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Abstract. Some industrial purposes require specific marine resources.
Companies rely on information from resource models to decide where to
go and what the cost will be to perform the required extractions. Such
models, however, are typical examples of imprecise data sets wherein
most data is estimated rather than measured. This is especially true for
marine resource models, for which acquiring real data samples is a long
and costly endeavor. Consequently, such models are largely computed
by interpolating data from a small set of measurements. In this paper,
we discuss how we have applied fuzzy set theory on a real data set to
deal with these issues. It is further explained how the resulting fuzzy
model can be queried so it may be used in a decision making context.
To evaluate queries, we use a novel preference modeling and evaluation
technique specifically suited for dealing with uncertain data, based on
suitability distributions. The technique is illustrated by evaluating an
example query and discussing the results.
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1 Introduction

Sand is one of the most important resources available to the industry. Towards
long-term sustainable exploitation, the Transnational and Integrated Long-term
Marine Exploitation Strategies (TILES)! project partners aim to create a geo-
logical knowledge base that can be consulted for a broad spectrum of applica-
tions. Creating such a knowledge base is difficult for multiple reasons, but it is
particularly challenging because there is only little data available. This in turn
is due to the fact that it is expensive and time-consuming to perform offshore
measurements. As a result, the available data are sparse, (geographically) non-
uniformly distributed across the region of interest and span multiple decades.
Making decisions based off this data must be done with these things in mind to
avoid arriving at false conclusions.

! https://odnature.naturalsciences.be/tiles/



In this paper, we discuss how these issues are treated in the TILES knowledge
base. Fuzzy set theory is used to add data quality indicators, which are taken into
account during querying. Query evaluation relies on a novel evaluation technique
that is particularly well suited for such data sets. This is illustrated on a case
study towards the extraction of sand.

The remainder of this paper is structured as follows. In section 2, the data set
from the TILES project is introduced. It is shown how it deals with uncertainty
regarding attribute values. Section 3 explains what suitability distributions are
and how they can be used to evaluate fuzzy queries on data sets containing
imperfect information. These are then applied to the TILES data set in section 4.
A fictive, fuzzy query is evaluated on the model to show how different ways of
dealing with the uncertainty in the model have an impact on the results, which
are also visually represented. This shows the viability of the approach and the
richness of the TILES data set. Section 5 concludes the paper by summarizing
its content.

2 The TILES project and voxel modeling

TILES is a project in which the partners collaborate to create a state-of-the-art
knowledge base of geological information of the subsurface of the Southern part of
the North Sea, off the coast of Belgium and the Southern half of the Netherlands.
The intention is to use the knowledge base for a multitude of purposes regarding
resource availability, long-term ecological impact of exploitation, industrial de-
cision making, and so on. Data is available in the form of borehole samples and
multibeam echosounder information which both contain information of several
geological properties such as lithology and lithostratigraphy. Throughout the pa-
per we will focus only on lithology. Lithology is essentially the study of sediment
and its characteristics. Sediment is typically classified based on its average grain
size. There exist predefined classifications which map specific grain size ranges to
named lithological classes (see Table 1). In TILES, a simplified Wentworth clas-
sification is used, combining some of the original Wentworth classes into fewer,
larger classes, until only 6 remain: clay, silt, fine sand, medium sand, coarse sand
and gravel.

To best meet the needs of the project partners and stakeholders, the TILES
knowledge base is designed as a wvozxel model. A voxel model is essentially a
spatial partitioning of a three dimensional region into a regular grid. Each cell
in the grid is called a wvozel (short for volume element, similar to the pixel in
2D) and represents a unique volume of space of the original region. From a
data storage point of view, a voxel is a vector of attribute values indicating the
(geological) properties in a specific area. It is assumed the property values are
homogeneous per voxel. In TILES, each voxel represents a cuboid space of 200 by
200 by 1 meter. This cell size is deliberately chosen to strike a balance between
computational requirements and model accuracy. Alternatively, a model with
irregular cell sizes could be used but this discussion is outside the scope of the

paper.



Table 1: Wentworth classification table

Size range Aggregate name
>256 mm Boulder

64 - 256 mm |Cobble

32 - 64 mm |Very coarse gravel
16 - 32 mm |Coarse gravel
8- 16 mm Medium gravel
4 -8 mm Fine gravel

2 -4 mm Very fine gravel
1-2mm Very coarse sand
0.5-1mm |Coarse sand
0.25 - 0.5 mm|Medium sand
125 - 250 pm |Fine sand

62.5 - 125 pm|Very fine sand
3.9 - 62.5 pm |Silt

0.98 - 3.9 um |Clay

0.95 - 977 nm |Colloid

To construct such a voxel model from the available data, a statistical ap-
proach called kriging [9] is applied. Kriging relies on wariograms. Briefly put,
the variogram of an attribute captures the directional trends between attribute
values throughout a spatial data set. The kriging process then predicts attribute
values voxel per voxel based on these variograms and on measurements that lie
in the voxel’s vicinity. In TILES, this technique is used to predict, among others,
the lithological class of each voxel. A rendering of the voxel model showing the
predicted lithological class for each voxel is given in Figure 1.

Due to the scarceness and non-uniformous distribution of the available data,
the reliability of the predicted lithological class for many of the voxels is ques-
tionable. In an attempt to mitigate this, each voxel is enriched with data quality
indicators during the prediction process. Example data quality indicators are
variability/entropy (in case multiple prediction runs are made) and borehole
density (amount of true measurements in a given vicinity of the voxel), but also
imprecise indicators that are derived from metadata related to the measurements
themselves are stored, such as reliability of sample analysis method, reliability
of the measurement vintage and so on. These metadata are often available only
in the form of free-text (core descriptions), if they are available at all. The in-
terpretation of these descriptions are carried out by experienced geologists and
recorded in the data set. Even then, their estimated level of quality is subjec-
tive, which calls for fuzzy logic. Some examples of such data quality indicators
are: “the sample was analyzed with outdated techniques”, and “the positional
information of the measurement is very reliable”. During the prediction process,
these data quality indicators are taken into account and derived quality indica-
tor values are added to the voxels. When predicting the lithological class based
on measurements whose sample analysis quality are annotated as “outdated”,



Fig.1: An example visualization of the TILES voxel model. The voxels are col-
ored based on their predicted lithological class.

“reliable” and “unknown”, the resulting voxel might receive a value of “possibly
inaccurate” for that same data quality indicator. A voxel might look like this:

position: (51.1215768, 2.9187675)

coordinate reference system: WGS 84

depth from mean sea level: 37m

predicted lithological class: fine sand

prediction entropy: 0.57

amount of prediction runs: 100

borehole density: very low

vintage quality: high

sample analysis quality: mediocre

reliability description of original analyst: unknown
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Linguistic terms such as high, mediocre and very low are stored as possibility
distributions over the unit interval. The inclusion of these data quality indicators
essentially implies the TILES voxel model is a fuzzy database [1; 11].

3 Fuzzy Querying and Suitability Distributions

In this section we discuss how the TILES fuzzy voxel model can be queried.
To that end, a special querying tool was implemented. The querying tool re-
lies on concepts from fuzzy logic [5; 14] in order to allow decision makers to
model their preferences using fuzzy sets and advanced aggregation operators
[12; 13; 6; 7; 2; 10; 8]. The preference model expects that a criterion regarding



a specific attribute is expressed by means of a fuzzy set that maps each value
from the domain of this attribute to a number between 0 (unwanted) and 1
(preferred). Evaluating a datum is done by using this mapping to arrive at the
degree associated to the datum’s value. This is sometimes called the degree of
suitability (of that datum for the query purpose). It is common to omit unwanted
values from the mapping, and we will do so in this paper. Essentially, a fuzzy
query specified by a preference model imposes a complete order on all values
from the attribute’s domain. The order may be partial, i.e. different values may
be mapped to the same suitability degree to indicate they are considered equally
suitable. Evaluating such a criterion on a set of data effectively corresponds to
sorting the data according to the imposed order. It is easy to see that a regular
query is a special case of a fuzzy query where all values are mapped to either 0
or 1.

Consider the following example fuzzy query preference model regarding litho-
logical class:

— Coarse sand: 0.2
Medium sand: 1.0
— Fine sand: 0.5

— Silt: 0.2

This can be interpreted as follows: for the purpose of the decision maker, medium
sand is ideal, fine sand is good, and coarse sand and silt are equally poor, yet still
acceptable. All other sediment types are considered unacceptable. The numbers
used in the mapping might be based on external factors, such as a cost related to
processing the resource before it can be used to serve its purpose, or arbitrarily
chosen with the sole purpose of implying the desired order. In case of the latter,
a different mapping that implies the same order would be equally expressive.
Clearly, a preference model is subjective and is therefore best interpreted by the
decision maker that created it.

In order to evaluate the fuzzy data quality indicators present in the TILES
fuzzy voxel model, a novel evaluation technique specifically for dealing with im-
perfect information [4] was used. The premise of the technique is that evaluating
a fuzzy value leads to a fuzzy degree of suitability, except in some specific cases.
More precisely, evaluating a fuzzy preference model on a fuzzy datum results in
a possibility distribution over degrees of suitability, called a suitability distribu-
tion. Computing the suitability distribution essentially comes down to evaluating
all possible worlds and representing the results in a concise but complete way,
without losing information. Essentially, when considering the evaluation of a da-
tum as an operator, the computing of a suitability distribution comes down to
applying Zadeh’s extension principle.

Consider for example the data quality indicator sample analysis quality. As-
sume a decision maker wants to express a preference for voxels for which the
sample analysis quality should be at least “reliable” such that higher quality
levels are considered more preferable. This preference might be modelled by a
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Fig. 2: An example fuzzy criterion regarding “sample analysis quality”. The indi-
cated preference model reflects that a higher value is considered more preferable.

fuzzy set with the following membership function (visualized in Figure 2):

(2) = 0 xr<0.2
PE= Ve —1)/4 2>02

To illustrate the evaluation process which leads to the construction of a
suitability distribution, consider a voxel whose value for sample analysis quality
is a fuzzy set labelled “inaccurate or possibly reliable”. A possible membership
function for this fuzzy set is given:

1 x<1/2
m(x) =14 (8-102)/3 x>1/2ANx<4/5
0 x>4/5

This membership function and the suitability distribution that results from the
evaluation of the previously defined fuzzy criterion are shown in Figure 3. The
construction of the suitability distribution, s(q), is now elaborated. First, the
membership function of the fuzzy criterion is analyzed piecewise.

The first piece, over the range [0,1/5], denotes values that are considered
equi-suitable for the purpose of the decision maker. In this case these values,
denoting low quality, are all considered unacceptable. This piece, combined with
the information regarding the voxel’s value, can be used to derive information
regarding the possibility that the voxel is not suitable for the decision maker.
Therefore, we look at the fuzzy set “inaccurate or possibly reliable” in the range
[0,1/5]. The possibility that the voxel’s quality level is such that it is not suitable
regarding the criterion, is then equal to the maximal possibility that it takes a
value from this range. For the voxel under evaluation, all values in this range
are fully possible, hence it is fully possible that this voxel would be deemed
unsuitable by the decision maker.



The second piece of the preference model implies a total order on the remain-
ing quality values, reflecting that the decision maker wants to sort voxels by their
quality from highest to lowest. This piece maps to the entire suitability range,
so it will allow us to derive a possibility for each possible degree of suitability.
By construction, suitability degrees not mapped by the preference model are
considered impossible. Finding the possibility of each suitability degree is fairly
straight forward due to the linear nature of the membership functions used in
this example. A quality value of 4/5 (or higher) corresponds to a preference of
p(4/5) = 3/4 (or higher). From 7(z) we know that all values of this quality or
higher are impossible. Hence, s(q) = 0,Vq > 3/4. For quality values between 1/5
and 1/2, the preference varies between p(1/5) = 0 and p(1/2) = 3/8 respectively.
These values are fully possible, thus s(q) = 1,Vq < 3/8. The remaining suitabil-
ity degrees are linearly correlated to m(x). Between 1/2 and 4/5, s(q) declines
linearly from 1 to 0.

The results of the piecewise analysis is now combined by taking the pointwise
maximum over the suitability range, with the understanding that the possibility
is 0 where it is not defined. In this example, the overall suitability distribution
is given by:

1 q<3/8
s(q) = (6-8¢)/3 ¢>3/8Nq<3/4
0 q>3/4

The suitability distribution immediately conveys the following information. It is
clear that this voxel can not be more suitable than to a degree of 3/4. However,
it is mostly plausible that its suitability is less than 3/8. Moreover, it is fully
possible that it is absolutely not suitable at all. Overall, the voxel is clearly not
very suitable for the decision maker.

Note that the similarity between the suitability distribution and the voxel’s
fuzzy value for the data quality indicator can be explained by the shape of
the preference function, which closely resembles the identity function. A fully
detailed description of the suitability distribution technique can be found in [4].

Finally, one might wonder how these suitability distributions can be used in
a decision support setting. Traditionally, in decision support, a preference model
is used to evaluate a (possibly very large) set of systems by computing a suitabil-
ity degree for each system so they can be sorted from “best” to “worst”. Using
a suitability based approach, aggregating and sorting, two key concepts from
decision support, is not as straight forward. There exist techniques to aggregate
and compare possibility distributions, but a detailed analysis in the context of
the semantics of suitability distributions has not yet been performed. Another
approach, which has been studied in this context [3], is to use defuzzification.
Defuzzifying a suitability distribution results in a suitability degree. In [3], it is
established that different defuzzification strategies can lead to different represen-
tative suitability degrees. On the one hand, these strategies can be used to reflect
a certain tolerance for uncertainty (or rather, mistakes in the suitability predic-
tion), while on the other hand certain strategies have properties that render them
particularly interesting for a specific purpose. Consider for example defuzzifica-
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Fig.3: A fictive voxel which has the value “inaccurate or possibly reliable” for
the data quality indicator “sample analysis quality” on the left (3a) and the
suitability distribution resulting from the evaluation of the fuzzy criterion from
Figure 2 on this voxel on the right (3b).

tion through computing the area under the possibility distribution. Whereas, in
general, the area under a possibility distribution may be arbitrarily large, the
surface under a suitability distribution can always be scaled without modifica-
tion of the semantics such that it is bound between 0 and 1. Note that this is
naturally the case if the unit interval is used for representing possibility degrees
and also for preference degrees, and that it is common to do so for both. This
defuzzification strategy may be especially interesting to sort the distributions by
uncertainty (a larger surface means a larger uncertainty) and consequently, in
decision making, to identify the systems that require additional measurements.
This strategy, however, would not be useful to find the “best” system. Using
defuzzification, suitability distributions can be mapped to suitability degrees,
thus making it possible to include them in existing decision support systems.
Additionally, the decision maker can choose a different defuzzification strategies
per criterion, providing an additional layer of control specifically for dealing with
uncertainty.

4 A Case Study on the Extraction of Sand

In this section, we will apply the techniques described so far on real data in order
to identify potential areas of interest towards medium sand extraction. Consider
therefore the following fuzzy query:



The preferred lithological class is medium sand, though fine sand and
coarse sand are also acceptable, albeit to a lesser degree. Furthermore,
most data quality indicators should indicate a high level of reliability.

We can break this query down hierarchically. In essence, it is a conjunction of...

— a fuzzy lithological class criterion
— the OWA aggregation (most) of...
e sample analysis quality is high
e vintage quality is high
e positional accuracy is high
o ..

The fuzzy lithological class criterion is implemented using a discrete mapping
that associates medium sand to 1 and light and coarse sand to 0.5. The criteria
on the data quality indicators are evaluated using the fuzzy set high, which is
implemented by the membership function:

_Jo x<1/2
p(m)_{%—l x> 1/2

In order to be able to aggregate the suitability distributions resulting from the
data quality criteria evaluations, they are defuzzified by using a “cautious opti-
mism” strategy. This strategy takes the ordinate of the center of mass under the
suitability distribution as representative suitability degree and has the property
that its distinctive power is higher towards the bounds of the suitability degree
domain. In other words, the distributions that are defuzzified onto suitability
degrees near 0 (or 1) are reliably bad (respectively good). The downside of this
strategy is that, for distributions that are defuzzified onto suitability degrees
near 0.5, it is unclear whether the datum is uncertain or if it is known to be of
mediocre suitability. We choose this defuzzification strategy because we are only
interested in the top-k best voxels and thus do not care about the voxels with
mediocre suitability degrees. A more detailed analysis of this approach can be
found in [3].

The aggregation of the suitability degrees regarding data quality is translated
into an OWA operator with the semantics of “most”, which is implemented
using the shape function y = /x. For each voxel, the final, global suitability
degree is computed using a pure conjunction, corresponding to the mathematical
minimum of the overall data quality suitability and lithological class suitability.
This global suitability degree is representative of the overall degree to which the
voxel is suitable for our purpose of finding and extracting medium sand with
low risk of the model giving false information, as per the preference for high
data quality indicators. For the TILES data, it makes most sense to explore the
results visually, using a three dimensional suitability map. The suitability map
is simply a rendering of the original voxel model wherein each voxel is colored
based on its global suitability degree. In this example, the suitability map (shown



Fig. 4: The suitability map for the case study.

in Figure 4) uses a gray scale where white corresponds to unsuitable and black
corresponds to maximally suitable.

Keeping in mind the chosen defuzzification strategies, we can interpret the
suitability map as follows. The dark areas indicate regions where it is reliably
certain that medium sand can be found. The white areas indicate regions where
it is reliably certain that nor medium sand, fine sand nor coarse sand can be
found. The remaining gray areas are either too uncertain for our purpose or they
are reliably of lesser suitability, containing mostly fine or coarse sand rather than
medium sand. These regions are ideal candidates to be examined first if the need
for medium sand exceeds the amount that is available.

5 Conclusions

This paper illustrates a suitability distribution based data evaluation technique
by applying it to a real data set of sediment information of the subsurface of the
North sea off the coast of Belgium and the Southern half of the Netherlands.
The data set contains fuzzy information, including data quality indicators, in a
rasterized voxel model. It is shown how using suitability distributions makes it
possible to evaluate uncertain data while still obtaining interpretive results that
convey reliable information that can be important for decision makers.
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