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COALESCING PARTICLE SYSTEMS AND APPLICATIONS TO1

NONLINEAR FOKKER-PLANCK EQUATIONS∗2

GLEB ZHELEZOV† AND IBRAHIM FATKULLIN‡3

Abstract. We study a stochastic particle system with a logarithmically-singular inter-particle4

interaction potential which allows for inelastic particle collisions. We relate the squared Bessel process5

to the evolution of localized clusters of particles, and develop a numerical method capable of detecting6

collisions of many point particles without the use of pairwise computations, or very refined adaptive7

timestepping. We show that when the system is in an appropriate parameter regime, the hydrodynamic8

limit of the empirical mass density of the system is a solution to a nonlinear Fokker-Planck equation,9

such as the Patlak-Keller-Segel (PKS) model, or its multispecies variant. We then show that the10

presented numerical method is well-suited for the simulation of the formation of finite-time singularities11

in the PKS, as well as PKS pre- and post-blow-up dynamics. Additionally, we present numerical12

evidence that blow-up with an increasing total second moment in the two species Keller-Segel system13

occurs with a linearly increasing second moment in one component, and a linearly decreasing second14

moment in the other component.15

Key words. Coalescing particles, coarsening, Bessel process, Keller-Segel, multi-component16

Keller-Segel, Fokker-Planck, grid-particle method, blow-up, chemotaxis, Vlasov-Poisson17

AMS subject classifications. 35K58, 35Q83, 35Q92, 45G05, 60H30, 60H35, 65C35, 82C21,18

82C22, 82C31, 82C80, 92C1719

1. Introduction20

1.1. Background21

The connection between systems of interacting particles and kinetic-type PDEs22

was first investigated by Kac in his study of the motion of a tagged molecule in a23

bath of identical molecules [18], which arose as a simplified model of a Maxwellian gas24

[24]. This work introduced the property of “propagation of chaos”: as the number of25

molecules tends to infinity, the N -particle probability densities are well-approximated26

by the product of single particle marginals.27

The connection between such processes and nonlinear parabolic equations, such28

as Boltzmann’s equation or Burgers’ equation, was then elaborated by McKean [25].29

This line of research has continued since, and much more is now known about the30

duality between these processes and parabolic PDEs [28]. In particular, particle-based31

numerical methods have been developed for the solution of such PDEs [3] using the32

methods of “mean field Monte Carlo.” The solutions to these PDEs are approximated33

by the empirical density of N -particle systems. As the number of particles tends to34

infinity, such approximations become exact by the propagation of chaos property.35

Rigorously proving propagation of chaos for particle systems with singular inter-36

action coefficients is challenging, and has only been carried out in a few special cases,37

e.g. [17]. One PDE associated with a logarithmically-singular particle system is the38

Patlak-Keller-Segel chemotaxis model (PKS) [20, 26], which is reviewed extensively in39

[15, 16]. Despite the lack of a propagation of chaos result, the PDE has been numerically40

approximated using the associated particle system in several works, initially in [12, 13]41

∗
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2 COALESCING PARTICLE SYSTEMS

and later in [10]. Various properties of the PKS, such as the formation of Dirac singu-42

larities in finite time [1], as well as interaction of singularities post-blow-up [7, 30, 31],43

can either be shown to be true in the particle system, or have considerable numerical44

evidence for their existence. Recent advacements in understanding this particle system45

include partial existence and uniqueness results for solutions to the subcritical (small46

mass) particle system [4, 11], and convergence of the empirical density of a similar47

particle system to the solution of a modified PKS system [2].48

Singular interaction coefficients in the PKS particle system allow for particle col-49

lisions, and some type of regularization must be introduced in order to propagate the50

particle system past the first collision time. In [12], semi-deterministic heavy particles51

absorb light particles. In [10], collided particles are forced to move in unison due to a52

mean field. Broadly speaking, the two works take two different approaches to simulat-53

ing the regularizations of the PKS derived in [7] and [30, 31]. The first work simulates54

the singular limit of the system, whereas the second work simulates the system with an55

effectively regularized Green’s function.56

In [12], heavy particles corresponding to singularities in the PDE must be prescribed57

a priori and cannot arise as the result of a collision of many light particles. On the other58

hand, particles do not truly collide in [10], and the deterministic system approximated59

is closer to the one given in [30, 31], where singularities are replaced with regions of high60

density. In this work, we develop criteria for particle coalescence of particles of arbitrary61

masses, based on analytical estimates of exit times of the squared Bessel process. In62

this context, the particle system in [12] can be viewed as the limit of the particle system63

in [10] with collisions, as the number of particles tends to infinity.64

1.2. Outline We introduce a coalescing particle system with nonuniform particle65

masses and a logarithmic interaction kernel. Using estimates on the system’s second66

moment, we derive a criterion for a finite-time collision of the entire particle system.67

We then motivate the mass-dependence of the diffusion coefficient of a particle, and68

approximate the time evolution of a localized subsystem’s second moment. We then69

show that the hydrodynamic limit of such a system is the multispecies Patlak-Keller-70

Segel system, of which the PKS is a special case. Finally, we present a numerical method71

implementing many-body collisions and coalescence events, which is generally applicable72

to PDEs of the form73 
∂tρ1 =∇·(µ1∇ρ1−χρ1∇c),

...

∂tρK =∇·(µK∇ρK−χρK∇c),
Lc =−(ρ1 + ·· ·+ρK),

(1.1)

where74

Lc(x,t) =∇·(G(x)∇c(x,t))+F (x,c) (1.2)

is an elliptic operator with a fundamental solution V which has a logarithmic singularity.75

As an application, we apply it to the planar case with decaying (radiative) boundary76

conditions and L= ∆, though the method is equally applicable to bounded domains77

with Neumann boundary conditions. This special case is the planar PKS system, some78

properties of which we describe in Section 1.4, and whose measure-valued solutions we79

describe in Section 4.2. We also apply the numerical method to investigate blow-up in80

the components of the multispecies PKS.81
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G. ZHELEZOV AND I. FATKULLIN 3

1.3. The coalescing particle system We study the N -particle systems de-82

scribed by the following equations83

dX
(n)
t =−χ ∂

∂X
(n)
t

N∑
i=1
i6=n

miV (X
(n)
t ,X

(i)
t )dt+

√
2µ̃

mn
dW

(n)
t . (1.3)

Each particle has some mass mn and position X
(n)
t ∈R2. The total mass is M =

∑
imi,84

and χ,µ̃>0 are parameters. The processes W
(n)
t are independent Wiener processes.85

The particle system in (1.3) is related to the PDE in (1.1) when V is the fundamental86

solution of L, e.g. if L= ∆ or L= ∆−k2, we have87

V (x,y) =
1

2π
ln|x−y|, (1.4a)

V (x,y) =− 1

2π
K0(k|x−y|), (1.4b)

where K0 is the modified Bessel function of the second kind. When mn=M/N and88

µ̃=µM/N , the empirical mass density of the particle system with (1.4a) approximates89

the PKS, and the particle system with (1.4b) is the one given in [10].90

The dynamics prescribed in equation (1.3) allows for particle collisions provided91

that V has logarithmic or stronger singularities. In this case, the SDE must be aug-92

mented with proper boundary conditions prescribing behavior when at least two parti-93

cles’ coordinates are identical. Well-posedness and uniqueness results for these types of94

SDEs have not been rigorously established. We proceed formally, considering inelastic95

collisions: colliding particles merge into a single particle which absorbs their total mass.96

1.4. Properties of the Patlak-Keller-Segel system Since many of the ap-97

plications of this work are related to the PKS, we give a short overview of its definition98

and properties here.99

The PKS is prescribed by the following system of PDEs:100 {
∂tρ =∇·(µ∇ρ−χρ∇c),
∆c =−ρ,

(1.5)

and models a biological system consisting of amoeba, which spread across the plane101

with mass density ρ(x,t) and produce a chemical (“chemoattractant”) of concentration102

c(x,t). On average, amoeba diffuse in space with diffusivity µ and drift in the direction of103

∇c with speed χ|∇c|. The chemoattractant diffuses instantly. The boundary condition104

ρ(x,t)→0 as |x|→∞ is enforced, and mass is conserved:
∫
ρ(x,t)dx=M .105

This system has been investigated extensively in the literature [15, 16], often in106

connection with the property that when107

M>8πµ/χ, (1.6)

solutions form singularities in finite time, and when108

M<8πµ/χ, (1.7)

solutions are global in time [1]. In the former case, an upper bound for the singularity109

formation time T may be given as110

T <
2πF (0)

(χM−8πµ)M
, (1.8)

26 Sep 2017 18:05:06 PDT
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4 COALESCING PARTICLE SYSTEMS

Fig. 2.1: An N -particle system with a tightly-clustered N ′-particle subsystem. The
particles inside the dashed circle correspond to particles with indices 1,. ..,N ′, and the
rest of the particles correspond to N ′+1,. ..,N . Several colors are used to emphasize
that the point particles are of different masses.

where111

F (t) =

∫
R2

|x|2ρ(x,t)dx (1.9)

and F (0) is the system’s initial second moment [1].112

2. Collisions and post-collision dynamics113

2.1. Overview Let us first carry out a moment-based computation for finding114

a criterion which predicts whether a particle system will coalesce into a single particle115

in finite time. Similar to the PKS mass criterion, this criterion only depends on the116

total mass of the system and the number of particles, and is otherwise independent of117

the distribution of particles in the plane. We then motivate the mass dependence of the118

diffusion coefficient of the newly created particle. Finally, we derive an approximate119

equation for the dynamics of the second moment of an isolated cluster of particles.120

2.2. Collision criterion for the full system Consider an N -particle system121

with masses and V given as in (1.4a). The dynamics of the nth particle are then122

prescribed by123

dX
(n)
t =− χ

2π

∑
i 6=n

mi
X

(n)
t −X

(i)
t∣∣∣X(n)

t −X
(i)
t

∣∣∣2 dt+
√

2µ̃

mn
dW

(n)
t . (2.1)

To quantify the size of the system, consider its second moment124

Yt=
1

2M2

∑
i,j

mimj

∣∣∣X(i)
t −X

(j)
t

∣∣∣2 . (2.2)

By the positivity of Yt, showing the total collision of the particles in finite time is125

equivalent to showing that YT = 0 for some T <∞.126

It can be shown (by an application of Ito’s lemma) that127

dYt=αdt+2β
√
YtdWt (2.3)
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G. ZHELEZOV AND I. FATKULLIN 5

where128

α=
4µ̃(N−1)

M
− χM

2π

1−
∑
j

(mj

M

)2 (2.4)

and129

dWt=
1

(M)3/2
√
Yt

N∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·dW (i)

t (2.5)

is a Wiener process by the Lévy characterization. We stress that expression (2.3) is only130

valid between collision events, as α depends on the total number of particles and their131

masses, and must therefore be updated after each collision. Rescaling time as t→ t/β2
132

and setting Ỹt=Yβ2t, we get133

dỸt= 2(ν+1)dt+2

√
ỸtdWt, (2.6)

where ν= α
2β2 −1. In terms of our original constants, ν is given by134

ν(m1,m2, ·· · ,mN ) = (N−2)− χM
2

8πµ̃

1−
∑
j

(mj

M

)2. (2.7)

Equation (2.6) describes a squared Bessel process with index ν. Its boundary behavior135

at Ỹ = 0 depends on its index [19, 27]:136

1. When ν ∈ [0,+∞), the origin is an entrance boundary, and Ỹt>0 a.s. for all137

t>0138

2. When ν ∈ (−1,0), the origin is a regular boundary, and the behavior of the pro-139

cess at this point must be defined (e.g. absorbing boundary, reflective bound-140

ary)141

3. When ν ∈ (−∞,−1], the origin is an absorbing boundary which is hit in finite142

time143

It then follows that a full, simultaneous collision of all the particles may occur if144

ν(m1,. ..,mN )<0. (2.8)

When ν ∈ (−1,0), we may choose the collision, which we call “soft,” to be fully inelastic,145

or fully elastic. Similarly, when ν ∈ (−∞,−1], only an inelastic collision may occur.146

The above is not sufficient for describing all collisions in the system. For instance,147

we expect the associated singular forces to force the subsystem inside the dashed line in148

Figure 2.1 to inelastically collide earlier than the full system. We will approximate the149

evolution of the second moment of such a colliding subsystem in Section 2.4, but already150

note here that a localized colliding subsystem’s second moment may be approximated as151

a separate squared Bessel process that’s independent of the particles not participating152

in the collision. As shown in Appendix A, the indices of the squared Bessel processes153

corresponding of the full system pre- and post-collision, and the index of the colliding154

subsystem, are related via a subtraction formula: if νi is the index of the full system155

described in Figure 2.1, νf is the index of the same system after the particles inside the156

dashed lines coalesce, and ν is the index of the subsystem inside the dashed line, then157

νf −νi=−(ν+1) . (2.9)

26 Sep 2017 18:05:06 PDT
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6 COALESCING PARTICLE SYSTEMS

(a) An aggregate of particles, a mo-
ment before coalescence.

(b) Aggregate coalesces into one par-
ticle of mass M ′.

Fig. 2.2: As ε→0, the bottom-left particle should experience the same drift in (2.2a)
and (2.2b).

From (2.9) we see that hard collisions, except in the critical ν=−1 case, always increase158

the system’s overall index, and soft collisions increase the system’s overall index.159

To see the effect of this index change on the full system, let τ be the first hitting160

time of the origin for the SDE given in (2.3). This hitting time has the inverse gamma161

distribution [23],162

τ � µ̃Y0
U
, (2.10)

where U ∼G(|ν|,1) is distributed according to the gamma distribution with shape pa-163

rameter |ν| and rate parameter 1.164

Intuitively, we see that increasing the index implies that a system contracts at a165

slower rate, and that a system with only hard inelastic collisions contracts at a slower166

rate after each collision (e.g. as in Figure 5.1). Furthermore, we expect many systems167

which can experience soft inelastic collisions to behave similarly, as a localized subsystem168

with an index ν ∈ (−1,0) has a low probability of undergoing a collision in a time step169

(e.g. τ only has an expected value when ν <−1), and may attract a sufficient number170

of additional particles into its aggregate to force the aggregate to experience a hard171

collision instead. Since in this work we will primarily focus on the large particle case,172

we prescribe that all collisions—soft and hard (i.e. ν <0)—are inelastic.173

We remark that the formula for the time derivative of the second moment of the174

PKS also only gives an upper bound for the formation of a singularity, since for a system175

of total mass M greater than the system’s critical mass Mc, a second moment equal to176

zero implies the formation of a singularity of total mass M>Mc. However, singularities177

in the radially-symmetric PKS form with a mass of exactly Mc [14, 29], after which the178

time derivative of the second moment changes [30].179

2.3. Post-collision dynamics The dynamics of the coalescing diffusion system,180

given by (1.3), are undefined at times when there exist two indices i and j such that181

X
(i)
t =X

(j)
t . If we prescribe that collisions only occur inelastically, we can propagate the182

26 Sep 2017 18:05:06 PDT
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G. ZHELEZOV AND I. FATKULLIN 7

system past collision times by coarsening the system: that is, by replacing each collided183

aggregate of particles with a single particle of the same mass as the aggregate. Let us184

now show the diffusion coefficient of the newly-created particle is inversely-dependent185

on the square root of the mass, as given in (1.3).186

Consider an N ′+1 particle system, with the first N ′ particles positioned in a tight,187

pre-coalesced cluster at X
(n)
t with masses mn totalling to M ′, and the last particle188

located far away at x=X
(N ′+1)
t with mass m=mN ′+1, as in Figure 2.2a. In general,189

the diffusion coefficient of a particle may be given as a function of the particles mass,190

σn=σ(mn). Let τ denote the time at which the first N ′ particles coalesce at Zτ , and191

fix 0<ε� τ . Then192

dxτ−ε=−χ
N ′∑
i=1

mi
∂V

∂x

(
xτ−ε,X

(i)
τ−ε

)
dt+σ(mN ′+1)dW

(N ′+1)
τ−ε . (2.11)

At the moment the first N ′ particles coalesce, the system becomes a two-particle system,193

and so194

dxτ =−χM ′ ∂V
∂x

(xτ ,Zτ )dt+σ(mN ′+1)dW (N ′+1)
τ . (2.12)

Let us assume the particle at xt should not experience an abrupt discontinuity in its195

drift at the moment of coalescence, i.e. we want dxτ−ε→dxτ as ε→0+. Equating the196

right hand sides of (2.11) and (2.12) as ε→0+ and using the property that X
(n)
τ−ε→Zτ197

for all n≤N ′, we get198

Zτ = lim
ε→0+

1

M ′

N ′∑
i=1

miX
(i)
τ−ε, (2.13)

meaning the N ′ particles must coalesce at the center of mass of the subsystem. This199

suggests that the diffusion coefficient of the newly-created particle positioned at Zτ200

should be the same as the diffusion coefficient of the center of mass process of the first201

N ′ particles for t<τ . By the independence of the processes W
(i)
t for 1≤ i≤N ′ and the202

definition of the center of mass inside the limit on the right hand side of (2.13), we get203

σ(M ′) =
1

M ′

√√√√ N ′∑
i=1

m2
i (σ(mi))2, (2.14)

or equivalently,204

(M ′)2 (σ(M ′))2 =

N ′∑
i=1

m2
i (σ(mi))

2. (2.15)

Since M ′=
∑
mi, it follows that f(x) =x2(σ(x))2 must be additive, i.e. satisfies205

Cauchy’s functional equation,206

f(x) =f(x)+f(y). (2.16)

Under the physically relevant assumption that f is continuous, solutions to this func-207

tional equation must be linear [21]. We therefore get208

σ(m) =

√
2µ̃

m
, (2.17)
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8 COALESCING PARTICLE SYSTEMS

-0.15

-0.1

-0.05

	0

	0.05

	0.1

	0.15

	0.2

	0.25

-0.1 	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8

Particle	1

Particle	2

Particle	3

y

x

Particle	paths

(a) All three particles are drifting in the di-
rection of the center of mass. As can be seen
by the asymmetry in the paths of particles 1
and 2, the effect of the third particle on the
dynamics of the first two is non-negligible.

	0

	0.002

	0.004

	0.006

	0.008

	0.01

	0.012

	0 	5x10-5 	0.0001	0.00015	0.0002	0.00025

Se
co
nd

	m
om

en
t

t

Actual	vs.	predicted	2nd	moment

Actual	2nd	moment
Predicted	2nd	moment
Predicted	w/	correction

(b) The second moment of the subsystem con-
sisting of the first two particles is approxi-
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Fig. 2.3: An adaptive time step is used to simulate a three-particle system with χ = 10,
µ̃ = 10, and particle masses m1 =m2 = 20, m3 = 100. The first two particles are initial-
ized at

(
0,± 1

10

)
, the third at

(
4
5 cosθ, 45 sinθ

)
with θ=π/12.

as in the dynamics given in the beginning of the work in (1.3).209

By the same reasoning, we expect Zt to be driven by the weighted noise of the210

center of mass, W
(cm)
t , given by211

W
(cm)
t =

1√
M ′

N ′∑
i=1

√
miW

(i)
t . (2.18)

The dynamics of the coalesced particle of mass M ′ at Zt for t≥ τ are therefore212

dZt=−χm∂V

∂x
(Zt,xt)dt+

√
2µ

M ′
dW

(cm)
t , (2.19)

which in the presence of additional particles generalize to (1.3).213

2.4. Evolution of a subsystem’s second moment Let us compute the local214

second moment of the highly localized subsystem of the first N ′ particles in Figure 2.1.215

First, we ignore all interactions with the outside particles not in the colliding cluster,216

and therefore approximate that the local second moment,217

Ỹt=
1

2(M ′)2

N ′∑
i,j=1

mimj

∣∣∣X(i)
t −X

(j)
t

∣∣∣2 , (2.20)
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G. ZHELEZOV AND I. FATKULLIN 9

evolves according to (2.3) with the summation being taken over the indices of the particle218

participating in the collision,219

dỸt≈dQt=

4µ̃(N ′−1)

M ′
− χM

′

2π

1−
N ′∑
j=1

(mj

M ′

)2dt+2

√
Ỹt

√
2µ̃

M ′
dW̃t, (2.21)

where220

dW̃t=
1

(M ′)3/2
√
Ỹt

N ′∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·dW (i)

t . (2.22)

As shown in Figure 2.3, such an approach appears to be qualitatively correct, but221

introduces an error which appears to grow in time. Let us now find a higher order222

approximation.223

As a model for the system in Figure 2.1, consider a system consisting of two224

nearby particles of masses m1 and m2, and a third, distant particle of mass m3, i.e.225 ∣∣∣X(1)
t −X

(2)
t

∣∣∣� ∣∣∣X(1)
t −X

(3)
t

∣∣∣≈ ∣∣∣X(2)
t −X

(3)
t

∣∣∣. We wish to investigate how the third par-226

ticle affects the second moment of the subsystem consisting of the first two particles,227

Ỹt=
m1m2

(m1 +m2)2

∣∣∣X(1)
t −X

(2)
t

∣∣∣2 . (2.23)

Using (1.3) and an application of Ito’s lemma, we can get an exact correction to the228

deterministic part of the approximating process Qt given in (2.21):229

dỸt=dQt+
2m1m2

(m1 +m2)2

(
X

(1)
t −X

(2)
t

)
· (2.24)

·

−χm3

2π

 X
(1)
t −X

(3)
t∣∣∣X(1)

t −X
(3)
t

∣∣∣2 +
X

(2)
t −X

(3)
t∣∣∣X(2)

t −X
(3)
t

∣∣∣2

dt.

We introduce the small parameter230

εt= (X
(2)
t −X

(1)
t )/(m1 +m2), (2.25)

through which (2.24) may be approximated as231

dỸt=dQt−
χm3

π

Ỹt∣∣∣X(cm)
t −X(3)

t

∣∣∣2 cos2θdt+O(|εt|2)dt (2.26)

where we assume X
(1)
t −X

(3)
t ≈X

(2)
t −X

(3)
t ≈X

(cm)
t −X(3)

t and θ is the angle between232

X
(2)
t −X

(1)
t and X

(cm)
t −X(3)

t .233

A similar monopole approximation may be used when there are N−2 particles234

affecting the evolution of the second moment of the first two particles. Then,235

dỸt=dQt−
χỸt
π

K+2∑
i=3

mi∣∣∣X(cm)
t −X(i)

t

∣∣∣2 cos2θi+O(|εt|2) (2.27)
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10 COALESCING PARTICLE SYSTEMS

=dQt+2χỸt

K+2∑
i=3

miV
′′
(∣∣∣X(cm)

t −X(i)
t

∣∣∣)cos2θi+O(|εt|2), (2.28)

where θi is the angle between X
(2)
t −X

(1)
t and X

(cm)
t −X(i)

t , and the shorthand V (x,y) =236

V (|x−y|) is used to simplify the expression.237

By a similar argument, for an N particle system with a cluster consisting of the238

first N ′ particles, we have239

dỸt≈dQt+2χỸt

N∑
i=N ′+1

N ′∑
j,k=1

miV
′′
(∣∣∣X(cm)

t −X(i)
t

∣∣∣)cos2θijkdt, (2.29)

where θijk is the angle between X
(j)
t −X

(k)
t and X̃

(cm)
t −X(i)

t , with240

X̃
(cm)
t = (miX

(i)
t +mjX

(j)
t )/(mi+mj). (2.30)

Heuristically, we see that as Ỹt→0, the corrections in (2.29) vanish, the subsystem241

essentially becomes decoupled from the rest of the system, and the subsystem’s second242

moment Ỹt becomes a squared Bessel process of negative index by (2.8). Since the243

collision process (before the collision time) does not involve the creation or annihilation244

of particles, it appears that a highly-localized aggregate which is not decoupled from245

the rest of the system, but is nontheless undergoing collision, should still satisfy (2.8),246

i.e.247

ν(m1,m2,. ..,mN ′)<0, (2.31)

where ν is as in (2.7). This informal argument suggests that for a very tight cluster, this248

is a sufficient condition for an aggregate to undergo collision. For a less tight cluster249

(even if it is separated), the contributions of the higher order corrections may prevent250

a collision from occurring.251

3. Simulation of particle coalescence and dynamics252

3.1. Overview We employ a grid-particle approach for computing interparticle253

interactions, which avoids pairwise computations in (1.3) by introducing a continuous254

global potential which varies in time. We remark that similar ideas have been devel-255

oped in the particle-in-cell literature (e.g. [6], [32]), but without coalescing stochastic256

particles.257

We sidestep the challenge of numerically detecting singular point collisions by intro-258

ducing an adaptive grid which identifies highly localized aggregates, the second moment259

of which is computed and simulated using the appropriate Wiener process (given by260

(2.5)) in order to identify a collision inside a timestep.261

3.2. Full numerical method The numerical method for the simulation of the262

coalescing particle system (1.3) combines the upcoming sections at every timestep in263

the following order:264

1. Detect highly isolated clusters of particles with negative indices, which may265

collide with high probability within the upcoming time step. For each such266

cluster, compute the local second moment, Ỹt.267

2. Simulate the particle dynamics, using adaptive timestepping when appropriate.268

For each particle in the above clusters, record the total increment of the driving269

Wiener process over the full time step.270
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G. ZHELEZOV AND I. FATKULLIN 11

3. For each cluster, simulate the second moment over a time step, using (2.5). If271

the second moment hits zero, coalesce the cluster’s particles at their center of272

mass.273

3.3. Detection of isolated aggregates To detect particle collisions, we first274

apply a density-based clustering algorithm for finding isolated particle aggregates. Such275

clusters are then checked for collisions, as described in Section 3.5.276

To find clusters, we form a coarse mesh which covers all the particles (in practice,277

we use a 1×1 mesh). For each cell, we compute the square of its diagonal, s2, and the278

second moment of the particles inside the cell, Ỹ . We call a cell “separated” if279

Ỹ /s2<η�1, (3.1)

where η is some fixed constant (in practice, the authors use η= 0.1). If a cell is not280

separated, and has more than two particles, then we refine the cell into four equally-sized281

cells, and repeat this procedure with each subcell.282

A separated cell is kept if it is “collidable,” otherwise it is refined as well. A cell is283

collidable if its index ν is negative, and the second moment satisfies284

Ỹ +α∆t+2β
√
Ỹ Φ−1(p)

√
∆t<0, (3.2)

where α and β are given as in (2.4), Φ is the normal distribution function, and 0<p�1285

is some small probability. The interpretation of this inequality is that it excludes cells286

which may collide within the time step with very low probabilities.287

3.4. Particle dynamics Since V (x,y) = 1
2π ln|x−y| is the fundamental solution288

to the Laplace operator, we can get a global potential for the the dynamics given in289

(1.3):290 
dX

(n)
t =χ∇c

(
X

(n)
t ,t

)
dt+

√
2µ̃
mn

dW
(n)
t ,

∆c =−P,
P (x,t) =

∑N
i=1miδ

(
x−X(i)

t

)
,

(3.3)

where c is the interaction field and P is the empirical mass density. The case of a291

different V can be treated similarly.292

For the simulation of these particle dynamics, we discretize a computational domain293

as in figure 3.1, and use the particles to interpolate a mass density field Pij onto the field.294

We then numerically solve for the mean field Cij . To advance by ∆t forward in time, we295

introduce adaptive time steps ∆τ1,. ..,∆τK(n,t) (this is needed for stability reasons—see296

below), and use a forward Euler-Maruyama scheme to simulate the dynamics of each297

particle:298

X(n)(t+∆τi) =X(n)(t)+χ∇c
(
X(n)(t),t

)
∆τi+

√
2µ̃

mn
N

(n)
i (0,1)

√
∆τi, (3.4)

where N
(n)
i (0,1) is a normal Gaussian random variable. This bookkeeping of the noise299

is helpful for numerically detecting collisions, where we need the quantity300

∆W (n)(t) =

K(n,t)∑
i=1

√
∆τiN

(n)
i (0,1), (3.5)
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12 COALESCING PARTICLE SYSTEMS

interpolate

monopole
approximation

Fig. 3.1: Inside the computational domain, which we denote by the dashed box, ∇Cij
is computed numerically, and then bilinearly interpolated at the point inside the cell.
Outside the computational domain, we approximate ∇c via a monopole approximation
(xcm denotes the center of mass).

i.e. the increment of the nth Wiener process W
(n)
t between t and t+∆t (see Section 3.5).301

We approximate ∇c(x) in two steps. First, we construct the gradient field302

∇Cij = (CXij ,CYij) using the second order approximation303

CXij =
Ci+1,j−Ci−1,j

2∆x
, (3.6)

CYij =
Ci,j+1−Ci,j−1

2∆x
. (3.7)

Then we approximate ∇c(x,t) using a bilinear interpolation of the values of ∇C at the304

four nearest grid points. In the case that x is not inside the computational domain, we305

use a monopole approximation:306

∇c(x) =−M∇V (x−xcm), (3.8)

where xcm is the center of mass of the system. Since the primary novelty of this307

numerical method is in its applicability to colliding systems, an appropriately-chosen308

computational domain (i.e. one which overlaps with most of the mass of the system)309

will make use of the monopole approximation rarely. Nonuniform meshes may be used310

as well, but have not been observed to make a significant improvement in systems with311

most of the mass sufficiently away from the boundaries .312

As described in [10], an adaptive time step is dynamically chosen such that the313

expected length of a particle’s jump does not exceed the mesh size. This is necessary to314
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prevent spurious mass oscillations around singularities in c(x,t). Since V has logarithmic315

singularities, we expect that time steps can get as small as ∆τ ∼∆x2.316

The mass density field Pij is computed by bilinearly interpolating the mass of317

each particle onto the four nearest grid points. The result is divided by ∆x2, to get318

a mass density. This first-moment-preserving approach prevents particles from “self-319

interacting,” a phenomenon which creates an artificial flux towards grid points, as de-320

scribed in [10].321

The mean field Cij is solved for on the computational domain using a standard322

finite-differences scheme:323

1

∆x2
(Ci+1,j+Ci−1,j+Ci,j−1 +Ci,j+1−4Cij) =−Pij . (3.9)

The monopole approximation is used for the boundary conditions:324

Cij =−MV (Xij−xcm) (3.10)

for Xij on the boundary on the computational domain, and xcm the center of mass of325

the particle system.326

3.5. Detection of collisions in isolated aggregates After all the particles are327

propagated over one time step, we consider the terminal cells returned by the algorithm328

given in Section 3.3. We approximate the evolution of the second moment inside each329

cell which is both separated and collidable. To do this, for each cell, we compute the330

quantity331

∆Ỹ =α∆t+2β
√
Ỹ∆W̃t, (3.11)

and coalesce all the particles at their new center of mass if ∆Ỹ ≤0.332

The increment ∆W̃t is given by (2.22), i.e.333

∆W̃t=
1

(M ′)3/2
√
Ỹt

N ′∑
i,j=1

mj
√
mi

(
X

(i)
t −X

(j)
t

)
·∆W (i)(t). (3.12)

The cost of computing the above sum can be significantly reduced using the following334

identity:335

dWt=
1√
MYt

N∑
i=1

√
mi

(
X

(i)
t −X

(cm)
t

)
·dW (i)

t , (3.13)

from which336

∆W̃t=
1√
MỸt

N ′∑
i=1

√
mi

(
X

(i)
t −X

(cm)
t

)
·N (i)(t)

√
∆t, (3.14)

where X
(cm)
t is the center of mass of the cell.337

We note the dynamics of the second moment may be approximated more accurately338

by taking advantage of the first order correction presented in Section 2.4, but the ne-339

cessity of such corrections may be avoided by simply choosing a very small localization340

parameter η, as in (3.1).341

4. Finite-time blow-up in hydrodynamic limits342
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14 COALESCING PARTICLE SYSTEMS

4.1. Overview We first show how the PKS particle system described in the343

introduction fits in the context of the present work. We then formally derive the hydro-344

dynamic limit of a particle system with masses approaching zero nonuniformly, which345

we call the multispecies Patlak-Keller-Segel system (MPKS), and derive a finite-time346

blow-up condition. Finally, we show how the hydrodynamic limit of the system may347

be taken in such a way that the limit is a regularized MPKS system after the time of348

blow-up.349

4.2. The Patak-Keller-Segel particle system As already described in Sec-350

tion 1.4, the PKS is given by the following system of PDEs:351 {
∂tρ =∇·(µ∇ρ−χρ∇c),
∆c =−ρ,

(4.1)

where the boundary condition ρ(x,t)→0 as |x|→∞ is enforced, and mass is conserved:352 ∫
ρ(x,t)dx=M .353

The PKS may be rewritten more compactly as an integrodifferential equation:354

∂tρ=∇·(µ∇ρ+χρ∇(V ∗ρ)), (4.2)

where V (x) = 1
2π ln|x|, as before, is the fundamental solution of the Laplace operator.355

Observe that if c is predetermined, then the first equation in (4.1) is the Fokker-Planck356

equation for the process357

dXt=χ∇c(Xt,t)dt+
√

2µdWt. (4.3)

It follows that for an N -particle system with positions X
(n)
t , the empirical mass density358

PN (x,t) =
M

N

N∑
n=1

δ
(
x−X(n)

t

)
(4.4)

approximates the solution to the PKS ρ.359

Since ∇c is unknown, we approximate it by the mean field created by the particles360

themselves: this is readily done making the substitution c→−V ∗PN , as suggested by361

(4.2). We arrive at362

dX
(n)
t =−χM

N

∂

∂X
(n)
t

∑
i 6=n

V (X
(n)
t ,X

(i)
t )dt+

√
2µdW

(n)
t . (4.5)

This is simply the particle system described in the bulk of this work, with mn=M/N363

and the diffusion coefficient364

µ̃=µmn=
µM

N
. (4.6)

Thus, the PKS with total mass M and diffusion coefficient µ can be viewed as the365

hydrodynamic limit of the particle system with the above parameters.366

The particle system described in this work collides only when the index of the367

system (2.7) is negative. Similarly, the PKS forms singularities when the total mass is368

above the critical mass Mc= 8πµ/χ [1]. Let us show that these two criteria coincide in369

the hydrodynamic limit.370
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Substituting the necessary diffusion coefficient (4.6) into the definition of the Bessel371

index (2.7), we get the PKS index:372

νPKS = (N−2)− χMN

8πµ

(
1−
∑
k

(mk

M

)2)
(4.7)

=N

[(
1− 2

N

)
− χM

8πµ

(
1−
∑
k

(mk

M

)2)]
(4.8)

=N

[(
1− 2

N

)
− χM

8πµ

(
1− 1

N

)]
(4.9)

= (N−1)

(
1− χM

8πµ

)
−1. (4.10)

As per the classification of the origin for the second moment, listed in Section 2.2, we373

have that a finite-time collision will occur when ν≤−1. This criterion applied to (4.10)374

reduces exactly to M>8πµ/χ—the necessary and sufficient condition for finite-time375

blow-up in the PKS.376

4.3. Post-blow-up PKS and particle coalescence The PKS has been regu-377

larized and investigated post-blow-up in several works, including [30, 31] and [7]. Al-378

though the post-blow-up dynamics are slightly different in the two works, they share379

the common feature that the density becomes a measure, and splits into a regular, and380

an atomic component consisting of Kt point masses:381

ρ(x,t) =ρreg(x,t)+

Kt∑
n=1

Mn(t)δ
(
x−x(n)t

)
, (4.11)

where the nth atomic component has a smoothly-evolving mass Mn(t)≥8πµ/χ, sup-382

ported on a point moving along a smooth path. The point masses may emerge or collide,383

and thus their number Kt varies in time. Mass is locally transferred from the regular384

component to each atomic component as385

dMn

dt
=ρreg

(
x
(n)
t ,t

)
Mn. (4.12)

With these dynamics, it can be shown [7] that the second moment of this system evolves386

as387

d

dt

(
1

M

∫
|x|2ρ(x,t)dx

)
= 4µ

M̄

M
− χM

2π

(
1−

Kt∑
i=1

(
Mi(t)

M

)2
)
, (4.13)

where M̄ =M−
∑Kt

i=1Mi(t) is the mass of the regular component (we note the quantity388

of interest in the PKS literature is typically the unnormalized second moment, which389

we choose to normalize, due to its geometric interpretation).390

In the context of the PKS particle system, we expect light, uncoalesced particles391

to correspond to the regular component of the solution to the PKS, and each massive,392

coalesced particles to correspond to point mass in the atomic component of the solution393

to the PKS. By the previous section, such particles should only have mass above 8πµ/χ,394

as in the PKS. Let us recover equation (4.13) using the particle system, assuming that395

this correspondence is true.396
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Consider a PKS system with smooth initial conditions, which blows up in finite397

time, and has an atomic component of mass M1, consisting of one point mass, at time398

t=T . Now consider a PKS particle system, initialized with N0 particles distributed399

according to the initial conditions given to the PKS PDE. The second moment Yt400

evolves according to401

dYt=αdt+2β
√
YtdWt, (4.14)

where α and β are given in (2.4), with µ̃=µM/N0, and mn=M/N0 initially. Near402

t=T , there should be one massive particle, consisting of k coalesced light particles.403

Plugging this into (2.4), we get:404

α=
4µ

M

M

N0
(N0−k+1−1)− χM

2π

(
1−N0−k

N2
0

−
(
M1

M

)2
)

(4.15)

=
4µ

M

(
N0−k
N0

M

)
− χM

2π

(
1−N0−k

N2
0

−
(
M1

M

)2
)
. (4.16)

As N0→∞, we get β→0, and Yt becomes deterministic:405

dYt→4µ
M̄

M
− χM

2π

(
1−
(
M1

M

)2
)
dt, (4.17)

consistent with (4.13) for a single point mass. A similar argument can be used to derive406

(4.13) fully.407

4.4. Hydrodynamic limit to the multispecies PKS model We remark that408

the sign of the PKS particle system’s index (4.9) becomes independent of N as N→∞.409

This convenient property occurs only because µ̃∼1/N , and is actually independent of410

the the particle masses, as long as the total sum of the particle masses is fixed and411

the mass of each individual particle approaches zero. Thus the question of the limiting412

system when individual particles approach 0 nonuniformly arises naturally.413

As a first basic example, let us consider the system414

dX
(n)
t =−χ ∂

∂X
(n)
t

∑
i 6=n

miV (X
(n)
t ,X

(i)
t )dt+

√
2µM

Nmn
dW

(n)
t , (4.18)

where N = 2N ′, M =M1 +M2, mi = M1/N
′ for i≤N ′ and mi = M2/N

′ for i>N ′.415

That is, we break up the system into two families, the first family containing N ′ particles416

of uniform mass ma=M1/N
′, and the second family containing N ′ particles of uniform417

mass mb=M2/N
′. The particle dynamics are then given by418 
dX

(n)
t =χ∇c(X(n)

t ,t)dt+

√
µ
(

1+ M1

M2

)
dW

(n)
t , n≤N ′

dX
(n)
t =χ∇c(X(n)

t ,t)dt+

√
µ
(

1+ M2

M1

)
dW

(n)
t , n>N ′

∆c =−P1(x)−P2(x),

(4.19)

where P1 and P2 are the empirical mass densities of the particles of the first and second419

mass:420

P1(x) =

N ′∑
i=1

maδ
(
x−X(i)

t

)
, (4.20)
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P2(x) =

2N ′∑
i=N ′+1

mbδ
(
x−X(i)

t

)
. (4.21)

Appealing once more to the formal derivation of the hydrodynamic limit described421

earlier, we expect that Pi approximates ρi in the limit N→∞, where422 
∂tρ1 =∇·

(
µ
2

(
1+ M2

M1

)
∇ρ1−χρ1∇c

)
,

∂tρ2 =∇·
(
µ
2

(
1+ M1

M2

)
∇ρ2−χρ2∇c

)
,

∆c =−(ρ1 +ρ2).

(4.22)

The above system can be seen as a “two species” PKS model, in which two species423

attract each other through the same mechanism, but have different average diffusion424

rates.425

Similarly, we may break the system up into K families, each family of total mass426

Mi and containing Ni particles of uniform mass Mi/Ni. We take the hydrodynamic427

limit by fixing ηi>0 for 1≤ i≤K such that428

η1 + ·· ·+ηK = 1, (4.23)

and letting N→∞ in such a way that429

Ni=ηiN. (4.24)

Then Pi→ρi, where430 
∂tρ1 =∇·(µ1∇ρ1−χρ1∇c),

...

∂tρK =∇·(µK∇ρK−χρK∇c),
∆c =−(ρ1 + ·· ·+ρK),

(4.25)

with
∫
ρi=Mi and431

µi=
M

Mi
ηiµ= lim

N→∞

M/N

Mi/Ni
µ, (4.26)

which can be interpreted as µ scaled by the ratio of the overall system’s average particle432

mass, to the ith family’s particle mass. We will refer to (4.25) as the “multispecies433

Patlak-Keller-Segel system” (MPKS).434

The excluded case ηi= 0 corresponds to a mass of Mi being supported entirely on435

a singular component of the solution post-blow-up.436

4.5. Formation of singularities in the MPKS As can be seen from (4.8), the437

sign of the index of a particle system that’s taken to its hydrodynamic limit becomes438

independent of the number of particles, and can therefore fully collide in finite time, if439

a specific mass condition is satisfied. In the PDE, this corresponds to a finite-time blow440

up. Let us verify that this is indeed the case.441

Assume arbitrary diffusion coefficients µi. Let P (x,t) =
∑K
i=1ρi(x,t) be the total442

mass density of an MPKS system. Then
∫
R2P (x,t)dx=M1 + ·· ·+MK =M , and443

c(x,t) =− 1

2π

∫
R2

ln|x−y|P (y)dy. (4.27)
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To show the existence of finite-time blow-up, define the second moment of the system,444

F (t) =

∫
R2

P (x,t)|x|2dx, (4.28)

and compute its derivative:445

F ′(t) =

K∑
i=1

(
4µi−

χM

2π

)
Mi, (4.29)

where the detailed computation is given in Appendix B. Thus for constants satisfying446

K∑
i=1

(
4µi−

χM

2π

)
Mi<0, (4.30)

the second moment vanishes in finite time, but the total mass is conserved–thus implying447

the formation of a singularity.448

As an aside, we remark that the the formula given by (4.29) remains valid when449

each component has a different chemosensitivity χi. Furthermore, we note that the450

blow-up condition (4.30) is satifised when M>max(8πµi/χ), i.e. the MPKS forms a451

singularity when its total system mass is greater than the classic PKS critical mass for452

each separate components. Recalling the special structure of the diffusion coefficients in453

the hydrodynamic limit of the particle system (4.26), we see that the blow-up condition454

(4.30) coincides with the full particle system collision condition νPKS<0, where νPKS455

is as in (4.8).456

For two species, the system was investigated in [5], where initial data were classified457

in terms of having solutions which either blow up in finite time, or are global in time.458

Interestingly, that work showed that there exist initial data corresponding to finite time459

blow-up, for which the second moment is increasing, i.e. F ′(t)>0—in analogy with460

(2.9). An optimal classification was obtained for a disc domain in [8], though questions,461

such as if blow up occurs simultaneously in all components, remain (this question was462

affirmatively answered for the radial case in [9]). In Section 5.3, we investigate how the463

second moments of components of the two species MPKS evolve in the regime that a464

singularity forms in finite time with F ′(t)>0.465

We expect that the MPKS can be regularized past blow-up times using a singular466

perturbation limit, as was done in [30, 31] for the PKS, and proposed in [22] for the467

MPKS. In this case, the presented method is well-suited for the investigation of this468

regularization.469

4.6. More general V As the particle system dynamics are equally valid for470

choices of V which are not scaled logarithms, we left some formulas somewhat general,471

simply in terms of the derivatives of V . Particle coalescence, however, strongly depends472

on there being a logarithmic singularity in V . This is necessary to connect collisions to473

the Bessel process.474

We note that, in the plane, the fundamental solution to a radially-symmetric, elliptic475

operator L with sufficiently regular coefficients (as in (1.2)) has logarithmic singularities.476

It therefore follows that the discussion above applies in the case when V is such a477

fundamental solution. That is, suppose V (x,y)∼γ ln|x−y| as |x−y|→0. Then the478

index formulas used in the previous sections should be replaced by the following index:479

νL(m1,m2,·· · ,mN ) =N

(
1− 2

N

)
− γχM

2

4µ̃

1−
∑
j

(mj

M

)2 . (4.31)
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Fig. 4.1: For the two species MPKS system, the second moment increases when the
point (M1,M2) lies below the curve obtained by setting the right hand side of (4.29)
to zero. However, it was shown in [5] that finite-time blow-up will occur for radially-
symmetric initial data when M2>8πµ2/χ; thus, unlike in the PKS, it is possible (when
µ1>2µ2) for a system to both spread across the plane, and form a singularity in finite
time. The values of Mmax

1 and Mmax
2 are given in (5.6). A typical region in which this

atypical behavior occurs is shaded above, with parameters χ= 100,µ1 = 10,µ2 = 1. In
the aforementioned work, it was hypothesized that the second moment of one component
increases, while the second moment of the other component decreases. We investigate
this possibility in Section 5.3.

Applying the same procedure as in Section 4.4 will result in a hydrodynamic limit480

which solves481 
∂tρ1 =∇·(µ1∇ρ1−χρ1∇c),

...

∂tρK =∇·(µK∇ρK−χρK∇c),
Lc =−(ρ1 + ·· ·+ρK),

(4.32)

with post-blow-up dynamics similar to the ones given for the PKS in [30, 31] and [7].482

5. Numerical simulations483

5.1. Overview One application of this work is in developing a numerical method484

for the PKS and PKS-like systems, which is able to handle the formation of singularities,485

as well as post-blow-up dynamics. Let us consider two example applications, for which486

we explicitly know the expected behavior: the evolution of the second moment for the487

PKS, pre- and post-blow-up, as given in (4.13), and blow-up with an increasing second488

moment in the two species MPKS, as described in Figure 4.1. In the first, we will show489

that the second moment of our particle approximation evolves as predicted by [7] both490

before and after blow-up, confirming that our numerical method correctly transitions491

from approximating smooth solutions to the PKS, to approximating measure-valued492

solutions. In the second, we will see how the second moment of the components of a493

two species MPKS system with masses inside the shaded region in Figure 4.1 evolve,494
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20 COALESCING PARTICLE SYSTEMS

thus giving numerical evidence to the idea that blow-up in this regime occurs via one495

contracting, and one expanding component.496

We remark the presented numerical method is parallelizable, and scales approxi-497

mately linearly with the number of particles. It can therefore be used to simulate a498

large number (on the order of millions) of particles very quickly. Averaging over such499

large ensembles reduces observed stochastic fluctuations to a minimum, as may be noted500

from the examples in this section.501

5.2. Regularized PKS For the first example, we reproduce the equation (4.13)502

for the PKS second moment:503

d

dt

(
1

M

∫
|x|2ρ(x,t)dx

)
= 4µ

M̄

M
− χM

2π

(
1−

Kt∑
i=1

(
Mi(t)

M

)2
)
. (5.1)

Thus, the graph of the second moment of a critical PKS system will initially appear504

linear, then decelerate, and then–depending on the mass distribution–will either become505

linear again (with a different slope), or continually change its slope due to nonstop506

mass transfer to the atomic component. Using the numerical method developed in507

this work, this second moment evolution can be observed. For a PKS system with508

mobility µ and chemosensitivity χ, we associate anN0-particle coalescing particle system509

with µ̃=µM/N0 and mn=M/N0, and approximate ρ by the empirical mass density.510

As this particle approximation has been shown to be effective in approximating the511

PKS pre-blow-up [10, 12], we specifically concentrate on the formation and detection of512

singularities.513

5.2.1. Mass transfer to singularity In particular, we consider the case χ=514

µ= 1, with total mass six times the critical mass, M = 6 ·8π. We split the mass amongst515

a small bump function of mass M1 = 4 ·8π supported on a disc of unit radius, which is516

separated far away from a bump function of mass M2 = 2 ·8π that’s supported on an517

ellipse with axes 1 and 7. These initial initial conditions are chosen so as to make the518

solution initially exhibit a linear decay of the second moment, then a sudden change of519

slopes due to the rapid formation of a singularity caused by the first bump function, and520

finally–a continuous deceleration, due to continual mass transfer from the lighter bump521

function to the formed atomic component. With the chosen parameters, the first two522

rates of change of the second moment should be −20 and −12. This can be observed in523

Figure 5.1. Further in time, the gradual transfer of mass may be seen as well, as shown524

in Figure 5.2.525

The underlying particle dynamics and collisions are illustrated in Figure 5.3, where526

each snapshot corresponds to qualitatively different rates of change of the second mo-527

ment in Figure 5.1 and Figure 5.2: sudden mass coalescence of a tight aggregate (switch528

of slopes in Figure 5.2, and t= 0.050 and t= 0.100 in Figure 5.3), attraction of mass529

without coalescence (linear decay in Figure 5.1, and t= 0.100 and t= 0.650 in Fig-530

ure 5.3), continuous slow and fast mass absorption (gradual deceleration in Figure 5.2,531

and t= 0.650 and t= 0.950 in Figure 5.3), and the transformation of the PKS system532

to being essentially singular (flat part of the figure in Figure 5.2, and t= 2.200 in Fig-533

ure 5.3).534

5.2.2. Interaction of singularities In another experiment, we initialize a sys-535

tem in which two singularities form and interact, as described in Figure 5.4. In this536

special case, the second moment is simply the square of the distance between the two537

singularities, the graph of which should be piecewise linear (as observed). We note that538
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Fig. 5.1: We simulate 40×103 particles to approximate the system described in Sec-
tion 5.2. Initially, the second moment decreases at a rate of −20, as predicted by the
classic PKS formula for blow-up. Near t= 0.05, a singularity is formed, and the slope
of the graph of second moment suddenly changes to −12. Each dashed line is fitted to
one only point—i.e. the particle approximation of the PDE is effective post-blow-up.

the numerical coalescence procedure avoids the “washing out” effect near the collision539

time in Figure 7 of [10].540

5.3. Expanding MPKS with blow-up For the second example, we simulate541

blow-up with an increasing total second moment for the two species Keller-Segel system:542 
∂tρ1 =∇·(µ1∇ρ1−χρ1∇c),
∂tρ2 =∇·(µ2∇ρ2−χρ2∇c),
∆c =−(ρ1 +ρ2),

(5.2)

with
∫
ρ1 =M1 and

∫
ρ2 =M2. The interest in this phenomenon is described in Figure 4.1543

and Section 4.4. In particular, we show that when a two species PKS system is in544

this regime, the second moment of one component increases linearly, while the other545

decreases. Such semi-decoupled behavior was suggested in [5]. We remark that the546

numerical method presented is well-suited for this investigation, as it can simulate the547

system in the entire plane.548

We approximate this two system using N0 particles, the first N1 = bη1N0c of which549

have particle masses M1/N1, and distributed on the plane according to ρ1(·,0). Sim-550

ilarly, the last N2 =N0−N1 particles have masses M2/N2, and are distributed on the551

plane according to ρ2(·,0). Using (4.25) and (4.26), we see that552

ηi=
Mµi
Miµ

, (5.3)
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Fig. 5.2: We simulate 40×103 particles to approximate the system described in Sec-
tion 5.2 until it is fully singular. On this time scale, the continuous transfer of masses
between the regular and singular component may be observed, by the curved second
moment graph, and by the gradually decreasing graph of number of particles. The
dashed lines correspond to the same ones as in Figure 5.1.

where553

µ= (M1 +M2)

(
µ1

M1
+
µ2

M2

)
. (5.4)

The particle system’s diffusion coefficient µ̃ is then554

µ̃=
µ(M1 +M2)

N0
. (5.5)

Thus, for a two species MPKS system with component masses M1,M2 and diffusion555

coefficients µ1,µ2, we associate an N0 particle system with two different possible particle556

masses. The diffusion coefficient for (1.3) is given by (5.5). In this sense, the purpose557

of µ in (5.4) is auxiliary.558

When µ1>2µ2, it is always possible to choose component masses which will force559

a radially-symmetric system to blow-up with increasing second moment. In this case,560

Mmax
1 and Mmax

2 in Figure 4.1 can be shown to be561

Mmax
1 =

2π

χ
· (µ1−2µ2)µ1

µ1−µ2
, Mmax

2 =
2π

χ
· µ2

1

µ1−µ2
. (5.6)
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Fig. 5.3: Snapshots of the interpolated mass density field Pij for the simulation described
in Section 5.2. The relation between this figure and Figure 5.1 and Figure 5.2 is given
at the end of Section 5.2.1. All particles initially have the same mass.
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Fig. 5.4: We set χ=µ= 1 and initialize two small bumps functions at (±3,±1) with
supercritical masses 12π/5 and 28π/5. Each smooth bump quickly forms a singular
component, and the 400×103 particle system reduces to a ∼2 particle system. The
formation and interaction of the singularities may be seen in the above snapshots of
c(x,t). After the initial formation of singularities, the second moment decreases lin-
early, as predicted by (4.13). In this particular simulation, we used [−15,15]2 as the
computational domain, which we discretized using a 270×270 mesh, and set the time
step to be 0.002

For the experiments in this section, we simulate the two species system as described562

above, and choose the convenient parameters563

χ= 4, µ1 =
35

2
, µ2 =

35

12
, M1 = 4, M2 = 24, (5.7)

which correspond to the auxiliary parameters564

µ= 5, η1 =
1

2
, η2 =

1

2
. (5.8)

For the above masses, we consider three different initial conditions. Each respective565

solution exhibits linear growth in the first component’s second moment, and decay566

in the second component’s second moments, but at rates which depend on the initial567

distribution of mass. In particular, we choose the following initial conditions:568

1. Radially-symmetric component initial data. We initialize both components as569

bump functions supported on a disc of radius a= 0.35 and centered at the origin.570

2. Non-symmetric component initial data. We initialize the first component as a571

bump function of radius a and centered at the origin, and the second component572
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Fig. 5.5: Evidence of the phenomenon described in Figure 4.1, for initial conditions
which are and are not radially-symmetric. As can be seen, the total second moment
expands at a fixed rate, as do the individual components. However, the rate of change
of the second moment of each component varies with the initial data. For these simu-
lations, we used 106 particles, and discretized [−1.5,1.5] using a 320×320 mesh for the
computational grid. The initial conditions for each experiment are given in 5.3. We note
that although the first component is expanding, there is evidence that it nonetheless
blows up in the L∞ norm [22].

as a bump function supported on an ellipse centered at (0.1,0) with axes 2a573

and a/2, with the major axis parallel to the y-axis.574

3. Component initial data on disjoint support. We initialize each component on575

a bump function supported on a disc of radius a, where the first component is576

centered at (a,−a), and the second at (−a,a).577

The results of these simulations can be seen in Figure 5.5. We note that although578

both components change linearly, their rates of change appear to depend on the initial579

conditions.580
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6. Conclusion We investigated a planar particle system with nonuniform particle581

masses, in which particles interact via a logarithmically-singular kernel. As post-collision582

dynamics in such a system are undefined, we used the idea of particle coalescence in order583

to propagate the system further in time, and connected it to the theory of the squared584

Bessel process. We exploited this connection to develop an efficient numerical method585

for the simulation of the system, which has applications in the numerical approximation586

and regularization of a wide range of nonlinear Fokker-Planck equations, such as the587

multispecies Patlak-Keller-Segel model.588

As mentioned before, properties of singularity formation in the MPKS are not fully589

understood, and have somewhat unexpected behavior, when compared to the PKS. For590

instance, singularities may form while the system’s second moment is increasing. It591

would be interesting to further connect existing results with predicting a nonuniform592

particle system’s behavior post-collision.593

The question of coalescence in a system with memory arises naturally, as an analogue594

to the parabolic Keller-Segel model. In this case, the field c(x,t) is replaced with the595

solution to the following equation,596

∂tc= ∆c−k2c+
∑
i

miδ
(
x−X(i)

t

)
, (6.1)

which has the more biologically-meaningful intepretation of a chemoattractant which597

thermalizes at a finite rate, diffuses, decays, and is produced by the particles. This598

system will be investigated in future works.599
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Appendix A. Subtraction formula for indices. If νi is the index of the full682

system described in Figure 2.1, νf is the index of the same system after the particles683

inside the dashed lines coalesce, and ν is the index of the subsystem inside the dashed684

line, then using (2.7) we have685

νi=N−2− χ

8πµ̃

M2−
N∑
j=1

m2
j

, (1.1)

νf =N−N ′−1− χ

8πµ̃

M2−
N∑

j=N ′+1

m2
j−(M ′)2

, (1.2)

ν=N ′−2− χ

8πµ̃

(M ′)2−
N ′∑
j=1

m2
j

, (1.3)

from which it follows that686

νf −νi=−(ν+1) . (1.4)

Appendix B. MPKS second moment. The evolution of the second moment of687

the MPKS can be computed as follows:688

F ′(t) =
d

dt

∫
R2

|x|2
K∑
i=1

ρi(x,t)dx (2.1)

=

∫
R2

|x|2
K∑
i=1

∇·(µi∇ρi−χρi∇c)dx (2.2)

=−2

∫
R2

K∑
i=1

(µi∇ρi−χρi∇c) ·xdx (2.3)

=−2

∫
R2

K∑
i=1

µi∇ρi ·xdx+2χ

∫
R2

K∑
i=1

ρi∇c ·xdx (2.4)

= 4

∫
R2

K∑
i=1

µiρi(x)dx (2.5)

− χ
π

∫
R2×R2

K∑
i,j=1

ρi(x)ρj(y)
x−y
|x−y|2

dy ·xdx

= 4

K∑
i=1

µiMi−
χ

2π

∫
R2×R2

K∑
i,j=1

ρi(x)ρj(y)
x−y
|x−y|2

dy ·xdx (2.6)
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+

∫
R2×R2

K∑
i,j=1

ρi(y)ρj(x)
y−x
|y−x|2

dx ·ydy


= 4

K∑
i=1

µiMi−
χ

2π

∫
R2

K∑
i,j=1

ρi(y)ρj(x)dydx (2.7)

= 4

K∑
i=1

µiMi−
χM

2π

K∑
i=1

Mi (2.8)

=

K∑
i=1

(
4µi−

χM

2π

)
Mi. (2.9)
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