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Accelerated optical solitons in reorientational media with transverse invariance and
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We demonstrate that reorientational spatial solitons can curve when propagating in a medium
with engineered walk-off along the direction of propagation. In this regard, we employ nematic liquid
crystals with molecular anchoring defined by electron beam lithography and optic axis distribution
modulated in the longitudinal direction only, keeping the transverse orientation constant. The
experimental results are in remarkably good agreement with a simple modulation theory based on
momentum conservation.

PACS numbers: 42.65.Tg, 42.70.Df, 05.45.Yv

I. INTRODUCTION

The unique properties of liquid crystals (LC), com-
bining features of both isotropic liquids and anisotropic
crystals, are at the basis of their use in several optical
applications [1, 2]. In the absence of absorbing dopants,
typical liquid crystalline materials exhibit excellent opti-
cal transparency from the ultraviolet to the mid-infrared,
high damage threshold and substantial birefringence in
the nematic phase, the latter a metaphase with molecules
angularly oriented, but positionally disordered [1]. Many
practical realizations of LC-based photonic elements and
devices have been introduced, including, e.g., displays,
gates and routers, optical waveguides, spatial light mod-
ulators, variable waveplates and many more [1–4]. All
of them benefit from relatively simple and inexpensive
fabrication processes, high sensitivity to and tunability
with external stimuli, large electro-optic, magneto-optic
and nonlinear optical responses. Due to the latter, the
last two decades have witnessed extensive efforts towards
understanding and exploiting optical spatial solitons in
nematic LC (NLC), also termed nematicons [5–7]. Ne-
maticons are two-dimensional, (2 + 1)D in mathemati-
cal terms, optical solitons with stability due to the large
nonlocal character of the NLC response caused by in-
termolecular links in the fluid state [7]. Most NLC are
birefringent with positive uniaxiality characterized by re-
fractive indices n‖ and n⊥ < n‖ for electric fields parallel
and perpendicular to the optic axis n, respectively. In
NLC, the optic axis coincides with the molecular direc-
tor, the unit vector describing the average alignment of
the elongated molecules. When a light beam with electric
field E propagates in NLC, the induced dipoles undergo
a reorientational torque Γ = ǫ0∆ǫ(n · E)(n × E), with
ǫ0 the dielectric constant of vacuum and ∆ǫ = n2

‖ − n2
⊥.

The equilibrium position of the director n is therefore de-
termined by a balance between the torque and the elas-
tic forces stemming from intermolecular links and an-

choring conditions at the boundaries [1, 5, 7]. When
the molecular director n is perpendicular to the elec-
tric field, reorientation can only occur above a thresh-
old, the so-called Freedericksz transition [1], which can
be avoided by either applying an external voltage to
tilt the molecules or by rubbing the cell interfaces and
aligning n at an arbitrary orientation θ0 in the princi-
pal plane defined by n and the beam wave-vector k. If
a finite-size light beam is launched with phasefronts or-
thogonal to k as an extraordinary (e) wave with elec-
tric field E coplanar with n and k, the corresponding
refractive index ne undergoes an increase related to the
acquired angular orientation θ=θ0 + ψ of n with re-
spect to k, with ψ the nonlinear optical contribution and
n2
e(θ) = n2

⊥n
2
‖/(n

2
‖ cos2 θ+n2

⊥ sin2 θ). Thus, self-focusing

in reorientational NLC relates to an increase in the ex-
traordinary refractive index due to the reorientation ψ of
the optic axis. Moreover, the birefringence of the uniaxial
determines the angular departure— the walk-off δ— of
the e-wave energy flux— the Poynting vector Se— from
the wave-vector k, with

δ ≈
∆ǫ sin 2θ0

∆ǫ+ 2n2
⊥ + ∆ǫ cos 2θ0

(1)

in the weakly nonlinear regime |ψ| ≪ θ0. Hence, nemati-
cons are reorientational, self-trapped, extraordinarily-
polarized wavepackets which propagate rectilinearly in
the principal plane with transverse velocity δ with respect
to k [8–10]. Moreover, the light-induced refractive index
modulation ne(θ) − ne(θ0) gives rise to a graded-index
channel waveguide able to confine and route other (weak
and co-polarized) optical signals, making nematicons
an excellent platform for realizing dynamic (real time)
guided-wave circuits for optical processing [11–13] or even
permanent ones upon polymerization of the beam-defined
structures [14]. In the context just described, it is highly
relevant to engineer/control nematicon trajectories and
the corresponding waveguide paths by acting on walk-off
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and/or phasefront curvature, the two effects being inter-
connected through their θ-dependence in uniaxial media.

A number of viable approaches have been reported in
order to modify nematicon trajectories by altering θ0, in-
cluding voltage-driven rotation of the principal plane [9],
electro-optic orientation [15–18], refraction and total in-
ternal reflection at an NLC-NLC interface [19–22], light-
induced director changes in the highly nonlinear regime
[23–27], chiral doping [28, 29], magneto-optic orientation
[30, 31], etc. Moreover, even in the absence of polar-
ization dynamics giving rise to a Pancharatnam-Berry
geometric phase for light propagation in bulk [32, 33],
nematicons and their waveguides can be bent by propa-
gating in NLC with a transverse modulation of the optic
axis distribution, as we recently predicted and demon-
strated [34, 35]. In this Paper we investigate, both the-
oretically and experimentally, nematicon propagation in
non-uniformly aligned NLC with a longitudinally vary-
ing, but transversely constant optic-axis orientation, i.e.,
with θ0 = g(z).

At variance with previous investigations and reports,
this particular configuration allow us to single out the
effects of the birefringent walk-off on the beam trajec-
tory, excluding refraction and phasefront distortions, as
the index distribution of the medium remains uniform
across the beam profile, with ne and the effective bire-
fringence ne − n‖ changing in the propagation direction
only. This studied case encompasses an input beam with
electric field polarized along y and wavevector k ‖ ẑ, a
director orientation in the principal plane ŷẑ and a linear
variation of θ0 along ẑ, with all the parameters constant
across the other transverse axis x̂ (thickness). The ex-
perimental results in planar samples realized by electron-
beam lithography are in excellent agreement with a sim-
ple model based on modulation theory and momentum
conservation, demonstrating the easy design and feasi-
bility of such non-uniform structures for curved and bent
all-optical waveguides.

II. SAMPLE GEOMETRY AND

EXPERIMENTAL CONFIGURATION

We prepared 30µm-thick NLC samples with in-plane
anchoring at the inner interfaces of a planar glass cell,
using the mixture 6CHBT (synthesized at the Military
University of Technology, Warsaw, Poland [36]) with
n⊥ = 1.4967 and n‖ = 1.6335 at room temperature and

wavelength λ = 1064nm, critical temperature Tc = 430C
and elastic constants K11 = 8.96pN , K22 = 3.61pN and
K33 = 9.71pN for splay, twist and bend, respectively.

The cell was fabricated with 1.1mm-thick BK7 glass
slides; the propagation length was 1 or 2 mm along z,
depending on the geometry. In order to realize the mod-
ulated orientation, the upper and lower slides were ex-
posed to electron-beam lithography in order to define the
molecular director anchoring θ0 at the boundaries across
the thickness x [35, 37]. The angular modulation was

implemented at a 10/11µm rate.
Figure 1(a) is a sketch of the sample with uniform dis-

tribution θ0 = 450. Such an orientation prevents the
Freedericksz transition and maximizes the nonlinear re-
sponse [38]. We injected a linearly polarized Gaussian
beam at λ = 1064nm with electric field oscillating along
ŷ, focused by a microscope objective to a waist w0 ≈ 3µm
at the input in order to launch a nematicon. A CCD cam-
era acquired the out-of-plane scattered light and moni-
tored the beam evolution in the plane ŷẑ. In this case,
the nematicon trajectory is determined only by the con-
stant walk-off, leading to a rectilinear path, as visible
in Fig. 1(b). Fig. 1(c) graphs the calculated extraordi-
nary refractive index and walk-off versus the initial (at
rest) director alignment θ0 for this specific NLC. Close
to θ0 = 450 the walk-off reaches its maximum of nearly
δ = 50.

FIG. 1: (a) Sketch of the sample with uniform orientation;
(b) acquired images of diffracting ordinary wave beam (top)
and extraordinary wave beams featuring linear diffraction at
low power (center) or self-confinement at high power (bot-
tom), respectively; (c) calculated walk-off (black line) and
extraordinary-wave refractive index ne(θ) versus molecular
orientation θ = θ0 (red line).

Figure 2(a–b) sketches NLC configurations with a lin-
early modulated angle θ0(z) along the longitudinal co-
ordinate z in the principal plane. In Fig. 2(a) the ori-
entation changes continuously from 450 to −450 and in
Fig. 2(b) the angle changes from 450 to −450 and back
to 450, over twice the propagation length of the previ-
ous structure in Fig. 2(a). The variations in θ0 affect
both the refractive index and the walk-off (Fig. 2(c)) of
the extraordinary-wave beam; in addition, the nonlinear
response tends to vanish whenever θ0 approaches zero.

III. MOMENTUM CONSERVATION

The experimental results can be modelled by the prop-
agation of a linearly polarized, extraordinary wave of
wavelength λ, wavenumber k0 and power P0 through bulk
uniaxial NLC with orientation of the optic axis which
varies down the cell. The polarization of the electric field
E = Eyŷ is taken to be the y direction.The NLC molec-
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FIG. 2: (a) Sketch of a cell with linearly changing molecular
orientation along the propagation direction z from 450 via 00

to −450; (b) sketch of a cell with doubly linear modulation
from 450 to −450 and back to 450; (c) calculated walk-off
versus θ0 and z for the case (b).

ular director rotates in the (y, z) plane, with its orien-
tation θ measured from k ‖ ẑ. The light beam is input
at y = y0 at z = 0, at which point the director forms
an angle θ0. The orientation varies with z down the cell
with θ0(z) = θ0(0) + θb(z). Finally, the beam causes an
additional all-optical reorientation denoted by ψ. Hence,
the total angle of the optic axis with the z direction is
Φ = θ0(0) + θb(z) + ψ(x, y, z).

The pointwise extraordinary refractive index ne is
given in terms of the director orientation by

n2
e(Φ) =

n2
⊥n

2
‖

n2
‖ cos2 Φ + n2

⊥ sin2 Φ
, (2)

where, as defined above, n⊥ and n‖ are the refractive
index eigenvalues. The optical anisotropy is defined as
∆ǫ = n2

‖ − n2
⊥. In the paraxial, slowly varying envelope

approximation the equations governing the evolution of
the beam in NLC are then [7]

2ik0ne

∂Ey

∂z
+ 2ik0ne∆(Φ)

∂Ey

∂y
+ ∇2Ey

+ k20

(

n2
⊥ cos2 Φ + n2

‖ sin2 Φ

−n2
⊥ cos2 θ0 − n2

‖ sin2 θ0

)

Ey = 0, (3)

for the electric field of the light beam and

K∇2Φ +
1

4
ǫ0∆ǫ|Ey|

2 sin 2Φ = 0 (4)

for the medium response. In the director equation (4)
the single elastic constant approximation has been made
so that the elastic constants for bend, twist and splay
are taken equal to K. Here, the Laplacian ∇2 is in the
transverse (x, y) plane. The walk-off δ is expressed in

terms of the coefficient ∆ in the electric field equation
(3) by tan δ = ∆, with

∆(Φ) =
∆ǫ sin 2Φ

∆ǫ+ 2n2
⊥ + ∆ǫ cos 2Φ

(5)

and ∆(Φ) ≈ ∆(θ0(z)) in the weakly nonlinear regime.
K is the elastic constant of the NLC in the single con-
stant approximation, assuming equal elastic constants for
bend, twist and splay.

In their full form, the nematic equations (3) and (4)
are difficult to solve, or even find approximate solutions
for. But a low power approximation can be made so
that asymptotic solutions can be derived. For low power
beams, the optical reorientation ψ is much less than the
imposed orientation θ0(0)+θb, |ψ| ≪ |θ0(0)+θb|. In this
case the trigonometric functions in these equations can
be expanded in Taylor series about θ0(0)+θb. In this low
power limit, equations (3) and (4) become

2ik0ne

∂Ey

∂z
+ 2ik0ne∆(θ0(0) + θb)

∂Ey

∂y
+ ∇2Ey

+ k20n
2
⊥

[

cos2 (θ0(0) + θb) − cos2 θ0(0)
]

Ey

+ k20n
2
‖

[

sin2 (θ0(0) + θb) − sin2 θ0(0)
]

Ey

+ k20∆ǫ sin 2 (θ0(0) + θb)ψEy = 0, (6)

K∇2ψ +
1

4
ǫ0∆ǫ|Ey |

2 sin 2 (θ0(0) + θb) = 0. (7)

The electric field equation (6) can be simplified using the
phase transformation

Ey = Ẽy × (8)

exp

(

ik0
2ne

∫ z

0

[

n2
⊥

(

cos2 (θ0(0) + θb(z)) − cos2 θ0(0)
)

+ n2
‖

(

sin2 (θ0(0) + θb(z)) − sin2 θ0(0)
)

]

dz
)

.

After this transformation, the nematic equations become

2ik0ne

∂Ẽy

∂z
+ 2ik0ne∆(θ0(0) + θb(z))

∂Ẽy

∂y
+ ∇2Ẽy

+k20∆ǫ sin 2 (θ0(0) + θb(z))ψẼy = 0, (9)

K∇2ψ +
1

4
ǫ0∆ǫ|Ẽy|

2 sin 2 (θ0(0) + θb(z)) = 0. (10)

The final simplification is obtained by setting the equa-
tions in non-dimensional form. We define the scalings
W for the transverse directions, D for the longitudinal
direction and E for the electric field as

x = WX, y = WY, z = DZ, Ẽy = Eu. (11)

Let us take the input beam to be a Gaussian beam of
power P0 and width Wb. It is then found from equations
(9) and (10) that suitable scaling parameters are

W =
λ

π
√

∆ǫ sin 2θ0(0)
, D =

2neλ

π∆ǫ sin 2θ0(0)
,

E2 =
2P0

πCW 2
b

, C =
1

2
ǫ0cne, (12)
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so that the nematic equations (9) and (10) in non-
dimensional form are

i
∂u

∂Z
+ iγ∆(θ0(0) + θb(Z))

∂u

∂Y
+

1

2
∇2u

+ 2
sin 2 (θ0(0) + θb(Z))

sin 2θ0(0)
ψu = 0, (13)

ν∇2ψ + 2
sin 2 (θ0(0) + θb(Z))

sin 2θ0(0)
|u|2 = 0, (14)

with the Laplacian ∇2 in the transverse non-dimensional
variables (X,Y ). The parameters γ and ν are

γ =
2ne

√

∆ǫ sin 2θ0(0)
and ν =

8K

ǫ0∆ǫE2W 2 sin 2θ0(0)
.

(15)
This non-dimensional form of the model will be used to
analyze the trajectory of a nematicon owing to the vary-
ing orientation θb. In the case of a uniform NLC, so that
θb = 0, equations (13) and (14) reduce to a standard form
[39].

The trajectory of a nematicon in non-uniform NLC can
be found using what is mathematically momentum con-
servation for the solitary wave. The simplest method to
find this momentum equation is from the Lagrangian for-
mulation of the nematic equations (13) and (14), which
is

L = i (u∗uZ − uu∗Z)

+ iγ∆(θ0(0) + θb(Z)) (u∗uY − uu∗Y ) (16)

− |∇u|2 + 4
sin 2 (θ0(0) + θb(Z))

sin 2θ0(0)
ψ|u|2 − ν|∇ψ|2.

The ∗ superscript denotes the complex conjugate and the
Z and Y subscripts denote derivatives. In principle, the
momentum equation for a nematicon is now found by
substituting the nematicon solution for u and ψ into the
Lagrangian (16). This Lagrangian is then “averaged”
by integrating in X and Y from −∞ to ∞ (as a solitary
wave has infinite period), leaving an averaged Lagrangian
L which is a function of Z [40]. Variations of this aver-
aged Lagrangian with respect to the nematicon parame-
ters yield (modulation) equations determining its trajec-
tory [40]. This Whitham modulation theory is a version
of the applied mathematics method of multiple scales [41]
optimized for slowly varying, nonlinear dispersive waves.
However, the nematic equations (13) and (14) have no
known general nematicon (solitary wave) solutions, but
only isolated solitary wave solutions for fixed parame-
ter values [42]. When there are no exact solutions on
which to base modulation equations, variational approx-
imations are useful and give accurate predictions [43]. In
the present context, they yield results for nematicon re-
fraction and scattering in excellent agreement with both
numerical solutions [34, 44–47] and experimental results
[35, 48, 49]. Variational methods usually require the use
of a reasonable approximation to the unknown solitary
wave profile. However, for the derivation of the momen-
tum equations governing the trajectory of the nematicon

this is not necessary and the profile can be left general,
for reasons discussed below. We then assume that the
nematicon solution has the form

u = afe(ρe)e
iσ+iV (Y−ξ) and ψ = αfd(ρd), (17)

where

ρe =

√

X2 + (Y − ξ)2

w
, ρd =

√

X2 + (Y − ξ)2

β
. (18)

The nematicon fe and director fd profiles are not stated
and are not needed to determine the nematicon trajec-
tory. As the nematicon evolves due to the change in the
medium, its amplitude a and width w oscillate and it
refracts, so that its velocity V and position ξ evolve. It
was found earlier [44, 45, 47] that the amplitude/width
evolution of the soliton decouples from its trajectory evo-
lution due to the highly nonlocal response [7]. The main
effect of the nematicon amplitude/width oscillations is to
cause it to shed dispersive radiation enabling it to reach
a steady state. This radiation has momentum and so af-
fects the nematicon trajectory, in turn. However, for a
large nonlocality the shed radiation has low amplitude
and is emitted on a long z scale [39, 44], so that the ap-
proach to a steady state is very slow. In fact, the high
nonlocality gives rise to a very wide potential well around
the evolving solitary wave, which essentially traps the ra-
diation. As we are only interested in the nematicon tra-
jectory, we can assume that its amplitude a and width w,
as well as the amplitude α and width β of the molecular
director distribution, are constant and consider that only
the velocity V and position ξ depend on Z. Substituting
the nematicon trial functions (17) into the Lagrangian
(16) and averaging results in the averaged Lagrangian

L = −2S2 (σ′ − V ξ′) a2w2 − S22a
2

− S2

[

V 2 + 2V γ∆ (θ0(0) + θb(Z))
]

a2w2

+ 4
sin 2 (θ0(0) + θb(Z))

sin 2θ0(0)
αa2w2Sm − 4νS42α

2.(19)

The integrals S2, S22, S42 and Sm appearing in the av-
eraged Lagrangian are

S2 =

∫ ∞

0

ζf2
e (ζ) dζ, S22 =

∫ ∞

0

ζf ′2
e (ζ) dζ,

S42 =
1

4

∫ ∞

0

ζ

[

d

dζ
fd(ζ)

]2

dζ,

Sm =

∫ ∞

0

ζf2
e (ζ)fd

(

w

β
ζ

)

dζ. (20)

Taking variations of the averaged Lagrangian (19) with
respect to the velocity V and position ξ results in the
modulation equations

dV

dZ
= 0, (21)

dξ

dZ
= V + γ∆ (θ0(0) + θb(Z)) . (22)
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FIG. 3: (a–c) Photographs of nematicon evolution in the (y, z)
plane of observation for (a) TM-like beam and TE-like beam
with input power (b) P = 1mW and (c) P = 3mW , respec-
tively; the yellow arrows indicate the director orientation; (d)
experimentally acquired (symbols) and theoretical (solid line)
nematicon trajectories for various input powers; (e) computed
(red line) and measured walk-off (black squares) versus prop-
agation distance.

These modulation equations are momentum equations
for the nematicon trajectory. The nematicon velocity
does not change and is fixed by its value at input, un-
like nematicon refraction when the medium varies in the
lateral (X,Y ) directions [34, 35]. This is because the
medium only varies in the longitudinal direction Z, which
is a time-like variable for the NLS-type equation (13).

The director angle variation θb for the structure in Fig.
2(a) is linear in z (and Z). The imposed angle at Z = 0
is θb = 0. We set the angle at the end of the cell as θr at
the non-dimensional distance Z = Ln. In this case

θb(Z) = mZ, m =
θr − θ0(0)

Ln

. (23)

The position equation (22) then has the solution

ξ = ξ0 + V Z −
γ

2m
ln

∆ǫ+ 2n2
⊥ + ∆ǫ cos 2 (θ0(0) +mZ)

∆ǫ+ 2n2
⊥ + ∆ǫ cos 2θ0(0)

(24)
for the nematicon trajectory, where ξ0 is the non-
dimensional input beam position. The solution (24) also
applies in the second half of the structure in Fig. 2(b) for
which the imposed background angle varies from −π/4
to π/4 by setting θ0(0) = −π/4 and θr = π/4. However,
as cosx is antisymmetric about x = π/2, the solution
(24) also applies to the whole structure in Fig. 2(b) as is.

FIG. 4: (a–c) Images of nematicon evolution in the (y, z)
plane for (a) TM-like and (b–c) TE-like beams of power (b)
P = 1mW and (c) P = 3mW , respectively; the yellow arrows
indicate the director orientation; (d) experimentally acquired
(symbols) and theoretical (solid line) nematicon trajectories
for various input powers; (e) computed (red line) and mea-
sured (black squares) walk-off versus propagation distance.

IV. EXPERIMENTAL AND NUMERICAL

RESULTS FROM NON-UNIFORM SAMPLES

We firstly investigated a sample with the structure il-
lustrated in Fig. 2(a), acquiring the nematicon path for a
director orientation changing from 450 at z = 0 to −450

at z = 1000µm. Fig. 3 shows the experimentally acquired
beam evolution in the principal plane (y, z). For an ordi-
nary wave (TM-like) input beam, the structure behaves
as a uniform sample with an ordinary refractive index,
leading to linear diffraction of the beam (Fig. 3(a)). For
an extraordinary wave (TE-like) beam, the non-uniform
orientation has a significant impact on the trajectory.
Fig. 3(b) shows the acquired image of a TE beam at
low power (linear diffraction), while Fig. 3(c) is the cor-
responding case at high power, above 2mW , such that
a nematicon was generated. The nematicon path follows
the change in orientation, resulting in the bent trajectory
displayed in Fig. 3(d). Fig. 3(e) graphs the comparison
between the calculated (red line) and the measured (black
squares) walk-off versus propagation distance, showing
excellent agreement. In the weakly nonlinear regime of
interest here the beam walk-off remains essentially deter-
mined by the background orientation θ0(z).

Next we examined the role of walk-off on a nemati-
con path for the case of the director orientation changing
from 450 at z = 0 to −450 at z = 1000µm and back to 450

at z = 2000µm, as in Fig. 2(b). Fig. 4 shows photographs
of the acquired beam evolution. As in the previous case
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FIG. 5: Measured beam width versus propagation distance
for various input powers in the two investigated geometries
(Fig. 2(a) and Fig. 2(b)): (a) the orientation changes from
450 to −450 over z = 1000µm; (b) the orientation changes
from 450 and back to 450 over z = 2000µm.

(Fig. 3(a)) an ordinary wave (TM-like) beam diffracts
and evolves essentially along k ‖ ẑ. (Fig. 4(a)). Panels
4(b–c) are images of a TE-like beam at low power (linear
diffraction) and at high excitation with nematicon forma-
tion, respectively. At powers near or slightly above 2mW ,
the input beam becomes self-confined with its walk-off
determined by the change in orientation, resulting in a
doubly bent trajectory (Fig. 4(d)). Fig. 4(e) compares
the calculated (red line) and measured (black squares)
walk-off versus propagation distance for the high power
case. Once again, the agreement is remarkably good.

It can be seen on comparing the theoretical and exper-
imental trajectories of Figures 3(d) and 4(d) that the dif-
ference between them grows with propagation distance.
This is due to the accumulation of errors in the asymp-
totic analysis leading to the momentum equations (21)
and (22) as z increases. These errors are due to (i) the
neglect of the optical contribution ψ in the walkoff ∆ in
the electric field equation (13), (ii) the linearisation of
the full nematic equations (3) and (4) assuming that the
optical reorientation ψ is small and (iii) the neglect of
scattering losses.

Noteworthy, even though the background reorien-
tation θ0(z) goes through 00 where no nonlinear re-
sponse is expected below the Freedericksz transition, self-
confinement and the nematicon survive without signif-
icant change owing to the abiabatic character of the

modulation. Such robustness of a solitary wave solution
across non-uniform regions— including linear regions—
is supported by the large nonlocality of the medium, even
along the propagation coordinate (see also Ref. [50]).

Finally, Fig. 5 compares the measured e-wave beam
widths versus propagation distance in both the inves-
tigated geometries and for various input beam powers.
These plots confirm the breathing character of reorienta-
tional spatial solitons in NLC [51].

V. CONCLUSIONS

We have demonstrated solitary wave bending and dou-
ble bending in longitudinally modulated nematic liquid
crystals with an optic axis orientation linearly varying
along the propagation distance. In such a configuration
the curved trajectory is solely due to changes in walk-
off without refraction effects, allowing for an excellent
match between a simplified model and the experimental
results. This investigation, singling out the role of bire-
fringence against the combined effects of birefringence
and refraction, is of relevance in the design and realiza-
tion of reorientational structures utilizing both transverse
and longitudinal modulations of the director orientation,
paving the way for the engineering of desired solitary
wave paths, either in the dynamic limit or for permanent
guided-wave photonics, based on beam-induced material
moulding through nonlinear sculpting [14].
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[35] U. A. Laudyn, M. Kwaśny, F. A. Sala, M. A. Karpierz, N.
F. Smyth and G. Assanto, Curved optical solitons subject
to transverse acceleration in reorientational soft matter,
Sci. Rep. 7, 12385 (2017).

[36] R. Dabrowski, New liquid crystalline materials for pho-
tonic applications, Mol. Cryst. Liq. Cryst. 421, 1–21
(2004).

[37] T. Kagajyo, K. Fujibayashi, T. Shimamura, H. Okada, H.
Onnogawa, Alignment of nematic liquid crystal molecules
using nanometer-sized ultrafine patterns by electron
beam lithography, Jpn. J. Appl. Phys. 44, 578–581
(2005).

[38] A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek
and G. Assanto, Propagation of spatial optical solitons
in a dielectric with adjustable nonlinearity, Phys. Rev. A
82, 023806 (2010).

[39] A.A. Minzoni, N.F. Smyth and A.L. Worthy, Modulation
solutions for nematicon propagation in non-local liquid
crystals, J. Opt. Soc. Am. B 24, 1549–1556 (2007).

[40] G.B. Whitham, Linear and Nonlinear Waves, J. Wiley
and Sons, New York (1974).

[41] J.D. Cole and J. Kevorkian, Perturbation Methods in Ap-

plied Mathematics, Springer-Verlag, New York (1981).
[42] J.M.L. MacNeil, N.F. Smyth and G. Assanto, Exact and

approximate solutions for solitary waves in nematic liquid
crystals, Physica D 284, 1–15 (2014).

[43] B. Malomed, Variational methods in nonlinear fiber op-
tics and related fields, Prog. Opt. 43, 71–193 (2002).

[44] B. D. Skuse and N. F. Smyth, Interaction of two colour
solitary waves in a liquid crystal in the nonlocal regime,
Phys. Rev. A 79, 063806 (2009).

[45] A. Alberucci, G. Assanto, A. A. Minzoni and N. F.
Smyth, Scattering of reorientational optical solitary
waves at dielectric perturbations, Phys. Rev. A 85,
013804 (2012).

[46] N. F. Smyth and W. Xia, Refraction and instability of
optical vortices at an interface in a liquid crystal, J. Phys.
B: Atom. Molec. Opt. Phys. 45, 165403 (2012).

[47] G. Assanto, A. A. Minzoni, N. F. Smyth and A. L. Wor-
thy, Refraction of nonlinear beams by localised refractive
index changes in nematic liquid crystals, Phys. Rev. A
82, 053843 (2010).

[48] G. Assanto, A. A. Minzoni, M. Peccianti and N. F.
Smyth, Optical solitary waves escaping a wide trapping
potential in nematic liquid crystals: modulation theory,
Phys. Rev. A 79, 033837 (2009).

[49] G. Assanto, N. F. Smyth and W. Xia, Modulation anal-
ysis of nonlinear beam refraction at an interface in liquid
crystals, Phys. Rev. A 84, 033818 (2011).

[50] A. Alberucci, M. Peccianti, G. Assanto, G. Coschignano,



8

A. De Luca and C. Umeton, Self-healing generation of
spatial solitons in liquid crystals, Opt. Lett. 30, 1381–
1383 (2005).

[51] C. Conti, M. Peccianti and G. Assanto, Observation

of optical spatial solitons in a highly nonlocal medium,
Phys. Rev. Lett. 92, 113902 (2004).


