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1. Introduction 

Northern European countries such as Belgium, are characterised by a very typical coastal defence system: a hard dike 

with a promenade and an almost continuous line of high-rise buildings, fronted by a mildly sloped and very shallow 

foreshore. The presence of this foreshore influences the wave transformation from offshore to nearshore and the 

interaction with coastal structures significantly. Its effect is not yet fully understood. Taken into account the role of sea 

dikes as both coastal defences and recreational spaces, it is essential to fully understand and predict the influence of the 

foreshore on for example wave overtopping on sea dikes and wave loading forces on buildings. The present research, 

performed in the framework of the CREST research project [1], aims at developing a reliable and accurate tool for the 

assessment of wave overtopping over the dike crest and wave loading forces for the specific case of a very shallow 

foreshore.  
 

2. Numerical framework 

Modelling the whole process of wave propagation, transformation, breaking and wave structure interaction is a well-

known challenge in the field of coastal engineering.  
Non-linear shallow water (NLSW) models are widely used due to its relative simplicity. These models can be applied 

with good confidence to study wave transformation in the swash zone [2][3] at a limited computational cost. However, 

depth-averaged models are not exact forms of the governing equations of fluid motion and contain an error of some 

order [4]. To accurately model the very complex behaviour of the free surface near coastal structures and the associated 

nonlinear effects, Navier-Stokes (NS) based solvers are required. However, simulating wave propagation and wave 

transformation over large domains and for long durations with solely a NS solver is currently not feasible due to the 

requirement of (1) a large computational domain since processes on the beach are driven by waves originally generated 

at sea and (2) a very high spatial resolution to avoid excessive numerical damping of incoming waves and to accurately 

simulate wave breaking and wave structure interactions. This results in a very high computational effort.  
 

To obtain the advantages and reduce the disadvantages of both models without loss in accuracy, the authors have 

investigated a coupling between depth-integrated models and NS models in space. This work describes the 

simultaneous use of two solvers that belong to the aforementioned categories. The first model which is used, is SWASH 

[5], a time domain model based on the non-linear shallow water equations. SWASH has proven to accurately reproduce 

surface elevations for wave transformation over a very shallow foreshore in 1D calculations with very little 

computational resources due to the depth-averaged assumption and parallel computation capabilities. However SWASH 

is not able to deal with abrupt changes in geometry e.g. due to the presence of coastal structures [6] and is not suitable 

to predict in great detail wave loading forces or overtopping volumes over dike crests. The second model which is used, 

is the CFD model OpenFOAM where the two-phase flow field is resolved by the incompressible Reynolds averaged 

Navier-Stokes (RANS) equations and the interface is tracked with a volume of fluid method. Contrary to SWASH, 

OpenFOAM has proven to be able to accurately simulate wave structure interactions [7].  
 

The present coupling methodology is a first straightforward method and consists of a one-way coupling. The NLSW 

model SWASH is applied in the non-breaking zone and the RANS model OpenFOAM in the zone of high turbulence, 

breaking waves and wave structure interactions. The two models share a common interface for the data exchange. At 

this interface, SWASH provides the surface elevation and the velocity values at different levels of depth, depending on 

the amount of vertical layers used at the coupling location. This information is passed to OpenFOAM and imposed on 

the inlet OpenFOAM boundary. The coupling interface is located at a low turbulence area. More details about the 

coupling methodology will be presented at the workshop. 
 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/160491973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The 13th OpenFOAM Workshop (OFW13), June 24-29, 2018, Shanghai, China 

 
 
 

 

3. Results & Discussion 
To test the model for validity, the coupled model is used to simulate two scenarios: (1) solitary wave propagation in a 

flume with constant water depth and (2) solitary wave propagation over a sloping beach.   
In the first case the propagation of a solitary wave with an amplitude of 0.05 m in a 28.0 m long channel with a constant 

water depth of 0.5 m is simulated. The domain is divided in two subdomains: a subdomain with a length of 18.0 m 

occupied by the NLSW model and a subdomain of 10 m occupied by the RANS model. The wave is generated in the 

NLSW domain and propagates to the RANS model domain.   

The evolution of the solitary wave as it propagates along the channel can be seen in Figure 1 (solid blue line) where 

several snapshots of the free surface elevations at different times are presented. The results clearly demonstrate that the 

solitary wave maintains its original shape and the wave height does not vary when propagating through the channel. The 

wave is correctly transmitted from the NLSW to the RANS domain, no disturbance takes place at the coupling interface 

located at x = 18 m. For comparison the simulation is also performed with the NLSW model in the complete domain. 

These results are shown with red dots. There is good agreement between the NLSW standalone results and the coupled 

model results.  Figure 2 shows a snapshot of the entire computational domain modelled with the coupled model. In the 

left part, only the free surface calculated with SWASH is shown, the right part depicts the results obtained with 

OpenFOAM, where the colours represent the horizontal velocities. The coupled model saves computational time by a 

factor proportional to the reduction in cells in the OpenFOAM model.  

 
Figure 1: Surface elevation for solitary wave propagation over a flat bottom. Dots represent the results of a SWASH stand-

alone simulation over the complete domain. The blue line represents the results of the coupled model (0 m ≤x≤ 18 m: 

SWASH, 18 m ≤x≤ 28 m: OpenFOAM). 
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Figure 2: Snapshot of the simulation for the entire domain modelled with the coupled SWASH-OpenFOAM model.  

The colours represent the horizontal velocity. 

A second test case simulates the propagation of a solitary wave over a sloping bottom similar to the experiment of Zelt 

[8]. A sketch of the simulated case is depicted in the upper corner of Figure 3. The wave is generated in the NLSW 

domain and propagates to the RANS model domain, respectively with a length of 10.0 m and 5.0 m. The wave gauge is 

located at a distance 7.87d from the toe of the foreshore with d the water depth conform the experimental test. The 

coupling location is chosen on the horizontal part of the bottom, 0.05 m before the wave gauge.  
The time series of the surface elevation normalised with the water depth d at the indicated wave gauge is also shown in 

Figure 3. The numerical results are represented by the solid blue line. Experimental data are marked with red dots. The 

first peak corresponds to the incident wave, the second to the reflected wave. A good agreement is found both for the 

incident and the reflected wave between the experimental data and the obtained numerical results.  
 

 
Figure 3: Normalised surface elevations at the indicated wave gauge (WG) for the case of wave propagation of a solitary wave 

over a sloping beach. The red dots represent experimental data of Zelt [8]. The solid blue line represents the results of the 

coupled numerical model.  

4. Conclusions 

A coupled model is developed starting from the NLSW model SWASH and the NS model OpenFOAM. The presented 

approach is a one-way coupling. The aim of this coupled model is to achieve the same accuracy with the coupled model 

as with a full RANS solution but reducing considerably the computational time.  
The obtained results demonstrate the capabilities of the coupled model to generate and propagate waves. Future work 

will include further development of the model and the application of the model to cases with very shallow foreshores. 

The proposed method shows great promise to allow a realistic prediction of wave overtopping and wave loading forces 

with reasonable computation cost in the future.  
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