlier experiments or expert 

knowledge. In principle, the hyperparameters can be 

marginalized from the problem (i.e. integrated out), but this 

would greatly increase the computational complexity of the 

method, thereby defeating the goal of real-time application. 

Instead, we will employ a common approximation wherein 

a fixed set of hyperparameters is determined by maximizing 

the evidence 𝑝(𝑑̅𝑚|𝜃̅), and plugging those estimates into Eq. 

(7). This procedure is motivated in the appendix. 

The next step in the inference process consists of choosing 

a likelihood function 𝑝(𝑑̅𝑚|𝐸̅𝑛, 𝜃̅), containing the forward 

model. Under the reasonable assumption of a normal 

distribution of the measurement uncertainty on the 

emissivity line integrals, described by the variable 𝜖 ̅in Eq. 

(2), the likelihood can be written as 

 

𝑝(𝑑̅𝑚|𝐸̅𝑛,  𝜃̅) = 
1

(2𝜋)
𝑚
2 |𝛴̿𝑑|

1
2

 𝑒𝑥𝑝 [−
1

2
(𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)

𝑇
 𝛴̿𝑑

 −1 (𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)].    (9) 

 

Here, 𝛴𝑑  is the covariance of the emissivity, describing 

measurement uncertainty and correlation on the vector 𝑑̅𝑚 

of measured line-integrals. We will assume that the various 

line-integrated measurements are uncorrelated and choose a 

5% noise level, based on previous experience at Tore Supra. 

Therefore, 

 

𝛴̿𝑑 = (
0.05 ∙ 𝑑1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0.05 ∙ 𝑑𝑚

).      (10) 

 

Finally, the posterior distribution, conditioned on the 

hyperparameters, reads up to a constant factor, 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅) ~ 𝑝(𝑑̅𝑚|𝐸̅𝑛, 𝜃̅)  ∙ 𝑝(𝐸̅𝑛|𝜃̅)  

~ 𝑒𝑥𝑝 [−
1

2
(𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)

𝑇
 𝛴̿𝑑

 −1 (𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)]  

𝑒𝑥𝑝 [−
1

2
(𝐸̅𝑛 − 𝜇̅𝐸)

𝑇 𝛴̿𝐸
 −1 (𝐸̅𝑛 − 𝜇̅𝐸)].       (11) 

 

The major advantage of normal distributions and a linear 

forward model now becomes clear. Indeed, it follows from 

standard probability calculus that the product of two normal 

distributions is also Gaussian, with mean vector and 

covariance matrix given by 
 

𝜇̅𝐸
  𝑝𝑜𝑠𝑡

= 𝜇̅𝐸
  + (𝑅̿𝑇𝛴̿𝑑𝑅̿ + 𝛴̿𝐸

−1
)
−1

𝑅̿𝑇 𝛴̿𝑑
−1
(𝑑̅𝑚 − 𝑅̿ ∙ 𝜇̅𝐸), 

 (12) 

𝛴𝐸
𝑝𝑜𝑠𝑡

= (𝑅̿𝑇𝛴𝑑𝑅̿ + 𝛴𝐸
−1
)
−1

.    (13) 

 

The posterior mean is thus available in a closed form and 

can be used as an estimate of the emissivity field, which can 

be calculated in real time. In addition, the diagonal elements 

of the posterior covariance matrix 𝛴𝐸
𝑝𝑜𝑠𝑡

 quantify the 

uncertainty on the inference result. These uncertainty 

estimates can further guide improvements in the design of 

the diagnostic, e.g. by optimizing the viewing geometry (see 



Section IV.b). Thus, whereas minimum Fisher information 

tomography relies on the maximum a posteriori estimate of 

the emissivity field, which minimizes a weighted sum of the 

𝜒2 misfit and the Fisher information of the emissivity field, 

GPT yields the full posterior distribution. 

It is important to note that the final reconstructed emissivity 

field, i.e. the posterior in Eq. (11), is relatively insensitive 

to the values of the hyperparameters (see the appendix). In 

practice, this means that, for typical plasma configurations, 

calculation of the hyperparameters has to be done only once. 

Hence, real-time SXR tomography comes within reach, 

since the results (12) and (13) are not based on an 

optimization procedure. 

It should also be noted that the GPT method implemented 

here only uses the SXR line integral measurements and no 

assumptions whatsoever are made regarding the magnetic 

equilibrium. Likewise, no other information regarding the 

location of the magnetic axis or last-closed flux surface is 

introduced. This renders the method very flexible, 

potentially allowing detection of structures in the emissivity 

field (e.g. local impurity concentrations) that do not show 

up in the equilibrium reconstruction. It also prevents 

misguided information to enter the SXR reconstruction 

process in case the equilibrium information is incorrect, e.g. 

during sawtooth activity. 

 

IV. GPT phantom test on WEST 

Our implementation of the GPT algorithm has been 

validated using phantom data, i.e. a set of synthetic SXR 

emissivity fields characterized by various emissivity 

patterns, some of which pose a challenging tomography 

problem. Line integrals with added noise were calculated, 

followed by reconstruction of the emissivity field by GPT 

and comparison with the original emissivity phantom. In our 

study we employed a 5% noise level, which is the empirical 

reference obtained from Tore Supra measurements. 

Four different shapes were used for the phantom tests, 

corresponding to various situations that are expected to be 

relevant for WEST SXR emission: the Gaussian shape, 

hollow shape, left-right kidney shape and up-down kidney 

shape, as shown in Fig. 4. 

 
Fig. 4. Four phantom emissivity fields are used in our test: (a) Gaussian 
shape, (b) hollow shape, (c) left-right kidney shape, (d) up-down kidney 

shape. The green line in each panel represents the vacuum vessel, the white 
dashed lines represents the magnetic flux surfaces and the red curve is the 

last-closed flux surface. 

 
 

a. Tomography results at 5% noise level 

The reconstructed emissivity fields based on line integrals 

with a 5% noise level are shown in Fig. 5. The quality of the 

reconstructions can be quantified through a relative error 

map, showing the difference between the phantom and 

reconstructed field, normalized by the maximum phantom 

emissivity: 

 

𝜉𝑖 =
|𝐸𝑛,𝑖
(𝑟𝑒𝑐)

−𝐸𝑛,𝑖|

𝑚𝑎𝑥{𝐸̅𝑛}
.   (14) 

 

In case of the Gaussian shape, the maximum relative error 

is around 6.9%, 15% for the hollow shape, 12% for the left-

right kidney shape and 15% for the up-down kidney shape. 

In general, more asymmetric emissivity fields are more 

difficult to reconstruct, the error level depending greatly on 

the coverage and field of view of the optical system. 

Nevertheless, in all cases the characteristic shape of the 

phantom is recovered relatively well by GPT. In addition, 

one can compare the line integrals obtained from the 

original phantom, with those calculated from the 

reconstructed emissivity field. As shown in Fig. 5, good 

agreement is achieved in all cases. On a typical PC 

environment with Matlab, each time slice takes about 100 

ms calculation time. 

 



Fig. 5. GPT phantom test with 5% noise level. From left to right, the first column contains the reconstructions, the second column shows the relative error maps 
according to Eq. (14) (the white contours represent the original phantom), and the third column gives the comparison between the line integrals obtained from 

the phantom (red dots) and from the reconstructed emissivity fields (blue curves). Note that the phantom emissivity has been normalized for the benefit of 
numerical computation. 



 

Fig. 6. Examples of a comparison between the posterior variance map (color map) and relative error map (black contours) on a 5% noise level: (a) Gaussian 
shape, (b) hollow shape, (c) left-right kidney shape, (d) up-down kidney shape.  In the areas marked by red ellipses, both the posterior variance and relative error 

are low. The scale is in arbitrary units.  



Fig. 7. Comparison of minimum Fisher information tomography and GPT. The first column shows the original phantom, the second column the results of GPT 
without equilibrium information, the third column minimum Fisher information tomography with equilibrium information, and the fourth column minimum 

Fisher information tomography without equilibrium information. Root-mean-square deviations are indicated on top of each result. 

 

 
b.  Gaussian process tomography uncertainty analysis 

A valuable advantage of GPT is that it provides uncertainty 

estimates on the reconstructed emissivity field through the 

posterior covariance matrix; Eq. (13). This is confirmed by 

comparing the posterior variance map with the relative error 

field, as shown in Fig. 6. The uncertainty plots can be used 

to optimize the viewing geometry of the diagnostic, which 

will be part of future work. Naturally, the relative error field 

will not be available when performing tomography on real 

WEST data, but the posterior variance can still be 

calculated.  

 
c. Comparison with minimum Fisher information method 

Minimum Fisher information (MFI) tomography has been 

thoroughly tested in several fusion diagnostics, e.g. the SXR 

systems at JET, Tore Supra and TCV. At JET, MFI 

tomography has performed successfully for over 20 years. 

In constrast to GPT, current implementations of the 

minimum Fisher information technique routinely employ 

the magnetic equilibrium reconstruction. However, the 

reconstructed equilibrium is not always accurate, 

particularly in the core area. On the other hand, GPT in this 

paper does not use equilibrium information and still 

succeeds in producing good reconstruction results, fast 

enough for real time applications. Indeed, from Fig. 7 we 

can conclude that, even without the equilibrium assumption, 

GPT finds the characteristic structure of the phantoms. In 

our tests, MFI tomography works well when the equilibrium 

information is provided, but substantially worse than GPT 

when no such additional information is considered, relying 

only on the line-integrated SXR emissivity measurements. 

In order to quantitatively compare the quality of the 

reconstructions, the root-mean-square deviation (RMSD) 

was calculated for each result, given by 

 



 𝑅𝑀𝑆𝐷 = √
∑ (𝐸𝑡,𝑖

(𝑟𝑒𝑐)
−𝐸𝑡,𝑖)

2𝑛
𝑡=1

𝑛
.      (15) 

 

These values are mentioned in Fig. 8, confirming the 

superiority of the GPT technique compared to minimum 

Fisher information in case no equilibrium information is 

used. 

 

V. GPT using Tore Supra SXR data 

As a validation of the GPT technique based on real SXR 

diagnostic data, a tomographic reconstruction of Tore Supra 

discharge #41864 at t = 6.2159s by GPT (no equilibrium 

information) and MFI (with equilibrium), is shown in Fig. 

8. Since the Tore Supra SXR diagnostic system contains 

only 82 LOS in total, the spatial resolution was reduced to  

25 ×  25 pixels. While the reconstruction results for GPT 

and MFI are quite similar in the plasma core, in the 

boundary area GPT is less restricted by the equilibrium 

magnetic flux surfaces. The posterior variance and log 

evidence maps are shown in Fig. 9. 

 

  
 

Fig. 8. Comparison of minimum Fisher information tomography and GPT based on data from Tore Supra shot #41864 at time 6.2159s. In (a) the result was 
obtained by GPT (no equilibrium information), while (c) shows the result of MFI with equilibrium assumption. The reconstructed emissivity fields with unit 

W/m3 have been interpolated for clarity. The comparison of original and reconstructed line integrals with unit W/m2 is also shown, where the red points are SXR 

measurements and the blue curves represent the reconstructed line integrals. 
 



 
Fig. 9. (a) Posterior variance map with unit W/m3 obtained by GPT for Tore Supra shot #41864 at time 6.2159 s. (b) Log evidence for the same data with 

maximum indicated by the green dot (𝜎𝑓 = 11.5, 𝜎𝑙 = 30.5 cm). 

 

 

VI. Conclusion and perspectives 

In this paper, a new non-parametric SXR tomography 

algorithm for WEST based on Gaussian processes has been 

introduced. Compared to the traditional tomography 

techniques, GPT has several advantages. On the one hand, 

we have shown that the method performs well even in the 

absence of flux surface information from an external 

equilibrium reconstruction. As a result, GPT is a flexible 

method that can provide unbiased reconstructions. Second, 

GPT intrinsically provides uncertainty estimates on the 

reconstructed emissivity fields, obtained from the posterior 

Gaussian process. This can be exploited for online self-

checking of the algorithm’s performance. Third, the method 

is sufficiently fast for real-time emissivity reconstruction. 

Tests were carried out on four typical WEST phantom 

emissivity fields, yielding promising and accurate results 

comparing favorably to reconstructions by a standard 

minimum Fisher approach. The method was also shown to 

work well on real data from the Tore Supra SXR system, 

despite the reduced number of sight lines. Furthermore, the 

potential of the GPT method to contribute to efficient 

hardware design optimization was highlighted. 

Although in this work we stressed the advantage of not 

relying on the magnetic equilibrium, this does not prevent 

that, in routine applications, the equilibrium may constitute 

a useful piece of prior information for improving the 

reconstruction, particularly towards the plasma boundary. 

Therefore, in future work we will explore the possibility to 

take equilibrium information into account in Gaussian 

process tomography, in a balanced way. 
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Appendix 

The choice of suitable hyperparameters is a key issue for the 

GPT method, as they determine the degree of smoothness 

of the reconstructed emissivity field. A full Bayesian 

analysis would determine the hyperparameters together 

with the emissivity parameters, but this would not be 

feasible in real time. As a workaround, we determine the 

hyperparameters 𝜃̅ from the data by maximizing the 

evidence.1 The rationale is that the marginal posterior for 

the hyperparameters (i.e. with the parameters 𝐸̅𝑛 

marginalized) can be written as 

 

𝑝(𝜃̅|𝑑̅𝑚) ~ 𝑝(𝑑̅𝑚|𝜃̅) ∙ 𝑝(𝜃̅),   (16) 

 

𝜃̅ hyperparameters, 

𝑑̅𝑚 GEM measurements. 

 

Now, assuming a non-informative uniform hyperprior 

distribution 𝑝(𝜃̅) , we see that the posterior for the 

hyperparameters is proportional to the evidence 𝑝(𝑑̅𝑚|𝜃̅), 
which also occurs in Eq. (7). Hence, by maximizing the 

evidence w.r.t. 𝜃̅, we find the maximum a posteriori (MAP) 

estimates of the hyperparameters. 

To find the MAP estimates 𝜃̅∗ , we write the evidence as 

follows (see Eq. (4)): 

 



𝑝(𝜃̅|𝑑̅𝑚) ~ 𝑝(𝑑̅𝑚|𝜃̅) = ∫𝑝(𝑑̅𝑚|𝐸̅𝑛 , 𝜃̅)   𝑝(𝐸̅𝑛|𝜃̅)   𝑑𝐸̅𝑛 

(18) 

Using Eq. (11), this results in the following expression, to 

be maximized w.r.t. 𝜃̅: 

 

log (𝑝(𝜃̅|𝑑̅𝑚)) = 

−
1

2
{𝑚 log(2𝜋) + log‖𝛴𝑑 + 𝑅̿

𝑇𝛴𝐸𝑅̿‖ +

                𝑑̅𝑚
𝑇
(Σ̿𝑑 + 𝑅̿

𝑇𝛴𝐸𝑅̿)
−1𝑑̅𝑚} .      (19) 

 

The hyperparameters are contained in 𝛴𝐸  , see Eq. (5). An 

example of the evidence as a function of the two 

hyperparameters is given in Fig. 10. The data were obtained 

from a hollow shape phantom test and the optimization 

results in a length scale 𝜎𝑙 = 14.4 cm and signal standard 

deviation value 𝜎𝑓 = 0.2427. 

Finally, once the best estimates for the hyperparameters 

have been found, we have to motivate plugging them into 

the posterior (7) or (11) for the emissivity. This posterior is 

obtained by marginalizing the hyperparameters from the full 

posterior: 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚) = ∫𝑝(𝐸̅𝑛, 𝜃̅|𝑑̅𝑚) 𝑑𝜃̅ = ∫𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅) 𝑝(𝜃̅|𝑑̅𝑚) 𝑑𝜃̅. 

 

Whereas the first factor under the last integral is rather flat 

as a function of 𝜃̅, the last factor, which we just noted to be 

proportional to the evidence, is usually strongly peaked. 

Therefore, the integral can be approximated as 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚) ≈ 𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅
∗)∫𝑝(𝜃̅|𝑑̅𝑚)𝑑𝜃̅⏟        

=1

= 𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅
∗), 

 

where 𝜃̅∗ refers to the MAP estimate of 𝜃̅. Thus, using 𝜃̅∗ in 

the posterior (11) is usually a justified step – commonly 

referred to as the evidence approximation in Bayesian 

inference.22 

 

 

 
Fig. 10. An example of log evidence maximization for a 5% noise level 
using a hollow shape phantom test. The maximum is obtained at the 

location of the green dot. 
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