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Langmuir probe diagnostic on magnetic plasma devices often encounters more challenges in data

processing than in non-magnetized plasmas, the latest itself being far from simple. In this paper, a

theory of particle collection by a probe at the plasma potential in collisionless weakly ionized plas-

mas is constructed, accounting for velocities distributed according to the Maxwell equation and dif-

ferent mechanisms of particle collection depending on their speed. Experimental validation of the

presented theory has been done with 2 cylindrical probes (rpr ¼ 75 lm and Lpr ¼ 1 cm and rpr

¼ 0.5 mm and Lpr ¼ 1 cm) parallel to ~B on a linear plasma device Aline, with magnetic fields of

0.0024–0.1 T and plasma densities of 1015–1017 m�3 in helium. Cylindrical probe measurements

are compared to data from a planar probe perpendicular to the magnetic field, and the results for

electron density, temperature, and plasma potential are presented. The introduced theory is initially

constructed for a cylindrical probe but is applicable to various probe sizes, shapes, and orientations.

Alongside the main subject, a number of associated issues are addressed with different details: a

probe design issue relative to the magnetized environment, the “intersection” method of plasma

potential evaluation, and the robustness of the conventional “1st derivative” method, a current

bump near the plasma potential, lower limit for electron temperature estimation, and self-consistent

calculation of electron temperature and density. https://doi.org/10.1063/1.5028267

I. INTRODUCTION

A complete theory of Langmuir probes in a magnetic

field has never been developed. Plasma collisionality and the

magnetization level, as well as the probe type and orienta-

tion, each affects significantly the approach of data interpre-

tation. An extensive list of references for various probes in

various conditions can be found in Ref. 1.

Of those works, very few tried to examine cylindrical

probes.2–8 Two articles published by Laframboise and

Rubinstein2,3 can be considered as foundational theoretical

papers on the subject of a cylindrical Langmuir probe in

magnetized plasmas. We will make an attempt to compare

our model to theirs.

In this work, we focus only on the characterization of

the electron current collected by a probe at the plasma poten-

tial (Vpl) where no sheath is present, as it is the simplest

technique for deriving the electron density. It allows us to

avoid additional errors in particle motion calculation caused

by the presence of a sheath around the probe. For simplicity,

the ion collection at Vpl is considered to be negligible.

In magnetized plasmas, less current is collected by a

cylindrical Langmuir probe. It has been first shown in the

theoretical papers of Laframboise and Rubinstein2,3 and then

observed in experiments.4 A widely used procedure in the

presence of a magnetic field is to regard charged particle tra-

jectories as helices around magnetic field lines that intersect

only the area of the probe perpendicular to the magnetic field

(or its projection on the perpendicular plane). This theory

works well when the characteristic size of the probe in the

perpendicular plane d? is much bigger than the Larmor

radius rc and than the probe size in the parallel direction dk

d? � rc; d? � dk: (1)

Since the ion Larmor radius is typically at least one

order of magnitude larger than the electron one, these condi-

tions in weak and medium magnetic fields are fulfilled only

for electrons, while the ions rotate on the orbits significantly

bigger than a probe size. Then, the common approach is to

treat ions as unmagnetized.4

In this work, we make an attempt to fill in the gap in the

theory for the conditions when (1) is not true, i.e., the probe

parallel size is larger or comparable to the perpendicular one

and the Larmor radius is not limited, i.e., for any magnetic

field. This is the case when a cylindrical Langmuir probe is

inserted in a plasma parallel to the magnetic field lines or at

a small angle. The perpendicular projection of the probe sur-

face is very small compared to the whole probe surface in

a)Author to whom correspondence should be addressed: mariia.usoltceva@
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this case and is obviously not applicable as a correct collect-

ing surface. A substantial fraction of the current is collected

by the probe side surface, and it must be taken into account.

Otherwise, an underestimated collecting area would lead to

an overestimated density value.

This paper presents a theory of the “effective” collecting

area of a probe biased to Vpl. The theory accounts for particle

velocities distributed according to the Maxwell equation and

different mechanisms of particle collection depending on

their speed. We assume the absence of any additional perpen-

dicular drifts, diffusion, or anomalous transport in plasmas.

Initially constructed for the conditions when (1) is not true,

the theory is not limited to those, suggesting a solution for

any ratio of the Larmor radii to probe sizes by the means of

converging to the conventional unmagnetized theory when

particle orbits are significantly bigger than a probe character-

istic size. The theory is presented for electrons but might be

useful for ions as well, when their contribution is significant.

The theory was validated on an experimental device

which is described in Sec. II. In Sec. III, the theory is

explained, its experimental application is presented, and a

comparison to the Laframboise-Rubinstein theory is provided.

After the main subject of this paper—effective collect-

ing area and density evaluation—some other issues are

addressed which are typically bound to the IV curve analysis.

In Sec. IV, we discuss different approaches of finding Vpl

and explain why the method of the intersection of linear fits

of the transit and electron saturation regions is chosen. The

robustness of the methods is compared.

A bump in the plasma current near Vpl is observed in

experiments. Its influence on the evaluation of correct Vpl

and current at Vpl is also discussed in Sec. IV.

The electron temperature evaluation is done from a part

of the region between the floating and plasma potentials,

self-consistently with the density. The detailed procedure of

accurate calculations is given in Sec. V.

II. EXPERIMENTAL DEVICE

The theory explained in this paper has been applied to

process data on an experimental device. Aline (A LINear

Experiment)9,10 is a linear plasma chamber of 1 m length

and 15 cm in radius. A capacitive discharge is created by a

radio-frequency (RF) antenna operating at 25 MHz. The

magnetic field can reach 0.104 T. The neutral gas pressure

was kept constant at 1 Pa for all presented results, and the

gas used was helium.

An RF-compensated Langmuir probe11,12 with two

exchangeable tungsten cylindrical tips of rpr ¼ 75 lm and

Lpr ¼ 1 cm and rpr ¼ 0.5 mm and Lpr ¼ 1 cm is installed on a

3D-movable manipulator parallel to the magnetic field direc-

tion. Each measurement is averaged over 20 sweeps of volt-

age from �70 to 70 V, much longer than one RF period.

Measurements presented in this paper have been done at

one spatial probe position above the RF cathode, x¼ 0 mm,

y¼ 46 mm, and z ¼ �60 mm from the cathode center (which

is 40 mm in radius), far enough to avoid the effects of strong

RF potential distortion but at the same time close enough to

the high density plasma region. The probe tip and the

antenna are depicted in Fig. 1.

Perfect probe alignment is hardly possible in the experi-

mental setup. To take this into account, we assume that the

probe tip can deviate up to 5� from the direction parallel to

the magnetic field.

As a reference for density and temperature measurements,

we use a planar probe perpendicular to the magnetic field (rpr

¼ 0.5 cm). The probe dimensions satisfy (1) for all values of

the magnetic field used in our experiments. The theory for

such a probe in a magnetic field is much simpler, and conven-

tional methods are applicable for density extraction at Vpl.

We want to mention here that the density profiles pro-

vided in this paper should not be regarded as an attempt to

give a dependency on the magnetic field. The coupled power

was not constant at different B because of the difference in

the matching quality. The RF antenna was directly connected

to an RF amplifier (direct coupling), and measurements of

the forwarded and reflected power were done. The difference

between those, i.e., the coupled power, was varying nonli-

nearly between 5 and 35 W.

Solely for the simplicity of representation, the data in all

plots are grouped into 3 curves for 3 values of the forwarded

power (20, 32, and 51 W). The presence of a probe did not

affect the matching significantly, and so, we assume that the

measurements were done in identical conditions with both

cylindrical probes and the planar one.

A. Criterion of plasma magnetization

In weakly ionized plasmas, collisions with neutrals domi-

nate over other sorts of collisions (electron-electron, ion-ion,

and ion-electron). The cross section of inelastic electron-neutral

collision is negligible for electron temperature Te < 20 eV.13

For elastic collisions, measurement results of cross sections are

provided in Ref. 13 at different electron energies in Ar and He.

For considered Aline conditions (5 eV of Te, gas He), re-n ¼ 6

� 10�20 m�2. The neutral density, calculated from n¼ p/kT for

1 Pa and 300 K, is equal to nn ¼ 2.4 � 1020 m�3.

The mean free path of electrons is

ke
mfp ¼

1

nnre�n
¼ 7� 10�2 m: (2)

FIG. 1. Aline RF antenna and probe on the manipulator.
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Particles in the plasma can be considered as magnetized

when their cyclotron frequencies exceed the collision fre-

quency or, equivalently, their Larmor radii must be smaller

than the mean free paths rca<ka
mfp

rca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
makTa
p

qaB
: (3)

The magnetic field in Aline is varied up to 0.104 T. It is

beneficial to find a limit of the magnetic field below which

electrons are not magnetized.

The minimum used field is 0.0024 T. For this value, the

condition of electron magnetization is fulfilled

rceð0:0024 TÞ ¼ 0:2� 10�2 m < 7� 10�2 m ¼ ke
mfp:

Therefore, data processing for the whole working range

of magnetic field values [0.0024; 0.104] T can be addressed

with approximation of the collisionless magnetized plasma.

Pressure diminution below the one considered here would

make the mean free path bigger, and so, the conditions

(3)–(4) would remain valid.

B. Probe design for the magnetized plasma

The probe design for the magnetic environment must be

addressed with special care. A gap between the probe tip and

the compensation electrode was present for one of our

probes, bigger in size than the tip radius. It led to increased

current collection for big magnetic fields since the mean

electron Larmor radius is then comparable to the probe tip

size, and so, a large fraction of electrons could penetrate

inside the gap, and thus, the collecting area increased. In our

experiments with unmagnetized plasmas, this effect was

never observed, but in the presence of a magnetic field, it is

important to not allow such gaps.

III. CURRENT COLLECTION AT Vpl

The equation for the electron current at Vpl in the non-

magnetized plasma is well known, and it reads

Ie ¼ eCeSpr ¼ e
nv

4
Spr ¼ en

kTe

2pme

� �1=2

Spr: (4)

Electron flux to a surface in one direction Ce

¼ n kTe

2pme

� �1=2

is given through the mean velocity v of a

Maxwellian distribution with no limitations neither on the

value nor on the direction of the electron velocity. The

electrons are collected by the whole probe surface Spr.

Is it possible to employ this formula for magnetized plas-

mas? As was shown by some experiments,4 it is indeed applica-

ble for certain conditions. A convenient parameter for numerical

characterization is the dimensionless magnetic field strength b

b ¼ rpr

rce
¼ rpreBffiffiffiffiffiffiffiffiffiffiffiffi

mekTe

p : (5)

So, we should not speak about the magnetic field itself,

rather about the ratio of the probe radius rpr and the electron

Larmor radius. In Ref. 4, b was in the range of 0.25–2, and

the resulting error of the electron density evaluation with (4)

was estimated as 620% for a cylindrical probe perpendicular

to the magnetic field.

However, not the b parameter but the perpendicularity

of the probe played the crucial role in that work, as our the-

ory will demonstrate below. The collecting area of the probe

in (4) was replaced by Kudrna et al. by 2 times the cross sec-

tion of the probe in the plane perpendicular to the magnetic

field. It is easy to see that the difference between this area

and the whole surface of the probe is negligible for such a

probe orientation. That is why the conventional theory was

able to provide such good results.

The question that arises next is whether and how the the-

ory should be corrected for a probe at an arbitrary angle to

the magnetic field. We have obtained an idea of how to

answer this question from an experiment.

A reference planar probe is used for comparison. All

probes were placed at the same position inside the plasma

chamber, and IV curves were captured at the same values of

pressure and magnetic field. With the density from the planar

probe, we are able, using the same equation (4), to get an

idea of how the collecting area of a cylindrical probe looks

like: Scyl ¼ Icyl

Iplanar
Splanar. The result for the smaller cylindrical

probe (rpr ¼ 75 lm) is shown in Fig. 2.

We see that the same idea as in Ref. 4 would not work:

the perpendicular area is S? ¼ 1:8� 10�8 m2 in our case,

which is few orders of magnitude smaller than the experi-

mental result. We clearly observe from the experiment that

the collecting area of a cylindrical probe at a small angle to

the magnetic field is not a constant but a function of the mag-

netic field strength.

A. Effective collecting area

Our theory suggests an alternative “effective” collecting

area of a cylindrical probe at an arbitrary angle h to the mag-

netic field. In (4), the electron current is calculated with the

assumption of all particles having the same mean velocity.

FIG. 2. Collecting area of the smaller cylindrical probe estimated using pla-

nar probe density measurements for 3 different forwarded RF power levels.
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In reality, electron velocities follow the Maxwellian distribu-

tion (which is also a subject of discussion but outside of the

scope of this work). We will now recalculate the collected

current Ie ¼ eCeS, accounting for different mechanisms of

electron collection depending on their radial speed. We

assume no dependency on longitudinal velocities.

We emphasize again that we only consider the probe

potential equal to Vpl. We want to give a simple formula for

density evaluation from this exact point of an IV curve, with-

out diving into complex particle transport theories for the

current collection by a biased probe.

Generally speaking, at any given magnetic field, the

electrons have Larmor radii in some range of values. We

assume that those with rce � rpr are collected by the probe

perpendicular cross section

S? ¼ 2rprLpr sin hð Þ þ pr2
pr cos hð Þ: (6)

The mechanism of collection for the electrons with rce

> rpr is in principle the same as the collection of particles in

the unmagnetized plasma. They are collected by the whole

probe surface

Spr ¼ 2prprLpr þ pr2
pr: (7)

The electron current is then given by a nearly identical to (4)

formula

I ¼ eCeSeff ;¼ en
kTe

2pm

� �1=2

Seff ; (8)

except that the collecting surface here is the effective Seff .

The current is calculated as a sum of two contributions

I ¼ e CmagnS? þ Cn�magnSprð Þ: (9)

Here, Cmagn is the flux to a surface, calculated for

“magnetized” electrons which have rce � rpr or, equiva-

lently, the velocity in the perpendicular to the B direction

vr � vlim ¼
eBrpr

m
: (10)

The non-magnetized flux Cn–magn, on the contrary, is

calculated with the opposite condition on the electron

velocity.

Since in fact we measure only net current in the experi-

ment, not the two contribution of electrons separately, we do

not want to speak about different currents but rather intro-

duce the “effective collecting area” into terminology, defin-

ing it as

Seff ¼ I=eCe ¼ S?Cmagn þ SprCn�magnð Þ=Ce: (11)

A random particle flux to a surface is generally calcu-

lated as

C ¼ n

ð
~vs f vð Þd3v; (12)

with ~vs being a speed normal to the surface.

Without loss of generality, we can calculate a flux of

magnetized electrons to a plane perpendicular to B in cylin-

drical coordinates (the z-direction is parallel to B) and with

Maxwellian velocity distribution

C ¼ n
me

2pkTe

� �3
2

�
ðþ1

0

ð2p

0

ðþ1
0

vzvr exp � mv2

2kTe

� �
dvrdudvz:

(13)

After integration for vz and u

C ¼ n
me

2pkTe

� �1
2
ðþ1

0

vr exp �mvr
2

2kTe

� �
dvr: (14)

Applying limitation (10) instead of (0, þ1) in (14), we

calculate the flux of the “magnetized” electrons

Cmagn ¼ Ce 1� e�
b2

2

� �
: (15)

Similarly

Cn�magn ¼ Ce e�
b2

2 ; (16)

with vr limited from vlim to þ1.

Hence, we obtain the expression for the effective area

Seff ¼ S? 1� e�
b2

2

� �
þ Spr e�

b2

2 : (17)

For the unmagnetized plasma (b ¼ 0), this expression

turns into Seff ¼ Spr, thus transforming (8) into conventional

equation (4).

To give an idea of a typical profile of the effective col-

lecting area given by (17), we provide two illustrations. In

Fig. 3, we plot an example of the effective area for cylindri-

cal probes of 1 cm length and 4 different radii, all parallel to

the magnetic field. The electron temperature is kept constant

at Te ¼ 3 eV. For the smallest radius, the value of b is small

for the whole range of B, and so, the effective area declines

very slowly. As the probe radius gets bigger, the curve

FIG. 3. Example of the effective collecting area for different probe radii at

h¼ 0.
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correspondingly bends more. The dependence on the angle is

shown in Fig. 4, for the probe radius of 7.5 � 10�5 m. It is

clear that the perpendicular projection of a cylindrical probe

is the biggest when the probe is inclined at 90� to the mag-

netic field. This contribution mostly plays a role at larger

magnetic fields.

B. Application to experimental data

Now, we can check how good the developed theory

works in practice. We calculate the effective collecting area

for two cylindrical probes at an angle of 5� to the direction of

B using experimentally obtained data (realistic temperatures,

varying for different points) and compare it to the collecting

area estimated from planar probe density measurements as

was described above and displayed in Fig. 2.

The agreement of the curves is remarkably good for big-

ger magnetic fields (Figs. 5 and 6). For the small fields, we

believe the effective area to be the correct one, not the planar

probe reference values, simply because the upper possible

limit for the collecting area is the whole probe area (4.7

� 10�6 m2 and 3.2 � 10�5 m2, respectively). The reason for

the discrepancies with the collecting area from the planar

probe at smaller B is the inaccurate estimation of the density

for the planar probe in this region. Big uncertainty exists in

the plasma potential evaluation from the IV curves at small

magnetic fields due to the absence of a clear transition from

the exponential to the electron saturation part, which leads to

erroneous values of the current at Vpl and calculated density

(since the density is linearly proportional to the current).

Densities calculated using data from the planar probe

and the cylindrical probes are compared in Fig. 7. The agree-

ment of the results for all probes is satisfactory, considering

typical probe measurement errors.

C. Comparison to Laframboise-Rubinstein theory

Theoretical papers of Laframboise and Rubinstein2,3

focus on cylindrical probes in the magnetized plasma. Their

work covers all crucial parameters: the magnetic field

strength and the probe size and orientation, providing upper

bounds and adiabatic limits for the current collected by the

probe at different biasing potentials. The authors claim that

at Vpl, the upper bound and the adiabatic limit formulas coin-

cide and give exact values of the current.

In Ref. 2, the current at Vpl can be numerically calcu-

lated from the general integral for each possible h and b. A

plot is presented in Fig. 3 in Ref. 2 for the normalized current

at Vpl.

We can construct a similar plot using our Seff (Fig. 8).

The current at Vpl (8) is normalized to the current for b ¼ 0:

I0 ¼ en kT
2pm

� �1=2
Spr, so that i ¼ I=I0. In Ref. 2, the probe

length is assumed infinite. We make calculations for our

probe with dimensions Lpr ¼ 1 cm and rpr ¼ 75 lm, so that
Lpr

rpr
� 1; and it can also be assumed infinite.

The currents agree well for big inclination angles and

big dimensionless magnetic fields. The cause of the discrep-

ancies at small h is that the current in Ref. 2 is calculated

only for the electron collection on the side of the probe. The

FIG. 4. Example of the effective collecting area for different probe inclina-

tion angles with rpr ¼ 75 lm.

FIG. 5. Comparison of Seff to the collecting area estimated using the planar

probe for the smaller cylindrical probe.

FIG. 6. Comparison of Seff to the collecting area estimated using the planar

probe for the bigger cylindrical probe.
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end-effect current is given separately in Ref. 2 by the follow-

ing expression (here, r ¼ b �p1=2=2):

I

I�0
¼ 1

2
1þ 1� exp �r2ð Þ

r2
þ p

1
2 1þ erfc rð Þð Þ

r

� �
: (18)

It is not trivial to combine this expression for the end-

effect current to the previous part. For the end-effect current,

I�0 is the current received by the perpendicular area of the

probe (much smaller than the parallel area), and for a semi-

infinite probe in the Laframboise-Rubinstein model, it leads

to a current rise in (18) up to infinity for b! 0.

Our theory, on contrary, does not have any discontinu-

ities in solutions and smoothly converges in the extrema to

two possible solutions: unmagnetized case iðhÞ ¼ 1 for

b! 0 (for any angle) and to i ¼ S?
Spr

for b!1 and rela-

tively small h. For b!1 and not very small h, the parts

proportional to r2
pr in (6) and (7) are insignificant, and so,

i! 2 sinh
p . The interesting fact is that the same dependence

formula i ¼ 2 sinh
p is mentioned in Ref. 3, which they derived

using a different approach.

D. Peculiarities of the theory application

Two important aspects must be mentioned here. One

concerns the fact that the probe perpendicular surface can be

taken either once or twice in calculations. The other remark

is about the assumption of an infinite probe and about probes

with various finite dimensions.

In the processing of our experimental data, the probe

perpendicular area S? was taken as in (6). Behind our probe,

there is a holder with a ceramic insulator, and so, the elec-

trons can only be collected from one side. It is also taken

into account in (7) for the whole probe area.

On the contrary, Fig. 8 was made for a probe that can

collect particles from both directions along the magnetic

field lines (but with the same area Spr). It is closer to the con-

ditions in which the theory in Ref. 2 was constructed. That is

why a surface double as (6) was taken. To give an idea of

how the current collection would change, we plot the same

currents as in Fig. 8 but take a single perpendicular area

instead of a double (Fig. 9). The difference is especially sig-

nificant for big b and h, and so, the correct perpendicular

area must be accurately chosen for each specific case.

The second valuable aspect is the case of a finite probe.

We provide an example of how the current collection would

change for varying probe dimensions (Fig. 10).

As would be empirically expected, the line for a probe

with the length equal to the diameter Lpr ¼ 2rpr is nearly

symmetric. Such a probe would be close to a cube, and so,

the perpendicular and planar orientations are nearly equal in

terms of the collected current. As the ratio
Lpr

2rpr
grows, the col-

lected current approaches the extremum of the infinite probe.

The last value is given for the dimensions of our cylindrical

probe, the same as it was used for Fig. 8. All lines are for the

same b ¼ 2.

An important conclusion that can be drawn here is that

our theory is not limited to the cylindrical shape of the

probes. It can be applied to any shape, as long as the whole

surface and its perpendicular projection are known.

IV. PLASMA POTENTIAL

The method of density evaluation at the plasma potential

with the effective collecting area is useless without a

FIG. 7. Comparison of densities calculated for two cylindrical probes at 5�

and the planar probe.

FIG. 8. Normalized current i as a function of the probe inclination angle for

various dimensionless magnetic fields.

FIG. 9. iðhÞ for various b. The perpendicular current collection is only from

one direction.
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sufficiently precise and robust technique for evaluation of

the plasma potential itself. In this section, we examine the

conventional method of Vpl calculation from the maximum

of the first derivative of the current and introduce another

method, which showed better robustness in our applications.

A. Plasma potential from the 1st derivative

The most common method of Vpl calculation from the

first derivative of the current often gives too low unrealistic

values. Taking the first minimum of the second derivative

after the point where the first derivative has maximum is

another possible method. It gives slightly bigger values for

Vpl but is only applicable to data with a very low noise level.

The underestimation of Vpl values is not the only weak-

ness of the first derivative approach. More importantly, a rea-

son for the search of alternative methods is given by the

revealed low robustness of the first derivative technique. It is

illustrated in the following example.

The IV characteristics (smaller cylindrical probe) for

similar values of 0.0236 and 0.0283 T are nearly the same

for each RF power (Fig. 11). Consequently, Vpl and the cur-

rent at Vpl should be nearly the same. It is not true for the

32 W power level. A bump which is present at the bigger

0.0283 T field does not appear at 0.0236 T. The nature of this

bump is not fully understood. An attempt to study this phe-

nomenon has been done in Refs. 5 and 6, showing that there

is a dependence of the bump height on the magnetic field

strength and on the ratio of the probe radius and length. This

bump changes the shape of the first derivative, thus influenc-

ing the obtained Vpl. This causes a difference of two times in

the current at Vpl and hence the same difference in the den-

sity evaluated using this current.

One more type of a problem has been observed when

using the 1st derivative technique. The sought peak of dI/dV

is not always clear. If it is blurred, an uncertainty in Vpl iden-

tification of the order of few volts can follow. It has been

noted from our experimental data that a shift of 1 V in Vpl

can cause a difference of more than 100% in the current at

Vpl, and consequently, it affects the electron density. This

effect is especially strong for the IV curves obtained in the

presence of a high magnetic field. The transition region is

very narrow in this case, only few volts.

B. Plasma potential at intersection

In this method, Vpl is found as the x-coordinate of the

intersection of 2 lines:

• linear interpolation of the region between Vfl and Vpl and
• linear interpolation of the electron saturation current.

Not the full regions are taken but only those parts which

have a linear shape. For our data, it was the last 30 V of the

electron saturation current and 1/3 of the region between Vfl

and the first approximation of Vpl found with the classical

1st derivative approach.

A similar technique has been published (for example,

Ref. 14). The difference is that usually the current is taken

on a log scale. In our data, there is no clear linear region for

the transition part of the IV curve on the log scale. That is

why the “log intersection” method is not applicable, but the

intersection at the linear scale works, as will be shown

below.

The same data as in Sec. II A are used to compare the

techniques. In Fig. 12, the prolonged lines of the fits and the

obtained points of the intersection can be seen. It can be seen

that this method is not affected by the bump phenomenon.

With this technique, Vpl for 32 W and the corresponding

values of the current are similar for the two magnetic field

values. The tendency of the increase in the current at Vpl with

the increase in the injected RF power is also a good sign.

The intersection method is not always applicable. For

very small magnetic fields (<0.005 T), the knee of an IV

curve is hard to define since the slopes of the two adjoining

regions are very similar. In such cases, it is impossible to

apply the intersection method. Vpl from the 1st derivative is

taken instead.

The evaluation of the plasma potential with the intersec-

tion technique results in a point right at the edge of the knee.

This plasma potential estimation is reliable in low-pressure,

unmagnetized, dc discharges. In collisional or magnetized

plasmas, the magnitude of Ies is supposed to be lowered and

the knee blurred, and so, the real Vpl becomes hard to

FIG. 10. iðhÞ for various
Lpr

2rpr
(at b ¼ 2).

FIG. 11. Example of Vpl from the 1st derivative method (circle markers).
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determine. In addition, RF fluctuations of Vpl-Vpr can be sig-

nificant when the RF amplitude is much bigger than kTe/e.

If Vpl and the current at Vpl are overestimated, it can

lead to

(1) larger density values due to linear dependency n� I and

(2) imprecise collecting area definition. At values higher

than the real plasma potential, an expansion of a sheath

begins, and so, a bigger area must be used in calcula-

tions. Since n� 1/A, it adds up to the rise of the resulting

density estimation.

Error bars for the density can be obtained for each case

by comparing the current at Vpl for the two techniques. In

our experiments, this ratio was typically in the range of 1–2.

Possible sheath expansion was neglected.

The important fact is that the robustness of the intersec-

tion approach is much higher than the 1st derivative one.

More consistency of the behavior of the current at Vpl can be

seen in Fig. 13. This fact outweighs possible consequences

of slight overestimation of Vpl and current at Vpl values.

In the end, we conclude that processing Langmuir probe

data in the presence of a magnetic field using only the 1st

derivative method is not acceptable. The intersection tech-

nique is adopted as more reliable, with an exception for low

B values, leading to the final combined method.

V. TEMPERATURE

In Langmuir probe data processing, the precision of the

estimation of all relevant parameters is important since they

are all self-consistent and an error in one parameter enhances

errors in others. Here, we describe our approach for the cal-

culation of the electron temperature.

The electron temperature can be obtained from the slope

of an IV curve between floating and plasma potentials. The

electron current as a function of voltage for V � Vpl is

expressed as15

Ie Vð Þ ¼ Ies exp � e Vpl � Vð Þ
kTe

� �
: (19)

A slope of a linear fit to the logarithm of electron current is

used to determine Te

Te ¼
V2 � V1

ln I2 � ln I1

; (20)

where indexes 1 and 2 refer to any two points on the line.

An inverse mean value of the gradient d ln I2

dV for a part of

the region between Vfl and Vpl is taken in our data process-

ing. This part is the central third part of the whole span. The

reason why we do not take the whole region is that the mea-

sured current is a sum of the electron and the ion current,

which means that the pure exponential shape is disturbed.

The measured current is shifted down from the values of the

electron current by some Ii(V). The ion current in this region

is not constant, and it decays towards Vpl, but since it happens

relatively slowly and the determination of the correct law for

this decay is very sophisticated in the presence of the mag-

netic field, we assume it to be constant in our calculations.

A shift of an exponential function by a constant does not

result in a parallel linear shift of the same function on the log

scale (Fig. 14). It means that if the whole region from Vfl to

Vpl is considered, the current would look like the brightest

line (y ¼ expðxÞ � 1) in Fig. 14.

That is why the whole region should not be used for the

temperature evaluation. The resulting average curve slope

will be overestimated, and consequently, the temperature

will be underestimated. When the used region is cut on the

left at around 1/3, the explained error can be strongly

reduced. The reason to cut 1/3 on the right has a different

nature: Vpl can be overestimated as was previously dis-

cussed, and so, we ignore the part close to Vpl.

We regard the temperatures obtained from the central

part of the current linear fit on a log scale as the lower limit.

Then, we use it as the starting point for an iterative algorithm

that self-consistently calculates densities and temperatures.

First, the temperature is used to determine the density, and

then, the ion current is calculated theoretically for a point of

the voltage that is approximately the value of Te (in eV)

below Vpl

FIG. 12. Example of Vpl at intersection (circle markers).

FIG. 13. Comparison of the current at Vpl for two methods.
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Ii ¼ 0:6en
kTe

2pmi

� �1=2

Si: (21)

The equation for the collecting area Si is the same as for

the whole probe surface (7) except that instead of the probe

radius, the sum of the radius and the sheath length s is taken.

At that point, the negative sheath is not yet too large and can

be determined as given in Ref. 16

s Vð Þ ¼ 2

3

e0

Ii=Si

� �1=2 2e

mi

� �1=4

Vpl � Vð Þ3=4: (22)

Taking the ratio Ii=Si from (20) and the Debye length

definition kD ¼ e0kT
ne2

� �1=2

, Eq. (21) transforms into

s Vð Þ ¼ 1:02 kD
e Vpl � Vð Þ

kTe

� �3=4

: (23)

The calculated ion current is then subtracted from the

net current, and the result is used to determine the next itera-

tion of Te, the same way as was described above, from the

central part of the current between Vfl and Vpl on a log scale.

The iterations continue until a stable value of the tempera-

ture is reached.

The described procedure was applied to the data process-

ing of the cylindrical probe. For the planar probe, the ion sat-

uration current is negligibly low compared to the electron

saturation current, and so, the iterative algorithm does not

change much the values of the lower limit of the temperature.

Resulting temperatures acquired with the planar probe are

similar to the ones from the cylindrical probes and have the

same tendency to descend with increasing B and ne (Fig. 15).

The transition region used for the density evaluation is

very narrow for big magnetic fields, and so, the increased

error level may be expected there.

While the temperature obtained after the iterations is

higher than the lower limit and closer to the real one, it is

still underestimated. The proper procedure would be to sub-

tract the ion current as a function of the voltage. Since it is a

descending function (in absolute values), the right part of the

net current should be shifted less after the subtraction, which

means that the slope will be lower and the temperature will

be higher. We ignore this effect in our data processing, but it

might be important to take it into account for some other

conditions.

VI. CONCLUSION

The explained theory of the effective collecting area cal-

culation provides a rather simple method of density evalua-

tion with a cylindrical Langmuir probe in magnetized

plasmas. The experimental validation of the applicability has

shown positive results, which allows further use of cylindri-

cal probes in magnetized conditions at various angles. The

advantage of such diagnostic is the accuracy of local mea-

surements, allowing precise mapping of a small plasma

region.

In the proximity of the extreme limit (1), the theory

approaches the existing technique of using a perpendicular

projection of a probe as the collecting area. On the other

hand, the constructed formula demonstrates that for the

increasing dimensionless magnetic field (with all other

plasma parameters unchanged), the electron current will be

reduced only to some limit and then will remain constant.

This matches our experimental observations.

Correct plasma potential evaluation is crucial for further

calculations of the density from the current at the plasma

potential. The conventional technique employing the 1st

derivative of the current is ineligible for the magnetized

plasma due to the explained low robustness. The intersection

method is a better alternative, shown to be consistent for var-

ious magnetic fields. The only exception appears when the

field is very small because the transition and the electron sat-

uration regions are indistinguishable. In those occasions, the

1st derivative technique is employed as the only possible

one.

A detailed explanation is given for the procedure of the

electron temperature evaluation from a part of the transition

region. The resulting values seem to be quite accurate, and

this accuracy is extremely valuable for the correct density

estimation.

FIG. 14. Shifted exponential functions on a logarithmic scale.
FIG. 15. Temperature comparison for three probes.
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The presented theory for the effective collecting area

can be applied to a broad range of experimental conditions.

No limitation on the probe size nor orientation is imposed.

The shape of the probe is also not limited to the cylinder

only. As long as the probe whole surface and the perpendicu-

lar B projection area are known, the theory remains valid.
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�Cerček, Plasma Sources Sci. Technol. 21, 025004 (2012).

8T. K. Popov, M. Dimitrova, P. Ivanova, J. Kovačič, T. Gyergyek, R.
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