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Abstract

In a choice model, we characterize the loss induced by misperceptions of payoff-

relevant parameters across a distribution of decision problems. When the agent cannot

avoid misperceptions but has some control over the distribution of errors, we show

that strategies that minimize loss from misperception exhibit systematic biases, akin

to some documented in the behavioural and psychological literatures. We include

illusion of control, order effect, overprecision, and overweighting of small probabilities

as illustrative examples.

1 Introduction

Within economic discourse, the idea that the human mind is imperfect and that some

information is necessarily lost during any decision process dates back at least to Simon
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(1955). Under this premise, an agent faces, apart from the standard action choice, a

problem of error management. In economic decision making, some mistakes in perception

of payoff-relevant parameters are costlier than others, and this asymmetry has an impact

on the frequency of different types of perception errors. In this paper, we relate error

management to known observed behavioural biases. In order to understand the direction

of biases arising under second-best perception strategies, we need first to understand the

associated costs of under- or over- estimating payoff-relevant parameters.

Our agent first receives some statistical information on a state of nature which can

be either high or low, and this information translates into an objective belief p that the

state is high. In a choice stage, she recalls this information imperfectly and ends up with

a subjective belief q that the state is high. She then chooses an action that is optimal

under her subjective belief q within a fixed choice set. Due to belief distortion, her choice

may differ from the optimal one. We ask how large is the payoff loss incurred from the

misperception of p for q.

We derive a simple and intuitive characterization of the loss from misperceiving p

as q. This loss can be expressed as an integral formula that depends only on the second

derivative v′′ of the value function. The value function v(p), for each probability p of

the high state, specifies the payoff of the optimizing agent who has correct perception.

This characterization makes the loss from misperception simple to compute in several

applications in which the direct computation is cumbersome.

Equipped with this loss characterization, we study a class of error-management prob-

lems in which the agent chooses a distribution of perception errors that performs well across

all decision problems that she encounters in her environment. We follow principles from

the ecological rationality literature, in that our agent is unable to reoptimize the percep-

tion strategy in each encountered decision problem separately but, instead, must choose a

perception heuristic that fits her environment.1

The model is as follows. Based on all available information, the agent forms an objective

probability p of a high payoff state. She then memorizes a probability m in the perception

stage, and recalls a perturbed value q = m+ ε in the choice stage, where ε is a noise term

with symmetric density. Then, she encounters a random decision problem drawn from her

environment and chooses an action that she perceives as optimal under her belief q and

the encountered utility function.

1See Simon (1956) and Gigerenzer and Todd (1999) on ecological rationality.
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One feasible perception strategy is to memorize the true probability value. Under such

a strategy, the recalled probability is in expectation equal to the true one. It turns out,

however, that this unbiased perception strategy is generically suboptimal, and the agent

benefits from memorizing m distinct from the true probability p.

We characterize the direction of the optimal perception bias based on monotonicity

properties of the second derivative v′′ of the value function. When v′′ is decreasing in

a neighborhood of the true observed probability, we show that the agent memorizes a

probability higher than the true one and thus exhibits an upward perception error bias.

When v′′ is decreasing, her memory exhibits a downward bias. In applications with Gaus-

sian distributions of payoffs, the value function v is easy to compute, and the direction

of monotonicity of v′′ is easy to characterize. Our results then allow us to make clear-cut

predictions on the direction of the bias in these environments.

We detail here one of our applications to illustrate why second-best perception strategies

may be biased. Consider an agent who chooses between two binary lotteries. Each available

lottery is defined by the rewards it pays in the high and low states of the world. The

true probability of the high state is p, but the agent perceives this probability to be q =

m+ ε, and chooses the lottery that maximizes the perceived expected reward. The agent’s

environment contains a whole range of such decision problems, where each decision problem

is represented by all four lottery rewards. We model this by assuming that all four rewards

are drawn iid. from a standard normal distribution. The perception strategy m(p) is chosen

before the agent observes the realization of these draws, hence independently of the lottery

rewards.

A misperception of q instead of p causes a loss only when the optimal choices at p and q

differ. This happens precisely when there exists a probability s between p and q such that

the agent is indifferent at s between the two lotteries. The likelihood that such a tie arises

at s depends on s in an intuitive way. Since the expected value of each lottery is a convex

combination of the two standard normal draws, its variance is lower the closer s is to 1/2.

Thus, the likelihood of a tie at probability s is a single-peaked function of s attaining its

maximum at 1/2. This implies that misperceptions of p for a value q towards the direction

of 1/2 are more likely to distort choices than misperceptions in the opposite direction:

undervaluation of one’s own ability to predict the binary state leads to suboptimal choice

more often than the symmetric opposite error. Since the agent can shift the distribution of

her perception error by controlling the memorized probability value, it is optimal for her to

memorize a value further away from 1/2 than the truth, hence to exhibit an overprecision
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bias.

The above intuition indicates that the optimal perception strategy depends crucially on

at which probabilities the agent is likely to experience a tie between the available actions.

Given a draw of the lottery rewards, the value function is piecewise linear and has a kink

(or non-differentiability point) at a probability leading to the tie. Ex ante, across all the

decision problems, v′′(q) thus reflects the likelihood that the agent encounters a decision

problem in which such a tie occurs at q. This explains why v′′(q), the main object of our

analysis, captures the likelihood of a tie occuring at probability q.

Apart from the overprecision application, we illustrate our methodology in three ad-

ditional examples: illusion of control, order effect, and probability weighting. In each

application, we make natural assumptions about the distribution of utility functions en-

countered by the agent in her environment and derive the optimal bias that arises. We

relate these biases to stylized facts from psychology and behavioural economics. In the

illusion-of-control example, the agent overvalues her impact on her own well-being. In the

order-effect application, she exaggerates the quality difference among two available objects

observed in the first of the two periods. In the probability-weighting example we revisit the

model of Steiner and Stewart (2016), who derive the overweighting of small probabilities

as a second-best perception heuristic.

1.1 Related literature

Rate-distortion theory studies optimal communication via a noisy channel, Shannon (1948,

1959). One of the primitives of this theory is an exogenous map that specifies a loss to

each input and output of the communication. A popular loss function is the square error.

In our paper, the loss function is derived from the agent’s environment and is equal to the

average welfare loss caused by the distortion.2 Once we establish the relevant loss function,

we let the agent engage in optimal error management: she avoids the costlier types of the

errors. Beyond information theory, error management has been studied in several scientific

disciplines such as biology and psychology. See Johnson et al. (2013) for an interdisciplinary

literature review and Alaoui and Penta (2016) for a recent axiomatization of the cost-benefit

approach to error management within economics. We contribute to this literature a formal

characterization of loss from misperception based on a statistical description of the agent’s

2An appropriate definition of the loss function is a nontrivial and important part of the data compression
problem. See the discussion of the loss function for compression of images in Wang et al. (2004).
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environment.

Sims (1998, 2003) has introduced an exogenous information-theoretic capacity con-

straint to economics. The subsequent literature on rational inattention studies the infor-

mation acquisition and processing of an agent who, as in our model, is unsure about a

payoff-relevant parameter but who, unlike our agent, knows her payoff function. In that

setting (assuming signal cost is nondecreasing in Blackwell informativeness), the agent ac-

quires only an action recommendation and no additional information beyond that needed

for choice. In our model, the agent does not know her payoff function when she pro-

cesses information and thus forms beliefs beyond those needed for the mere action choice

in any given problem. The resulting optimal information structure can then be naturally

interpreted as a perception of the payoff parameter.3

Our assumption that the perception strategy is optimized across many decision prob-

lems has appeared in the literature on the evolution of the utility functions. This literature

studies the performance of decision processes across a distribution of the fitness rewards

to the available actions. Depending on the constraints assumed, the optimal decision cri-

terion is either the expected utility maximization, as in Robson (2001), or its behavioural

variants, as in Rayo and Becker (2007) and Netzer (2009). (See Robson and Samuelson

(2010) for a literature review.) Most of this literature focuses on choice under certainty.

Two exceptions who, like us, focus on the probability perception are Herold and Netzer

(2010), who propose that biases in probability perception serve as a correction of another

behavioural distortion; and Compte and Postlewaite (2012), who conclude that an agent

with limited memory benefits from ignoring weakly informative signals.

We contribute to the branch of the bounded rationality literature that emphasizes

limited memory. Mullainathan (2002) studies the behavioural implications of exogenous

imperfect memory usage. Like us, Dow (1991), Hirshleifer and Welch (2002) and Wilson

(2014) study the behavioural implications of an agent who optimizes her usage of limited

memory, but they examine effects that are different from ours. In his survey, Lipman

(1995) focuses on memory-related frictions.

This paper generalizes the model of Steiner and Stewart (2016), who study optimal

probability perception in a choice between a binary lottery with random rewards and a fixed

outside option. The contribution of this paper beyond Steiner and Stewart is threefold:

(1) We significantly enlarge the class of settings by allowing arbitrary payoff distributions

3Within the rational inattention literature, Woodford (2012a,b) studies the behavioural biases resulting
from perception frictions; in these studies he assumes the mean square error loss criterion.
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and arbitrary action sets; (2) we characterize the perception loss function from the more

fundamental value of information function, and (3) we deliver new behavioural insights.

Two of our derived biases, the illusion of control and overprecision, are classified among

so-called positive illusions (Taylor and Brown, 1988). Such positive belief biases are often

rationalized by assuming that the agent derives felicity from holding favourable beliefs

about herself; see for example Brunnermeier and Parker (2005), Caplin and Leahy (2001),

and Köszegi (2006). In contrast, belief distortions in our model are purely instrumental—

they guide choice—and arise in the absence of any felicity benefits.

The paper is organized as follows. Section 2 introduces the model, and our loss charac-

terization is presented in section 3. We develop general results on the direction of biases in

section 4, and applications in section 5. We show an example of a sophisticated Bayesian

agent in section 6. Section 7 concludes.

2 A Model of Misperceptions

An agent faces a randomly drawn decision problem. She chooses an action a ∈ A =

{1, . . . , n}, n ≥ 2, and receives payoff u(a, θ) where θ ∈ {0, 1} is a payoff state. The objec-

tive probability of the state θ = 1 given all agent’s information is p. The agent’s perception

of the probability distribution over θ is imperfect. Correspondingly, we distinguish between

an objective probability p and a subjective probability q of the state 1. The objective and

subjective probabilities of the state 0 are 1 − p and 1 − q respectively. The payoff func-

tions u(a, ·) are extended from θ ∈ {0, 1} to all beliefs in [0, 1] through the expected utility

formula u(a, p) = pu(a, 1) + (1− p)u(a, 0).

We study a two-stage decision process in which a perception stage is followed by a choice

stage. In the choice stage, the agent knows the realized payoff function u that defines the

decision problem she faces, mistakenly perceives the true probability p as q, and chooses

an action

a∗q,u = arg max
a∈A

u(a, q)

that maximizes her perceived payoff.Finally, her realized payoff is u
(
a∗q,u, p

)
.4

The payoff function is uncertain in the preceding perception stage. Accordingly, the

payoff function u =
(
u(a, θ)

)
a,θ

and the probability p of state 1 are random variables

4In our framework, the maximizer is unique with probability one. We therefore ignore cases with multiple
optima.
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with supports R2n and [0, 1], respectively, both admitting atomless density. We assume

u and p are independent to ensure that the agent does not draw inferences about θ from

the observation of the payoffs u, and vice versa. The payoff of the optimizing agent who

misperceives the objective probability p as q, averaged out across the draws of the payoff

function u, is

V (p, q) = Eu u
(
a∗q,u, p

)
.

The value function v(p) = V (p, p) represents the expected payoff of the optimizing agent

who perceives the objective probability p correctly. The expected loss due to misperceiving

the true probability p as q is then

L(p, q) = v(p)− V (p, q).

Our aim is to characterize how the distribution of payoff functions u translates into the

loss function L.

3 Loss Characterization

Our main technical contribution is a characterization of the loss function L in terms of the

value function v.5

Lemma 1. Assume v is twice differentiable on [0, 1]. Then, the expected payoff loss due

to misperceiving the probability p as q is

L(p, q) =

∫ q

p
v′′(s)(s− p)ds. (1)

As defined, the loss function L depends on the multidimensional distribution of under-

lying payoff functions u, and it depends on two parameters, p and q. Lemma 1 shows that

L is entirely characterized through the second derivative v′′ of the value function. It is

remarkable that the underlying distribution of u acts on L only through the one-parameter

function v′′. The lemma is particularly useful in settings where the loss function L cannot

5We have stated the loss characterization result in Lemma 1 under the assumption that v′′ exists.
When the distribution of the utility functions exhibits atoms, then v′′ has kinks and thus it is not twice
differentiable. Yet, with the use of the generalized functions of Schwartz (1957), Lemma 1 extends to those
cases. Assume for illustration that with probability one the agent’s payoff is 1/2 if she correctly announces
the realized state and 0 otherwise. Then v(p) = max{p− 1/2, 1/2− p}/2, v′′(p) is the Dirac delta function
δ(p−1/2), and L(p, q) =

∫ q
p
v′′(s)(s−p)ds = |1/2−p| if 1/2 is between p and q, and the loss is 0 otherwise.
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Figure 1: Left graph: Loss from misperceiving p as q for a realized utility function. Right
graph: Ex ante expected loss from misperceiving p as q.

be easily computed directly, but the value function v can. This is the case for instance when

the joint payoff distribution is Gaussian since then the value function admits an analytical

characterization; see section 5.

In section 4, we allow the agent to control the distribution of perception errors, and show

how monotonicity properties of v′′ translate into the direction of second-best perception

biases. Intuitively, higher values of v′′(q) correspond to higher marginal sensitivity of the

loss L(p, q) to a marginal variation in q.

We illustrate Lemma 1 in figure 1. The left graph represents u(a, p) for all actions

a under a particular realization of the payoff function u. The agent with perception q

chooses the action associated with the full line, whereas the optimal choice at the objective

probability p is the action associated with the dotted line, which entails the loss Lu(p, q) =

u(a∗p,u, p) − u(a∗q,u, p) under the payoff function u. If we let vu(p) = maxa u(a, p), then

the loss Lu(p, q) appears as the difference at p between the function vu and its linear

approximation by its tangent at q. When averaging among all payoff functions u, the right

graph depicts the expected loss as the error of the linear approximation of the expected

value function.

3.1 The role of v′′

The second derivative of the value function plays a central role in our analysis. Here, we

offer intuitive explanations of its role in our results.

Let us start with an interpretation of v′′(p). For each realized utility function u, the
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value function vu(p) is linear in the neighborhood of p unless vu(p) has a kink (or non-

differentiability point) near p. This implies that v′′(p) is determined by the stochastic

occurrence of these kinks. Assume u has a density ρ over R2n. We define the intensity of

the kink of vu at p as the difference between the right and left derivatives v
′+
u (p) and v

′−
u (p)

of vu at p: ku(p) = v
′+
u (p)− v′−u (p). Let U(p, q) be the set of utility functions u that have

a non-differentiability point between p and q. Then, for a small ε,

v′(p+ ε)− v′(p) ≈ v′′(p)ε ≈
∫
U(p,p+ε)

ku(pu)dρ(u),

where pu is the non-differentiability point of vu(p) between p and p + ε.6 The above

expression shows that v′′(p) admits a natural interpretation as the product of the expected

intensity of a kink at p times the “density” of the kinks at p.

We point out a geometric representation of the loss Lu(p, q) under payoff function u.

This loss is positive when the optimal choices at p and q differ, and hence when the agent

is indifferent between the first-best and the second-best action at some s between p and q.

Figure 1 illustrates a situation in which such indifference arises at two values s and s′

between p and q. In this case, the loss Lu(p, q) is the sum of two parts, Ls and Ls′ ,

where each term is identified with a tie arising at probabilities s and s′. Each of these

terms equals the distance of the associated tie (s or s′) from the true p, multiplied by the

intensity of the corresponding kink in vu. The ex ante expected loss L(p, q) is thus an

integral
∫ q
p v
′′(s)(s− p)ds, where the weight v′′(s) captures the likelihood of u(·, s) having

a tie, compounded by the intensity of the corresponding kink of vu at s.

3.2 General characterization of v′′

We now offer a characterization of v′′(p) for general payoff distributions that formalizes the

intuitive discussion of v′′(p) from the previous subsection. For each action a, we let ua be the

vector (u(a, 0), u(a, 1)) ∈ R2 and recall that for p ∈ [0, 1], u(a, p) = pu(a, 1)+(1−p)u(a, 0).

We let u = (ua)a∈A ∈ R2n denote the vector of all utility values, and for any pair of

actions a, b we let u−ab = (ua′)a′ 6=a,b ∈ R2(n−2). Given a utility level ν ∈ R, we let

Dab(ν) = {u−ab : ∀a′ 6= a, b, u(a′, p) < ν}, and introduce vectors wp = (p, p− 1), e = (1, 1).

Finally, ‖ ‖ denotes the Euclidian norm in R2. We assume that u admits a density ρ and

6The second inline approximation relates to the possibility that more than one non-differentiability point
in (p, p+ ε) occurs. The probability of this event is of order ε2.
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let ρab denote the marginal density of (ua, ub) ∈ R4.

To make sure that v′′(p) is finite, we impose a bound on the density of u. We say that

the density ρ satisfies the tail condition if there exists a mapping ξ : R+ → [0, ξ], ξ > 0,

such that,

1. for every ua, ub, ρab (ua, ub) ≤ ξ(‖ua‖)ξ(‖ub‖), and

2.
∫∞

0 x2ξ(x)dx is finite.

Proposition 1. If the vector u of the utility values admits a density ρ and ρ satisfies the

tail condition, then v is twice differentiable and for every p ∈ [0, 1]:

v′′(p) =
∑

a,b:a>b

∫
ν,x,t∈R

∫
u−ab∈Dab(ν)

(t− x)2ρ (u−ab, νe+ xwp, νe+ twp) du−abdνdxdt. (2)

Expression (2) formalizes the intuition from the previous subsection. It integrates over

actions pairs a, b and utility realizations such that the tie arises between a and b at p,

u(a, p) = u(b, p) = ν, and all other actions a′ 6= a, b are inferior at p, u(a′, p) < ν. Each

such instance contributes to v′′(p) the square of the kink intensity (u(a, 1) − u(a, 0) −
u(b, 1) + u(b, 0))2, which equals (t− x)2 in the integral.7

4 Second-Best Perceptions

The first-best perception strategy, which minimizes losses, sets q = p for all p. We assume

that perception is constrained to be noisy and study second-best perception strategies.

To model the noise, a perception strategy associates to each objective probability p

a distribution over subjective perceptions q. A strategy assigns a message m(p) to each

objective probability p ∈ [0, 1], where we interpret the message as the physiological stimulus

encoding the probability p. The message m triggers a perception q = m + ε, where ε is

a random variable with atomless density g(ε) taking values in [−σ, σ] for some parameter

σ ∈ (0, 1/2). Thus, a perception strategy is a map m : [0, 1] → [σ, 1 − σ]. We normalize

the error term ε to have zero mean. Since the simple additive error specification is not

well suited for modeling perception of probabilities near the boundaries of the probability

7Equation (2) integrates over the square of the kink intensity because the kink intensity contributes to
v′′(p) both directly and also via its impact on the density of the kinks in the neighborhood of p.
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interval, we ensure that every perception q is in the [0, 1] interval by restricting m to

[σ, 1− σ].

A particular example of a perception strategy is the unbiased perception m(p) = p for

p ∈ [σ, 1 − σ]. This strategy does not exhibit a systematic error since E[q | p] = p. The

unbiased strategy is a benchmark to which we compare the optimal perception strategy

m∗(p) that solves a naive perception problem for each p,8

m∗(p) ∈ arg min
m∈[σ,1−σ]

Eε L(p,m+ ε). (3)

Note that (3) is equivalent to the maximization of the expected payoff Eε V (p, q).

We summarize the two-stage decision process as follows. The agent observes the objec-

tive probability p and memorizes a probability m(p) before she learns the payoff function

u. At the choice stage, the agent recalls probability q = m(p) + ε (but does not recall p

and ε), and chooses an optimal action a∗q,u under her perception q and payoff u.

The next result presents a simple first-order condition. It implies that the second-

best perception strategy is unbiased in a generalized sense once the perception error q − p
is weighted by v′′(q). Compared to the naive unbiased perception strategy m(p) = p

that minimizes the common but ad hoc mean-square-error loss criterion, the optimality

condition weights errors by their expected impact on the agent’s performance, where all

these considerations are summarized by the weight v′′(q). In section 5, we provide four

illustrative applications in which v′′(q) has intuitive monotonicity properties that allow for

qualitative predictions of the second-best biases.

Proposition 2. Let random variable q = m∗(p)+ε be the stochastic perception when m∗(p)

solves the naive perception problem (3) and the true probability is p. If m∗(p) ∈ (σ, 1− σ),

then

Eε
[
v′′ (q) (q − p)

]
= 0. (4)

To gain some intuition about this result, consider a message m ∈ [p − σ, p + σ].9 A

marginal increase in m translates to a marginal increase of the perception q = m + ε.

This marginal change in q affects the agent’s payoff only if it affects her choice—that is,

when a tie arises in between the first-best and the second-best action at q. The first-order

8A solution to the naive perception problem exists for each p since the objective is continuous in the
message m and the message space is compact.

9Any message m > p+ σ is dominated by m = p+ σ, since for every ε ∈ [−σ, σ], L(p,m+ ε)− L(p, p+
σ + ε) =

∫m+ε

p+σ+ε
v′′(s)(s− p)dp ≥ 0. Similarly any m < p− σ is dominated by m = p− σ.
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condition thus minimizes the expected perception error weighted by the likelihood of a tie

at q = m+ ε, adjusted for the intensity of the kink, that is, weighted by v′′(q).

Note that in the very particular case where v is quadratic and v′′ is constant, the

condition of Proposition 2 is satisfied by the unbiased perception strategy m(p) = p.

In the general case, we derive the direction of the second-best perception bias from the

monotonicity properties of v′′. The result formalizes the intuition that the agent unable to

avoid errors altogether avoids the costlier ones.

Proposition 3. Suppose that g is symmetric around 0, and let p ∈ (σ, 1− σ).

1. If, for all δ ∈ (0, σ),

v′′(p+ δ) < v′′(p− δ), (5)

then m∗(p) > p.

2. If, for all δ ∈ (0, σ),

v′′(p+ δ) > v′′(p− δ),

then m∗(p) < p.

The agent considered in this section is naive in that she does not fully use the informa-

tion retained up to the choice stage. A sophisticated agent could improve her performance

by forming the bayesian posterior E[p | q] based on her perception q, and choose an optimal

action under this posterior belief. In section 6, we study such a sophisticated agent in an

example. We show there that the optimal sophisticated perception continues to be closely

related to the monotonicity of v′′, and that the qualitative results about the direction of

the bias derived for the naive agent extend to the sophisticated one.

5 Applications

In this section we use our model to provide microfoundations to behavioural stylized facts.

In each of our four applications, we specify simple distributional assumptions on the payoffs

u, derive v′′ and use its monotonicity properties to find the direction of the second-best

perception biases. Most, though not all, of our results hold for the Gaussian environment

since it facilitates analytical derivation of the value function v.
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5.1 Illusion of control

The term Illusion of control, introduced by the psychologist Langer (1975), refers to the

overestimation of one’s ability to impact one’s own well-being. As an extreme example,

casino visitors may overestimate the relevance of their choices over payoff-equivalent lot-

teries.

In this example, the agent is either of the low type, θ = 0, or of the high type, θ = 1. At

the choice stage, she knows the payoffs u(a, θ) assigned to all available actions a ∈ A and

both types θ ∈ {0, 1}. She is uncertain of her type, and instead of the objective probability

p, she attaches the subjective probability q to being the high type.

We assume that the choice of the high type has a greater impact on her well-being than

the choice of the low type in most (but not all) of the decision problems that the agent

encounters in her environment. This may be the case if the high type stands for a higher

talent, and actions of talented people have relatively larger consequences in typical (but

not all) life situations. The assumption may also hold if the payoff consequence of each

action of the low type is influenced by luck to a larger extent than the payoff of the high

type, so that the low type has relatively low ability to affect her expected well-being.10 We

capture the relatively higher control of the high type over her well-being by assuming that

the payoff function is generated by the following process:

u(a, θ) = ũa + τθηa,

where ũa and ηa are independent normal random variables, iid. across actions, and τ1 >

τ0 > 0 are two fixed parameters. Then, the payoff differences u(a, 1)− u(a′, 1) tend to be

larger for the high type 1 than differences u(a, 0)−u(a′, 0) for the low type 0. Accordingly,

we say that the high type has more control than the low one. See appendix B for an

extension of this application to general distributions.

The following lemma relates control in each state with the direction of monotonicity of

v′′.

Lemma 2. If the high type has more control than the low type, then v′′ is decreasing.

In this example, we are able to compute directly the analytical form of the value function

v, which makes the derivation of v′′ simple.

10See examples 1-3 in the working-paper version of this paper, Gossner and Steiner (2016), for formal-
izations.
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Proof of Lemma 2. Let ũa ∼ N
(
µ, ω2

)
and ηa ∼ N

(
ν, ω′2

)
. Then

u(a, p) ∼ N
(
µ+ τ(p)ν, ω2 + τ2(p)ω′2

)
,

where τ(p) = (1 − p)τ0 + pτ1. The value v(p) is the expected maximum over n iid. draws

from this distribution. The expectation of the maximum of n iid. draws from N
(
µ̃, σ2

)
equals: ∫ +∞

−∞
xf

(
x− µ̃
σ

)
1

σ
Fn−1

(
x− µ̃
σ

)
dx = µ̃+ σ

∫ +∞

−∞
x̃f (x̃)Fn−1 (x̃) dx̃,

where f and F are the standard normal density and distribution. Therefore, v(p) =

µ+ τ(p)ν + cσ(p) where σ(p) =
√
ω2 + τ2(p)ω′2 is the standard deviation of u(a, p) and c

is the latter integral. The linear term does not affect v′′, so we have that v′′(p) = cσ′′(p).

Using the equality σ(p) =
√
c1 + c2p+ c3p2 for some constants c1, c2, and c3, we obtain:

v′′(p) = c
d2

dp2

√
c1 + c2p+ c3p2 = c

−c2
2 + 4c1c3

4
σ−3(p).

Since the value function is the expectation over the upper envelopes of linear functions and

thus convex, and since σ(p) is positive, it must be the case that c
−c22+4c1c3

4 is positive. By

the assumption that τ1 > τ0, the function τ(p) and hence also σ(p) are increasing. Thus,

v′′(p) decreases in p.

When v′′ is decreasing, the first point of Proposition 3 applies, and the agent system-

atically overestimates her control over her own well-being.

Corollary 1. If the high type has more control than the low type, then the second-best

perception is biased upwards: m∗(p) > p for all p ∈ (0, 1− σ).

A misperception of p as q causes a loss only for draws of the payoff function u under

which a tie arises in-between p and q. In this application, the variance of u(a, s) is increasing

in the belief s. Larger values of this variance correspond to more spread between payoffs,

hence to lower likelihoods of a tie at probability s. Therefore, upward perception errors

lead to less frequent losses than downward errors of the same magnitude.11

11In the formal derivation of the optimal perception bias we account for not only the frequencies of the
errors but also the magnitudes of the payoff losses.
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5.2 Order effects

Psychologist Baron (2000) defines an order effect as order-dependent weighting of the

observed pieces of evidence when the order of the evidence presentation is normatively un-

informative. Primacy effect arises when the agent overweights her first impression and the

recency effect refers to overweighting the last impression. Page and Page (2010) document

the order effect in a field study of talent judgement and they argue for the relevance of the

effect in hiring practices. Here we offer a stylized model in which the order effect arises as

a second-best perception strategy for an agent with imperfect memory.

The agent chooses an object a ∈ {1, 2}. The quality of each object a is a sum xa1 + xa2
of two components, xa1 and xa2. The agent observes the first components of both objects

in round 1 and the second components in round 2. For instance, the agent may be a firm

that chooses one job candidate out of two applicants; it screens each applicant in two tests,

each test reveals one of the two applicant’s qualities, and the firm’s goal is to choose the

applicant with the higher sum of their qualities.

We let ∆t = x2
t − x1

t denote the quality difference in round t, and refer to ∆1 as the

first impression. The pair of second components (x1
2, x

2
2) is drawn from a joint density

%
(
x1

2, x
2
2

)
, independently of the first components. We assume that the density ψ(∆2) of

the difference ∆2 = x2
2 − x1

2, expressed by the formula

ψ (∆2) =

∫ ∞
−∞

% (x, x+ ∆2) dx,

is single-peaked and symmetric around zero. This is the case, for instance, if x1
2 and x2

2

are drawn iid. from a Gaussian distribution, but also for many other symmetric densities

%. The distribution of the first components plays no role in the analysis.

The agent chooses an object at the end of round 2, after she has observed all four

components xat . She flawlessly perceives the second-round components, but has a distorted

recollection of the first impression ∆1. Accordingly, we distinguish between the objective

value ∆1 and the perceived value ∆̂1. The agent chooses object 2 if ∆̂1 + ∆2 > 0, and

object 1 otherwise.

Let us consider the loss from misperceiving ∆1 as ∆̂1, as a function of ∆2. If both

∆1 + ∆2 and ∆̂1 + ∆2 have a same sign, a same object is chosen in both cases and the

loss is null. If ∆1 + ∆2 and ∆̂1 + ∆2 have opposite signs, the wrong object is chosen under

∆̂1, and the corresponding loss is |∆1 + ∆2|. The expected loss of perceiving ∆1 as ∆̂1 is

15



thus independent of the particular realizations of the first components (x1
1, x

2
1) such that

∆1 = x2
1 − x1

1, and can be expressed as:

L̃
(
∆1, ∆̂1

)
= E∆2

[
(∆1 + ∆2)

(
1∆1+∆2>0 − 1∆̂1+∆2>0

)]
.

The next lemma characterizes this loss through an integral formula that is similar to the

characterization in Lemma 1.

Lemma 3. The expected loss from misperceiving the first impression ∆1 as ∆̂1 is:

L̃
(

∆1, ∆̂1

)
=

∫ ∆̂1

∆1

ψ(s) (s−∆1) ds. (6)

The proof in the appendix consists of mapping the setting of this example with contin-

uous payoff state ∆1 to our main setting with binary payoff state θ. We achieve this by a

simple rescaling of the problem. The substantial part of the proof consists of showing that

the relevant weight v′′ is, after rescaling, equal to the density ψ.

We provide a simple heuristic for the loss expression in (6). A misperception of ∆1 for

∆̂1 leads to a loss if it reverts choice, which happens if for some ∆̃1 in between ∆1 and

∆̂1, the agent is indifferent among the two objects. Given ∆̃1, such an indifference occurs

when ∆2 = −∆̃1, hence with likelihood ψ(−∆̃1) = ψ(∆̃1). The loss arising from a mistake

is |∆1 + ∆2| = |∆1− ∆̃1|. Hence, the expected loss from the misperception is given by the

integral in (6).

Equipped with the loss formula of Proposition 3, we now study second-best noisy per-

ception. We assume that the subjective perception ∆̂1 is formed essentially through the

same process as in our main model: The agent observes the true first impression ∆1 in

round 1, memorizes a value m̃(∆1), and recalls ∆̂1 = m̃(∆1) + ε, where ε is drawn from a

density g(ε) that is symmetric around 0 and has support on [−σ, σ]. Let m̃∗(∆1) be the

optimal perception strategy that minimizes the expected loss, i.e.:

m̃∗ (∆1) ∈ arg min
m

Eε L̃ (∆1,m+ ε) .

Our next result shows that the second-best perception avoids the relatively costly types

of error by a systematic exaggeration of the first impression.

Proposition 4. The second-best perception exaggerates the first impression: m̃∗(∆1) > ∆1

if ∆1 > 0, and m̃∗(∆1) < ∆1 if ∆1 < 0.
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The proof in the appendix consists of applying Proposition 3 to the rescaled problem.

The direction of the bias is intuitive. Ties between the two objects arise relatively often,

across all ∆2, when the first impression ∆1 does not strongly favour any of the two objects.

Thus, an underestimation of the absolute value of the first impression is more likely to

lead to the suboptimal choice than the overestimation of the same size. The primacy effect

arising in Proposition 4 is the consequence of our assumption that the agent recalls the early

evidence imperfectly and the late evidence errorlessly. Under the opposite assumption, a

recency effect would arise.

5.3 Overprecision

Moore and Healy (2008) define overprecision as an overvaluation of the precision of one’s

own belief. Daniel et al. (1998) is an early study of the implications of overprecision

to financial markets. In our example, the agent bets on a binary event. Each bet a ∈
{1, . . . , n} pays a reward u(a, θ) in state θ ∈ {0, 1}. The agent observes the 2n rewards(
u(a, θ)

)
a,θ

and chooses a bet a∗ ∈ {1, . . . , n} that maximizes the perceived expected payoff

u(a, q) under the subjective probability q of the state being θ = 1. All rewards u(a, θ) are

independently drawn from the standard normal distribution.

The further away q is from 1/2, the more confident the agent is of her ability to predict

the correct state. We show that the second-best perception systematically exaggerates this

ability. To this end, we first establish monotonicity property of v′′.

Lemma 4. v′′ is single-peaked and symmetric around 1/2.

The proof relies on an explicit computation of v and v′′, which the Gaussian framework

makes possible.

Proof of Lemma 4. The expected payoff u(a, p) for each action a at probability p is an iid.

draw from N
(

0,
√
p2 + (1− p)2

)
, and v(p) is the expected maximum over these draws.

As in the proof of Lemma 2, v(p) is proportional to the standard deviation of each draw:

v(p) = c
√
p2 + (1− p)2,

for some positive constant c that depends on n only. The second derivative is

v′′(p) = c
1√

p2 + (1− p)23 ,
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which has the properties stated in the lemma.

Proposition 3 together with Lemma 4 imply the direction of the bias.

Corollary 2. The second-best perception exaggerates the agent’s ability to predict the state:

m∗(p) < p for p ∈ (σ, 1/2), and m∗(p) > p for p ∈ (1/2, 1− σ).

Since the variance of the expected payoff u(a, p) for each a increases with the distance

of p from 1/2, ties between actions arise more often at beliefs close to 1/2 than at be-

liefs further away from 1/2. Therefore, an error in the perception of p in the direction

towards 1/2—the undervaluation of one’s ability to predict the state—is costlier than an

opposite error of the same size. The second-best perception avoids the costlier errors by

systematically overvaluing one’s information about the state.

5.4 Overweighting of small probabilities

We revisit here Steiner and Stewart (2016), who provide a microfoundation for overweight-

ing of small probabilities akin to the one in prospect theory (Kahneman and Tversky,

1979). The purpose of the revisit is twofold. First, we show how the problem from Steiner

and Stewart can be solved by the general method from this paper. Second, we contrast

their model with the setting from the previous subsection in which underestimation of

small probabilities arises, and clarify the forces driving the opposite biases in these two

frameworks.

As in Steiner and Stewart (2016), we consider an agent who chooses a ∈ {1, 2}, where

the payoff for action 1 is a lottery that pays u(1, 1) with probability p, and u(1, 0) with

probability 1 − p. Action 2 is an outside option that pays a fixed payoff u(2, θ) = ũ ∈ R.

The agent misperceives the probability value p of state 1 for q and chooses the lottery if

and only if qu(1, 1) + (1 − q)u(1, 0) > ũ. The lottery rewards u(1, 1) and u(1, 0) are iid.

draws from the standard normal distribution.12 Steiner and Stewart interpret the outside

option value ũ as a maximum over many alternatives, and thus focus on values of ũ larger

than typical draws of the lottery rewards.

Steiner and Stewart solved this problem by explicitly computing the loss L(p, q) and

by optimizing over the messages directly. Here, we apply the methodology of this paper.

We compute v(p), characterize monotonicity properties of its second derivative, and use

Proposition 3 to derive the direction of bias.

12See Steiner and Stewart (2016) for an extension to general distributions.
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Figure 2: v′′ and the direction of the bias. Solid line: the overprecision setting. Dashed
line: the setting of this section.

Our first step is to establish that, for values of the outside option ũ larger than a certain

threshold, the function v′′ has the opposite monotonicity property than that in the previous

application.

Lemma 5. v′′ is symmetric around 1/2. If |ũ| > 31/4, then v′′ is U-shaped.

The proof, shown in the appendix, relies on a computation of v′′ from an explicit

derivation of v.

Proposition 3 implies that overvaluation of small probabilities arises in this setting.

Corollary 3. If |ũ| > 31/4, then the second-best perception exaggerates small probabilities

and undervalues large probabilities: m∗(p) > p for p ∈ (0, 1/2), and, m∗(p) < p for

p ∈ (1/2, 1).

Why does the agent from the previous application undervalue small probabilities,

whereas the agent of this application overvalues them? The difference is caused by the

distinct patterns of the ties. Figure 2 depicts v′′ for both settings. In the overprecision

setting, a tie between lotteries is likely when the lottery values have a low variance, which

happens when p is close to half. This contrasts with the prospect-theory setting, where a tie

between the lottery and the high outside option ũ is likely when the lottery value has a high

variance, and hence v′′ is U-shaped. Consequently, the perceptions exhibit the opposite

biases. The two results suggest that the bias in the perception of probabilities depends on

whether the perceived probability affects payoffs to all actions, or idiosyncratically affects

the payoff only to one action.
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6 A Sophisticated Agent—an Example

The agent from section 4 is naive in that she does not fully utilize the information available

to her at the choice stage. This section studies the sophisticated perception strategies of

an agent who loses some information during the decision process, but who is then fully

capable of utilizing the information retained until the choice.

The agent assigns prior probability 1/2 to the state θ = 1. At the perception stage,

she receives an informative signal and updates the probability of θ = 1 according to the

Bayes rule to value p. The agent is able to retain only some of this information until the

choice stage. In particular, she commits to a perception function m(p), m : [0, 1] → M ,

where M = {0, 1} is a binary message space before she observes the payoff function u. At

the choice stage, the agent chooses an action while informed of the payoffs u = (u(a, θ))a,θ
and remembering the message m(p). Her behaviour at this stage is therefore described by

a choice rule c : R2n ×M → A. The sophisticated perception problem is:

max
m(·),c(·,·)

Eu,p u
(
c
(
u,m(p)

)
, p
)
.

The next lemma states that the optimal perception function m(·) generates a binary

partition I(p∗) = {[0, p∗), [p∗, 1]} of the probability interval. The agent at the choice stage

remembers that p belongs to I ∈ I(p∗), forms a Bayesian posterior q = E[p | p ∈ I], and

chooses the optimal action a∗q,u under the posterior belief q.13

Lemma 6. There exists p∗ such that m(p) is an indicator function of one of the two

intervals of the partition I(p∗) for almost all p; and c(u,m) = a∗q(m),u for almost all u,

where q(m) is the posterior belief E[p | m(p) = m].

Let us denote the density of the belief p by ϕ and assume that it has support on [0, 1]

and is symmetric around half: ϕ(p) = ϕ(1−p) for all p ∈ [0, 1]. We interpret the symmetry

as a neutrality assumption abstracting from biases driven by an asymmetry of ϕ.

Denote the two Bayesian posteriors by q(p∗) = E [p | p < p∗], and q(p∗) = E [p | p ≥ p∗].

13The partition of the probability interval is reminiscent of the coarse reasoning model in Jehiel (2005).
Other models that assume biased beliefs in strategic interactions include Eyster and Rabin (2005) with
their application to the winner’s curse bias, and Pavan (2014) who derives a compromise effect in a model
with bounded recall. One distinction is that our agent optimizes over the information loss in a range of
nonstrategic decision problems.
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Proposition 5 (sophisticated perception). If

v′′(p) > v′′(1− p) for all p < 1/2, (7)

and ϕ(p) is symmetric around 1/2, then the optimal threshold probability p∗∗ is less than

1/2 and the agent attains the high posterior q (p∗∗) with a higher probability than the low

posterior q (p∗∗).

The symmetric result holds when v′′(p) < v′′(1 − p) for all p < 1/2; in this case

p∗∗ > 1/2.

To obtain some intuition for the last result, observe that v′′(p) can be interpreted as

a local value of information. To see this, consider an agent with a belief p who receives a

weakly informative signal upon which she updates her belief to π in a neighborhood of p.

The Bayesian constraint Eπ = p and the second-order Taylor expansion of v imply that

the value of the received information is E v(π)−v(p) ≈ v′′(p)V ar(π)/2. By assumption (7),

the local value of information is higher in the lower half of the probability interval than in

the upper one. The optimal binary partition then discriminates between the probabilities

in the lower half of the probability interval at the expense of not distinguishing among the

probabilities in the upper half.

Since the studied agent is Bayesian, the expected terminal belief, E q, is necessarily

equal to the prior belief 1/2. Bayesian rationality thus implies that the relatively frequent

occurrence of the high terminal belief is compensated by adjustments of the values of the

two terminal beliefs. Proposition 5 has implications to perception in the following sense.

Assume, for instance, that the distribution of payoffs is as specified in subsection 5.1. Let

half of the population have the high control over their own well-being, and the other half

the low control. Each agent receives incomplete information about her own type. Further

assume that the agents are unable to perceive a continuum of probabilities, and can only

distinguish a “high” and “low” probability of being the high type. Since v′′ is decreasing

in this case, we predict that the agents who perceive themselves as “highly” likely to be

of the high type are more common than those who evaluate the chance of being the high

type as “low”.
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7 Discussion

We have studied the cost of misperception in a model of decision making under uncertainty.

Our main technical result, Lemma 1, shows that the loss function can be entirely charac-

terized from the value function of the underlying decision problem. In our applications, the

decision problem is specified by a random payoff function, which makes our environment

rich enough. Note however that our loss formula applies to all settings, whether or not the

payoff function is random, as long as the value function admits a second derivative. We

presented a series of applications of this loss formula to settings in which the agent has

imperfect memory, and hence faces an error-management problem; these examples allowed

us to microfound several well-known behavioural biases.

Microfoundations for behavioural biases can contribute to normative discussions of de-

biasing. Our model suggests that a bias relative to the precision-maximizing perception

may be second-best optimal and thus presence of a bias is not enough to justify an in-

tervention without further arguments. As the standard maladaptation argument goes, an

intervention into the decision process may be beneficial if the agent’s environment has

changed since the biases have evolved. Interestingly, the model suggests that an interven-

tion may be justified even if the agent’s environment has not changed since adaptation took

place. This is the case if an intervening outsider knows more about the agent’s decision

problem than the perception designer—evolution—has known.
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A Proofs

Proof of Lemma 1. Note that v(p) = maxq V (p, q) = V (p, p). Applying the Envelope

theorem to

V (p, q) = Eu
[
(1− p)u

(
a∗q,u, 0

)
+ pu

(
a∗q,u, 1

)]
gives

v′(p) =
∂

∂p
V (p, q)

∣∣∣∣
q=p

= Eu
[
u(a∗p,u, 1)− u(a∗p,u, 0)

]
. (8)

Using the linearity of the expected payoff with respect to probability and (8), we obtain

V (p, q) = v(q)− v′(q)(q − p),

and thus,

L(p, q) = v(p)− V (p, q) = v(p)− v(q) + v′(q)(q − p)

is the error of the linear approximation of the value function v(p) when it is approximated

at q. Expression (1) follows once we integrate by parts:∫ q

p
v′′(s)(s− p)ds =

[
v′(s)(s− p)

]q
p
−
∫ q

p
v′(s)ds = L(p, q).

The next result is an auxiliary lemma used in the proof of Proposition 1. For any

action a, we let u−a = (ua′)a′ 6=a ∈ R2(n−1). Given a and ua, we let the measure Qua on

R2(n−1) be given by Qua(S) =
∫
S ρ (u−a, ua) du−a for every borel set S ⊆ R2(n−1), and let

Upa = {u−a : ∀b6= a, u(b, p) < u(a, p)}.

Lemma 7.

d

dp
Qua (Upa ) =

∑
b 6=a

∫
u−ab∈Dab(u(a,p))

∫
s∈R

sρ (u−ab, ua + swp, ua) dsdu−ab.

Proof of Lemma 7. Fix action a and ua. Let the setsBp
b = {u−a : ∀a′ 6=a, b, u(a′, p) < u(b, p)}.

Given p, p0 ∈ [0, 1], since the sets
(
Bp0
b

)
b 6=a partition R2(n−1) up to a set of Qua-measure 0,
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we have:

Qua (Upa ) =
∑
b 6=a

Qua
(
Upa ∩B

p0
b

)
.

Hence,

d

dp

∣∣∣
p=p0

Qua (Upa ) =
∑
b 6=a

d

dp

∣∣∣
p=p0

Qua
(
Upa ∩B

p0
b

)
.

In order to evaluate each term of the sum we first write:

Qua
(
Upa ∩B

p0
b

)
=

∫
u−ab∈R2(n−2)

∫
ub:u(a,p)>u(b,p)

1Bp0b
ρ (u−ab, ub, ua) dubdu−ab.

We make a change of variables: ub = ua − r(cos θ, sin θ), and observe that u(a, p) > u(b, p)

is equivalent to θp < θ < θp + π where θp = arctan
(
−1−p

p

)
. This leads to:

Qua
(
Upa ∩B

p0
b

)
=

∫
u−ab

∫
r>0

∫ θp+π

θ=θp

1Bp0b
rρ (u−ab, ua − r(cos θ, sin θ), ua) dθdrdu−ab.

We differentiate this expression with respect to p at p = p0, and use the fact that on the

boundary, for θ ∈ {θp0 , θp0 + π}, one has u (a, p0) = u (b, p0), and thus 1Bp0b
= 1Dab(u(a,p0)):

d

dp

∣∣∣
p=p0

Qua
(
Upa ∩B

p0
b

)
=

∫
u−ab

1Dab(u(a,p0))

(∫
r>0

rρ (u−ab, ua + r(cos θp0 , sin θp0), ua) dr

−
∫
r>0

rρ (u−ab, ua − r(cos θp0 , sin θp0), ua) dr

)
du−ab

d

dp

∣∣∣
p=p0

θp

=

∫
u−ab∈Dab(u(a,p0))

∫
r∈R

rρ (u−ab, ua + r(cos θp0 , sin θp0), ua) drdu−ab

× d

dp

∣∣∣
p=p0

θp.
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Using d
dp

∣∣∣
p=p0

θp0 = 1
p20+(1−p0)2

, noting that (cos θp, sin θp) =
wp√

p2+(1−p)2
, and introducing

σp =
√
p2 + (1− p)2 we obtain:

d

dp

∣∣∣
p=p0

Qua
(
Upa ∩B

p0
b

)
=

∫
u−ab∈Dab(u(a,p0))

∫
r∈R

r

σ2
p

ρ

(
u−ab, ua +

rwp
σp

, ua

)
drdu−ab.

Finally, we use a last change of variable, s = r/σp to derive:

d

dp

∣∣∣
p=p0

Qua
(
Upa ∩B

p0
b

)
=

∫
u−ab∈Dab(u(a,p0))

∫
s∈R

sρ (u−ab, ua + swp, ua) dsdu−ab.

Summation over b 6= a concludes the proof of the lemma.

Proof of Proposition 1. Recall that

v(p) =
n∑
a=1

E
[
u(a, p)1{∀b6=a,u(a,p)>u(b,p)}

]
.

Since the agent optimizes over actions, we can apply the Envelope theorem to get (see

De Lara and Gossner (2017) for related work)

v′(p) =
∑
a

E

[(
d

dp
u(a, p)

)
1{∀b 6=a,u(a,p)>u(b,p)}

]
=
∑
a

E
[
(u(a, 1)− u(a, 0)) 1{∀b 6=a,u(a,p)>u(b,p)}

]
=
∑
a

∫
ua∈R2

(u(a, 1)− u(a, 0))Qua (Upa ) dua.

By applying Lemma 7 we obtain:

v′′(p) =
∑

a,b:a6=b

∫
ua

∫
u−ab∈Dab(u(a,p))

∫
s
(u(a, 1)− u(a, 0))sρ (u−ab, ua + swp, ua) dsdu−abdua.

A change of variables, (ν, t) = (u(a, p), u(a, 0)− u(a, 1)) gives:

v′′(p) =
∑

a,b:a6=b

∫
ν,s,t∈R

∫
u−ab∈Dab(ν)

−stρ (u−ab, νe+ (s+ t)wp, νe+ twp) du−abdνdsdt.
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With a new change of variable x = s+ t we obtain:

v′′(p) =
∑

a,b:a6=b

∫
ν,x,t∈R

∫
u−ab∈Dab(ν)

(t− x)tρ (u−ab, νe+ xwp, νe+ twp) du−abdνdxdt.

We group the terms a, b and b, a in the sum to get:

v′′(p) =
∑

a,b:a>b

∫
ν,x,t∈R

∫
u−ab∈Dab(ν)

(t− x)2ρ (u−ab, νe+ xwp, νe+ twp) du−abdνdxdt.

It remains to prove that v′′(p) is finite. For a > b, let v′′ab(p) be the term:

v′′ab(p) =

∫
ν,x,t∈R

∫
u−ab∈Dab(ν)

(t− x)2ρ (u−ab, νe+ xwp, νe+ twp) du−abdνdxdt

≤
∫
ν,x,t∈R

∫
u−ab∈R2(n−2)

(t− x)2ρ (u−ab, νe+ xwp, νe+ twp) du−abdνdxdt

=

∫
ν,x,t∈R

(t− x)2ρab (νe+ xwp, νe+ twp) dνdxdt.

With w⊥p = ((1− p), p) and σp =
√
p2 + (1− p)2 we rewrite this as:

v′′ab(p) ≤
∫
ν,x,t∈R

(t− x)2ρab

(
ν(wp + w⊥p ) + xwp, ν(wp + w⊥p ) + twp

)
dνdxdt

=

∫
ν,x,t∈R

(t− x)2ρab

(
νw⊥p + xwp, νw

⊥
p + twp

)
dνdxdt

≤
∫
ν,x,t∈R

(t− x)2ξ (σp (|ν|+ |x|)) ξ(σp(|ν|+ |t|))dνdxdt

≤
∫
ν,x,t≥0

8(t+ x)2ξ(σp(ν + x))ξ(σp(ν + t))dνdxdt

≤
∫
ν,x,t≥0

8((t+ ν) + (x+ ν))2ξ(σp(ν + x))ξ(σ(ν + t))dνdxdt.
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With a change of variables, X = σp(x+ ν), Y = σp(t+ ν), this gives:

v′′ab(p) ≤
∫
ν≥0

8σ−4
p

∫
X,Y≥ν

(X + Y )2ξ(X)ξ(Y )dXdY dν

= 8σ−4
p

∫
ν≥0

(∫
X≥ν

X2ξ(X)dX

∫
Y≥ν

ξ(Y )dY

)
dν

+ 8σ−4
p

∫
ν≥0

(∫
Y≥ν

Y 2ξ(Y )dY

∫
X≥ν

ξ(X)dX

)
dν

+ 16σ−4
p

∫
ν≥0

(∫
X≥ν

Xξ(X)dX

∫
Y≥ν

Y ξ(Y )dY

)
dν

≤ 16σ−4
p

∫
X≥0

X2ξ(X)dX

∫
ν≥0

∫
Y≥ν

ξ(Y )dY dν

+ 16σ−4
p

∫
X≥0

Xξ(X)dX

∫
ν≥0

∫
Y≥ν

Y ξ(Y )dY dν

= 16σ−4
p

∫
X≥0

X2ξ(X)dX

∫
Y≥0

Y ξ(Y )dY

+ 16σ−4
p

∫
X≥0

Xξ(X)dX

∫
Y≥0

Y 2ξ(Y )dY,

= 32σ−4
p

∫
X≥0

X2ξ(X)dX

∫
X≥0

Xξ(X)dX,

which is finite under the tail condition since Xξ(X) is bounded by ξ on (0, 1), it is bounded

by X2ξ(X) for X > 1, and
∫
X≥0X

2ξ(X)dX is finite by assumption.

Proof of Proposition 2. By Lemma 1,

Eε L(p,m+ ε) = Eε

∫ m+ε

p
v′′(s)(s− p)ds.

Since
d

dm
Eε

∫ m+ε

p
v′′(s)(s− p)ds = Eε

[
v′′(m+ ε)(m+ ε− p)

]
,

the first-order condition for the interior optimal m gives (4).

Proof of Proposition 3. We prove point 1, point 2 being symmetric to it. For p ∈ (σ, 1−σ),

we recall from footnote 9 that any message m < p − σ is dominated by p − σ. We now

show that any message of the form m = p− η with η ∈ (0, σ) is dominated by p+ η. Thus
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we want to show that:

Eε L(p, p− η + ε) > Eε L(p, p+ η + ε).

Given the symmetry assumption on the distribution g of ε, this is equivalent to:

Eε [L(p, p− η + ε) + L(p, p− η − ε)] > Eε [L(p, p+ η + ε) + L(p, p+ η − ε)] .

It is sufficient to prove that, for every ε ∈ (0, σ),

L(p, p− η + ε) + L(p, p− η − ε) > L(p, p+ η + ε) + L(p, p+ η − ε).

Let us first examine the case in which ε < η. By applications of Lemma 1 we have:

L(p, p− η + ε) + L(p, p− η − ε)− L(p, p+ η + ε)− L(p, p+ η − ε)

=

∫ p−η+ε

p
v′′(s)(s− p)ds+

∫ p−η−ε

p
v′′(s)(s− p)ds

−
∫ p+η+ε

p
v′′(s)(s− p)ds−

∫ p+η−ε

p
v′′(s)(s− p)ds

=

∫ η−ε

0
v′′(p− δ)δdδ +

∫ η+ε

0
v′′(p− δ)δdδ

−
∫ η+ε

0
v′′(p+ δ)δdδ −

∫ η−ε

0
v′′(p+ δ)δdδ

> 0,

where the final inequality uses assumption (5) and the fact that both η − ε and η + ε are

positive.

Let us now consider the case in which ε ≥ η. In this case, Lemma 1 gives:

L(p, p− η + ε) + L(p, p− η − ε)− L(p, p+ η + ε)− L(p, p+ η − ε)

= −
∫ p+η+ε

p−η+ε
v′′(s)(s− p)ds−

∫ p+η−ε

p−η−ε
v′′(s)(s− p)ds

= −
∫ ε+η

ε−η
v′′(p+ δ)δdδ +

∫ ε+η

ε−η
v′′(p− δ)δdδ

> 0,
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where again the final inequality follows from (5).

We have proved that no message m < p can be optimal. It remains to show that m = p

is not optimal either. Using the symmetry of g and (5), we obtain:

Eε
[
v′′ (p+ ε) ε

]
=

∫ 0

−σ
v′′(p+ ε)εg(ε)dε+

∫ σ

0
v′′(p+ ε)εg(ε)dε

= −
∫ σ

0
v′′(p− ε)εg(ε)dε+

∫ σ

0
v′′(p+ ε)εg(ε)dε

< 0.

Thus, the message m = p cannot satisfy the first-order condition (4) that is necessary for

optimality. Since the optimal message exists, it must be that m∗(p) > p.

Proof of Lemma 3. We first relate the current setting, which has a continuous payoff state

∆1 ∈ R, to our main model with binary payoff state θ ∈ {0, 1}. We do this by rescaling

the problem. For each ∆1 and ∆̂1, we fix ∆(∆1, ∆̂1) < min{∆1, ∆̂1}, and ∆(∆1, ∆̂1) >

max{∆1, ∆̂1}. For brevity we omit the arguments of ∆ and ∆ and let p, q ∈ (0, 1) be given

by p = ∆1−∆

∆−∆
and q = ∆̂1−∆

∆−∆
. We define the utility function u by:

u(a, θ) =


x1

1 + x1
2 if a = 1,

x1
1 + ∆ + x2

2 if a = 2 and θ = 0,

x1
1 + ∆ + x2

2 if a = 2 and θ = 1,

(9)

and, as in our main model, let L(p, q) be the loss from the misperception of the objective

probability p of the state θ = 1 for the subjective value q. The definition of L(p, q) does

not depend on x1
1 since it enters payoffs for both actions additively.

We show that both loss functions are isomorphic in the sense that L(p, q) = L̃
(

∆1, ∆̂1

)
.

Recall that L(p, q) = Eu Lu(p, q), let

L̃∆2

(
∆1, ∆̂1

)
= (∆1 + ∆2)

(
1∆1+∆2>0 − 1∆̂1+∆2>0

)
,

and observe that L̃
(
∆1, ∆̂1

)
= E∆2 L̃∆2

(
∆1, ∆̂1

)
. Note first that Lu(p, q) = 0 if and only if

pu(a, 1) + (1−p)u(a, 0) and qu(a, 1) + (1− q)u(a, 0) are maximized for the same a ∈ {1, 2},
i.e. if and only if p∆ + (1 − p)∆ + ∆2 and q∆ + (1 − q)∆ + ∆2 have a same sign, which

happens iff ∆1 + ∆2 and ∆̂1 + ∆2 have the same sign, i.e. iff L̃∆2(∆1, ∆̂1) = 0. When
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Lu(p, q) > 0, then

Lu(p, q) = |pu(1, 1) + (1− p)u(1, 0)− pu(2, 1) + (1− p)u(2, 0)|

=
∣∣p∆ + (1− p)∆ + ∆2

∣∣
= |∆1 + ∆2|

= L̂∆2

(
∆1, ∆̂1

)
.

We have thus shown that, for every u, p, q: Lu(p, q) = L̂∆2(∆1, ∆̂1) and it follows that

L(p, q) = L̃(∆1, ∆̂1).

We now compute the value function v of the rescaled decision problem with random

utilities (u(a, θ))a,θ. Let us denote ∆1(s) = s∆ + (1− s)∆ for s ∈ [0, 1]. We have:

v(s) =

∫ ∞
−∞

∫ x12−∆1(s)

−∞

(
x1

1 + x1
2

)
%
(
x1

2, x
2
2

)
dx2

2dx
1
2

+

∫ ∞
−∞

∫ ∞
x12−∆1(s)

(
x1

1 + ∆1(s) + x2
2

)
%
(
x1

2, x
2
2

)
dx2

2dx
1
2,

where the first summand stands for the contingencies in which the agent optimally chooses

the first object and receives x1
1 + x1

2, and the second summand stands for contingencies in

which the agent optimally chooses the second object and receives x2
1 +x2

2 = x1
1 +∆1(s)+x2

2.

It follows that:

v′(s) =
(
∆−∆

) ∫ ∞
−∞

∫ ∞
x12−∆1(s)

%
(
x1

2, x
2
2

)
dx2

2dx
1
2,

and

v′′(s) =
(
∆−∆

)2 ∫ ∞
−∞

%
(
x1

2, x
1
2 −∆1(s)

)
dx1

2

=
(
∆−∆

)2
ψ(−∆1(s))

=
(
∆−∆

)2
ψ(∆1(s)),

where the last equality follows from the assumed symmetry of ψ.
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Finally, we use Lemma 1 to compute the loss in the original decision problem:

L̃
(

∆1, ∆̂1

)
=

∫ q

p
v′′(s)(s− p)ds

=

∫ q

p

(
∆−∆

)2
ψ(∆1(s))(s− p)ds

=

∫ ∆̂1

∆1

ψ(s̃) (s̃−∆1) ds̃,

where we used the change of variable s̃ = ∆1(s) to establish the last equality.

Proof of Proposition 4. We use the same rescaling as in the proof of Lemma 3. For a fixed

∆1, we choose sufficiently distant ∆(∆1) < ∆1 and ∆(∆1) > ∆1. Again we omit the

argument of ∆ and ∆, let p = ∆1−∆

∆−∆
, and let u(a, θ) be as specified in (9). We also rescale

the errors by letting ε̃ = ε/
(
∆−∆

)
. Let m∗(p) be the optimal perception message in the

rescaled problem. By construction, (m∗(p)− p)
(
∆−∆

)
= m̃∗(∆1)−∆1.

As we have shown in the proof of Lemma 3, in the rescaled problem, the value function

v satisfies v′′(s) =
(
∆−∆

)2
ψ(∆1(s)), where ∆1(s) = s∆ + (1 − s)∆. Thus, if ∆1 > 0

then v′′(p + α) < v′′(p − α) for all positive α, and symmetrically, when ∆1 < 0, then

v′′(p + α) > v′′(p − α). Then, by Proposition 3, for ∆1 > 0 we have m∗(p) > p, and

symmetrically, for ∆1 < 0 we have m∗(p) < p, as needed.

Proof of Lemma 5. Recall that F and f are the cdf and the pdf of the standard normal

random variable, respectively. Then,

v(p) = Eu max {pu(1, 1) + (1− p)u(1, 0), ũ}

= ũF

(
ũ

σp

)
+

∫ ∞
ũ

xf

(
x

σp

)
dx

σp

= ũF

(
ũ

σp

)
+ σp

∫ ∞
ũ
σp

zf(z)dz,

where σp =
√
p2 + (1− p)2. We have used that the lottery value pu(1, 1) + (1 − p)u(1, 0)

is N
(
0, σ2

p

)
in the second line. There, the first summand stands for contingencies in which

the lottery value is below ũ and the agent obtains ũ. The second summand stands for the

choice of the lottery. The last line follows from the substitution z = x/σp.
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The first derivative of the value function is

v′(p) =

(
−f
(
ũ

σp

)
ũ2

σ2
p

+

∫ ∞
ũ
σp

zf(z)dz + f

(
ũ

σp

)
ũ2

σ2
p

)
σ′p

= σ′p

∫ ∞
ũ
σp

zf(z)dz,

where σ′p is the derivative of σp with respect to p (similarly, σ′′p appearing below is the

second derivative).

Finally, the second derivative is

v′′(p) = σ′2p
ũ2

σ3
p

f

(
ũ

σp

)
+ σ′′p

∫ ∞
ũ
σp

zf(z)dz

= σ′2p
ũ2

σ3
p

f

(
ũ

σp

)
+ σ′′pf

(
ũ

σp

)
=

(
ũ2(2p− 1)2

σ5
p

+
1

σ3
p

)
f

(
ũ

σp

)
,

where we have used that
∫∞
a zf(z)dz = f(a) for the standard normal density f . The

symmetry is immediate. For the derivation of the monotonicity property of this explicit

functional form, see Steiner and Stewart (2016), proof of Lemma 2 thereof.14

Proof of Lemma 6. For any given m(·), the payoff optimization implies that c(u,m) =

a∗q(m),u, where q(m) = E[p | m(p) = m]. For any two posteriors 0 < q < q < 1, the

difference between the losses across the two posteriors is

L (p, q)− L
(
p, q
)

=

∫ q

q
v′′(s)(s− p)ds.

Since v′′ is positive, the last expression is decreasing in p, positive at p = 0, and negative

at p = 1. Therefore, there exists p∗ ∈ [0, 1] such that the posterior q is loss minimizing

below p∗ and q is loss minimizing above p∗.

14This functional form was obtained by Steiner and Stewart (2016) as a relevant weighting function for
their perception problem. Its derivation through the value function v is novel and a simplification over their
method.
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Proof of Proposition 5. Let

q (p; p∗) =

q (p∗) if p ≥ p∗,

q (p∗) if p < p∗,

denote the Bayesian posterior formed at p when the threshold probability is p∗.

The agent’s problem is

max
p∗

Ep v (q (p; p∗)) .

To utilize our characterization of the loss L(p, q), we express the objective in two equivalent

forms that both feature the loss function.

In step 1, we show that the agent’s problem is equivalent to

max
p∗

Ep L (q (p; p∗) , 1/2) . (10)

The expression Ep L (q (p; p∗) , 1/2) is the difference in expected payoffs between the par-

tially informed agent and an uninformed agent. The more useful the partial information

retained by the forgetful agent is, the higher is this difference. To see that (10) is equivalent

to the agent’s problem, write

Ep v (q (p; p∗)) = v (1/2) + Ep [v (q (p; p∗))− v (1/2)]

= v (1/2) + Ep [v (q (p; p∗))− V (q (p; p∗) , 1/2)]

= v (1/2) + Ep L (q (p; p∗) , 1/2) ,

where in the second line, we have used v (1/2) = V (1/2, 1/2) = Ep V (q (p; p∗) , 1/2). The

last equality follows from the linearity of the function V (p, q) with respect to the first

argument, and from Ep q (p; p∗) = 1/2 (since the posteriors q (p; p∗) satisfy the martingale

property).

In step 2 we prove that the agent’s problem is equivalent to

min
p∗

Ep L (p, q (p; p∗)) . (11)

The expression Ep L (p, q (p; p∗)) represents the difference in expected payoffs between the

fully informed agent and the partially informed agent. The more useful the partial infor-
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mation is, the lower is this difference. To see this equivalence, write

Ep v (q (p; p∗)) = Ep V (q (p; p∗) , q (p; p∗))

= Ep V (p, q (p; p∗))

= Ep [v(p)− L (p, q (p; p∗))] ,

where in the second line, we have again used the linearity of V with respect to the first

argument, and that Ep [p | q (p; p∗) = q] = q for both Bayesian posteriors q ∈ {q(p∗), q(p∗)}.
In step 3, we use the objective (10) to rule out optimality of p∗ > 1/2. We show, using

(10), that for any p∗ > 1/2, the agent is better off using a threshold of 1− p∗ rather than

p∗. Let us rewrite the objective in (10) as

Ep L (q (p; p∗) , 1/2) =
q(p∗)− 1/2

q(p∗)− q(p∗)
L
(
q (p∗) , 1/2

)
+

1/2− q(p∗)
q(p∗)− q(p∗)

L (q (p∗) , 1/2) , (12)

where the fractions are the expressions for Pr(p < p∗) and Pr(p ≥ p∗), respectively.

Substituting (1) for L(q, 1/2) into (12) gives

Ep L (q (p; p∗) , 1/2) =

∫ 1

0
v′′(s)h (s, p∗) ds,

where

h (s, p∗) =



0 if s < q(p∗),

q(p∗)−1/2
q(p∗)−q(p∗)

(
s− q (p∗)

)
if q(p∗) ≤ s < 1/2,

1/2−q(p∗)
q(p∗)−q(p∗) (q (p∗)− s) if 1/2 ≤ s < q(p∗),

0 if s > q(p∗).

The function h(s, p∗) is continuous piecewise-linear in s, as depicted in figure 3.

Let us now prove that Ep L (q (p; p∗) , 1/2) < Ep L (q (p; 1− p∗) , 1/2) when p∗ > 1/2.

First, note that the symmetry of the density of p, ϕ, around 1/2 implies the relationships:

q(1− p∗) = 1− q(p∗)

q(1− p∗) = 1− q(p∗).
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Therefore, for any p∗, s ∈ (0, 1):

h(1− s, 1− p∗) =



0 if 1− s < q(1− p∗)
q(1−p∗)−1/2

q(1−p∗)−q(1−p∗)((1− s)− q(1− p∗)) if q(1− p∗) ≤ 1− s < 1/2

1/2−q(1−p∗)
q(1−p∗)−q(1−p∗)(q(1− p∗)− (1− s)) if 1/2 ≤ 1− s < q(1− p∗)

0 if 1− s ≥ q(1− p∗)

=



0 if s > q(p∗)
1/2−q(p∗)
q(p∗)−q(p∗)(q(p∗)− s) if 1/2 < s ≤ q(p∗)
q(q∗)−1/2
q(p∗)−q(p∗)(s− q(p∗)) if q(p∗) < s ≤ 1/2

0 if s ≤ q(p∗)

= h(s, p∗).

Second, note that for p∗ > 1/2,

q(p∗) = E[p|p < p∗]

= Pr(p < 1− p∗|p < p∗) E[p|p < 1− p∗]

+ Pr(1− p∗ ≤ p < p∗|p < p∗) E[p|1− p∗ < p ≤ p∗]

= Pr(p < 1− p∗|p < p∗)q(1− p∗) + Pr(1− p∗ ≤ p < p∗|p < p∗)1/2

> Pr(p < 1− p∗|p < p∗)(1− q(p∗)) + Pr(1− p∗ ≤ p < p∗|p < p∗)(1− q(p∗))

= 1− q(p∗).

We now compare h(s, p∗) with h(1 − s, p∗) for p∗ > 1
2 , as illustrated in figure 3. On

the range 0 ≤ s ≤ 1
2 , h(s, p∗) is null for s below q(p∗), then increases linearly from 0

to its maximum h(1
2 , p
∗) =

(q(p∗)−1/2)(1/2−q(p∗))
q(p∗)−q(p∗) . In comparison, h(s, 1 − p∗) is null for s

below q(1 − p∗) where q(1 − p∗) < q(p∗), then increases linearly from 0 to its maximum

h(1
2 , 1− p

∗) =
(q(1−p∗)−1/2)(1/2−q(1−p∗))

q(1−p∗)−q(1−p∗) = h(1
2 , p
∗). This implies that for every p∗ > 1

2 and

s < 1/2,

h(s, p∗) ≤ h(1− s, p∗), (13)

with strict inequality when q(1− p∗) < s < 1
2 .
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Figure 3: Comparison of h(s, p∗) and h(s, 1− p∗) for p∗ > 1/2. Dashed line: h(s, p∗). Full
line: h(s, 1− p∗).

Now, for any p∗ > 1/2, we have:

Ep [L(q(p; p∗), 1/2)− L(q(p; 1− p∗), 1/2)]

=

∫ 1

0
v′′(s) (h (s, p∗)− h (s, 1− p∗)) ds

=

∫ 1

0
v′′(s) (h (s, p∗)− h (1− s, p∗)) ds

=

∫ 1
2

0

(
v′′(s)− v′′(1− s)

)
(h (s, p∗)− h (1− s, p∗)) ds.

The first bracket in the last integral is positive by assumption. When p∗ > 1/2, the

second bracket is non-positive and strictly negative on some range of integration by (13).

Therefore, for p∗ > 1/2,

Ep L(q(p; 1− p∗), 1/2) > Ep L(q(p; p∗), 1/2),

which shows that p∗ > 1/2 cannot be optimal.

It remains for us to prove that p∗ 6= 1/2, which we do in step 4.15 Let us write the

15We are grateful to an anonymous referee who has improved this part of the proof.
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objective in (11) as

Ep L (p, q (p; p∗)) =

∫ p∗

0
ϕ(p)L

(
p, q (p∗)

)
dp+

∫ 1

p∗
ϕ(p)L (p, q (p∗)) dp

:= k
(
p∗, q(p∗), q(p∗)

)
.

The total derivative of this objective with respect to p∗ is

d

dp∗
Ep L (p, q (p; p∗))

∣∣∣∣
p∗=1/2

= ϕ(1/2)
(
L
(
1/2, q (1/2)

)
− L (1/2, q (1/2))

)
+

∂

∂q
k
(
1/2, q, q

) d

dp∗
q(1/2)

+
∂

∂q
k
(
1/2, q, q

) d

dp∗
q(1/2).

Since the Bayesian posterior values q (p∗) and q (p∗) are optimal for the given threshold p∗,

the second line is zero by the envelope theorem. When we replace the loss function with

the formula of Lemma 1, we obtain

d

dp∗
Ep L (p, q (p; p∗))

∣∣∣∣
p∗=1/2

= ϕ(1/2)

∫ q(1/2)

q(1/2)
v′′(s) (1/2− s) ds.

The symmetry of ϕ around 1/2 implies q(1/2) = 1− q(1/2). We then deduce:

d

dp∗
Ep L (p, q (p; p∗))

∣∣∣∣
p∗=1/2

= ϕ(1/2)

∫ 1−q(1/2)

q(1/2)
v′′(s) (1/2− s) ds

= ϕ(1/2)

∫ 1/2

q(1/2)

(
v′′(s)− v′′(1− s)

)
(p∗ − s) ds

> 0,

where the inequality follows from assumption (7). Thus, p∗ = 1/2 does not satisfy the

first-order condition, so it cannot be optimal.
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B Illusion of Control—General Distributions

We consider binary action sets in this section and utilities u(a, θ) = ũa + τθηa, τ1 > τ0 > 0,

a ∈ {1, 2}. We dispense with the assumption of Gaussian payoffs and provide sufficient

conditions on general payoff distributions for the monotonicity of v′′.

Let us introduce the differences δ = ũ2− ũ1, and η = η2− η1; we denote their densities

by χ(δ) and φ(η). We allow for dependencies between ũ1 and ũ2 and between η1 and η2

but continue to assume that (ũ1, ũ2) and (η1, η2) are independent.

Lemma 8.

v′′(p) = (τ1 − τ0)2
∫ ∞
−∞

η2φ(η)χ
(
− τ(p)η

)
dη. (14)

The proof of the lemma is at the end of this subsection. Let us provide here a heuristic

argument that emphasizes the connection between the likelihood of ties and the second

derivative of the value function. Let τ(p) = τ1p+τ0(1−p), and let ∆(p) = δ+τ(p)η be the

payoff difference between the two actions, and p∗ be the random belief at which the agent

is indifferent between the two actions; that is for each δ and η, p∗ solves ∆(p∗) = 0. For

each η, the conditional density of p∗ is χ
(
− τ(p)η

) ∣∣∣d∆
dp

∣∣∣ = χ
(
− τ(p)η

)
|(τ1 − τ0)η|. Thus,

the unconditional density of p∗ is∫ ∞
−∞

χ
(
− τ(p)η

)
|(τ1 − τ0)η|φ(η)dη.

The intensity of the kink of the value function is |(τ1 − τ0)η|. The expression (14) for v′′

augments the last integral by the intensity of the kinks.

The last lemma allows us to establish the monotonicity of v′′ under a regularity condi-

tion without computing v.

Lemma 9. If the density χ(δ) is single-peaked with its maximum at 0, then v′′ is decreasing.

The difference δ = ũ2 − ũ1 has a single-peaked density when ũ1 and ũ2 are iid. draws

from many common densities, including the normal or Pareto densities. Additionally,

we provide a condition on the joint distribution of ũ1 and ũ2 that is sufficient for the

single-peakedness of χ(δ). Recall that a function h : R2 → R is supermodular if for any

x, y, x′, y′ ∈ R4:

h
(
max{x, x′},max{y, y′}

)
+ h

(
min{x, x′},min{y, y′}

)
≥ h(x, y) + h(x′, y′).
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Let g(ũ1, ũ2) denote the joint density of ũ1 and ũ2.

Lemma 10. If g is supermodular and g(ũ1, ũ2) = g(ũ2, ũ1) for every (ũ1, ũ2), then χ(δ) is

single-peaked with maximum at 0.

The supermodularity assumption is related to the definition of affiliated random vari-

ables (Milgrom and Weber, 1982). Random variables are affiliated if the logarithm of

their joint density is supermodular. Our assumption applies to the density instead of the

log-density.

The following result concludes this section by summarizing conditions under which

upward bias obtains.

Corollary 4. If u(a, θ) = ũa + τθηa, τ1 > τ0 > 0 and the joint density g is both symmetric

and supermodular, then v′′ is decreasing and the solution of the naive perception problem

(3) is biased upwards: m∗(p) > p.

Proof of Lemma 8. Using insight (8) from the beginning of the proof of Lemma 1, we

obtain:

v′(p) = Eu
[
u(a∗p,u, 1)− u(a∗p,u, 0)

]
= Eu

[
ũa∗p,u + τ1ηa∗p,u − ũa∗p,u − τ0ηa∗p,u

]
= (τ1 − τ0) Eu ηa∗p,u .

Recall that τ(p) = pτ1 + (1− p)τ0. The agent chooses action 1 if −τ(p)η > δ, and chooses

action 2 if −τ(p)η < δ. Thus, if we denote by µ(η1, η2) the joint density of (η1, η2),

v′(p) =

(∫
{(η1,η2,δ):−τ(p)η>δ}

η1χ(δ)µ(η1, η2)dδdη1dη2

+

∫
{(η1,η2,δ):−τ(p)η<δ}

η2χ(δ)µ(η1, η2)dδdη1dη2

)
× (τ1 − τ0)

= (τ1 − τ0)

∫
R2

µ(η1, η2)

(∫ −τ(p)η

−∞
η1χ(δ)dδ +

∫ ∞
−τ(p)η

η2χ(δ)dδ

)
dη1dη2,
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and

v′′(p) = (τ1 − τ0)

×
∫
R2

µ(η1, η2)
(
− η1χ

(
− τ(p)η

)
(τ1 − τ0)η + η2χ

(
− τ(p)η

)
(τ1 − τ0)η

)
dη1dη2

= (τ1 − τ0)2
∫
R2

µ(η1, η2)χ
(
− τ(p)η

)
η2dη1dη2

= (τ1 − τ0)2
∫ ∞
−∞

η2φ(η)χ
(
− τ(p)η

)
dη,

as stated in the lemma.

Proof of Lemma 9. The result follows from (14): it follows from τ1 > τ0 that τ(p) is

increasing in p, which implies that χ
(
− τ(p)η

)
is decreasing in p for all p and η.

Proof of Lemma 10. The symmetry of g implies χ(δ) = χ(−δ) for all δ. Thus, for arbitrary

t ∈ R,

χ(δ) =

∫ ∞
−∞

g(x+ t, x+ t+ |δ|)dx =

∫ ∞
−∞

g(x+ t, x+ t− |δ|)dx. (15)

Consider δ, δ′ such that |δ′| > |δ|, and let z = |δ′| − |δ| > 0. Using (15), we get:

2
(
χ(δ)− χ(δ′)

)
=

∫ ∞
−∞

g (u, u+ |δ|) + g (u− z, u− z − |δ|)

− g
(
u, u− |δ′|

)
− g

(
u− z, u− z + |δ′|

)
du.

Since,

u+ |δ| = u− z + |δ′| and u− |δ′| = u− z − |δ|,

the supermodularity of g implies that the last integrand is positive.
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