
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A new model of viscous dissipation for an oscillating wave surge
converter

Citation for published version:
Cummins, CP & Dias, FA 2017, 'A new model of viscous dissipation for an oscillating wave surge converter',
Journal of Engineering Mathematics, vol. 103, no. 1, pp. 195-216. https://doi.org/10.1007/s10665-016-9868-
4

Digital Object Identifier (DOI):
10.1007/s10665-016-9868-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Engineering Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Jan. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/160483469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10665-016-9868-4
https://doi.org/10.1007/s10665-016-9868-4
https://doi.org/10.1007/s10665-016-9868-4
https://www.research.ed.ac.uk/portal/en/publications/a-new-model-of-viscous-dissipation-for-an-oscillating-wave-surge-converter(cfbfb759-5eba-40e1-a837-ea71068606ce).html


Journal of Engineering Mathematics
 

A new model of viscous dissipation for an oscillating wave surge converter
--Manuscript Draft--

 
Manuscript Number: ENGI-D-16-00037R3

Full Title: A new model of viscous dissipation for an oscillating wave surge converter

Article Type: Manuscript

Keywords: Diffraction;  Dissipation;  OWSC;  Resonance;  Wave Energy;  Wave-Structure
Interaction

Corresponding Author: Cathal Pádraig Cummins, Ph.D.
University College Dublin; University of Edinburgh
Dublin, IRELAND

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University College Dublin; University of Edinburgh

Corresponding Author's Secondary
Institution:

First Author: Cathal Pádraig Cummins, Ph.D.

First Author Secondary Information:

Order of Authors: Cathal Pádraig Cummins, Ph.D.

Frédéric Dias, Ph.D.

Order of Authors Secondary Information:

Funding Information: Science Foundation Ireland
(SFI/10/IN.1/I2996)

Prof. Frédéric Dias

Abstract: A mathematical model of an oscillating wave surge converter is developed to study the
effect that viscous dissipation has on the behaviour of the device. Recent theoretical
and experimental testing have suggested that the standard treatment of viscous drag
(e.g., Morison's equation) may not be suitable when the effects of diffraction dominate
the wave torque on the device. In this paper, a new model of viscous dissipation is
presented and explored within the framework of linear potential flow theory, and
application of Green's theorem yields a hypersingular integral equation for the velocity
potential in the fluid domain. The hydrodynamic coefficients in the device's equation of
motion are then calculated, and used to examine the effect of dissipation on the
device's performance. A Haskind relationship, expressing the link between the
scattering- and radiation-potential problems is derived, and its connection to existing
Haskind relations is explored. A sensitivity study of the device's power capture to the
magnitude of the dissipation present in the system is carried out for a selection of
device widths. The results of the sensitivity study are explained with reference to
existing experimental and numerical data. A special focus is given to the effects of
dissipation on the performance of a device whose pitching motion is tuned to resonate
with the incoming waves.

Response to Reviewers: In order to get the bibliography into the right format for the journal, we needed to create
a new .bst file (spbasic-unsrt.bst), so please note this when compiling/proofing.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Noname manuscript No.
(will be inserted by the editor)

A new model of viscous dissipation for an oscillating
wave surge converter

C. P. Cummins · F. Dias

Received: date / Accepted: date

Abstract A mathematical model of an oscillating wave surge converter is
developed to study the effect that viscous dissipation has on the behaviour of
the device. Recent theoretical and experimental testing have suggested that
the standard treatment of viscous drag (e.g., Morison’s equation) may not be
suitable when the effects of diffraction dominate the wave torque on the device.
In this paper, a new model of viscous dissipation is presented and explored
within the framework of linear potential flow theory, and application of Green’s
theorem yields a hypersingular integral equation for the velocity potential in
the fluid domain. The hydrodynamic coefficients in the device’s equation of
motion are then calculated, and used to examine the effect of dissipation on
the device’s performance. A Haskind relationship, expressing the link between
the scattering- and radiation-potential problems is derived, and its connection
to existing Haskind relations is explored. A sensitivity study of the device’s

C. P. Cummins · F. Dias
UCD School of Mathematics and Statistics,
University College Dublin,
Belfield,
Dublin D04 N2E5,
Ireland
Present address: C. P. Cummins
College of Science and Engineering,
University of Edinburgh,
Edinburgh,
EH9 3BF,
United Kingdom
E-mail: cathal.cummins@ed.ac.uk

F. Dias
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power capture to the magnitude of the dissipation present in the system is
carried out for a selection of device widths. The results of the sensitivity study
are explained with reference to existing experimental and numerical data. A
special focus is given to the effects of dissipation on the performance of a device
whose pitching motion is tuned to resonate with the incoming waves.

Keywords Diffraction · Dissipation · OWSC · Resonance · Wave Energy ·
Wave-Structure Interaction

1 Introduction

Oscillating wave surge converters (OWSCs) belong to a family of wave energy
converters (WECs) known as ‘flap-type’ WECs [1]. In its simplest form, an
OWSC comprises a buoyant flap that is hinged to the seabed, and typically
operates in the nearshore environment where its pitching motion couples with
the surge component of the incident waves [2]. Historically, it was maintained
that a good wave absorber must be a good wave maker; this leads to the notion
of a ‘point absorber’ for which the effects of diffraction are minimal [3]. In
contrast, flap-type WECs are diffraction-dominated devices and, consequently,
have received much less attention.

Recent theoretical and experimental studies have shown that OWSCs can
achieve high levels of power capture in commonly occurring seas [2]. This
has prompted researchers to develop new mathematical models of a flap-type
OWSC in order to better understand its hydrodynamic behaviour. To date,
this has been achieved through the use of numerical and semi-analytical models
to examine the hydrodynamic performance of an OWSC in a channel [4], in
the open ocean [5], in a small array [6], and more recently in a large but finite
array [7, 8, 9].

In each of the semi-analytical models [4, 5, 6, 7, 9], the fluid is deemed to
be inviscid, and hence the effects of viscous dissipation are neglected. However,
recent experimental wave tank tests and computational fluid dynamics (CFD)
simulations have found that flow separation effects occur at the flap’s tips [10].
The numerical simulations in [10] are carried out using the commercial CFD
package ANSYS Fluent, and a comparison to laboratory tests shows that such
an approach can accurately capture local features of the flow, as well as overall
body motion. Unfortunately, the time-consuming nature of wave tank testing
and CFD simulations prevented a parametric study from being conducted. As
a result, the effect of this viscous dissipation on the hydrodynamic performance
of an OWSC has yet to be quantified.

One popular alternative to using CFD is to determine the hydrodynamic
coefficients in the flap’s equation of motion using a boundary element method
(BEM), and introduce an additional term representing viscous dissipation,
such as a Morison-type drag law [11]. This choice is suitable for bodies with a
small characteristic dimension w′ compared to the incident wavelength λ′, i.e.,
for small diffraction parameters: Kl = 2πw′/λ′ � 1 and comparatively large
Keulegan-Carpenter numbers KC = 2πA′I/w

′ � 1, where A′I is the amplitude
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of the incident wave. There is no strict cutoff for its validity, but as a useful
general rule, Morison’s equation is applicable when KC > 6, and Kl < 1 [12].
However, neither of these conditions are satisfied in the current mathematical
modelling of flap-type WECs. In the first place, the diffraction parameter of a
flap-type WEC is O(1) in typical environmental conditions [10]. Secondly, the
linearity assumption relies on KC � 1, hence the validity of using a Morison-
type drag law for flap-type WECs within the framework of linear potential
flow theory is questionable.

A lesser-known alternative is to modify the inviscid theory in regions of
the fluid domain where the effects of viscous dissipation are non-negligible,
e.g., bilge keels, or sharp edges of hull elements [13]. In this way, the effects
of viscous dissipation are confined to the region around the flap’s tips, where
they are known to occur [10]. This modelling approach is adopted in [13] to
eliminate the unphysical spikes in the resonant free-surface of a moonpool
that are predicted by inviscid potential flow theory. In order to include the
effects of vortex shedding, the authors first extend a control surface from
the moonpool’s sharp edge down to the seabed, and then impose a pressure
discharge across this control surface. The pressure discharge law used in [13]
assumes a functional relationship between the pressure drop and the local
flow velocity, which characterises the effects of dissipation. The authors find
excellent agreement with model tests, concluding that such a methodology is
an accurate and efficient way to incorporate the effects of vortex shedding into
the inviscid theory.

Treating the dissipative effects of viscosity as equivalent losses in pressure
is not a new idea: the same modelling approach is used in the study of wave
transmission through porous screens and breakwaters. Typically, such screens
are used to damp out the sloshing motion in wave tanks or to act as tuned
liquid dampers in order to absorb unwanted vibrations [14]. Numerous models
have been put forward for this pressure loss law, which assume that the pres-
sure loss is a function of the local flow velocity as in [13] above. In [15], the
oscillatory flow through a porous screen is examined. It is suggested that the
dissipative and inertial effects due to the screen should be modelled using a
functional relationship between the pressure drop and the flow velocity. In [16],
the oscillatory flow through a number of thin porous screens in a narrow wave
tank is considered using the same model as in [15] to account for the dissipative
and inertial effects due to the presence of the screen. In [17], the diffraction of
water waves from a thin porous breakwater is studied. The authors derive a
boundary condition for the loss in pressure across the breakwater.

The pressure discharge law typically takes the form of a linear [15, 17, 13]
or quadratic [18] function of the local flow velocity. In addition, we can use
an effective linear law in place of the nonlinear one using, say, the Lorentz
principle of equivalent work [19, 20]. Indeed, previous numerical models of
OWSCs have used effective linear [21, 11] and quasi-linear [22] drag laws in
place of the standard Morison (quadratic) drag law [11]. In each of [15, 16, 17,
13], it is assumed that the pressure drop across the screen/breakwater due to
viscous effects is a linear function of the local flow velocity. The complex-valued
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parameter, which characterises the inertial and viscous effects, is treated as an
empirical quantity. In [17], this parameter is termed the ‘porous-wall-effect-
parameter’ G and is determined by comparison to model tests [23].

In this paper, we assess the effect that viscous dissipation has on an OWSC
by modifying the semi-analytical theory of [4] to include the effects of viscous
dissipation near the flap’s edge. We achieve this by applying an effective pres-
sure discharge in the vicinity of the flap’s tips [13]. Formulating the problem in
this way yields a hypersingular integral equation for the fluid’s velocity poten-
tial, the solution to which is obtained in terms of a series of Chebyshev poly-
nomials of the second kind. The equation of motion of the flap is then solved
in the frequency domain, and the solution is used to conduct a parametric
analysis of an OWSC for a variety of environmental conditions and device di-
mensions. The effect of viscous dissipation on the device’s performance is then
quantified. We do not conduct dedicated model tests to validate our model,
but rather our results may be compared to model tests in a straightforward
way [23, 13].

The paper is organised as follows: in Sect. 2, the mathematical model is
formulated, non-dimensionalised, and the solution is achieved through an ap-
plication of Green’s theorem (as set out in the Appendix). The hydrodynamic
coefficients in the device’s equation of motion are found and in turn this equa-
tion of motion is solved in the frequency domain. In Sect. 3, a sensitivity study
of the effect that viscous dissipation has on the device’s performance is con-
ducted. Within the framework of this sensitivity study, the influence of the
device’s dimensions on the device’s performance is quantified, and it is shown
that the sensitivity of the device’s performance to dissipation depends strongly
on the diffraction parameter Kl. Sect. 3 concludes with a special focus on the
effect that dissipation has on the flap’s resonant hydrodynamic behaviour. Fi-
nally, the connection between the current findings and previous experimental
and theoretical results is explored in Sect. 4 and Sect. 5.

2 Mathematical model

Consider an OWSC in an open ocean of constant water depth h′, where the
prime indicates a quantity with a physical dimension. The OWSC is repre-
sented as a buoyant box-shaped flap of width w′ and thickness 2a′, hinged at
a depth d′ on a rigid platform of height h′−d′ as shown in figure 1. Monochro-
matic waves of amplitude A′I and period T ′ (see figure 2) are normally incident
upon the flap, which set the device oscillating about its hinge line.

Let θ′(t′) be the pitching amplitude of the device, which is positive if
the flap’s rotation is counterclockwise, and let t′ denote time. We define the
reference system of coordinates O′(x′, y′, z′) with x′ pointing in the opposite
direction to the incoming waves, and let the y′-axis lie along the width of the
device and the z′-axis points upwards from the still water level. The origin O′

is located in the center of the device at the still water level.
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Fig. 1 The geometry of the surface-piercing OWSC with dissipative surface D′ [13] extend-
ing from the fluid’s free surface to the seabed: (a) side (b) front view.

The fluid is deemed to be inviscid and incompressible, and the flow irro-
tational. Hence, there exists a potential Φ′(x′, y′, z′, t′) for the velocity field
v′ = ∇′Φ′ that satisfies Laplace’s equation

∇′2Φ′ = 0, (x′, y′, z′) ∈ V ′, (1)

in the fluid domain V ′. We further assume that the incident wave amplitude
is small compared to the width of the device: A′I � w′. As a consequence,
the angular rotation of the flap induced by the incoming waves is small and
the behaviour of the system is linear [4]. At the free surface, the linearised
kinematic-dynamic boundary condition leads to

Φ′,t′t′ + gΦ′,z′ = 0, z′ = 0, (2)

with g the acceleration due to gravity and a subscripted comma indicating
differentiation. We require zero flux of the fluid through the seabed

Φ′,z′ = 0, z′ = −h′. (3)

On the flap we have the kinematic condition

Φ′,x′ = −θ′,t′(t′)(z′ + d′)H(z′ + d′), x′ = ±0, |y′| < w′/2, (4)

where H stands for the Heaviside step function and where we have applied the
thin-body approximation

2a′ � w′. (5)

As is typical in problems such as these, we will split the velocity potential into
an incident, diffracted, and radiated part as follows:

Φ′ = ΦI′ + ΦD′ + ΦR′. (6)

We will further require that the wave field generated by the interaction be-
tween the incoming waves and the flap (i.e., the diffracted and radiated parts

of the wave field) must be outgoing at large distances r′ =
√
x′2 + y′2 from

the flap [6].
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Recent laboratory tests and numerical simulations have confirmed that
vortices are generated and shed from the tips of the flap at each half wave
period [10]. Hence, to incorporate the dissipative effects due to viscosity, we
introduce a so-called ‘dissipative surface’ D′ close to the flap’s edge, which
occupies the region 1

2w
′ < |y′| < 1

2 (w′ + `′) as shown in figure 1(b) and figure
2. We supplement equations (1)-(4) with the additional boundary condition
on D′. Across D′, we impose a pressure discharge ∆P ′, which we assume to
be a function of the local velocity component (v′n = Φ′,n) along the outward
unit normal vector n to D′ in the wave direction

∆P ′ = f
(
Φ′,n
)
. (7)

The relationship (7) represents the energy loss due to internal fluid dissipation
near the flap’s edge [16, 17, 13] – here

∆P ′(y′, z′, t′) = P ′(−0, y′, z′, t′)− P ′(+0, y′, z′, t′), (8)

denotes the difference in the pressure P ′ from the left to the right side of the
flap/dissipative surface in the wave direction. In the rest of the paper, we will
use the ∆ notation exclusively to represent jumps in hydrodynamic quantities.
In addition to (7), we require continuity of the velocity field between the left
and right faces of D′.

Pressure discharge laws such as (7) are common in the literature, with the
function f typically taking the form of a linear [15, 17, 13] or quadratic [18]
function of the local flow velocity. Following previous studies [21, 11, 13], let
us consider a linear form of f ; this leads to the following boundary condition:

∆Φ(R,D)′(y′, z′, t′) = − iε̄g

ω′2
Φ
(R,D)′
,x′ (±0, y′, z′, t′), w′/2 < |y′| < (w′ + `′)/2,

(9)
where i =

√
−1, ω′ = 2π/T ′ is the wave’s angular frequency, and the di-

mensionless parameter ε̄ is a measure of the amount of dissipation present in
the system and is termed the ‘dissipative-effect parameter’. In this paper, ε̄ is
treated as an empirical quantity that may be determined through dedicated
laboratory tests [16, 23, 13]. The lateral extent of the dissipative surface `′

in (9) is chosen to reflect the characteristic size of the vortices shed from the
edges of the flap as observed in laboratory tests [10].

We remark in passing that ε̄ is related in a straightforward way to its
porous-media counterpart, the ‘porous-wall-effect-parameter’ G [17], through
the relationship

ε̄ =
tanh k′h′

R {G}
. (10)

The numerator in (10) is typically between 0.5 and 1, so the overall magnitude
of ε̄ is determined by the reciprocal of R {G}. Note here that I {ε̄} = 0: in
terms of porous media flows, this would indicate that the inertial forces due
to the presence of the control surface are negligible compared to the resistive
forces.
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Fig. 2 Top view of the surface-piercing OWSC with the dissipative volume extended from
the flap’s tips, and incident waves of amplitude A′I travelling in the direction of −x′.

Continuity of the fluid’s velocity across D′ yields

∆Φ
(R,D)′
,x′ (y′, z′, t′) = 0, w′/2 < |y′| < (w′ + `′)/2, (11)

where, in the same way as in (8),

∆Φ(R,D)′(y′, z′, t′) = Φ(R,D)′(−0, y′, z′, t′)− Φ(R,D)′(+0, y′, z′, t′), (12)

denotes the difference in the diffraction/radiation potentials from the left to
the right side of the flap/dissipative surface in the wave direction, and likewise

∆Φ
(R,D)′
,x′ (y′, z′, t′) = Φ

(R,D)′
,x′ (−0, y′, z′, t′)− Φ(R,D)′

,x′ (+0, y′, z′, t′), (13)

denotes the difference in the x′-component of the velocity from the left to the
right side of the flap/dissipative surface in the wave direction.

2.0.1 Non-dimensionalisation

Let A′ denote the amplitude scale of the wave field (in which the incident waves
have amplitude A′I) and introduce the following dimensionless variables:

(x, y, z, r) = (x′, y′, z′, r′)/w′, t =
√
g/w′t′, Φ =

(√
gw′A′

)−1
Φ′,

ω = ω′
√
w′/g, θ = (w′/A′)θ′,


(14)

and the dimensionless constants

(h, d, `) = (h′, d′, `′)/w′, AI = A′I/A
′. (15a, b)

To ensure that the flap performs linear motion, we require that A′I � w′.
Further, let the dimensionless potential Φ comprise the dimensionless incident,
diffraction, and radiation potentials as follows:

Φ = ΦI + ΦD + ΦR. (16)
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2.1 Semi-analytical solution

We may separate the time dependence out of the problem as follows:

θ(t) = R
{
Θe−iωt

}
, Φ(x, y, z, t) = R

{
φ(x, y, z)e−iωt

}
, (17a, b)

where the complex velocity potential φ comprises contributions from the inci-
dent, diffraction, and radiation problems

φ(x, y, z) = φI(x, z) + φD(x, y, z) + VφR(x, y, z), (18)

and the complex incident potential φI is given by

φI = − iAI
ω

cosh k(z + h)

cosh kh
e−ikx; (19)

here, k is the wavenumber satisfying the dimensionless dispersion relation

ω2 = k tanh kh, (20)

V = iωΘ is the complex angular velocity of the flap, and Θ is the complex
pitching amplitude made by the flap, which is found as part of the solution.
In (17), we have implied that there is just a single radiation problem since we
keep the dissipative surfaces fixed.

We nondimensionalise the governing equations according to (14) and (15).
We then substitute the decompositions (17) and (18) into (1)-(4), (9), and
(11), which yields the following equations:

∇2φ(R,D) = 0, (x, y, z) ∈ V, (21)

in the fluid domain

φ(R,D)
,z − ω2φ(R,D) = 0, z = 0, (22)

at the free surface

φ(R,D)
,z = 0, z = −h, (23)

at the seabed. On the flap, we find{
φR,x
φD,x

}
=

{
(z + d)H(z + d)

−φI,x

}
, x = ±0, |y| < 1/2. (24)

Across the dissipative surface, we have

φ(R,D)
,x = −ω

2

iε̄
∆φ(R,D), x = ±0, 1/2 < |y| < (1 + `)/2, (25)

and continuity of velocity

∆φ(R,D)
,x = 0, 1/2 < |y| < (1 + `)/2. (26)
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Following previous authors [5], we separate out the vertical dependence of
the solution as follows:

φ(R,D)(x, y, z) =

∞∑
n=0

ϕ(R,D)
n (x, y)Zn(z), (27)

where Zn(z) are the well-known normalised vertical eigenmodes of the flat-
bottom water wave problem

Zn(z) =

√
2 coshκn(z + h)(

h+ ω−2 sinh2 κnh
)1/2 , n = 0, 1, . . . , (28)

which satisfy the orthogonality relation∫ 0

−h
Zn(z)Zm(z)dz = δnm, (29)

with n ∈ N0, m ∈ N, δnm the Kronecker delta, and κn defined as

κ0 = k, κn = ikn, n = 1, 2, . . . , (30)

where k and kn are the positive solutions to the dispersion relations (20) and

ω2 = −kn tan knh, n = 1, 2, . . . , (31)

respectively.
By inserting (27) into the governing equations (21)-(26), we obtain the

Helmholtz equation(
∇2 + κ2n

)
ϕ(R,D)
n (x, y) = 0, (x, y) ∈ Σ, (32)

in the reduced 2D fluid domain Σ (see figure 2), and boundary conditions

∞∑
n=0

Zn(z)

{
ϕRn,x
ϕDn,x

}
(x, y) =

{
(z + d)H(z + d)

−φI,x

}
, x = ±0, |y| < 1/2, (33)

on the flap, and on the dissipative surface we find

∞∑
n=0

ϕ(R,D)
n,x (x, y)Zn(z)

= −ω
2

iε̄

∞∑
n=0

∆ϕ(R,D)
n (y)Zn(z), x = ±0, 1/2 < |y| < (1 + `)/2, (34)

and continuity of the fluid’s velocity across D yields

∞∑
n=0

∆ϕ(R,D)
n,x (y)Zn(z) = 0, 1/2 < |y| < (1 + `)/2. (35)
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We may further simplify (33)-(35) by multiplying both sides of each equa-
tion by Zm(z) and integrating over the entire water column; using the orthog-
onality relation (29), we find{

ϕRn,x
ϕDn,x

}
(x, y) =

{
fn
AIqn

}
, x = ±0, |y| < 1/2, (36)

where the real quantities qn and fn are defined as

qn =
k
(
h+ ω−2 sinh2 kh

)1/2
√

2ω cosh kh
δn0, (37)

and

fn =

√
2 [dκn sinhκnh+ coshκn(h− d)− coshκnh]

κ2n
(
h+ ω−2 sinh2 κnh

)1/2 . (38)

On the dissipative surface, we find

ϕ(R,D)
n,x (±0, y) = −ω

2

iε̄
∆ϕ(R,D)

n (y), 1/2 < |y| < (1 + `)/2, (39)

and continuity of the fluid’s velocity across D yields

∆ϕ(R,D)
n,x (y) = 0, 1/2 < |y| < (1 + `)/2. (40)

The solution to equations (32), (36), (39), and (40) is found by application

of Green’s theorem to ϕ
(R,D)
n,x and Gn (see Appendix) in a large circumference

enclosing all regions of the reduced 2D fluid domain Σ. This yields a hyper-
singular equation for the diffraction and radiation problems, as outlined in the
Appendix. To resolve this singularity, the solutions to the diffraction and radi-
ation problems are represented in terms of a series of Chebyshev polynomials
of the second kind; the complex diffraction potential φD reads

φD(x, y, z) = − iAI
8
kxZ0(z)

3∑
m=1

wm

pmax∑
p=0

a0mp

∫ 1

−1
(1− ζ2)1/2Up(ζ)

×
H

(1)
1

(
k

√
x2 + (y − (wmζ + um) /2)

2

)
√
x2 + (y − (wmζ + um) /2)

2
dζ, (41)

where wm and um are defined in the Appendix. In (41), H
(1)
1 is the outgoing

Hankel function of the first kind and first order, Up is the Chebyshev polyno-
mial of the second kind and order p ∈ N0, and the complex coefficients a0mp
assume values that ensure that the diffraction potential φD satisfies the no-
flux condition on the flap (lower line of (24)) and the pressure discharge and
continuity conditions on the dissipative surfaces (25) and (26) respectively.
These coefficients are computed by solving a system of linear equations using
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a collocation scheme – see Appendix. In the same way, the complex radiation
potential φR is given by

φR(x, y, z) = − i

8

nmax∑
n=0

κnxZn(z)

3∑
m=1

wm

pmax∑
p=0

bnmp

∫ 1

−1
(1− ζ2)1/2Up(ζ)

×
H

(1)
1

(
κn

√
x2 + (y − (wmζ + um) /2)

2

)
√
x2 + (y − (wmζ + um) /2)

2
dζ. (42)

In (42), the complex coefficients bnmp ensure that the radiation potential sat-
isfies the kinematic condition on the flap (upper line of (24)) and the pressure
discharge and continuity conditions on the dissipative surfaces (25) and (26)
respectively. Note that in order to compute these coefficients in the expressions
for φD and φR, the series in n and p are truncated at finite values nmax and
pmax respectively.

2.2 Body motion and wave power absorption

To solve the problem fully, we must determine the pitching amplitudes in
(17a). To do this, we solve the equation of motion for the flap in the frequency
domain: [

−ω2 (I + µ) + C − iω (ν + νpto)
]
Θ = F, (43)

where I = I ′/(ρw′5), C = C ′/(ρgw′4), and νpto = ν′pto/(ρw
′4√gw′) are respec-

tively the dimensionless moment of inertia, buoyancy torque, and the power
take off (PTO) damping of the flap. The hydrodynamic coefficients in (43) are
the dimensionless complex exciting torque

F = − iπω

4
AIw2f0a020, (44)

from the diffraction problem, the dimensionless added mass

µ =
πw2

4
R

{ ∞∑
n=0

fnbn20

}
, (45)

and dimensionless added damping

ν =
πωw2

4
=

{ ∞∑
n=0

fnbn20

}
, (46)

from the radiation problems. The equation (43) and coefficients (44)-(46),
have been derived in [5] for an arbitrary number of flaps without dissipation,
leading to as many equations as there are flaps. In our case, we consider the
equations/coefficients for a 3-flap system but since the dissipative surfaces
remain fixed, we have just a single equation of motion.
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Table 1 Physical dimensions of the OWSC, the wave conditions considered, and the width
of the dissipative regions.

w′(m) h′ (m) A′I (m) d′ (m) `′ (m)

{12, 18, 26} 10.9 0.3 9.4 1.8

The absorbed power P over a cycle is calculated using the formula [4]

P =
1

2
ω2νpto

|F |2

|C − ω2 (I + µ)− iω (ν + νpto)|2
. (47)

Following previous authors [4], the extracted power (47) can be optimised by
adjusting the PTO damping νpto = νpto(ω) so that ∂P/∂νpto = 0. This leads
to the following expression for the optimal PTO damping

νpto(ω) =

√
ν2 +

[C − ω2 (I + µ)]
2

ω2
, (48)

and inserting this back into (47) yields the following expression for the power
generated:

P =
1

4

|F |2

(νpto + ν)
. (49)

In practice, one might need to select a fixed PTO damping for the device,
but this case is not examined in this paper. Instead, we will always select our
optimal PTO damping according to (48); in (49) and in the rest of the paper,
the dependence of the optimal PTO damping on ω is implied. To assess the
performance of the OWSC, the capture factor, which is defined as the ratio
of the power output of the device to the power of the incident wave per unit
width of the device

CF =
|F |2

2A2
ICg (νpto + ν)

, (50)

is computed. In (50),

Cg =
ω

2k

(
1 +

2kh

sinh 2kh

)
(51)

is the group velocity of the incident wave in dimensionless variables. The ex-
pressions for the power (49) and capture factor (50), when written in this form,
make it clear that the device’s power capture and performance are dominated
by the exciting torque [1]. There are other expressions for WEC performance
in the literature: in [24], the authors characterise the absorptive properties of
a WEC with reference only to the radiated wave at large distances from the
device. Such an expression is particularly useful for a point absorber WEC,
whose performance relies on its ability to radiate waves.

To assess the OWSC’s performance with regard to increasing dissipation
levels, we consider an OWSC with physical dimensions and environmental
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conditions the same as those that were used in previous studies (see table 1)
[5]. We examine the effect that changing the flap’s width has on power capture
with reference to varying the dissipation-effect parameter. Note that, although
we make the simplifying assumption that the flap is thin, this does not affect
the buoyancy torque, which is calculated using the submerged volume of the
flap. In the same way, the width of the dissipative region is selected to be of
the same order of magnitude as a typical flap’s thickness, as this is the region
in which we expect the effects due to viscous losses to be confined [10]. The
value of `′ appears in table 1, and is kept fixed throughout the parametric
analysis.

2.3 Behaviour in the far field

To assess our results, let us consider the following integral Inmp appearing in
the expressions (41) and (42) for the complex velocity potentials φ(R,D):

Inmp =

∫ 1

−1
(1−ζ2)1/2Up(ζ)

H
(1)
1

(
κn

√
x2 + (y − (wmζ + um) /2)

2

)
√
x2 + (y − (wmζ + um) /2)

2
dζ. (52)

We wish to examine the behaviour of Inmp in the far field. Since the evanescent
modes (n > 0) decay exponentially quickly far from the device [5], let us
consider only the propagative n = 0 mode of (52), and expressing the Cartesian
coordinates (x, y) in terms of plane polar coordinates (r, γ) as follows:

(x, y) = r(cos γ, sin γ), (53)

then we find

I0mp =

∫ 1

−1
(1− ζ2)1/2Up(ζ)

H
(1)
1

(
kr

√
1 + [(wmζ + um) /2r]

2

)
r

√
1 + [(wmζ + um) /2r]

2
dζ. (54)

To examine the behaviour of I0mp in the far field, consider the large-r asymp-

totic behaviour of H
(1)
1 (see equation (37) in [5]). Carrying out the algebra

gives the following large-r asymptotic behaviour of the complex velocity po-
tentials:{

φR

φD

}
(r, γ, z)

= −xZ0(z)
ikπ

16r

√
2

πkr
ei(kr−3π/4) cos γ

3∑
m=1

wm

{
b0m0

AIa0m0

}
. (55)

Taking each potential in turn, the diffraction potential (bottom line of (55))
reads

φD(r, γ, z) = − iAI
ω
AD(γ)

cosh k(z + h)

cosh kh

√
2

πkr
ei(kr−π/4), (56)
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where AD(γ), defined as

AD(γ) = − iπ

8
√

2
k cos γ

3∑
m=1

wma0m0
ω cosh kh(

h+ ω−2 sinh2 kh
)1/2 , (57)

is the angular variation of the diffracted wave. In the same way, the radiation
potential in the far field may be written as

φR(r, γ, z) = − i

ω
AR(γ)

cosh k(z + h)

cosh kh

√
2

πkr
ei(kr−π/4), (58)

where AR(γ), defined as

AR(γ) = − iπ

8
√

2
k cos γ

3∑
m=1

wmb0m0
ω cosh kh(

h+ ω−2 sinh2 kh
)1/2 , (59)

is the angular dependence of the radially spreading radiated wave. Now con-
sider the propagative mode of the radiation damping

νprop =
πw2ω

4
Im {f0b020} , (60)

where we have omitted the higher order eigenmodes in (46) as they remain
trapped to the body [5]. Using (59), we may express w2b020 in terms of AR(0),
which yields the following expression:

w2b020 =
4i

πω

2
√

2AR(0)

k cosh kh

(
h+ ω−2 sinh2 kh

)1/2 − w1 (b010 + b030) . (61)

Inserting this into (60) yields

νprop

=
πω

4
f0=

{
8i
√

2AR(0)

πωk cosh kh

(
h+ ω−2 sinh2 kh

)1/2 − `

2
(b010 + b030)

}
. (62)

It can be shown that the two linear systems of equations for the radiation and
diffraction problems have identical coefficient matrices, and hence our problem
yields the following solvability condition:

b020q0 = a020f0, (63)

to ensure uniqueness of the solution [4]. We may, therefore, express the exciting
torque (44) in terms of the coefficients of the radiation problem

F = − iπ

4
AIw2ωq0b020, (64)

and using (61), we may express the complex exciting torque in terms of AR(0)
as follows:

F =
4

k
AICgAR(0) +

iπ

4

`

2
AIωq0 (b010 + b030) . (65)
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Combining (62) and (65), we may express νprop in terms of F

νprop =

(
d+

cosh(k(h− d))− cosh kh

k sinh kh

)
Re

{
F

AI

}
tanh kh

kCg
. (66)

Interestingly, (66) is identical to the Haskind relation for an OWSC in an open
ocean (or in a channel) without dissipation [4, 5]. Although not a sufficient
criteria for numerical accuracy, it is used in this paper as a quick check of the
accuracy of the calculations of the numerical scheme, achieving a relative error
of O

(
10−15

)
between the left- and right-hand sides of (66) using just the first

P = 5 terms of the series of Chebyshev polynomials. All results presented in
this paper converge to at least the same level of accuracy as previous studies
on WEC arrays (see [6]) using the first P = 7 Chebyshev polynomials and
the first N = 3 vertical eigenmodes. In order to achieve a consistent level of
accuracy near resonant peaks, however, it was necessary to include the first
P = 13 Chebyshev polynomials and first N = 3 vertical eigenmodes.

3 The results

3.1 Influence of dissipation on power capture

In figures 3 and 4, we examine the effect that increasing the dissipation-effect
parameter ε̄ has on the hydrodynamic behaviour of the OWSC. In the limit
as ε̄ → 0, the exciting torque, added mass/damping, and capture factors are
identical to that for a single flap in the open ocean without dissipation [5].
Increasing ε̄ leads to a decrease in the peak values of all three hydrodynamic
coefficients and the capture factor, as can be seen in figure 4. For short-period
waves (wave periods smaller than the peak period), the hydrodynamic quan-
tities are insensitive to the value of ε̄. The capture factor is found to mono-
tonically decrease with increasing ε̄ for all flap dimensions and typical wave
conditions.

3.2 Sensitivity to dissipation: the influence of diffraction

To examine the effect that the flap’s width has on power capture, we consider
the capture factor of flaps with the three different widths given in table 1. In
order to investigate how the flap’s width affects the power capture’s depen-
dence on dissipation, we focus on the peak and trough values of the capture
factor curve. In figure 5, we plot the percentage decrease in the peak (figure
5a) and trough (figure 5b) values of CF against ε̄ for the three flap widths
considered.

For each flap width considered in this parametric analysis, we find that
the peak values of CF are less sensitive to the magnitude of ε̄ than the trough
values. In the former, there is about a 1% change in CF for ε̄ taking values
between 0 and 0.01; in the latter, the change is 3% over the same range of ε̄.
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Fig. 3 The dependence of the hydrodynamic coefficients µ′, ν′, and |F ′| in dimensional
variables, and the capture factor CF on the magnitude of the dissipative-effect parameter ε̄
as a function of the incident wave period T ′ in seconds for a flap of width w′ = 18 m. The
grey box that encloses the peak in each of (a)-(d) indicates the extent of the plot region in
figure 4.

Furthermore, we find that the sensitivity of CF to dissipation is affected by
the flap’s width: the narrower the flap, the more sensitive is its power capture
to the value of ε̄, and this is especially true at longer wave periods – see figure
5(b).

The connection between existing experimental tank tests/CFD simulation
results and the present work is also illustrated in figure 5(b) and figure 6. In
the former, we have labelled each of curves from our parametric study with the
value of its associated diffraction parameter Kl. Note that the trend in figure
5(b) is present in figure 5(a), but since the diffraction parameters near a peak
are larger (Kl ≈ 2.4), the sensitivity is less significant. Referring to figure 6,
we remark that the Keulegan-Carpenter number (KC) is very small for all
of our results since the requirement that the motion is linear relies on the
assumption that A′I � w′, i.e., KC/2π � 1. From figure 5, we find that the
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Fig. 4 The dependence of the peak values of each of the hydrodynamic coefficients (a)-(c)
and the capture factor (d) as indicated in figure 3.
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Fig. 5 The percentage decrease in the peak (a) and trough (b) values of the capture factor
CF versus the magnitude of the dissipation-effect parameter ε̄ for three flap widths w′ =
12, 18, and 26 m. The numbers labelling the curves in (b) correspond to the diffraction
parameter Kl for that curve.
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Fig. 6 The regions of validity of the hydrodynamic approximations (redrawn from [10])
in the Kl-KC parameter space. The CFD modelling carried out in [10] is indicated by
the crosshairs, and each of the test cases are labelled A-D accordingly. The data from the
parametric analysis (i.e., figure 5) is indicated by squares, diamonds, and triangles as shown.

relative importance of flow separation to diffraction effects is greater at longer
wave periods (i.e., trough rather than peak values), and for narrower flaps.
Hence, the hydrodynamic quantities are not sensitive to increasing dissipation
effects when either the flap is very wide or the wave period short, in qualitative
agreement with the conclusions of [10].

3.3 Influence of dissipation on flap in resonance with incident waves

If the flap is designed such that its buoyancy torque C and inertia torque I
satisfy the relation

ω2(I + µ) = C, (67)

i.e., the flap is tuned to resonate with the incident waves, then it follows from
(48) that νpto = ν and the capture factor attains its maximal value

Cmax
F =

|F |2

4A2
ICgν

. (68)

In this last subsection, we examine the case of a flap tuned to resonate with
the incoming waves. To facilitate this study, we consider a narrow flap (w′ = 3
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Fig. 7 The influence of dissipation on the capture factor of a 3 m wide flap tuned to
resonance; the solid curve is calculated using the model of [5], and contains a spike at the
resonant wave period at T ′ ≈ 9.04 s, and the dissipative effect parameter ε̄ is increased from
0.0001 to 0.01 – note the broken horizontal axis at T ′ = 5 s.

m wide), which has a resonant period within the range of periods considered
in this paper. Using the model formulated in [5], we find that the capture
factor curve contains a spike near the flap’s resonant period; however, including
dissipation in the form of a pressure discharge near the flap’s tips removes this
spike. Referring to figure 7, we see that the capture factor has two peaks:
one corresponding to the maximum in the wave torque (at T ′ = 2.22 s) and
a second peak that spikes at the resonant period (at T ′ = 9.04 s). Figure 7
reveals the effect that increasing dissipation has on the resonant peak. We find
that increasing ε̄ to 0.01 is sufficient to reduce the resonant peak to below the
level of the peak corresponding to maximum exciting torque.

In figure 8, we explore the effect that dissipation has on the dynamics of
the flap. Figure 8(a) shows an expanded view of CF near the resonant period,
while figure 8(b) shows the corresponding amplitude of rotation of the flap in
dimensional variables. Near resonance, the inviscid theory predicts unrealisti-
cally large amplitudes of rotation. For ε̄ between 0 and 0.001, the predicted
amplitude of rotation is still above 90◦, however as ε̄ is increased further,
we find that the flap’s rotation amplitude near resonance rapidly decreases to
Θ′ ≈ 33◦, which is accompanied by a shift in the resonant peak towards longer
periods. Although this angle is a dramatic reduction on the value attained in
the non-dissipative case, we remark that the linearised theory used here is
unlikely to capture the dynamics of the flap at larger angles than this.
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Fig. 8 The influence of dissipation on (a) the capture factor and (b) the amplitude of
rotation of a 3 m wide flap. The solid curve is calculated using the model of [5], and contains
a spike at the resonant wave period at T ′ ≈ 9.04 s, and the dissipative effect parameter ε̄ is
increased from 0.0001 to 0.01.

4 Discussion

It is well known that inviscid linear potential flow theory can greatly overpre-
dict the dynamics of resonant systems, and that the addition of dissipation in
regions where vortex-shedding is known to occur can give much better agree-
ment with model tests [25]. The results presented here show that the effects due
to vortex-shedding around a flap-type OWSC may be modelled by incorporat-
ing a pressure-discharge in the fluid surrounding the flap’s tips. Furthermore,
this approach has been shown to be an effective way to remove the spurious
resonant behaviour of the flap as predicted by the inviscid theory.

One of the main results of this paper is the dependence of the capture
factor CF on the magnitude of the dissipative effect parameter ε̄: figure 3(d)
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and figure 4(d). It shows that as ε̄ is increased, the capture factor decreases;
it also shows that the dependence of CF on ε̄ is most significant about the
curve’s peak and for long-period waves. Conversely, over the range of values
considered for ε̄, on average, there is little dependence of CF on ε̄ for typical
environmental conditions experienced by an OWSC.

The parametric analysis involving different flap widths in figure 5 reveals
that the trough values of the capture factor are more sensitive to changes in
ε̄ than are the peak values. Moreover, this sensitivity is amplified as the flap
is narrowed. This suggests that viscous effects will be less important for flaps
with large Kl (i.e., wide flaps and/or short waves) and/or small KC numbers.
In order to compare these results with existing data from CFD modelling, we
represent the cases considered in the parametric analysis in figure 6, which is
redrawn from [10]. In [10], viscous effects become more important as one shifts
from region III (viscous effects are negligible) to region II, and then to region
I (viscous effects dominate). Referring to our results (i.e., figure 5), we can see
that the parametric study for short-period waves (large Kl) is far into region
III (where there is little sensitivity to viscous dissipation), whereas the study
in long-period waves is on the boundary between regions II and III (where
the sensitivity to viscous dissipation is amplified). This amplification of the
sensitivity at small Kl numbers and/or larger KC numbers is therefore in
qualitative agreement with the conclusions in [10].

We have examined the case where the OWSC is tuned to resonate with the
incoming waves. It is well known that using inviscid linear potential theory
to capture resonant effects can lead to unphysical spikes in the hydrodynamic
quantities. We find that an OWSC’s capture factor exhibits this same be-
haviour using standard inviscid linear potential theory, but that the inclusion
of dissipation in the form of a pressure discharge in the vicinity of the flap’s
tips is sufficient to eliminate this spurious behaviour. Although such wave
conditions are not typically experienced for existing OWSCs, we have demon-
strated that adding viscous dissipation in this way can smooth the spike in
the capture factor and give a more realistic prediction of the hydrodynamic
performance of the OWSC.

Moreover, we may determine the dissipative-effect parameter by comparing
our predicted amplitudes of rotation (figure 8b) to data from laboratory tests
and/or CFD simulations. The former methodology was used successfully in [13]
to examine the effect of viscous dissipation on moonpool resonance and in [23]
to calculate the resistive forces and wave loads on a porous plate. We remark
that such a comparison would need to be conducted at wave periods close to
the flap’s resonant period (see [13]), where the most dramatic excursions in
rotation amplitude occur.

5 Conclusion

We have examined the effect of viscous dissipation on the performance of an
OWSC in the open ocean. Viscous effects are included in the region around
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the flap’s sharp edges, where vortex shedding is known to occur. The hydro-
dynamic modelling of the flap is based on linear potential flow theory, and the
effects of viscous dissipation have been incorporated by assuming that there is
a loss in hydrodynamic pressure, which is taken to be a function of the fluid’s
velocity in the direction normal to the flap, in the region surrounding the flap’s
edges. Using Green’s theorem, this approach leads to a hypersingular integral
equation for the velocity potential, in which the singularity is resolved by ex-
pressing the velocity potential in terms of a fast-converging series of Chebyshev
polynomials.

We demonstrate that there exists a Haskind relation for the OWSC when
dissipative effects are included, and we show that this relation is identical to
the Haskind relation appearing in previous studies of an OWSC in the open
ocean without viscous dissipation. In the dissipation-free case, it was found
that evanescent modes do not contribute to the radiation damping. Therefore,
it is interesting to point out that our Haskind relation holds even though the
contribution of the n > 0 evanescent modes to the radiation damping are
non-zero.

We show that the effects of dissipation are to reduce the peak values of the
hydrodynamic quantities, and that the dependence of the hydrodynamic quan-
tities on the dissipation-effect parameter is generally weak when considering
the environmental conditions typically experienced by existing OWSCs. The
effects of dissipation are strongest near peaks in the hydrodynamic quantities
and for long-period waves. Conversely, the effect of dissipation is negligible for
short-period waves. The capture factor, which is a measure of the OWSC’s
ability to extract energy from the ocean’s waves, is reduced for increasing
dissipation levels. The effect is weak across typical environmental conditions,
with a reduction of about 1% and 3% in the peak and trough values of the CF
curve for an 18 m wide flap respectively as the dissipation-effect parameter is
increased from 0.0001 to its maximum value of 0.01.

Our model is in qualitative agreement with existing CFD simulations and
available experimental data, where previous authors have concluded that vis-
cous drag is more important for narrow flaps and that the effects are amplified
for long-period waves. We have thus validated the visco-potential approach
for an OWSC in the open ocean, and have shown that it is an efficient and
effective method to investigate the effects of dissipation on the flap’s hydro-
dynamic performance in a range of environmental conditions. In addition, our
analysis of a resonant OWSC shows that the spikes in CF predicted by the
inviscid theory may be removed by including dissipation in the model in the
form of a pressure drop near the flap’s tips.

This paper is primarily concerned with a single flap in the open ocean, and
we find that the performance of the flap is largely insensitive to the magni-
tude of the dissipative-effect parameter. Conversely, the effect of dissipation
on the resonant peak of the capture factor curve is dramatic. Since this reso-
nant period lies outside the typical operating conditions of an OWSC, it does
not have an appreciable effect on the operating hydrodynamic performance of
an OWSC. However, it is interesting to speculate how the hydrodynamic per-
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formance is affected when there are ‘near resonant’ phenomena present such
as those described in [4, 7]. In order to examine this, one could reformulate
the problem using a channel Green’s function. Finally, note that we use a lin-
ear law to relate the pressure discharge to the local fluid velocity, but that a
quadratic or other form could have been used. The quadratic and linear laws
may be related using the Lorentz principle of equivalent work as described
in [26, 27, 11]: hence, we do not expect such a choice to significantly affect
our conclusions. To test this, the original equations (1)-(4) and (7) could, in
principle, be solved using a BEM solver – these studies are left for future work.

Appendix: Solution to the diffraction and radiation problems

In this section, we present the solution to the system of equations for the nth-mode 2D

spatial potentials ϕ
(R,D)
n ((32), (36), (39), and (40)) by using Green’s theorem in the fluid

domain. The method we use is based on the same procedure as devised by [6]; to begin, we
define the Green’s function

Gn(x, y; ξ, η) =
1

4i
H

(1)
0 (κnρ) , (69)

to be singular at (x, y) = (ξ, η) ∈ Σ as the outgoing solution of the Helmholtz equation

(∇2 + κ2n)Gn = 0; Gn →
log ρ

2π
as ρ→ 0, (70)

where ρ =
√

(x− ξ)2 + (y − η)2, (ξ, η) ∈ Σ; here H
(1)
0 is the Hankel function of the first

kind and the zeroth order. To reduce the amount of cumbersome algebra, let us label the
dimensionless start and end of each boundary by (ysm, y

e
m) respectively, where m = 1, 3

correspond to the dissipative surfaces and m = 2 labels the flap.

Application of Green’s theorem to ϕ
(R,D)
n (x, y) and Gn(x, y; ξ, η) in the domain Σ en-

closed by a large circumference centred at the origin O and containing the flap and dissipative
surfaces, and using (40) yields

{
ϕRn
ϕDn

}
(x, y) =

3∑
m=1

∫ yem

ysm

{
∆ϕRnm
∆ϕDnm

}
(η)Gn,ξ(x, y; ξ, η)|ξ=0dη. (71)

Here, we define

{
∆ϕRnm
∆ϕDnm

}
(y) =

{
ϕRn
ϕDn

}
(−0, y)−

{
ϕRn
ϕDn

}
(+0, y), y ∈ (ysm, y

e
m); (72)

i.e., the first line is the jump in the nth radiation potential across the mth region when the
OWSC is moving with the remaining regions fixed, and the second line is the solution to
the diffraction problem, which is solved by keeping all regions held fixed in incident waves.

Differentiating (71) with respect to x, and evaluating the expression on the flap and
dissipative surfaces leads to a hypersingular equation comprising contributions from each
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one of the regions [6]; using (36) and (39) we find that ∆ϕ
(R,D)
nm satisfy the integral equations

3∑
m=1

κn

4i
×
∫ yem

ysm

{
∆ϕRnm
∆ϕDnm

}
(η)

H
(1)
1 (κn|y − η|)
|y − η|

dη =



{
fn

AIqn

}
y ∈ (ys2, y

e
2)

−
ω2

iε̄

{
∆ϕRnm
∆ϕDnm

}
(y) y ∈ (ys1,3, y

e
1,3),

(73)

where ×
∫

is interpreted as the Hadamard finite-part integral [28]. In order to resolve the
singularity, we follow the analysis of [6] and perform the following change of variables:

um = ysm + yem, ζ =
2η − um
wm

,

{
∆ϕRnm
∆ϕDnm

}
(η) =

{
Qnm
Snm

}
(ζ), (74a, b, c)

where wm = yem − ysm is the dimensionless width of the mth region, and define

vm(y) =
2y − um
wm

, y ∈ (ysβ , y
e
β), β = 1, 2, 3. (75)

Inserting the change of variables (74) and (75) into (73) yields

κn

4i
×
∫ 1

−1

{
Qnβ
Snβ

}
(ζ)

H
(1)
1 ( 1

2
κnwβ |vβ(y)− ζ|)
|vβ(y)− ζ|

dζ

+

3∑
γ=1
γ 6=β

κn

4i

∫ 1

−1

{
Qnγ
Snγ

}
(ζ)

H
(1)
1 ( 1

2
κnwγ |vγ(y)− ζ|)
|vγ(y)− ζ|

dη

=



{
fn

AIqn

}
y ∈ (ys2, y

e
2)

−
ω2

iε̄

{
Qnβ
Snβ

}
(vβ(y)) y ∈ (ysβ , y

e
β),

β = 1, 3.

(76)

Let us now expand the unknown jumps Qnm, Snm in a series of Chebyshev polynomials{
Qnm
Snm

}
(ζ) = (1− ζ2)1/2

∞∑
p=0

{
bnmp

AIanmp

}
Up(ζ), m = 1, 2, 3. (77)

Inserting this expansion into (76) and truncating the series at some finite integer p = pmax,
yields a set of equations for the unknown coefficients bnβp and anβp; the equations, which
are lengthy, are omitted here in the interests of brevity. This set of equations is solved using
a numerical collocation scheme similar to the one devised in [6].

Acknowledgements This publication resulted from research conducted with the financial
support of Science Foundation Ireland under Grant Number SFI/10/IN.1/I2996, ‘High-end
computational modelling for wave energy systems’, for which the authors wish to express
their gratitude.



A new model of viscous dissipation for an oscillating wave surge converter 25

References

1. Renzi E, Doherty K, Henry A, Dias F (2014) How does Oyster work? The simple
interpretation of Oyster mathematics. Eur J Mech B/Fluids 47:124–131

2. Whittaker T, Folley M (2012) Nearshore oscillating wave surge converters and the de-
velopment of Oyster. Phil Trans R Soc Lond A 370(1959):345–364

3. Falnes J (2002) Ocean Waves and Oscillating Systems. Cambridge University Press
4. Renzi E, Dias F (2012) Resonant behaviour of an oscillating wave energy converter in

a channel. J Fluid Mech 701:482–510
5. Renzi E, Dias F (2013) Hydrodynamics of the oscillating wave surge converter in the

open ocean. Eur J Mech B/Fluids 41:1–10, ISSN 0997-7546
6. Renzi E, Abdolali A, Bellotti G, Dias F (2013) Wave-power absorption from a finite

array of oscillating wave surge converters. Renew Energ 63:55–68
7. Sarkar D, Renzi E, Dias F (2014) Wave farm modelling of oscillating wave surge con-

verters. Proc R Soc Lond A 470(2167):20140118
8. Noad I, Porter R (2015) Optimisation of arrays of flap-type oscillating wave surge con-

verters. Appl Ocean Res 50:237–253, ISSN 0141-1187
9. Sarkar D, Contal E, Vayatis N, Dias F (2016) Prediction and optimization of wave

energy converter arrays using a machine learning approach. Renew Energ 97:504–517
10. Wei Y, Rafiee A, Henry A, Dias F (2015) Wave interaction with an oscillating wave

surge converter, Part I: Viscous effects. Ocean Eng 104:185–203
11. van ’t Hoff J (2009) Hydrodynamic modelling of the oscillating wave surge converter.

Ph.D. thesis, Queen’s University Belfast
12. Chakrabarti SK (2005) Chapter 4 - Loads and Responses. In SK Chakrabarti, editor,

Handbook of Offshore Engineering, 133–196, Elsevier, London, ISBN 978-0-08-044381-2
13. Chen XB, Dias F, Duan WY (2011) Introduction of dissipation in potential flows. In

Proc. 7th International Workshop on Ship Hydrodynamics, Shanghai, China
14. Tait M, El Damatty A, Isyumov N, Siddique M (2005) Numerical flow models to sim-

ulate tuned liquid dampers (TLD) with slat screens. J Fluid Struct 20(8):1007–1023
15. Tuck E (1975) Matching Problems Involving Flow through Small Holes, vol. 15 of Ad-

vances in Applied Mechanics. Elsevier
16. Evans D (1990) The use of porous screens as wave dampers in narrow wave tanks.

J Eng Math 24(3):203–212
17. Yu X (1995) Diffraction of water waves by porous breakwaters. J Wa-

terw Port Coast Ocean Eng 121(6):275–282
18. Molin B (2001) On the added mass and damping of periodic arrays of fully or partially

porous disks. J Fluid Struct 15(2):275–290
19. Molin B, Remy F (2013) Experimental and numerical study of the sloshing motion in

a rectangular tank with a perforated screen. J Fluid Struct 43:463–480
20. Terra GM, van de Berg WJ, Maas LR (2005) Experimental verification of Lorentz’

linearization procedure for quadratic friction. Fluid Dyn Res 36(3):175–188
21. Folley M, Whittaker T, Van’t Hoff J (2007) The design of small seabed-mounted bottom-

hinged wave energy converters. In Proc. 7th European Wave and Tidal Energy Conf.,
Porto, Portugal, vol. 455

22. Folley M, Whittaker T (2010) Spectral modelling of wave energy converters. Coast Eng
57(10):892–897

23. Li Y, Liu Y, Teng B (2006) Porous effect parameter of thin permeable plates.
Coast Eng J 48(04):309–336

24. Farley F (1982) Wave energy conversion by flexible resonant rafts. Appl Ocean Res
4(1):57–63

25. Chen XB, Liu HX, Duan WY (2015) Semi-analytical solutions to wave diffraction of
cylindrical structures with a moonpool with a restricted entrance. J Eng Math 90:51–66

26. Sollitt CK, Cross RH (1972) Wave transmission through permeable breakwaters. In
Proc. 13th Coastal Engng Conf., Vancouver, Canada, 1827–1846, ASCE

27. Mei CC (1989) The Applied Dynamics of Ocean Surface Waves. World Scientific
28. Linton CM, McIver P (2001) Handbook of Mathematical Techniques for Wave/Structure

Interactions. CRC Press


